JP6866689B2 - Image forming device - Google Patents

Image forming device Download PDF

Info

Publication number
JP6866689B2
JP6866689B2 JP2017037285A JP2017037285A JP6866689B2 JP 6866689 B2 JP6866689 B2 JP 6866689B2 JP 2017037285 A JP2017037285 A JP 2017037285A JP 2017037285 A JP2017037285 A JP 2017037285A JP 6866689 B2 JP6866689 B2 JP 6866689B2
Authority
JP
Japan
Prior art keywords
belt
intermediate transfer
roller
secondary transfer
transfer belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017037285A
Other languages
Japanese (ja)
Other versions
JP2018141920A (en
Inventor
英二 田畑
英二 田畑
夏原 敏哉
敏哉 夏原
重夫 植竹
重夫 植竹
桂子 桃谷
桂子 桃谷
水本 乃文美
乃文美 水本
麻紀子 渡邉
麻紀子 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2017037285A priority Critical patent/JP6866689B2/en
Publication of JP2018141920A publication Critical patent/JP2018141920A/en
Application granted granted Critical
Publication of JP6866689B2 publication Critical patent/JP6866689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、担持したトナー像を記録媒体に対して転写する中間転写ベルトを備えた画像形成装置に関し、特に、弾性層を含む中間転写ベルトを備えた画像形成装置に関する。 The present invention relates to an image forming apparatus including an intermediate transfer belt for transferring a carried toner image to a recording medium, and more particularly to an image forming apparatus including an intermediate transfer belt including an elastic layer.

一般に、画像形成装置においては、感光体の表面に形成されたトナー像が一次転写部において中間転写ベルトの表面に転写されることでトナー像が中間転写ベルトに担持される。その後、中間転写ベルトに担持されたトナー像が二次転写部から用紙等の記録媒体に転写される。 Generally, in an image forming apparatus, a toner image formed on the surface of a photoconductor is transferred to the surface of an intermediate transfer belt in a primary transfer portion, so that the toner image is supported on the intermediate transfer belt. After that, the toner image supported on the intermediate transfer belt is transferred from the secondary transfer unit to a recording medium such as paper.

通常、二次転写部においては、ニップ部を構成する二次転写ローラーと対向ローラーとの間に所定の電界が形成される。当該電界の作用により、ニップ部を通過する中間転写ベルトから、同じくニップ部を通過する記録媒体にトナー像が移動する。これによって二次転写部においてトナー像が記録媒体に転写されることになる。 Normally, in the secondary transfer section, a predetermined electric field is formed between the secondary transfer roller and the opposing roller forming the nip section. Due to the action of the electric field, the toner image moves from the intermediate transfer belt passing through the nip portion to the recording medium also passing through the nip portion. As a result, the toner image is transferred to the recording medium in the secondary transfer unit.

この中間転写ベルトとしては、各種のものが提案されている。表面に凹凸を有する記録媒体(たとえばエンボス紙等)に対して転写を可能にする中間転写ベルトとして、弾性層を含んでなる中間転写ベルトが知られている。 Various types of intermediate transfer belts have been proposed. As an intermediate transfer belt that enables transfer to a recording medium having an uneven surface (for example, embossed paper or the like), an intermediate transfer belt including an elastic layer is known.

たとえば、特開2014−85633号公報(特許文献1)および特開2014−102384号公報(特許文献2)には、ポリイミド等からなる非弾性層としての基層上にアクリルゴム等からなる弾性層が設けられてなる中間転写ベルトが開示されている。 For example, in Japanese Patent Application Laid-Open No. 2014-855633 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2014-102384 (Patent Document 2), an elastic layer made of acrylic rubber or the like is provided on a base layer as an inelastic layer made of polyimide or the like. An intermediate transfer belt provided is disclosed.

このような弾性層を有する中間転写ベルトを用いることにより、二次転写部のニップ部において中間転写ベルトが記録媒体に向けて押圧されるに際し、記録媒体の表面に位置する凹部内に中間転写ベルトの表面側の一部が入り込むように変形する。 By using the intermediate transfer belt having such an elastic layer, when the intermediate transfer belt is pressed toward the recording medium at the nip portion of the secondary transfer portion, the intermediate transfer belt is formed in a recess located on the surface of the recording medium. It is deformed so that a part of the surface side of the

その結果、記録媒体の凹部の底面と中間転写ベルトの表面との間の距離が縮まることになる。これにより、上記電界の作用が促進される。この作用の促進によりトナーの移動が生じ易くなって表面に凹凸を有する記録媒体への転写性が向上することになる。 As a result, the distance between the bottom surface of the recess of the recording medium and the surface of the intermediate transfer belt is reduced. This promotes the action of the electric field. By promoting this action, the toner is likely to move, and the transferability to a recording medium having irregularities on the surface is improved.

特開2014−85633号公報Japanese Unexamined Patent Publication No. 2014-85633 特開2014−102384号公報Japanese Unexamined Patent Publication No. 2014-102384

より深い凹部を有する記録媒体に対しても良好な転写性を得るためには、中間転写ベルトの厚みを大きくしたり、硬度を小さくしたりする必要がある。しかしながら、中間転写ベルトの厚みを大きくしたり硬度を小さくしたりすると、一次転写部にて、中間転写ベルトの弾性層が圧力を受けて不要な変形をすることによるトナー画像の乱れ(ガサツキ)が発生しやすくなる。 In order to obtain good transferability even for a recording medium having a deeper recess, it is necessary to increase the thickness or decrease the hardness of the intermediate transfer belt. However, if the thickness or hardness of the intermediate transfer belt is increased or the hardness is decreased, the elastic layer of the intermediate transfer belt is subjected to pressure and unnecessarily deformed at the primary transfer portion, resulting in distortion (roughness) of the toner image. It is more likely to occur.

弾性層を有する中間転写ベルトの厚みを大きくしたり硬度を小さくしたりすることで、二次転写部においては、表面に凹凸を有する記録媒体への転写性が向上されるが、一次転写部においては、ガサツキが発生するため、画像品質が悪化してしまう。ゆえに、凹凸紙に対する良好な転写性およびガサツキの抑制を両立して、良質な画像品質を確保することは困難であった。 By increasing the thickness or decreasing the hardness of the intermediate transfer belt having an elastic layer, the transferability to a recording medium having an uneven surface is improved in the secondary transfer portion, but in the primary transfer portion, The image quality deteriorates due to the roughening. Therefore, it has been difficult to ensure good image quality while achieving both good transferability on uneven paper and suppression of roughness.

本発明は、深い凹部を有する記録媒体に対して高い転写性を確保しながら、ガサツキを抑制し、良好な画像品質を確保できる画像形成装置を提供することを目的とする。 An object of the present invention is to provide an image forming apparatus capable of suppressing rattling and ensuring good image quality while ensuring high transferability for a recording medium having a deep recess.

本発明の画像形成装置は、トナー像を担持する像担持体と、中間転写ベルトと、一次転写ローラーと、二次転写部と、を備える。一次転写ローラーは、像担持体に担持されたトナー像を中間転写ベルトに転写する。一次転写ローラーは、像担持体よりも表面の硬度が小さい。二次転写部は、中間転写ベルトに担持されたトナー像を記録媒体に転写する。二次転写部は、二次転写ローラーおよび対向ローラーを含む。対向ローラーは、二次転写ローラーに対向し、二次転写ローラーよりも表面の硬度が小さい。 The image forming apparatus of the present invention includes an image carrier that supports a toner image, an intermediate transfer belt, a primary transfer roller, and a secondary transfer unit. The primary transfer roller transfers the toner image carried on the image carrier to the intermediate transfer belt. The surface hardness of the primary transfer roller is smaller than that of the image carrier. The secondary transfer unit transfers the toner image supported on the intermediate transfer belt to the recording medium. The secondary transfer unit includes a secondary transfer roller and an opposing roller. The opposing roller faces the secondary transfer roller and has a lower surface hardness than the secondary transfer roller.

中間転写ベルトは、弾性層を少なくとも含み、相対して位置する第1主面および第2主面からなる一対の露出主面のうちの一方である第1主面に担持したトナー像を記録媒体に対して転写する。 The intermediate transfer belt contains at least an elastic layer, and records a toner image supported on the first main surface, which is one of a pair of exposed main surfaces composed of a first main surface and a second main surface located opposite to each other. Transcribe to.

幅が20[mm]であって曲率半径が20[mm]である湾曲凸条面を上面に有するとともに湾曲凸条面の頂部に直径が1.25[mm]である穴部が設けられてなる下側ブロックと、幅が20[mm]であって曲率半径が20.3[mm]である湾曲凹条面を下面に有する上側ブロックとを用い、第1主面が下側ブロックの上面に面するように中間転写ベルトを下側ブロックの上面上に載置するとともに、上側ブロックを下側ブロックに向けて下降させることで中間転写ベルトの一部が湾曲凸条面と湾曲凹条面とによって挟み込まれるようにすることにより、中間転写ベルトの一部である被加圧領域が予め定められた加圧速度[kPa/ms]で200[kPa]の加圧力に到達してその後200[kPa]の加圧力で一定に加圧されるようにした場合に、中間転写ベルトは、第1主面のうちの穴部に対応する部分である測定領域の変位に局所的なピークが発生し、その後時間の経過とともに変位が減少に転じ、最終的に漸減して所定の変位量に収束する変位パターンを呈する。 A curved convex surface having a width of 20 [mm] and a radius of curvature of 20 [mm] is provided on the upper surface, and a hole having a diameter of 1.25 [mm] is provided at the top of the curved convex surface. The lower block and the upper block having a curved concave surface having a width of 20 [mm] and a radius of curvature of 20.3 [mm] on the lower surface are used, and the first main surface is the upper surface of the lower block. The intermediate transfer belt is placed on the upper surface of the lower block so as to face the lower block, and the upper block is lowered toward the lower block so that a part of the intermediate transfer belt has a curved convex surface and a curved concave surface. The area to be pressurized, which is a part of the intermediate transfer belt, reaches a pressing force of 200 [kPa] at a predetermined pressurizing rate [kPa / ms] by being sandwiched by and then 200 [kPa]. When the pressure is constant with the pressure of [kPa], a local peak occurs in the displacement of the measurement region, which is the part corresponding to the hole in the first main surface of the intermediate transfer belt. After that, the displacement starts to decrease with the passage of time, and finally gradually decreases to exhibit a displacement pattern that converges to a predetermined displacement amount.

像担持体および一次転写ローラーによって一次転写ニップ部が形成される。二次転写ローラーおよび対向ローラーによって二次転写ニップ部が形成される。中間転写ベルトのベルト搬送速度をVsys[mm/s]、一次転写ローラーが像担持体を押圧する押圧力をP1[N]、一次転写ニップ部の一次転写ローラーの軸方向における長さをL1[mm]、像担持体の半径をr1[mm]とし、P1、L1およびr1を用いてP1/(L1×r1)で算出されるγ1[N/mm]が、2×Vsys×γ1+γ1≦0.0075の条件を満たす。 The primary transfer nip is formed by the image carrier and the primary transfer roller. The secondary transfer nip portion is formed by the secondary transfer roller and the opposing roller. The belt transport speed of the intermediate transfer belt is V sys [mm / s], the pressing force of the primary transfer roller pressing the image carrier is P1 [N], and the axial length of the primary transfer nip is L1. [Mm], the radius of the image carrier is r1 [mm], and γ1 [N / mm 2 ] calculated by P1 / (L1 × r1) using P1, L1 and r1 is 2 × V sys × γ1. The condition of 2 + γ1 ≦ 0.0075 is satisfied.

二次転写ローラーが対向ローラーを押圧する押圧力をP2[N]、二次転写ニップ部の二次転写ローラーの軸方向における長さをL2[mm]、二次転写ローラーの半径をr2[mm]とし、P2、L2およびr2を用いてP2/(L2×r2)で算出されるγ2[N/mm]が、5×Vsys×γ2+γ20.088の条件を満たす。 The pressing force of the secondary transfer roller pressing the opposing roller is P2 [N], the axial length of the secondary transfer nip is L2 [mm], and the radius of the secondary transfer roller is r2 [mm. ], And γ2 [N / mm 2 ] calculated by P2 / (L2 × r2) using P2, L2 and r2 satisfies the condition of 5 × V sys × γ2 2 + γ2 ≧ 0.088.

上記の画像形成装置によれば、二次転写部における深い凹部を有する記録媒体に対しての良好な転写性を確保しながら、一次転写部におけるガサツキを抑制し、良好な画像品質を確保できる。 According to the above-mentioned image forming apparatus, it is possible to suppress rattling in the primary transfer section and secure good image quality while ensuring good transferability for a recording medium having a deep recess in the secondary transfer section.

予め定められた加圧速度が4[kPa/ms]の場合に、測定領域の変位量の最大値をa[μm]とし、測定領域の変位が収束した後の測定領域の変位量をb[μm]とした場合に、aおよびbを用いて(a−b)/bで算出されるE[−]が、0.2≦E≦3.0の条件を満たす。 When the predetermined pressurizing speed is 4 [kPa / ms], the maximum value of the displacement amount of the measurement area is a [μm], and the displacement amount of the measurement area after the displacement of the measurement area converges is b [ In the case of [μm], E [−] calculated by (ab) / b using a and b satisfies the condition of 0.2 ≦ E ≦ 3.0.

これにより、深い凹部を有する記録媒体への高い転写性を確保しながら、繰り返し使用による画像品位の低下を抑制することができる。 As a result, it is possible to suppress deterioration of image quality due to repeated use while ensuring high transferability to a recording medium having deep recesses.

上記の画像形成装置において、γ1が、γ1≧0.00074の条件を満たす。これにより、軸方向の画像ムラを抑制することができる。 In the above image forming apparatus, γ1 satisfies the condition of γ1 ≧ 0.00074. As a result, image unevenness in the axial direction can be suppressed.

上記の画像形成装置において、γ2が、γ2≦0.028の条件を満たす。これにより、細線つぶれを抑制することができる。 In the above image forming apparatus, γ2 satisfies the condition of γ2 ≦ 0.028. As a result, crushing of thin lines can be suppressed.

本発明の適用により、深い凹部を有する記録媒体に対して高い転写性を確保しながら、ガサツキを抑制し、良好な画像品質を確保できる画像形成装置を実現することができる。 By applying the present invention, it is possible to realize an image forming apparatus capable of suppressing rattling and ensuring good image quality while ensuring high transferability for a recording medium having deep recesses.

本発明の実施の形態における画像形成装置の概略図である。It is the schematic of the image forming apparatus in embodiment of this invention. 図1に示す画像形成装置の主要な機能ブロックの構成を示す図である。It is a figure which shows the structure of the main functional block of the image forming apparatus shown in FIG. 図1に示す中間転写ベルトの断面図である。It is sectional drawing of the intermediate transfer belt shown in FIG. 図1に示す二次転写部の概略図である。It is the schematic of the secondary transfer part shown in FIG. 変位量測定装置の構成を示す概略図である。It is the schematic which shows the structure of the displacement amount measuring apparatus. 図5に示す変位量測定装置に具備される加圧機構の動作を示す概略図である。It is the schematic which shows the operation of the pressurizing mechanism provided in the displacement amount measuring apparatus shown in FIG. 図5に示す変位量測定装置の下側ブロックを上方から見た斜視図である。FIG. 5 is a perspective view of the lower block of the displacement amount measuring device shown in FIG. 5 as viewed from above. 図5に示す変位量測定装置の上側ブロックを下方から見た斜視図である。FIG. 5 is a perspective view of the upper block of the displacement amount measuring device shown in FIG. 5 as viewed from below. 図5に示す変位量測定装置を用いたベルトの評価方法を説明するためのグラフである。It is a graph for demonstrating the evaluation method of the belt using the displacement amount measuring apparatus shown in FIG. 図5に示す変位量測定装置を用いてベルトを加圧した状態における下側ブロックの穴部近傍の拡大断面図である。FIG. 5 is an enlarged cross-sectional view of the vicinity of a hole in the lower block in a state where the belt is pressurized by using the displacement amount measuring device shown in FIG. 図5に示す変位量測定装置を用いてベルトを評価した場合に得られたベルトの測定領域の変位の挙動のパターンを呈するグラフである。It is a graph which shows the pattern of the displacement behavior of the measurement area of the belt obtained when the belt is evaluated by using the displacement amount measuring apparatus shown in FIG. 非弾性層のみからなる中間転写ベルトを使用した場合の中間転写ベルトからエンボス紙へのトナーの移動の様子を表わした概略図である。It is the schematic which showed the state of the toner transfer from the intermediate transfer belt to the embossed paper when the intermediate transfer belt consisting only of a non-elastic layer is used. 図12の場合における印加電圧と転写効率との関係を示すグラフである。It is a graph which shows the relationship between the applied voltage and the transfer efficiency in the case of FIG. 弾性層を含む中間転写ベルトを使用した場合の中間転写ベルトからエンボス紙へのトナーの移動の様子を表わした概略図である。It is the schematic which showed the state of the toner transfer from the intermediate transfer belt to the embossed paper when the intermediate transfer belt including the elastic layer is used. 図14の場合における印加電圧と転写効率との関係を示すグラフである。It is a graph which shows the relationship between the applied voltage and the transfer efficiency in the case of FIG. オーバーシュート率EとΔVadhとの関係を示すグラフである。It is a graph which shows the relationship between the overshoot rate E and ΔVadh. 一次変位率k1とΔVadhとの関係を示すグラフである。It is a graph which shows the relationship between the primary displacement rate k1 and ΔVadh. 二次変位率k2とΔVadhとの関係を示すグラフである。It is a graph which shows the relationship between the secondary displacement rate k2 and ΔVadh. 一次転写部における凹曲げ状態の中間転写ベルトを示す図である。It is a figure which shows the intermediate transfer belt in the concavely bent state in the primary transfer part. 二次転写部における凹曲げ状態の中間転写ベルトを示す図である。It is a figure which shows the intermediate transfer belt in the concave bending state in a secondary transfer part. 二次転写部における凸曲げ状態の中間転写ベルトを示す図である。It is a figure which shows the intermediate transfer belt in the convex bending state in a secondary transfer part. 二次転写部におけるストレート状態の中間転写ベルトを示す図である。It is a figure which shows the intermediate transfer belt in a straight state in a secondary transfer part. 図20のニップ部におけるXXIIIで囲われた領域の拡大図である。It is an enlarged view of the region surrounded by XXIII in the nip part of FIG. 凹曲げ状態の中間転写ベルトが加圧された状態を表す図である。It is a figure which shows the state which the intermediate transfer belt in a concave bending state is pressed. ベルトAおよびベルトBにおける印加圧力と変形量との関係を示すグラフである。It is a graph which shows the relationship between the applied pressure in the belt A and the belt B, and the amount of deformation. ベルトAおよびベルトBを画像形成装置の中間転写ベルトとして用いた場合において、一次転写部におけるそれぞれの印加圧力に対するガサツキの評価結果を示すグラフである。It is a graph which shows the evaluation result of the roughness with respect to each applied pressure in the primary transfer part when the belt A and the belt B are used as the intermediate transfer belt of an image forming apparatus. 軸方向の画像ムラの発生を抑制しながら、ガサツキを抑制できる印加圧力および変形量の範囲を示すグラフである。It is a graph which shows the range of the applied pressure and the amount of deformation which can suppress the rattling while suppressing the occurrence of image unevenness in the axial direction. ベルトAおよびベルトBを画像形成装置の中間転写ベルトとして用いた場合において、二次転写部におけるそれぞれの印加圧力に対する凹部転写性の評価結果を示すグラフである。It is a graph which shows the evaluation result of the concave transferability with respect to each applied pressure in the secondary transfer part when the belt A and the belt B are used as the intermediate transfer belt of an image forming apparatus. 細線つぶれを抑制しながら良好な凹部転写性を確保できる印加圧力および変形量の範囲を示すグラフである。It is a graph which shows the range of the applied pressure and the amount of deformation which can secure the good concave transferability while suppressing the crushing of a thin line. 軸方向の画像ムラの発生および細線つぶれを抑制しながら、ガサツキを抑制できる範囲Xおよび良好な凹部転写性を確保できる範囲Yを示したグラフである。It is a graph which showed the range X which can suppress the rattling, and the range Y which can secure a good concave transferability while suppressing the occurrence of image unevenness in the axial direction and the crushing of fine lines. オーバーシュート変形を呈するベルトの測定領域における変位量の経時変化を示したグラフである。It is a graph which showed the time-dependent change of the displacement amount in the measurement area of the belt which exhibits overshoot deformation. ベルトに印加する圧力の4つのパターンを簡易的に示したグラフである。It is a graph which showed four patterns of the pressure applied to a belt simply. パターン(1)からパターン(4)の圧力を印加した場合のそれぞれの場合における過渡成分εを示したグラフである。It is a graph which showed the transient component ε t in each case when the pressure of the pattern (1) to the pattern (4) was applied. 加圧速度sと、最大圧力pの増加量に対する過渡成分εの増加量Δε/Δp[μm/kPa](図33中の直線の傾き)との関係を示すグラフである。It is a graph which shows the relationship between the pressurizing speed s and the increase amount Δε t / Δp [μm / kPa] (the slope of a straight line in FIG. 33) of the transient component ε t with respect to the increase amount of the maximum pressure p. パターン(1)からパターン(4)の圧力を印加した場合のそれぞれの場合における定常成分εを示したグラフである。It is a graph which showed the steady component ε s in each case when the pressure of the pattern (1) to the pattern (4) was applied. 加圧速度sと、最大圧力pの増加量に対する定常成分εの増加量Δε/Δp[μm/kPa](図35中の直線の傾き)との関係を示すグラフである。It is a graph which shows the relationship between the pressurizing speed s and the increase amount Δε s / Δp [μm / kPa] (the slope of a straight line in FIG. 35) of the steady component ε s with respect to the increase amount of the maximum pressure p. 一方のローラーが他方のローラーに押圧する様子を示した図である。It is a figure which showed how one roller presses against the other roller. 押圧力PをPR1およびPR2に設定した場合、ニップ部を通過する中間転写ベルトが受ける圧力の時間変化を示すグラフである。It is a graph which shows the time change of the pressure which the intermediate transfer belt passing through a nip part receives when the pressing force P is set to PR1 and PR2. 押圧力Pと過渡成分εとの関係を示すグラフである。It is a graph which shows the relationship between a pressing force P and a transient component ε t. 半径が比較的小さい一方のローラー(半径r2)を他方のローラーに押圧する様子を示す図である。It is a figure which shows the state of pressing one roller (radius r2) which has a relatively small radius against the other roller. 図40に示すローラーの半径(r2)の2倍の半径を有する一方のローラー(半径r1)を他方のローラーに押圧する様子を示す図である。It is a figure which shows the state of pressing one roller (radius r1) which has twice the radius (r2) of the roller shown in FIG. 40 against the other roller. 図40および図41のローラーを用いた場合、ニップ部を通過する中間転写ベルトが受ける圧力の時間変化を示すグラフである。It is a graph which shows the time change of the pressure which the intermediate transfer belt passing through a nip part receives when the roller of FIG. 40 and FIG. 41 is used. ローラー半径rの逆数1/r[mm−1]と過渡成分εとの関係を示すグラフである。It is a graph which shows the relationship between the reciprocal 1 / r [mm -1 ] of the roller radius r, and the transient component ε t. P/rと過渡成分εとの関係を示したグラフである。It is a graph which showed the relationship between P / r and the transient component ε t. オーバーシュート変形を呈さないベルトA,Bおよびオーバーシュート変形を呈するベルトPにおける、P/rと最大変位量δとの関係を示すグラフである。It is a graph which shows the relationship between P / r and the maximum displacement amount δ in the belts A and B which do not exhibit an overshoot deformation, and the belt P which exhibits an overshoot deformation. ローラー間を中間転写ベルトが通過する様子を示した画像形成装置の内部の模式図である。It is a schematic diagram of the inside of the image forming apparatus which showed how the intermediate transfer belt passes between rollers. 図46に示すニップ部における中間転写ベルト21の搬送方向の線圧の圧力分布を示すグラフである。It is a graph which shows the pressure distribution of the linear pressure in the transport direction of the intermediate transfer belt 21 in the nip part shown in FIG. 図46に示すニップ部を通過する中間転写ベルトが受ける線圧の時間変化を示すグラフである。It is a graph which shows the time change of the linear pressure which the intermediate transfer belt which passes through the nip part shown in FIG. 46 receives. ベルト搬送速度Vsysおよび一次転写部における押圧力P1の各条件に対するガサツキの評価結果を示すグラフである。It is a graph which shows the evaluation result of the roughness for each condition of a belt transport speed V sys, and a pressing force P1 in a primary transfer part. ベルト搬送速度Vsysおよび二次転写部における押圧力P2の各条件に対する凹部転写性の評価結果を示すグラフである。It is a graph which shows the evaluation result of the concave transferability with respect to each condition of a belt transfer speed V sys, and a pressing force P2 in a secondary transfer part. 実施例1から実施例7、比較例1から比較例4、および従来例1から従来例4のベルトを用いた場合の各条件に対する画像評価結果を示すグラフである。It is a graph which shows the image evaluation result for each condition when the belts of Example 1 to Example 7, Comparative Example 1 to Comparative Example 4, and Conventional Example 1 to Conventional Example 4 are used.

以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the embodiments shown below, the same or common parts are designated by the same reference numerals in the drawings, and the description thereof will not be repeated.

<画像形成装置>
図1は、本実施の形態における画像形成装置の概略図である。まず、この図1を参照して、本実施の形態における画像形成装置1について説明する。なお、本実施の形態における画像形成装置1は、いわゆるデジタル複合機である。
<Image forming device>
FIG. 1 is a schematic view of an image forming apparatus according to the present embodiment. First, the image forming apparatus 1 according to the present embodiment will be described with reference to FIG. The image forming apparatus 1 in the present embodiment is a so-called digital multifunction device.

図1に示すように、画像形成装置1は、画像読取部2と、画像処理部3と、画像形成部4と、用紙搬送部5と、定着装置6とを備えている。 As shown in FIG. 1, the image forming apparatus 1 includes an image reading unit 2, an image processing unit 3, an image forming unit 4, a paper conveying unit 5, and a fixing device 6.

画像読取部2は、自動原稿給紙装置2aと、原稿画像走査装置2b(スキャナー)とを有している。このうち、原稿画像走査装置2bには、コンタクトガラスと、各種のレンズ系と、CCDセンサ7とが設けられている。CCDセンサ7は、画像処理部3に接続されている。画像処理部3は、入力された画像に所定の画像処理を行なう。 The image reading unit 2 includes an automatic document feeding device 2a and a document image scanning device 2b (scanner). Of these, the document image scanning apparatus 2b is provided with a contact glass, various lens systems, and a CCD sensor 7. The CCD sensor 7 is connected to the image processing unit 3. The image processing unit 3 performs predetermined image processing on the input image.

画像形成部4は、Y(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)の各色トナーによる画像を形成する画像形成ユニット10(10Y,10M,10C,10K)を有している。これらについては、収容されるトナー以外はいずれも同じ構成を有するので、以後、色を表す記号を省略する。画像形成部4は、さらに、中間転写ユニット20および二次転写ユニット30を有している。 The image forming unit 4 has an image forming unit 10 (10Y, 10M, 10C, 10K) that forms an image with each color toner of Y (yellow), M (magenta), C (cyan), and K (black). There is. Since all of these have the same configuration except for the toner to be stored, the symbol indicating the color will be omitted hereafter. The image forming unit 4 further has an intermediate transfer unit 20 and a secondary transfer unit 30.

画像形成ユニット10は、露光装置11と、現像装置12と、感光体ドラム13と、帯電装置14と、ドラムクリーニング装置15とを有している。感光体ドラム13の表面は、光導電性を有しており、たとえば負帯電型の有機感光体である。感光体ドラム13は、トナー像を担持する像担持体である。 The image forming unit 10 includes an exposure device 11, a developing device 12, a photoconductor drum 13, a charging device 14, and a drum cleaning device 15. The surface of the photoconductor drum 13 has photoconductivity, and is, for example, a negatively charged organic photoconductor. The photoconductor drum 13 is an image carrier that supports a toner image.

帯電装置14は、たとえばコロナ帯電器であるが、帯電ローラーや帯電ブラシ、帯電ブレードなどの接触帯電部材を感光体ドラム13に接触させて帯電させる接触帯電装置であってもよい。露光装置11は、たとえば半導体レーザーで構成される。 The charging device 14 is, for example, a corona charging device, but may be a contact charging device that charges a contact charging member such as a charging roller, a charging brush, or a charging blade by contacting the photoconductor drum 13. The exposure apparatus 11 is composed of, for example, a semiconductor laser.

現像装置12は、たとえば二成分現像方式の現像装置であるが、キャリアを含まない一成分現像方式の現像装置であってもよい。 The developing device 12 is, for example, a two-component developing type developing device, but may be a one-component developing type developing device that does not include a carrier.

中間転写ユニット20は、中間転写ベルト21と、中間転写ベルト21を感光体ドラム13に圧接させる一次転写ローラー22と、対向ローラー24を含む複数の支持ローラー23と、ベルトクリーニング装置25とを有している。 The intermediate transfer unit 20 includes an intermediate transfer belt 21, a primary transfer roller 22 for pressing the intermediate transfer belt 21 against the photoconductor drum 13, a plurality of support rollers 23 including an opposing roller 24, and a belt cleaning device 25. ing.

中間転写ベルト21は、無端状の中間転写ベルトである。ここで、主として一次転写ローラー22により、感光体ドラム13に担持されたトナー像を中間転写ベルト21に転写する一次転写部が構成されることになる。 The intermediate transfer belt 21 is an endless intermediate transfer belt. Here, the primary transfer roller 22 mainly constitutes a primary transfer unit that transfers the toner image carried on the photoconductor drum 13 to the intermediate transfer belt 21.

中間転写ベルト21は、複数の支持ローラー23によりループ状に張架され、移動可能となっている。複数の支持ローラー23のうちの少なくとも一つの駆動ローラーが回転することにより、中間転写ベルト21は矢印A方向に一定速度で走行する。 The intermediate transfer belt 21 is stretched in a loop by a plurality of support rollers 23 and is movable. By rotating at least one of the plurality of support rollers 23, the intermediate transfer belt 21 travels at a constant speed in the direction of arrow A.

二次転写ユニット30は、無端状の二次転写ベルト31と、二次転写ローラー33を含む複数の支持ローラー32とを有している。二次転写ローラー33は、対向ローラー24に対向している。二次転写ローラー33と対向ローラー24とにより、中間転写ベルト21に担持されたトナー像を記録媒体に転写する二次転写部が構成されることになる。 The secondary transfer unit 30 has an endless secondary transfer belt 31 and a plurality of support rollers 32 including a secondary transfer roller 33. The secondary transfer roller 33 faces the opposing roller 24. The secondary transfer roller 33 and the opposing roller 24 form a secondary transfer unit that transfers the toner image supported on the intermediate transfer belt 21 to the recording medium.

二次転写ベルト31は、二次転写ローラー33および支持ローラー32によってループ状に張架される。複数の支持ローラー32のうちの少なくとも一つの駆動ローラーが回転することにより、二次転写ベルト31は矢印B方向に走行する。なお、上述した駆動ローラーおよびこれを駆動させるための駆動源が、後述する搬送ベルト駆動機構39(図2参照)を構成することになる。 The secondary transfer belt 31 is stretched in a loop by the secondary transfer roller 33 and the support roller 32. By rotating at least one of the plurality of support rollers 32, the secondary transfer belt 31 travels in the direction of arrow B. The above-mentioned drive roller and a drive source for driving the roller constitute a transport belt drive mechanism 39 (see FIG. 2), which will be described later.

定着装置6は、記録媒体としての用紙に転写されたトナー像を用紙上に定着させるためのものであり、用紙上のトナー像を加熱および融解する定着ローラー6aと、用紙を定着ローラー6aに向けて押圧する加圧ローラー6bとを有している。 The fixing device 6 is for fixing the toner image transferred to the paper as a recording medium on the paper, and directs the fixing roller 6a for heating and melting the toner image on the paper and the paper toward the fixing roller 6a. It has a pressurizing roller 6b for pressing.

用紙搬送部5は、給紙部5aと、排紙部5bと、搬送経路部5cとを有している。給紙部5aを構成する給紙トレイユニット5a1〜5a3には、坪量やサイズ等に基づいて識別された用紙が予め設定された種類ごとに収容される。搬送経路部5cは、レジストローラー対5c1などの複数の搬送ローラー対を有している。排紙部5bは、排紙ローラー5b1によって構成されている。 The paper transport unit 5 includes a paper feed unit 5a, a paper discharge unit 5b, and a transport path unit 5c. The paper feed tray units 5a1 to 5a3 constituting the paper feed unit 5a accommodate the papers identified based on the basis weight, size, and the like for each preset type. The transport path portion 5c has a plurality of transport roller pairs such as a resist roller pair 5c1. The paper ejection unit 5b is composed of a paper ejection roller 5b1.

搬送経路部5cにおける用紙の搬送速度は、後述するように、制御部8によって決定される。搬送経路部5cは、上述した二次転写ベルト31および複数の搬送ローラー対に加えて、モーター、モータードライバ、ギア等を含んでおり、このうちの二次転写ベルト31を駆動するための構成要素が、上述した搬送ベルト駆動機構39に該当する。これら複数の搬送ローラー対、モーター、モータードライバ、ギア等は、制御部8からの電気信号を受けて各種モーターを回転させることで、用紙を搬送する。 The paper transfer speed in the transfer path unit 5c is determined by the control unit 8 as described later. The transfer path portion 5c includes a motor, a motor driver, a gear, and the like in addition to the secondary transfer belt 31 and a plurality of transfer roller pairs described above, and is a component for driving the secondary transfer belt 31 among them. However, it corresponds to the above-mentioned transport belt drive mechanism 39. These plurality of transport roller pairs, motors, motor drivers, gears, and the like transport paper by receiving electric signals from the control unit 8 and rotating various motors.

上述した各種モーターによって回転させられる部材には、たとえば現像装置12に含まれる現像ローラーや、感光体ドラム13、中間転写ベルト21、二次転写ローラー33、定着ローラー6a、上述した搬送ローラー対等があるが、これらの部材は、1個のモーターで一元的に駆動されてもよいし、複数のモーターで別々に駆動されてもよい。ただし、これら部材の外周面は、同じ線速度(この線速度は、一般にシステム速度と称される)で駆動されることが好ましい。なお、制御部8は、これら各種モーターの回転数やギアを切り替えることにより、システム速度を変更させることができる。 The members rotated by the various motors described above include, for example, the developing roller included in the developing device 12, the photoconductor drum 13, the intermediate transfer belt 21, the secondary transfer roller 33, the fixing roller 6a, the above-mentioned transport roller pair, and the like. However, these members may be driven centrally by one motor or may be driven separately by a plurality of motors. However, it is preferable that the outer peripheral surfaces of these members are driven at the same linear velocity (this linear velocity is generally referred to as a system velocity). The control unit 8 can change the system speed by switching the rotation speeds and gears of these various motors.

本実施の形態は、二次転写部と定着装置6との間において用紙を搬送する手段として、搬送ベルトおよびこれを駆動する搬送ベルト駆動機構39を用いた場合を例示するものであるが、当該手段は、用紙を二次転写部から定着装置6へと搬送できるものであればどのような手段にて構成されていてもよい。 The present embodiment illustrates a case where a transport belt and a transport belt drive mechanism 39 for driving the transport belt are used as means for transporting the paper between the secondary transfer unit and the fixing device 6. The means may be configured by any means as long as the paper can be conveyed from the secondary transfer unit to the fixing device 6.

たとえば、ベルトを使用せずに、用紙を搬送する搬送ローラー対と、これを駆動する搬送ローラー対駆動機構とによって、当該手段を構成してもよいし、二次転写ローラー33および対向ローラー24によって直接的に定着装置6へと用紙が搬送されるように、これら二次転写ローラー33および対向ローラー24と、これらを駆動するローラー駆動機構とによって、当該手段を構成してもよい。 For example, the means may be configured by a transport roller pair that transports paper and a transport roller pair drive mechanism that drives the paper without using a belt, or by a secondary transfer roller 33 and an opposing roller 24. The means may be configured by these secondary transfer rollers 33 and the opposing rollers 24 and a roller drive mechanism for driving them so that the paper is directly conveyed to the fixing device 6.

図2は、図1に示す画像形成装置1の主要な機能ブロックの構成を示す図である。制御部8は、画像形成装置1の全体を制御する部位であり、図2に示すように、主たる構成要素として、CPU(Central Processing Unit)8a等のプロセッサと、ROM(Read Only Memory)やRAM(Random Access Memory)等のメモリー部8bを含んでいる。典型的には、CPU8aがメモリー部8bに格納されている各種プログラムを実行することで、画像形成装置1における画像形成に係る処理等が実行される。 FIG. 2 is a diagram showing a configuration of a main functional block of the image forming apparatus 1 shown in FIG. The control unit 8 is a part that controls the entire image forming apparatus 1, and as shown in FIG. 2, the control unit 8 includes a processor such as a CPU (Central Processing Unit) 8a, a ROM (Read Only Memory), and a RAM as main components. It includes a memory unit 8b such as (Random Access Memory). Typically, the CPU 8a executes various programs stored in the memory unit 8b to execute processing related to image formation in the image forming apparatus 1.

図2に示すように、画像形成装置1は、上述した構成に加え、表示操作部9a、温湿度センサ9b、用紙センサ9c、押圧力調整機構70、および、ベルト搬送速度調整機構80をさらに備えている。 As shown in FIG. 2, in addition to the above-described configuration, the image forming apparatus 1 further includes a display operation unit 9a, a temperature / humidity sensor 9b, a paper sensor 9c, a pressing pressure adjusting mechanism 70, and a belt conveying speed adjusting mechanism 80. ing.

表示操作部9aは、制御部8の指令に基づいて画像形成装置1の状態等を使用者に対して表示したり、使用者による画像形成装置1に対する操作を受け付けて制御部8に入力したりするための部位である。 The display operation unit 9a displays the state of the image forming apparatus 1 or the like to the user based on the command of the control unit 8, or receives an operation on the image forming apparatus 1 by the user and inputs the operation to the control unit 8. It is a part to do.

温湿度センサ9bは、画像形成装置1の内部もしくは周囲の温度および湿度を検知し、検出結果を制御部8に入力するためのものである。温湿度センサ9bは、定着装置6などの、画像形成装置1の構成上高温となり得る装置の周辺の温度、および当該画像形成装置1の排気の温度を検出しないように、構成されている。温湿度センサ9bは、最も好ましくは、中間転写ベルト21の温度を検出するように構成されている。 The temperature / humidity sensor 9b is for detecting the temperature and humidity inside or around the image forming apparatus 1 and inputting the detection result to the control unit 8. The temperature / humidity sensor 9b is configured so as not to detect the temperature around the device such as the fixing device 6 which can be high due to the configuration of the image forming device 1 and the temperature of the exhaust gas of the image forming device 1. The temperature / humidity sensor 9b is most preferably configured to detect the temperature of the intermediate transfer belt 21.

用紙センサ9cは、記録媒体種別を取得する記録媒体種別情報取得部であり、より具体的には、画像形成に使用される記録媒体種別が、平滑紙、厚紙、普通紙、または、エンボス紙であるかを識別して当該記録媒体種別を情報として取得する部位である。さらにエンボス紙である場合にどの程度の凹部深さを有するエンボス紙であるか等を識別して当該記録媒体種別を情報として取得する部位である。 The paper sensor 9c is a recording medium type information acquisition unit that acquires the recording medium type, and more specifically, the recording medium type used for image formation is smooth paper, thick paper, plain paper, or embossed paper. It is a part that identifies the presence or absence and acquires the recording medium type as information. Further, in the case of embossed paper, it is a part for identifying the embossed paper having a recess depth and the like and acquiring the recording medium type as information.

当該用紙センサ9cは、たとえば給紙部5aに収納された用紙の表面の凹凸の大きさを検出することができる光学式センサにて構成される。その場合、当該用紙センサ9cは、可視光または赤外光を用紙の表面に対して斜めに照射する発光ダイオード等からなる発光素子と、用紙の表面からの反射光を受光するフォトダイオード等からなる受光素子とによって構成される。 The paper sensor 9c is composed of, for example, an optical sensor capable of detecting the size of unevenness on the surface of the paper stored in the paper feeding unit 5a. In that case, the paper sensor 9c includes a light emitting element made of a light emitting diode or the like that obliquely irradiates visible light or infrared light with respect to the surface of the paper, and a photodiode or the like that receives the reflected light from the surface of the paper. It is composed of a light receiving element.

当該用紙センサ9cは、用紙からの反射光の受光量に応じて凹部深さを検出し、その検出結果を制御部8に出力する。制御部8は、当該検出結果に基づいて上述した記録媒体種別の取得を行なう。 The paper sensor 9c detects the depth of the recess according to the amount of received light reflected from the paper, and outputs the detection result to the control unit 8. The control unit 8 acquires the above-mentioned recording medium type based on the detection result.

用紙センサ9cとしては、上述した光学式センサの使用に限られず、記録媒体種別の識別が可能な他の方式のセンサを使用することもできる。また、記録媒体種別情報取得部としては、上述した用紙センサ9cの使用に限られず、表示操作部9a等によって給紙部5aに収容される記録媒体種別が指定されることで制御部8がこれを取得してもよい。 The paper sensor 9c is not limited to the use of the above-mentioned optical sensor, and other types of sensors capable of identifying the recording medium type can also be used. Further, the recording medium type information acquisition unit is not limited to the use of the paper sensor 9c described above, and the control unit 8 can be specified by the display operation unit 9a or the like to specify the recording medium type accommodated in the paper feed unit 5a. May be obtained.

押圧力調整機構70は、一次転写部において、一次転写ローラー22が感光体ドラム13を押圧する押圧力を調整する。押圧力調整機構70は、二次転写部において、二次転写ローラー33が対向ローラー24を押圧する押圧力を調整する。ベルト搬送速度調整機構80は、中間転写ユニット20において、後述するベルト搬送速度Vsysを調整する。 The pressing force adjusting mechanism 70 adjusts the pressing force at which the primary transfer roller 22 presses the photoconductor drum 13 in the primary transfer unit. The pressing force adjusting mechanism 70 adjusts the pressing force at which the secondary transfer roller 33 presses the opposing roller 24 in the secondary transfer unit. The belt transfer speed adjusting mechanism 80 adjusts the belt transfer speed V sys, which will be described later, in the intermediate transfer unit 20.

本実施の形態における画像形成装置1において、制御部8が、表示操作部9a等からの入力を受けて、押圧力調整機構70およびベルト搬送速度調整機構80を制御することができる。 In the image forming apparatus 1 of the present embodiment, the control unit 8 can control the pressing pressure adjusting mechanism 70 and the belt transport speed adjusting mechanism 80 by receiving an input from the display operating unit 9a and the like.

次に、画像形成装置1による画像形成の処理について説明する。原稿画像走査装置2bは、コンタクトガラス上の原稿を光学的に走査して読み取る。原稿からの反射光は、CCDセンサ7により読み取られ、入力画像データとなる。入力画像データは、画像処理部3において所定の画像処理が施され、露光装置11に送られる。入力画像データは、外部パソコンやモバイル機器などから画像形成装置1に送付されたものであってもよい。 Next, the process of image formation by the image forming apparatus 1 will be described. The document image scanning device 2b optically scans and reads the document on the contact glass. The reflected light from the document is read by the CCD sensor 7 and becomes input image data. The input image data is subjected to predetermined image processing by the image processing unit 3 and sent to the exposure apparatus 11. The input image data may be sent to the image forming apparatus 1 from an external personal computer, a mobile device, or the like.

感光体ドラム13は、一定の周速度で回転する。帯電装置14は、感光体ドラム13の表面を一様に負極性に帯電させる。露光装置11は、各色成分の入力画像データに対応するレーザー光を感光体ドラム13に照射し、感光体ドラム13の表面に静電潜像を形成する。現像装置12は、感光体ドラム13の表面にトナーを付着させ、感光体ドラム13上の静電潜像を可視化させる。こうして感光体ドラム13の表面に静電潜像に応じたトナー像が形成される。 The photoconductor drum 13 rotates at a constant peripheral speed. The charging device 14 uniformly charges the surface of the photoconductor drum 13 to a negative electrode property. The exposure apparatus 11 irradiates the photoconductor drum 13 with a laser beam corresponding to the input image data of each color component, and forms an electrostatic latent image on the surface of the photoconductor drum 13. The developing device 12 adheres toner to the surface of the photoconductor drum 13 to visualize the electrostatic latent image on the photoconductor drum 13. In this way, a toner image corresponding to the electrostatic latent image is formed on the surface of the photoconductor drum 13.

感光体ドラム13の表面のトナー像は、中間転写ユニット20によって中間転写ベルト21に転写される。転写後に感光体ドラム13の表面に残存する転写残トナーは、感光体ドラム13の表面に摺接するドラムクリーニングブレードを有するドラムクリーニング装置15によって除去される。一次転写ローラー22によって中間転写ベルト21が感光体ドラム13に圧接されることにより、中間転写ベルト21に各色のトナー像が順次重なって転写される。 The toner image on the surface of the photoconductor drum 13 is transferred to the intermediate transfer belt 21 by the intermediate transfer unit 20. The transfer residual toner remaining on the surface of the photoconductor drum 13 after transfer is removed by the drum cleaning device 15 having a drum cleaning blade that is in sliding contact with the surface of the photoconductor drum 13. When the intermediate transfer belt 21 is pressed against the photoconductor drum 13 by the primary transfer roller 22, the toner images of each color are sequentially superimposed and transferred to the intermediate transfer belt 21.

二次転写ローラー33は、中間転写ベルト21および二次転写ベルト31を介して、対向ローラー24に圧接される。これにより、転写ニップが形成される。用紙は、用紙搬送部5によって転写ニップへ搬送され、この転写ニップを通過する。用紙の傾きの補正および搬送のタイミングの調整は、レジストローラー対5c1が配設されたレジストローラー部により行われる。 The secondary transfer roller 33 is pressed against the opposing roller 24 via the intermediate transfer belt 21 and the secondary transfer belt 31. As a result, a transfer nip is formed. The paper is conveyed to the transfer nip by the paper transfer unit 5 and passes through the transfer nip. The correction of the inclination of the paper and the adjustment of the transfer timing are performed by the resist roller portion in which the resist roller pair 5c1 is arranged.

転写ニップに用紙が搬送されると、二次転写ローラー33へ所定の電圧が印加される。この電圧の印加によって、中間転写ベルト21に担持されているトナー像は用紙に転写される。中間転写ベルト21の表面に残存する転写残トナーは、中間転写ベルト21の表面に摺接するベルトクリーニングブレードを有するベルトクリーニング装置25によって除去される。ベルトクリーニング装置25については、中間転写ベルト21上の残留トナーを清掃するものであれば、ブラシによるクリーニング方式を採用したものであってもよい。また、転写率の高いトナー粒子を使用する場合には、クリーニング装置を使用しない態様もありえる。トナー像が転写された用紙は、二次転写ベルト31によって定着装置6に向けて搬送される。 When the paper is conveyed to the transfer nip, a predetermined voltage is applied to the secondary transfer roller 33. By applying this voltage, the toner image supported on the intermediate transfer belt 21 is transferred to the paper. The transfer residual toner remaining on the surface of the intermediate transfer belt 21 is removed by the belt cleaning device 25 having a belt cleaning blade that is in sliding contact with the surface of the intermediate transfer belt 21. As for the belt cleaning device 25, a brush cleaning method may be adopted as long as it cleans the residual toner on the intermediate transfer belt 21. Further, when toner particles having a high transfer rate are used, there may be a mode in which a cleaning device is not used. The paper on which the toner image is transferred is conveyed toward the fixing device 6 by the secondary transfer belt 31.

二次転写ベルトを用いずに、二次転写ローラーが直接用紙と接する構成としてもよい。この場合、トナー像が転写された用紙は、二次転写ベルト31の回転によって定着装置6に向けて送出される。 The secondary transfer roller may be in direct contact with the paper without using the secondary transfer belt. In this case, the paper on which the toner image is transferred is sent toward the fixing device 6 by the rotation of the secondary transfer belt 31.

定着装置6は、トナー像が転写されて搬送されてきた用紙をニップ部で加熱および加圧する。こうしてトナー像は用紙に定着する。トナー像が定着された用紙は、排紙ローラー5b1を備えた排紙部5bにより機外に排紙される。 The fixing device 6 heats and pressurizes the paper on which the toner image is transferred and conveyed by the nip portion. In this way, the toner image is fixed on the paper. The paper on which the toner image is fixed is discharged to the outside of the machine by the paper ejection unit 5b provided with the paper ejection roller 5b1.

トナー粒子は、バインダー樹脂中に着色剤や、必要に応じて荷電制御剤や離型剤等を含有させ、外添剤を処理させたものであり、一般に使用されている公知のトナー粒子を使用することができる。トナー粒子の体積平均粒径は、好ましくは2[μm]以上12[μm]以下の範囲の粒子であり、画質の点でより好ましくは、3[μm]以上9[μm]以下の範囲の粒子がよい。 The toner particles are those in which a colorant, a charge control agent, a mold release agent, etc., if necessary, are contained in a binder resin and treated with an external additive, and commonly used known toner particles are used. can do. The volume average particle size of the toner particles is preferably particles in the range of 2 [μm] or more and 12 [μm] or less, and more preferably particles in the range of 3 [μm] or more and 9 [μm] or less in terms of image quality. Is good.

トナー粒子の形状係数SF−1は、100から140であることが好ましいが、必ずしもこの範囲に限定されない。 The shape coefficient SF-1 of the toner particles is preferably 100 to 140, but is not necessarily limited to this range.

形状係数SF−1は、走査型電子顕微鏡により、5000倍で撮影したトナーをランダムに100個、スキャナーで取り込み、画像処理解析装置「LuzexAP」(ニレコ社製)を用いて解析し、下記の式により導出される形状係数(SF−1)の平均値から求められる。
SF−1=〔{(粒子の絶対最大長)2/(粒子の投影面積)}×(π/4)〕×100
トナー粒子の外添剤は、シリカやチタニアといった金属酸化物の微粒子が使用され、大きさは30[nm]といった小粒径のものから、100[nm]といった比較的大きな粒径のものが使用される。粉体流動性や帯電制御等の目的で、平均1次粒径が40[nm]以下の無機微粒子を用いてもよい。
The shape coefficient SF-1 is obtained by randomly capturing 100 toners taken at 5000 times with a scanning electron microscope with a scanner and analyzing them with an image processing analysis device "LuzexAP" (manufactured by Nireco). It is obtained from the average value of the shape coefficient (SF-1) derived from.
SF-1 = [{(absolute maximum length of particles) 2 / (projected area of particles)} × (π / 4)] × 100
As the external additive for toner particles, fine particles of metal oxides such as silica and titania are used, and those having a small particle size such as 30 [nm] to relatively large particles such as 100 [nm] are used. Will be done. Inorganic fine particles having an average primary particle size of 40 [nm] or less may be used for the purpose of powder fluidity, charge control, and the like.

さらに、必要に応じて付着力低減のため、それより大径の無機あるいは有機微粒子を併用してもよい。無機微粒子としては、シリカやチタニアのほかに、アルミナ、メタチタン酸、酸化亜鉛、ジルコニア、マグネシア、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム、酸化セリウム、チタン酸ストロンチウム等が挙げられる。また、分散性や粉体流動性をあげるため、無機微粒子の表面を別途処理してもよい。 Further, if necessary, in order to reduce the adhesive force, inorganic or organic fine particles having a larger diameter may be used in combination. Examples of the inorganic fine particles include alumina, metatitanic acid, zinc oxide, zirconia, magnesia, calcium carbonate, magnesium carbonate, calcium phosphate, cerium oxide, strontium titanate and the like, in addition to silica and titania. Further, in order to improve dispersibility and powder fluidity, the surface of the inorganic fine particles may be treated separately.

キャリアは、特に限定されず、一般に使用されている公知のキャリアを使用することができ、バインダー型キャリアやコート型キャリアなどが使用できる。キャリア粒径としてはこれに限定されるものではないが、15[μm]以上100[μm]以下が好ましい。 The carrier is not particularly limited, and a commonly used known carrier can be used, and a binder type carrier, a coat type carrier, or the like can be used. The carrier particle size is not limited to this, but is preferably 15 [μm] or more and 100 [μm] or less.

<中間転写ベルト21>
次に、図3を参照して、中間転写ベルト21の構成について説明する。図3は、図1に示す中間転写ベルト21の断面図である。
<Intermediate transfer belt 21>
Next, the configuration of the intermediate transfer belt 21 will be described with reference to FIG. FIG. 3 is a cross-sectional view of the intermediate transfer belt 21 shown in FIG.

図3に示すように、中間転写ベルト21は、相対して位置する一対の露出主面である第1主面21s1および第2主面21s2を有する部材からなり、基層21aと、弾性層21bと、表層21cとを含んでいる。 As shown in FIG. 3, the intermediate transfer belt 21 is composed of a member having a pair of exposed main surfaces, a first main surface 21s1 and a second main surface 21s2, which are located relative to each other, and includes a base layer 21a and an elastic layer 21b. , The surface layer 21c and the like.

弾性層21bは、基層21aを覆うように設けられており、表層21cは、弾性層21bを覆うように設けられている。これにより、上述した第1主面21s1は、表層21cによって規定されており、上述した第2主面21s2は、基層21aによって規定されている。 The elastic layer 21b is provided so as to cover the base layer 21a, and the surface layer 21c is provided so as to cover the elastic layer 21b. As a result, the above-mentioned first main surface 21s1 is defined by the surface layer 21c, and the above-mentioned second main surface 21s2 is defined by the base layer 21a.

中間転写ベルト21は、上述したように担持したトナー像を用紙等の記録媒体に対して転写するためのものであり、トナー像は、上述した第1主面21s1上において担持される。 The intermediate transfer belt 21 is for transferring the carried toner image to a recording medium such as paper as described above, and the toner image is supported on the first main surface 21s1 described above.

基層21aは、中間転写ベルト21全体としての機械的強度を向上させるための層であり、たとえば有機高分子化合物からなる層にて構成される。基層21aを構成する有機高分子化合物としては、たとえば、ポリカーボネート、フッ素系樹脂、ポリスチレン、クロロポリスチレン、ポリ−α−メチルスチレン、スチレン−ブタジエン共重合体、スチレン−塩化ビニル共重合体、スチレン−酢酸ビニル共重合体、スチレン−マレイン酸共重合体、スチレン−アクリル酸エステル共重合体(スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸ブチル共重合体、スチレン−アクリル酸オクチル共重合体及びスチレン−アクリル酸フェニル共重合体等)、スチレン−メタクリル酸エステル共重合体(スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸エチル共重合体、スチレン−メタクリル酸フェニル共重合体等)、スチレン−α−クロルアクリル酸メチル共重合体、スチレン−アクリロニトリル−アクリル酸エステル共重合体等のスチレン系樹脂(スチレンまたはスチレン置換体を含む単重合体または共重合体)、メタクリル酸メチル樹脂、メタクリル酸ブチル樹脂、アクリル酸エチル樹脂、アクリル酸ブチル樹脂、変性アクリル樹脂(シリコーン変性アクリル樹脂、塩化ビニル樹脂変性アクリル樹脂、アクリル・ウレタン樹脂等)、塩化ビニル樹脂、塩化ビニル−酢酸ビニル共重合体、ロジン変性マレイン酸樹脂、フェノール樹脂、エポキシ樹脂、ポリエステル樹脂、ポリエステルポリウレタン樹脂、ポリエチレン、ポリプロピレン、ポリブタジエン、ポリ塩化ビニリデン、アイオノマー樹脂、ポリウレタン樹脂、シリコーン樹脂、ケトン樹脂、エチレン−エチルアクリレート共重合体、キシレン樹脂及びポリビニルブチラール樹脂、ポリアミド樹脂、ポリイミド樹脂、変性ポリフェニレンオキサイド樹脂、変性ポリカーボネート、およびそれらの混合物等が挙げられる。なお、基層21aは、材質の異なる複数の層にて構成されていてもよい。 The base layer 21a is a layer for improving the mechanical strength of the intermediate transfer belt 21 as a whole, and is composed of, for example, a layer made of an organic polymer compound. Examples of the organic polymer compound constituting the base layer 21a include polycarbonate, fluororesin, polystyrene, chloropolystyrene, poly-α-methylstyrene, styrene-butadiene copolymer, styrene-vinyl chloride copolymer, and styrene-acetic acid. Vinyl copolymer, styrene-maleic acid copolymer, styrene-acrylic acid ester copolymer (styrene-methyl acrylate copolymer, styrene-ethyl acrylate copolymer, styrene-butyl acrylate copolymer, styrene -Octyl acrylate copolymer and styrene-phenyl acrylate copolymer, etc.), styrene-methacrylate copolymer (styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene-methacrylate, etc.) Styrene-based resins such as phenyl copolymers, etc.), styrene-α-methyl chloroacrylate copolymers, styrene-acrylonitrile-acrylic acid ester copolymers, etc. (monopolymers or copolymers containing styrene or styrene substituents) , Methyl methacrylate resin, butyl methacrylate resin, ethyl acrylate resin, butyl acrylate resin, modified acrylic resin (silicone modified acrylic resin, vinyl chloride resin modified acrylic resin, acrylic / urethane resin, etc.), vinyl chloride resin, vinyl chloride -Vinyl acetate copolymer, rosin-modified maleic acid resin, phenol resin, epoxy resin, polyester resin, polyester polyurethane resin, polyethylene, polypropylene, polybutadiene, polyvinylidene chloride, ionomer resin, polyurethane resin, silicone resin, ketone resin, ethylene- Examples thereof include ethyl acrylate copolymers, xylene resins and polyvinyl butyral resins, polyamide resins, styrene resins, modified polyphenylene oxide resins, modified polycarbonates, and mixtures thereof. The base layer 21a may be composed of a plurality of layers made of different materials.

基層21aには、抵抗値の調節のために導電剤が添加されていてもよい。この導電剤としては、一種類のみが添加されていてもよいし、複数種類が添加されていてもよい。基層21aにおける導電剤の含有量は、基層材料100重量部に対して0.1重量部以上20重量部以下であることが好ましいが、これに限定されるものではない。 A conductive agent may be added to the base layer 21a for adjusting the resistance value. As the conductive agent, only one type may be added, or a plurality of types may be added. The content of the conductive agent in the base layer 21a is preferably 0.1 part by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the base layer material, but is not limited thereto.

弾性層21bは、中間転写ベルト21に弾性を付与するための層であり、たとえば粘弾性を呈する有機化合物からなる層にて構成される。弾性層21bを構成する有機化合物としては、たとえば、ブチルゴム、フッ素系ゴム、アクリルゴム、エチレンプロピレンゴム(EPDM)、ニトリルブタジエンゴム(NBR)、アクリロニトリルブタジエンスチレンゴム、天然ゴム、イソプレンゴム、スチレン−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレンゴム、エチレン−プロピレンターポリマー、クロロプレンゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレン、ウレタンゴム、シンジオタクチック1,2−ポリブタジエン、エピクロロヒドリン系ゴム、シリコーンゴム、フッ素ゴム、多硫化ゴム、ポリノルボルネンゴム、水素化ニトリルゴム、熱可塑性エラストマー(例えばポリスチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリアミド系、ポリウレア、ポリエステル系、フッ素樹脂系)、およびそれらの混合物等が挙げられる。なお、弾性層21bは、材質の異なる複数の層にて構成されていてもよい。 The elastic layer 21b is a layer for imparting elasticity to the intermediate transfer belt 21, and is composed of, for example, a layer made of an organic compound exhibiting viscoelasticity. Examples of the organic compound constituting the elastic layer 21b include butyl rubber, fluororubber, acrylic rubber, ethylene propylene rubber (EPDM), nitrile butadiene rubber (NBR), acrylonitrile butadiene styrene rubber, natural rubber, isoprene rubber, and styrene-butadiene. Rubber, butadiene rubber, ethylene-propylene rubber, ethylene-propylene terpolymer, chloroprene rubber, chlorosulfonated polyethylene, chlorinated polyethylene, urethane rubber, syndiotactic 1,2-polybutadiene, epichlorohydrin rubber, silicone rubber, Fluorine rubber, polysulfide rubber, polynorbornene rubber, hydride nitrile rubber, thermoplastic elastomers (eg polystyrene, polyolefin, polyvinyl chloride, polyurethane, polyamide, polyurea, polyester, fluororesin), and theirs. Examples thereof include a mixture of. The elastic layer 21b may be composed of a plurality of layers made of different materials.

弾性層21bには、導電性を発現するための導電剤が添加されていてもよい。導電剤としては、一種類のみが添加されていてもよいし、複数種類が添加されていてもよい。弾性層21bにおける導電剤の含有量は、弾性層材料100重量部に対して0.1重量部以上30重量部以下であることが好ましいが、これに限定されるものではない。弾性層21bにおける導電剤の含有量は、その総量で、中間転写ベルト21の所望の体積抵抗率を実現する量であり、中間転写ベルト21の体積抵抗率は、たとえば1×10[Ω・cm]以上1×1012[Ω・cm]以下である。 A conductive agent for exhibiting conductivity may be added to the elastic layer 21b. As the conductive agent, only one type may be added, or a plurality of types may be added. The content of the conductive agent in the elastic layer 21b is preferably 0.1 part by weight or more and 30 parts by weight or less with respect to 100 parts by weight of the elastic layer material, but is not limited thereto. The content of the conductive agent in the elastic layer 21b, in its total amount, an amount to achieve a desired volume resistivity of the intermediate transfer belt 21, the volume resistivity of the intermediate transfer belt 21, for example, 1 × 10 8 · cm] or more and 1 × 10 12 [Ω · cm] or less.

上述した導電剤には、イオン導電剤および電子導電剤が含まれる。イオン導電剤には、ヨウ化銀、ヨウ化銅、過塩素酸リチウム、トリフロオロメタンスルホン酸リチウム、有機ホウ素錯体のリチウム塩、リチウムビスイミド((CFSONLi)およびリチウムトリスメチド((CFSOCLi)が含まれる。電子導電剤には、銀、銅、アルミニウム、マグネシウム、ニッケルおよびステンレス鋼等の金属や、グラファイト、カーボンブラック、カーボンナノファイバーおよびカーボンナノチューブ等の炭素化合物が含まれる。 The above-mentioned conductive agents include ionic conductive agents and electronic conductive agents. Ion conductive agents include silver iodide, copper iodide, lithium perchlorate, lithium trifluoromethanesulfonate, lithium salts of organic boron complexes, lithium bisimide ((CF 3 SO 2 ) 2 NLi) and lithium trismethi. Do ((CF 3 SO 2 ) 3 CLi) is included. Electronic conductive agents include metals such as silver, copper, aluminum, magnesium, nickel and stainless steel, and carbon compounds such as graphite, carbon black, carbon nanofibers and carbon nanotubes.

弾性層21bには、上述した導電剤に加えて、非繊維形状の樹脂や繊維形状の樹脂が含有されていてもよい。 The elastic layer 21b may contain a non-fiber-shaped resin or a fiber-shaped resin in addition to the above-mentioned conductive agent.

非繊維形状の樹脂としては、たとえば、フェノール樹脂、熱硬化性ウレタン樹脂、エポキシ樹脂、反応性モノマー等の熱硬化性樹脂や、ポリ塩化ビニル、ポリ酢酸ビニル、熱可塑性ウレタン等の熱可塑性樹脂が挙げられる。弾性層21bにおける非繊維形状の樹脂の弾性層材料に対する含有量は、弾性層材料100重量部に対して20重量部以上60重量部以下であることが好ましいが、これに限定されるものではない。 Examples of the non-fiber-shaped resin include thermosetting resins such as phenol resins, thermosetting urethane resins, epoxy resins and reactive monomers, and thermoplastic resins such as polyvinyl chloride, polyvinyl acetate and thermoplastic urethane. Can be mentioned. The content of the non-fibrous resin in the elastic layer 21b with respect to the elastic layer material is preferably 20 parts by weight or more and 60 parts by weight or less with respect to 100 parts by weight of the elastic layer material, but is not limited thereto. ..

繊維形状の樹脂としては、たとえば、綿、麻、絹、レーヨン、アセテート、ナイロン、アクリル、ビニロン、ビニリデン、ポリエステル、ポリスチレン、ポリプロピレン、アラミド等の樹脂系繊維が挙げられる。弾性層21bにおける繊維形状の樹脂の含有量は、弾性層材料100重量部に対して、10重量部以上40重量部以下であることが好ましいが、これに限定されるものではない。 Examples of the fiber-shaped resin include resin-based fibers such as cotton, linen, silk, rayon, acetate, nylon, acrylic, vinylon, vinylidene, polyester, polystyrene, polypropylene, and aramid. The content of the fibrous resin in the elastic layer 21b is preferably 10 parts by weight or more and 40 parts by weight or less with respect to 100 parts by weight of the elastic layer material, but is not limited thereto.

弾性層21bには、さらに慣用の添加剤、たとえば加硫剤、加硫促進剤、加硫助剤、共架橋剤、軟化剤、可塑剤等を含有させてもよい。これら添加剤は、単独で添加されていてもよいし、2種以上が組み合わされて添加されていてもよい。 The elastic layer 21b may further contain conventional additives such as a vulcanizing agent, a vulcanization accelerator, a vulcanization aid, a co-crosslinking agent, a softening agent, a plasticizer, and the like. These additives may be added alone or in combination of two or more.

ここで、加硫剤としては、たとえば硫黄や有機含硫黄化合物、有機過酸化物等が使用可能である。 Here, as the vulcanizing agent, for example, sulfur, an organic sulfur-containing compound, an organic peroxide, or the like can be used.

また、共架橋剤としては、有機過酸化物による共架橋剤としての、エチレングリコール・ジメタクリレート、トリメチロールプロパン・トリメタクリレート、多官能性メタクリレートモノマー、トリアリルイソシアヌレート、含金属モノマー等が挙げられる。弾性層21bにおける共架橋剤の添加量は、弾性層材料100重量部に対して5重量部以下であることが好ましいが、これに限定されるものではない。 Examples of the co-crosslinking agent include ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, polyfunctional methacrylate monomer, triallyl isocyanurate, and metal-containing monomer as co-crosslinking agents using organic peroxides. .. The amount of the co-crosslinking agent added to the elastic layer 21b is preferably 5 parts by weight or less with respect to 100 parts by weight of the elastic layer material, but is not limited thereto.

表層21cは、その材料が特に制限されるものではないが、中間転写ベルト21へのトナーの付着力を小さくすることで転写性を高めるものであることが好ましい。当該観点から、表層21cとしては、たとえば、ポリウレタン、ポリエステル、エポキシ樹脂またはそれらの混合物を母材として、当該母材にたとえばフッ素樹脂、フッ素化合物、フッ化炭素、二酸化チタン、シリコンカーバイト等の粉体または粒子を1種類あるいは2種類以上分散させたものを使用することができる。なお、表層21cは、弾性層21bの表面を改質処理したものであってもよい。 The material of the surface layer 21c is not particularly limited, but it is preferable that the surface layer 21c has improved transferability by reducing the adhesive force of the toner to the intermediate transfer belt 21. From this point of view, the surface layer 21c uses, for example, polyurethane, polyester, epoxy resin or a mixture thereof as a base material, and the base material is a powder of, for example, fluororesin, fluorine compound, fluorocarbon, titanium dioxide, silicon carbide or the like. One type or two or more types of dispersed bodies or particles can be used. The surface layer 21c may be a modified surface of the elastic layer 21b.

ここで、これら粉体および粒子は、第1主面21s1の表面エネルギーを小さくして潤滑性を高めるための材料であり、これら粉体および粒子の粒径を異ならせたものを分散させて使用することもできる。また、フッ素系ゴム材料を用い、熱処理を行うことで表面にフッ素リッチな層を形成させることにより、第1主面21s1の表面エネルギーを小さくさせてもよい。 Here, these powders and particles are materials for reducing the surface energy of the first main surface 21s1 to improve lubricity, and these powders and particles having different particle sizes are dispersed and used. You can also do it. Further, the surface energy of the first main surface 21s1 may be reduced by forming a fluorine-rich layer on the surface by performing heat treatment using a fluorine-based rubber material.

ここで、基層21aの硬度は、弾性層21bの硬度よりも高い。弾性層21bよりも変形しにくい基層21aにより弾性層21bが支持されることで、弾性層21bは、第2主面21s2へ向かう側には変形しにくくなり、その分、第1主面21s1へ向かう側に変形しやすくなる。基層および弾性層の硬度は、マイクロゴム硬度計(例えば、高分子計器社製:MD−1)を用いて測定することができる。 Here, the hardness of the base layer 21a is higher than the hardness of the elastic layer 21b. Since the elastic layer 21b is supported by the base layer 21a which is less deformable than the elastic layer 21b, the elastic layer 21b is less likely to be deformed toward the second main surface 21s2, and the elastic layer 21b becomes the first main surface 21s1 by that amount. It becomes easy to deform to the opposite side. The hardness of the base layer and the elastic layer can be measured using a micro rubber hardness tester (for example, manufactured by Polymer Instruments Co., Ltd .: MD-1).

表層21cの硬度は、弾性層21bの硬度よりも高い。弾性層21bよりも硬い表層21cは、光硬化性の樹脂を用いて、弾性層21bの表面に未硬化の樹脂を塗布し、紫外線によって樹脂を硬化することによって、形成することができる。または、弾性層21bの表面付近を硬化処理するなどの改質処理によって、弾性層21bよりも硬い表層21cを形成することもできる。 The hardness of the surface layer 21c is higher than the hardness of the elastic layer 21b. The surface layer 21c, which is harder than the elastic layer 21b, can be formed by applying an uncured resin to the surface of the elastic layer 21b using a photocurable resin and curing the resin with ultraviolet rays. Alternatively, the surface layer 21c that is harder than the elastic layer 21b can be formed by a modification treatment such as hardening the vicinity of the surface of the elastic layer 21b.

なお、表層21cは、必ずしもこれを設ける必要はなく、中間転写ベルト21を基層21aおよび弾性層21bのみにて構成することも可能である。また、基層21aを設けずに弾性層21bのみにて中間転写ベルト21を構成してもよい。さらには、上述した基層21a、弾性層21bおよび表層21cに加えて、さらに他の層を付加して中間転写ベルト21を4層以上に多層化することもできる。 The surface layer 21c does not necessarily have to be provided, and the intermediate transfer belt 21 can be composed of only the base layer 21a and the elastic layer 21b. Further, the intermediate transfer belt 21 may be formed only by the elastic layer 21b without providing the base layer 21a. Further, in addition to the above-mentioned base layer 21a, elastic layer 21b and surface layer 21c, another layer can be added to form the intermediate transfer belt 21 into four or more layers.

中間転写ベルト21における第1主面21s1の十点平均表面粗さRzは、0.5[μm]以上9.0[μm]以下であることが好ましく、3.0[μm]以上6.0[μm]以下であることがなお好ましい。十点平均表面粗さRzが0.5[μm]未満であると、接触部材と密着する懸念があり、十点平均表面粗さRzが9.0[μm]よりも大きい場合には、凹凸部分にトナーおよび紙粉等が溜まり易くなり、画像品質が低下する場合がある。なお、十点平均表面粗さRzとは、JIS B0601(2001年)に規定された表面粗さのことである。 The ten-point average surface roughness Rz of the first main surface 21s1 of the intermediate transfer belt 21 is preferably 0.5 [μm] or more and 9.0 [μm] or less, and 3.0 [μm] or more and 6.0. It is still more preferable that it is [μm] or less. If the ten-point average surface roughness Rz is less than 0.5 [μm], there is a concern that it will adhere to the contact member, and if the ten-point average surface roughness Rz is larger than 9.0 [μm], unevenness will occur. Toner, paper dust, etc. tend to accumulate in the portion, and the image quality may deteriorate. The ten-point average surface roughness Rz is the surface roughness defined in JIS B0601 (2001).

ここで、本実施の形態における中間転写ベルト21は、後述する変位量測定装置100を用いた評価方法に基づいて評価した場合に、その表面(すなわち第1主面21s1)の一部が所定の特徴的な挙動を示して変位するものであるが、その詳細についてはこれを後述することとする。 Here, when the intermediate transfer belt 21 in the present embodiment is evaluated based on the evaluation method using the displacement amount measuring device 100 described later, a part of the surface (that is, the first main surface 21s1) is predetermined. It exhibits a characteristic behavior and is displaced, and the details will be described later.

<二次転写部の構成>
図4は、図1に示す二次転写部の概略図である。次に、この図4を参照して、二次転写部の詳細な構成について説明する。なお、当該図4においては、二次転写ベルト31の図示は省略している。
<Structure of secondary transfer unit>
FIG. 4 is a schematic view of the secondary transfer unit shown in FIG. Next, the detailed configuration of the secondary transfer unit will be described with reference to FIG. 4. In FIG. 4, the secondary transfer belt 31 is not shown.

図4に示すように、中間転写ベルト21は、画像形成装置1の二次転写部を通過するように配置される。 As shown in FIG. 4, the intermediate transfer belt 21 is arranged so as to pass through the secondary transfer portion of the image forming apparatus 1.

二次転写部は、互いに対向するように平行に配置された二次転写ローラー33および対向ローラー24を含んでいる。二次転写ローラー33と対向ローラー24との間には、二次転写ニップ部N2が形成されている。中間転写ベルト21は、この二次転写ニップ部N2を挿通するように配置されており、用紙等の記録媒体1000も同じくこの二次転写ニップ部N2を通過するように供給される。 The secondary transfer unit includes a secondary transfer roller 33 and an opposing roller 24 which are arranged in parallel so as to face each other. A secondary transfer nip portion N2 is formed between the secondary transfer roller 33 and the opposing roller 24. The intermediate transfer belt 21 is arranged so as to pass through the secondary transfer nip portion N2, and a recording medium 1000 such as paper is also supplied so as to pass through the secondary transfer nip portion N2.

二次転写ローラー33は、導電性の材料からなり、当該二次転写ローラー33には、二次転写電源33cが接続されている。対向ローラー24は、導電性の材料からなる芯金24aと、当該芯金24aの周面を覆う導電性の弾性部24bとを含んでおり、このうちの芯金24aは、接地されている。これにより、二次転写ニップ部N2には、二次転写ローラー33、対向ローラー24および二次転写電源33cによって所定の電界が形成されることになる。 The secondary transfer roller 33 is made of a conductive material, and a secondary transfer power source 33c is connected to the secondary transfer roller 33. The opposing roller 24 includes a core metal 24a made of a conductive material and a conductive elastic portion 24b that covers the peripheral surface of the core metal 24a, of which the core metal 24a is grounded. As a result, a predetermined electric field is formed in the secondary transfer nip portion N2 by the secondary transfer roller 33, the opposing roller 24, and the secondary transfer power supply 33c.

中間転写ベルト21は、記録媒体1000よりも対向ローラー24側を挿通するように配置されており、記録媒体1000は、中間転写ベルト21よりも二次転写ローラー33側を通過するように供給される。なお、中間転写ベルト21は、その第1主面21s1が記録媒体1000側(すなわち二次転写ローラー33側)を向くとともに、その第2主面21s2が対向ローラー24側を向くように配置されている。これにより、中間転写ベルト21の第1主面21s1は、二次転写ニップ部N2において記録媒体1000の記録面1001に対面配置されることになる。 The intermediate transfer belt 21 is arranged so as to pass through the facing roller 24 side of the recording medium 1000, and the recording medium 1000 is supplied so as to pass through the secondary transfer roller 33 side of the intermediate transfer belt 21. .. The intermediate transfer belt 21 is arranged so that its first main surface 21s1 faces the recording medium 1000 side (that is, the secondary transfer roller 33 side) and its second main surface 21s2 faces the opposite roller 24 side. There is. As a result, the first main surface 21s1 of the intermediate transfer belt 21 is arranged to face the recording surface 1001 of the recording medium 1000 in the secondary transfer nip portion N2.

二次転写ローラー33は、図中に示す矢印AR1方向に回転駆動され、対向ローラー24は、図中に示す矢印AR2方向に回転駆動される。また、二次転写ローラー33は、トナー像の転写に際して図中に示す矢印AR3方向に向けて押圧され、これにより二次転写ローラー33と対向ローラー24とは、二次転写ベルト31(図1参照)、中間転写ベルト21および記録媒体1000を介して圧接することになる。 The secondary transfer roller 33 is rotationally driven in the direction of arrow AR1 shown in the figure, and the opposing roller 24 is rotationally driven in the direction of arrow AR2 shown in the figure. Further, the secondary transfer roller 33 is pressed toward the arrow AR3 direction shown in the drawing when transferring the toner image, whereby the secondary transfer roller 33 and the opposing roller 24 are separated from each other by the secondary transfer belt 31 (see FIG. 1). ), The intermediate transfer belt 21 and the recording medium 1000 will be pressure-welded.

二次転写ローラー33の回転と対向ローラー24の回転とに基づき、中間転写ベルト21および記録媒体1000は、それぞれ図中に示す矢印AR4方向および矢印AR5方向に搬送される。その際、二次転写ニップ部N2を通過するに当たり、中間転写ベルト21および記録媒体1000が二次転写ローラー33と対向ローラー24とによって加圧された状態で挟み込まれて密着することになる。 Based on the rotation of the secondary transfer roller 33 and the rotation of the opposing roller 24, the intermediate transfer belt 21 and the recording medium 1000 are conveyed in the directions of arrow AR4 and arrow AR5 shown in the drawings, respectively. At that time, when passing through the secondary transfer nip portion N2, the intermediate transfer belt 21 and the recording medium 1000 are sandwiched and brought into close contact with each other in a state of being pressurized by the secondary transfer roller 33 and the opposing roller 24.

また、その際、密着した部分の中間転写ベルト21および記録媒体1000には、上述した所定の電界が作用することになる。これにより、中間転写ベルト21の第1主面21s1に付着していたトナーが記録媒体1000の記録面1001に付着することになり、トナー像の転写が行なわれる。 Further, at that time, the predetermined electric field described above acts on the intermediate transfer belt 21 and the recording medium 1000 in the close contact portion. As a result, the toner adhering to the first main surface 21s1 of the intermediate transfer belt 21 adheres to the recording surface 1001 of the recording medium 1000, and the toner image is transferred.

ここで、二次転写ローラー33の表面の硬度が、対向ローラー24の表面の硬度よりも高い場合、これら二次転写ローラー33および対向ローラー24によって挟み込まれた部分の中間転写ベルト21および記録媒体1000は、二次転写ローラー33の表面に沿うように湾曲することになる。 Here, when the hardness of the surface of the secondary transfer roller 33 is higher than the hardness of the surface of the opposing roller 24, the intermediate transfer belt 21 and the recording medium 1000 of the portion sandwiched between the secondary transfer roller 33 and the opposing roller 24 Will be curved along the surface of the secondary transfer roller 33.

そのため、中間転写ベルト21の第1主面21s1には、二次転写ローラー33の軸方向に沿って延在する凹条形状の湾曲面が形成されることになり、この部分においてトナー像の転写が行なわれることになる。二次転写ローラーおよび対向ローラーの表面の硬度は、マイクロゴム硬度計(例えば、高分子計器社製:MD−1)を用いて測定することができる。 Therefore, a concave curved surface extending along the axial direction of the secondary transfer roller 33 is formed on the first main surface 21s1 of the intermediate transfer belt 21, and the toner image is transferred at this portion. Will be done. The hardness of the surfaces of the secondary transfer roller and the opposing roller can be measured using a micro rubber hardness tester (for example, manufactured by Polymer Instruments Co., Ltd .: MD-1).

中間転写ベルト21には、二次転写部、および上述した一次転写部で、圧力が作用する。圧力の作用によって中間転写ベルト21が変形すると、第1主面21s1とトナーとの接触面積が増加して、トナーと中間転写ベルト21との付着力が増大する。しかしながら、中間転写ベルト21が硬い表層21cを有し、中間転写ベルト21の第1主面21s1の硬度が高いことで、圧力が作用しても第1主面21s1が変形しにくくなり、または第1主面21s1が変形しても速く元に戻りやすくなる。 Pressure acts on the intermediate transfer belt 21 at the secondary transfer section and the primary transfer section described above. When the intermediate transfer belt 21 is deformed by the action of pressure, the contact area between the first main surface 21s1 and the toner increases, and the adhesive force between the toner and the intermediate transfer belt 21 increases. However, since the intermediate transfer belt 21 has a hard surface layer 21c and the hardness of the first main surface 21s1 of the intermediate transfer belt 21 is high, the first main surface 21s1 is less likely to be deformed even when pressure is applied, or the first main surface 21s1 is not easily deformed. Even if 1 main surface 21s1 is deformed, it can be quickly restored to its original state.

このため、第1主面21s1とトナーとの接触面積の増加が抑制され、トナーと中間転写ベルト21との付着力の増大が抑制されるので、トナー像の転写をより確実に行なうことが可能になっている。 Therefore, the increase in the contact area between the first main surface 21s1 and the toner is suppressed, and the increase in the adhesive force between the toner and the intermediate transfer belt 21 is suppressed, so that the toner image can be transferred more reliably. It has become.

本実施の形態における中間転写ベルト21は、上述した記録媒体1000として、その表面に特段の凹凸を有さない普通紙等を用いる場合に限られず、その表面に凹凸を有するエンボス紙等を用いる場合にも、良好な転写性を確保できるものであるが、そのメカニズム等について説明するに先立って、以下において、変位量測定装置100を用いた評価方法の詳細について説明する。 The intermediate transfer belt 21 in the present embodiment is not limited to the case where plain paper or the like having no particular unevenness on the surface is used as the recording medium 1000 described above, and the case where embossed paper or the like having unevenness on the surface is used. In addition, good transferability can be ensured, but prior to explaining the mechanism and the like, the details of the evaluation method using the displacement amount measuring device 100 will be described below.

<変位量測定装置100>
図5は、上記変位量測定装置100の構成を示す概略図であり、図6は、図5に示す変位量測定装置100に具備される加圧機構の動作を示す概略図である。図7は、図5に示す変位量測定装置100の下側ブロックを上方から見た斜視図であり、図8は、図5に示す変位量測定装置100の上側ブロックを下方から見た斜視図である。
<Displacement amount measuring device 100>
FIG. 5 is a schematic view showing the configuration of the displacement amount measuring device 100, and FIG. 6 is a schematic view showing the operation of the pressurizing mechanism provided in the displacement amount measuring device 100 shown in FIG. FIG. 7 is a perspective view of the lower block of the displacement amount measuring device 100 shown in FIG. 5 as viewed from above, and FIG. 8 is a perspective view of the upper block of the displacement amount measuring device 100 shown in FIG. 5 as viewed from below. Is.

図5に示すように、変位量測定装置100は、下側ブロック110と、上側ブロック120と、加圧機構130と、張力付与機構140と、変位計150とを主として備えている。 As shown in FIG. 5, the displacement amount measuring device 100 mainly includes a lower block 110, an upper block 120, a pressurizing mechanism 130, a tension applying mechanism 140, and a displacement meter 150.

図5および図7に示すように、下側ブロック110は、幅および奥行がいずれも50[mm]で高さが20[mm]のアルミブロックからなり、幅方向における上面111の中央部に幅が20[mm]の湾曲凸条面112を有している。湾曲凸条面112の曲率半径は、20[mm]である。 As shown in FIGS. 5 and 7, the lower block 110 is made of an aluminum block having a width and a depth of 50 [mm] and a height of 20 [mm], and has a width at the center of the upper surface 111 in the width direction. Has a curved ridge surface 112 of 20 [mm]. The radius of curvature of the curved convex surface 112 is 20 [mm].

下側ブロック110の奥行方向に沿って位置する湾曲凸条面112の頂部のうち、当該奥行方向における中央部には、直径が1.25[mm](ただし、公差は±0.02[mm])の穴部113が設けられている。なお、当該穴部113の開口面から後退した位置には、変位計150のヘッド部151が配置されている。 Of the tops of the curved convex surface 112 located along the depth direction of the lower block 110, the central part in the depth direction has a diameter of 1.25 [mm] (however, the tolerance is ± 0.02 [mm]. ]) Hole 113 is provided. The head portion 151 of the displacement meter 150 is arranged at a position retracted from the opening surface of the hole portion 113.

図5および図8に示すように、上側ブロック120は、幅および奥行がいずれも50[mm]で高さが20[mm]のアルミブロックからなり、幅方向における下面121の中央部に幅が20[mm]の湾曲凹条面122を有している。湾曲凹条面122の曲率半径は、20.3[mm]である。 As shown in FIGS. 5 and 8, the upper block 120 is made of an aluminum block having a width and a depth of 50 [mm] and a height of 20 [mm], and has a width at the center of the lower surface 121 in the width direction. It has a curved concave surface 122 of 20 [mm]. The radius of curvature of the curved concave surface 122 is 20.3 [mm].

なお、下側ブロック110の上面111と湾曲凸条面112、上側ブロック120の下面121と湾曲凹条面122の表面の公差は、すべて0.02[mm]である。 The tolerances between the upper surface 111 of the lower block 110 and the curved convex surface 112, and the surface tolerances of the lower surface 121 of the upper block 120 and the curved concave surface 122 are all 0.02 [mm].

図5に示すように、下側ブロック110の上面111と上側ブロック120の下面121とは、互いに対向するように配置されている。ここで、下側ブロック110と上側ブロック120とが位置決めして配置されることにより、上述した湾曲凸条面112と湾曲凹条面122とは、鉛直方向に沿って重なるように配置されている。 As shown in FIG. 5, the upper surface 111 of the lower block 110 and the lower surface 121 of the upper block 120 are arranged so as to face each other. Here, the lower block 110 and the upper block 120 are positioned and arranged so that the curved convex strip surface 112 and the curved concave strip surface 122 described above are arranged so as to overlap each other in the vertical direction. ..

上側ブロック120の上方には、加圧機構130が配置されている。加圧機構130は、ブロック状の部材である加圧部材131と、当該加圧部材131と上側ブロック120との間に配置されたスプリング132と、加圧部材131の上面に接するように配置されたカム133と、カム133に連結されたシャフト134と、シャフト134を回転駆動する駆動モーター135とを含んでいる。 A pressurizing mechanism 130 is arranged above the upper block 120. The pressurizing mechanism 130 is arranged so as to be in contact with the pressurizing member 131, which is a block-shaped member, the spring 132 arranged between the pressurizing member 131 and the upper block 120, and the upper surface of the pressurizing member 131. It includes a cam 133, a shaft 134 connected to the cam 133, and a drive motor 135 for rotationally driving the shaft 134.

図6に示すように、駆動モーター135によってシャフト134が図中に示す矢印AR6方向に向けて回転駆動されることにより、シャフト134に連結されたカム133がシャフト134と共回りし、これに伴って加圧部材131が下方に向けて(図中に示す矢印AR7方向に向けて)押し下げられる。これにより、加圧部材131によって上側ブロック120がスプリング132を介して押し下げられることになり、上側ブロック120に鉛直下向きの荷重が付与されることになる。なお、当該荷重の大きさは、加圧部材131の押し下げ量dによって決まり、加圧部材131の押し下げ量dは、カム133の回転量によって調節できる。 As shown in FIG. 6, the shaft 134 is rotationally driven by the drive motor 135 in the direction of the arrow AR6 shown in the drawing, so that the cam 133 connected to the shaft 134 rotates together with the shaft 134. The pressurizing member 131 is pushed downward (toward the direction of arrow AR7 shown in the figure). As a result, the upper block 120 is pushed down by the pressurizing member 131 via the spring 132, and a vertically downward load is applied to the upper block 120. The magnitude of the load is determined by the pushing down amount d of the pressing member 131, and the pushing down amount d of the pressing member 131 can be adjusted by the rotation amount of the cam 133.

図5に示すように、下側ブロック110と上側ブロック120との間には、評価対象であるベルトSが配置され、当該ベルトSの両端は、下側ブロック110と上側ブロック120との間から外側に向けて引き出される。このベルトSの両端には、張力付与機構140がそれぞれ接続される。 As shown in FIG. 5, a belt S to be evaluated is arranged between the lower block 110 and the upper block 120, and both ends of the belt S are from between the lower block 110 and the upper block 120. It is pulled out toward the outside. Tension applying mechanisms 140 are connected to both ends of the belt S.

張力付与機構140は、フィルム141と、テープ142と、錘143とを含んでいる。フィルム141は、厚さ100[μm]のポリエチレンテレフタレート製のフィルムからなり、テープ142は、厚さ30[μm]のポリイミド製の粘着テープからなる。ベルトSの端部には、フィルム141の一端がテープ142によって貼り付けられ、フィルム141の他端には、錘143が取付けられる。ここで、錘143による引っ張り荷重は、44[N/m]に調節される。なお、評価するベルトSが十分な大きさを有している場合には、上述したフィルム141およびテープ142を用いずに、ベルトSの両端に直接的に錘143を取付けてもよい。 The tension applying mechanism 140 includes a film 141, a tape 142, and a weight 143. The film 141 is made of a polyethylene terephthalate film having a thickness of 100 [μm], and the tape 142 is made of a polyimide adhesive tape having a thickness of 30 [μm]. One end of the film 141 is attached to the end of the belt S by the tape 142, and the weight 143 is attached to the other end of the film 141. Here, the tensile load by the weight 143 is adjusted to 44 [N / m]. If the belt S to be evaluated has a sufficient size, the weights 143 may be directly attached to both ends of the belt S without using the film 141 and the tape 142 described above.

変位計150は、ベルトSの表面の変位を検出するためのものであり、上述したように変位計150のヘッド部151は、ベルトSに対向するように下側ブロック110の穴部113内に設置されている。ここで、変位計150としては、キーエンス社製のマイクロヘッド型分光干渉レーザー変位計(分光ユニット(型式:SI−F01U)、ヘッド部(型式:SI−F01))を用いる。 The displacement meter 150 is for detecting the displacement of the surface of the belt S, and as described above, the head portion 151 of the displacement meter 150 is formed in the hole portion 113 of the lower block 110 so as to face the belt S. is set up. Here, as the displacement meter 150, a microhead type spectroscopic interference laser displacement meter (spectral unit (model: SI-F01U), head unit (model: SI-F01)) manufactured by KEYENCE Corporation is used.

<評価方法>
図9は、図5に示す変位量測定装置100を用いたベルトの評価方法を説明するためのグラフである。また、図10は、図5に示す変位量測定装置100を用いてベルトを加圧した状態における下側ブロックの穴部近傍の拡大断面図である。
<Evaluation method>
FIG. 9 is a graph for explaining a belt evaluation method using the displacement amount measuring device 100 shown in FIG. Further, FIG. 10 is an enlarged cross-sectional view of the vicinity of the hole portion of the lower block in a state where the belt is pressurized by using the displacement amount measuring device 100 shown in FIG.

ベルトSの評価は、前述した図5に示す変位量測定装置100を用いて以下の手順にて行なう。なお、評価は、温度20[℃]、湿度50[%]の環境下にて行なう。 The evaluation of the belt S is performed by the following procedure using the displacement amount measuring device 100 shown in FIG. 5 described above. The evaluation is performed in an environment of a temperature of 20 [° C.] and a humidity of 50 [%].

まず、ベルトSを変位量測定装置100にセットするに先立って、下側ブロック110の湾曲凸条面112と、上側ブロック120の湾曲凹条面122との接触部における圧力分布を測定する。圧力分布測定は、ニッタ社製のタクタイルセンサー(面圧力分布測定システムI−SCAN)を用いる。 First, prior to setting the belt S on the displacement amount measuring device 100, the pressure distribution at the contact portion between the curved convex surface 112 of the lower block 110 and the curved concave surface 122 of the upper block 120 is measured. For the pressure distribution measurement, a tactile sensor (surface pressure distribution measurement system I-SCAN) manufactured by Nitta Corporation is used.

具体的には、タクタイルセンサーの測定部を下側ブロック110と上側ブロック120との間に挿入し、加圧部材131を押し下げて30秒経過後の圧力分布を測定する。これを繰り返し、湾曲凸条面112と湾曲凹条面122との接触部およびその近傍における圧力が、200±40[kPa]に収まるように調整する。 Specifically, the measuring unit of the tactile sensor is inserted between the lower block 110 and the upper block 120, the pressure member 131 is pushed down, and the pressure distribution after 30 seconds has passed is measured. This is repeated, and the pressure in the contact portion between the curved convex surface 112 and the curved concave surface 122 and its vicinity is adjusted so as to be within 200 ± 40 [kPa].

ベルトSは、測定に先立って、温度20[℃]、湿度50[%]の環境下で6時間以上保管する。評価するベルトSの大きさは、下側ブロック110および上側ブロック120の幅方向に対応した長さを60[mm]とし、下側ブロック110および上側ブロック120の奥行方向に対応した長さを50[mm]とする。下側ブロック110および上側ブロック120の幅方向に対応した長さは、35[mm]以上300[mm]以下の大きさであればよく、下側ブロック110および上側ブロック120の奥行方向に対応した長さは、50[mm]以上150[mm]以下であればよい。下側ブロック110および上側ブロック120の幅方向に対応した長さに不足がある場合には、上述したフィルム141およびテープ142を用いてその両端に錘143を取付ければよい。 Prior to measurement, the belt S is stored in an environment of a temperature of 20 [° C.] and a humidity of 50 [%] for 6 hours or more. As for the size of the belt S to be evaluated, the length corresponding to the width direction of the lower block 110 and the upper block 120 is 60 [mm], and the length corresponding to the depth direction of the lower block 110 and the upper block 120 is 50. Let it be [mm]. The length corresponding to the width direction of the lower block 110 and the upper block 120 may have a size of 35 [mm] or more and 300 [mm] or less, and corresponds to the depth direction of the lower block 110 and the upper block 120. The length may be 50 [mm] or more and 150 [mm] or less. If the lengths of the lower block 110 and the upper block 120 corresponding to the width direction are insufficient, the weights 143 may be attached to both ends of the film 141 and the tape 142 described above.

次に、タクタイルセンサーを取外し、下側ブロック110と上側ブロック120とが軽く接触した状態となるように加圧機構130にて上側ブロック120を下降させた後、当該状態を30秒間保持して接触状態を安定化させる。その後、加圧機構130を用いて上側ブロック120を下側ブロック110に向けて押し付ける。ここでの加圧条件は、後述するベルトSの加圧条件と同じとする(詳細は、後述のベルトSの加圧条件を参照のこと)。 Next, the tactile sensor is removed, the upper block 120 is lowered by the pressurizing mechanism 130 so that the lower block 110 and the upper block 120 are in light contact with each other, and then the upper block 120 is held for 30 seconds for contact. Stabilize the state. Then, the upper block 120 is pressed toward the lower block 110 by using the pressurizing mechanism 130. The pressurizing conditions here are the same as the pressurizing conditions of the belt S described later (for details, refer to the pressurizing conditions of the belt S described later).

次に、加圧開始時点から3秒間にわたり、下側ブロック110の穴部113に対向する部分の上側ブロック120の湾曲凹条面122の位置を変位計150を用いて測定し、これを後述するベルトSの変位量測定の基線に設定する。 Next, the position of the curved concave surface 122 of the upper block 120 of the portion of the lower block 110 facing the hole 113 is measured using the displacement meter 150 for 3 seconds from the start of pressurization, which will be described later. It is set as the baseline for measuring the displacement of the belt S.

次に、上側ブロック120を上昇させて下側ブロック110と上側ブロック120との接触を解除し、下側ブロック110の上面111上にベルトSを載置する。このとき、ベルトSの第1主面Saが下方(すなわち下側ブロック110側)を向くようにする。なお、当該ベルトSの載置に際しては、ベルトSと下側ブロック110との間およびベルトSと上側ブロック120との間に異物が混入しないように留意する。 Next, the upper block 120 is raised to release the contact between the lower block 110 and the upper block 120, and the belt S is placed on the upper surface 111 of the lower block 110. At this time, the first main surface Sa of the belt S is directed downward (that is, the lower block 110 side). When mounting the belt S, care should be taken not to allow foreign matter to enter between the belt S and the lower block 110 and between the belt S and the upper block 120.

次に、上側ブロック120とベルトSとが軽く接触した状態となるように加圧機構130にて上側ブロック120を下降させた後、当該状態を30秒間保持して接触状態を安定化させる。その後、加圧機構130を用いて上側ブロック120をベルトSに向けて押し付ける。 Next, the upper block 120 is lowered by the pressurizing mechanism 130 so that the upper block 120 and the belt S are in light contact with each other, and then the state is held for 30 seconds to stabilize the contact state. Then, the upper block 120 is pressed against the belt S by using the pressurizing mechanism 130.

図9および図10に示すように、ベルトSへの加圧は、湾曲凸条面112と湾曲凹条面122とによって挟み込まれることとなるベルトSの被加圧領域PRが、予め定められた加圧速度[kPa/ms]で加圧力が増加するように加圧されることで200[kPa]の加圧力にまで到達した後、当該被加圧領域PRが、200[kPa]の加圧力で一定に加圧された状態が保持されるように行われる。 As shown in FIGS. 9 and 10, in the pressurization of the belt S, the pressurized region PR of the belt S to be sandwiched between the curved convex strip surface 112 and the curved concave strip surface 122 is predetermined. After reaching a pressing force of 200 [kPa] by pressurizing so that the pressing force increases at a pressurizing speed [kPa / ms], the pressurized region PR becomes a pressing force of 200 [kPa]. It is performed so that the state of being constantly pressurized is maintained.

図9を参照して、被加圧領域PRに対する加圧が開始された時点から200[kPa]の加圧力に到達した時点までの時間をt0[s]と定義する。その後、加圧開始から3秒が経過した時点でベルトSへの加圧を解除する。なお、本実施の形態においては、t0=0.05[s](加圧速度4[kPa/ms])に設定した。 With reference to FIG. 9, the time from the time when the pressurization to the pressurized region PR is started to the time when the pressurization of 200 [kPa] is reached is defined as t0 [s]. Then, when 3 seconds have passed from the start of pressurization, the pressurization on the belt S is released. In this embodiment, t0 = 0.05 [s] (pressurization speed 4 [kPa / ms]) was set.

その際、加圧開始時点から加圧を解除するまでの3秒間にわたり、ベルトSの第1主面Saのうちの下側ブロック110の穴部113に対応する部分である測定領域MRの位置を変位計150を用いて測定する。その際、ベルトSの測定領域MRを含む部分は、当該部分の周囲に位置するベルトSの部位が下側ブロック110および上側ブロック120によって挟み込まれて圧縮されることで穴部113内に向けて膨らむように変形し、この変形に伴って測定領域MRの位置が変化する。 At that time, the position of the measurement region MR, which is the portion corresponding to the hole 113 of the lower block 110 of the first main surface Sa of the belt S, is set for 3 seconds from the start of pressurization to the release of pressurization. The measurement is performed using a displacement meter 150. At that time, the portion including the measurement region MR of the belt S is compressed by sandwiching the portion of the belt S located around the portion by the lower block 110 and the upper block 120, so that the portion is directed toward the inside of the hole 113. It deforms so as to bulge, and the position of the measurement area MR changes with this deformation.

上述した基線の測定時および測定領域MRの位置の測定時においては、変位計150の出力を横河電機社製のデジタルオシロスコープDL1640によって取り込む。このときのサンプリング周期は、5[ms]とする。 At the time of measuring the baseline and the position of the measurement area MR described above, the output of the displacement meter 150 is captured by the digital oscilloscope DL1640 manufactured by Yokogawa Electric Corporation. The sampling period at this time is 5 [ms].

次に、測定された測定領域MRの位置と上述した基線とをもとにこれらの差分を求めることにより、ベルトSの測定領域MRの変位を時系列データとして算出する。 Next, the displacement of the measurement region MR of the belt S is calculated as time series data by obtaining the difference between the measured position of the measurement region MR and the above-mentioned baseline.

なお、測定対象であるベルトSに対して、上述した測定領域MRの位置が異なることとなるように、下側ブロック110に対するベルトSの載置位置を変更して、合計で10回にわたって上述した測定を行なう。 The placement position of the belt S with respect to the lower block 110 is changed so that the position of the measurement region MR described above is different from that of the belt S to be measured, and the above description is performed 10 times in total. Make a measurement.

<典型的な変位のパターン>
上述した変位量測定装置100を用いたベルトの評価方法を適用して弾性層を含む種々のベルトの評価を行なった場合には、ベルトの測定領域の変位の挙動を示すパターンとして、典型的に以下のパターンが確認できる。図11は、ベルトの測定領域の変位の挙動のパターンを示すグラフである。
<Typical displacement pattern>
When various belts including an elastic layer are evaluated by applying the belt evaluation method using the displacement amount measuring device 100 described above, it is typically a pattern showing the displacement behavior of the belt measurement region. The following patterns can be confirmed. FIG. 11 is a graph showing a pattern of displacement behavior in the measurement region of the belt.

図11に示すように、加圧開始後においてベルトSを加圧する加圧力の増加に伴ってベルトSの測定領域MRの変位量yが増加し、ベルトSを加圧する加圧力が200[kPa]に到達した時点(すなわちt0[s])付近においてベルトSの測定領域MRの変位に局所的なピークが発生する。その後ベルトSの測定領域MRの変位量yが減少に転じ、最終的には時間の経過とともに漸減して所定の変位量に収束する。すなわち、当該パターンは、ベルトSの測定領域MRの変位の推移にオーバーシュート部分を有するものと言える。 As shown in FIG. 11, the displacement amount y of the measurement region MR of the belt S increases as the pressing force for pressurizing the belt S increases after the start of pressurization, and the pressing force for pressurizing the belt S is 200 [kPa]. A local peak occurs in the displacement of the measurement region MR of the belt S near the time when the temperature reaches (that is, t0 [s]). After that, the displacement amount y of the measurement region MR of the belt S starts to decrease, and finally gradually decreases with the passage of time and converges to a predetermined displacement amount. That is, it can be said that the pattern has an overshoot portion in the transition of the displacement of the measurement region MR of the belt S.

以下においては、当該パターンにおけるベルトSの測定領域MRの変位量yが増加する局面における変位を一次変位と称し、ベルトSの測定領域MRの変位量yが減少する局面における変位を二次変位と称する。 In the following, the displacement in the phase where the displacement amount y of the measurement region MR of the belt S increases in the pattern is referred to as the primary displacement, and the displacement in the phase where the displacement amount y of the measurement region MR of the belt S decreases is referred to as the secondary displacement. Refer to.

<中間転写ベルト21の変位のパターン>
上述した本実施の形態における中間転写ベルト21は、上記において詳細に述べた変位量測定装置100を用いたベルトの評価方法を適用して評価を行なった場合に、図11に示すパターン(すなわち、オーバーシュート部分を有するパターン)を呈するものである。
<Displacement pattern of intermediate transfer belt 21>
The intermediate transfer belt 21 in the above-described embodiment is evaluated by applying the belt evaluation method using the displacement amount measuring device 100 described in detail above, and the pattern shown in FIG. 11 (that is, that is, It exhibits a pattern having an overshoot portion).

これは、本発明者が、ベルトを複数種類準備して、これらをそれぞれ画像形成装置1の中間転写ベルト21として使用してエンボス紙に画像形成を行なったところ、オーバーシュート部分を有しないベルトに比べて、オーバーシュート部分を有するベルトの方が飛躍的に転写性に優れたものとなることを知見したことに基づいている。 This is because when the present inventor prepared a plurality of types of belts and used each of them as the intermediate transfer belt 21 of the image forming apparatus 1 to form an image on embossed paper, the belt did not have an overshoot portion. In comparison, it is based on the finding that a belt having an overshoot portion has dramatically better transferability.

オーバーシュート部分を有するベルトにおいて高い転写性が確保できる理由は、基本的には中間転写ベルト21を裏面(すなわち第2主面21s2)側から加圧した場合にもその表面(すなわち第1主面21s1)が大きく揺れ動くことに起因する。したがって、エンボス紙等の記録面に凹凸を有する記録媒体に対して高い転写性が確保できる中間転写ベルト21を実現するためには、上述したオーバーシュート部分に着目するとよい。 The reason why high transferability can be ensured in a belt having an overshoot portion is basically that even when the intermediate transfer belt 21 is pressed from the back surface (that is, the second main surface 21s2) side, its front surface (that is, the first main surface). This is due to the large shaking of 21s1). Therefore, in order to realize the intermediate transfer belt 21 capable of ensuring high transferability on a recording medium having irregularities on the recording surface such as embossed paper, it is preferable to pay attention to the overshoot portion described above.

図11を参照して、ベルトSの測定領域MRの変位の局所的なピークである変位量yの最大値をa[μm]と定義し、ベルトSの測定領域MRの変位が収束した後の変位量yである収束値をb[μm]と定義する。加圧開始時点から最大値a[μm]を観察した時点までの時間をt1[s]と定義し、加圧開始時点から最大値a[μm]が観察された後に再びベルトSの測定領域MRの変位量yが(a+b)/2に達した時点までの時間をt2[s]と定義する。 With reference to FIG. 11, the maximum value of the displacement amount y, which is the local peak of the displacement of the measurement region MR of the belt S, is defined as a [μm], and after the displacement of the measurement region MR of the belt S has converged. The convergence value, which is the displacement amount y, is defined as b [μm]. The time from the start of pressurization to the time when the maximum value a [μm] is observed is defined as t1 [s], and after the maximum value a [μm] is observed from the start of pressurization, the measurement region MR of the belt S is measured again. The time until the displacement amount y of (a + b) / 2 reaches (a + b) / 2 is defined as t2 [s].

加えて、オーバーシュート部分を有する特徴的なベルトSの測定領域MRの変位の挙動を示すパラメータとして、オーバーシュート率E[−]と、一次変位率k1[μm/s]と、二次変位率k2[μm/s]とを定義する。 In addition, the overshoot rate E [-], the primary displacement rate k1 [μm / s], and the secondary displacement rate are parameters indicating the displacement behavior of the measurement region MR of the characteristic belt S having an overshoot portion. It is defined as k2 [μm / s].

オーバーシュート率E[−]は、オーバーシュートの大きさを示すパラメータであり、E=(a−b)/bで算出される。 The overshoot rate E [−] is a parameter indicating the magnitude of the overshoot, and is calculated by E = (ab) / b.

一次変位率k1[μm/s]は、上述した局所的なピークに達するまでの変位である一次変位の増加率(すなわち変位量の増加の割合)を示すパラメータであり、k1=a/t1で算出される。 The primary displacement rate k1 [μm / s] is a parameter indicating the rate of increase in the primary displacement (that is, the rate of increase in the amount of displacement), which is the displacement until the above-mentioned local peak is reached, and k1 = a / t1. It is calculated.

二次変位率k2[μm/s]は、上述した局所的なピークに達した後の変位である二次変位の減少率(すなわち変位量の減少の割合)を示すパラメータであり、k2=(a−b)/{2×(t2−t1)}で算出される。 The secondary displacement rate k2 [μm / s] is a parameter indicating the rate of decrease in the secondary displacement (that is, the rate of decrease in the amount of displacement), which is the displacement after reaching the above-mentioned local peak, and k2 = ( It is calculated by ab) / {2 × (t2-t1)}.

これらオーバーシュート率E[−]、一次変位率k1[μm/s]および二次変位率k2[μm/s]は、いずれも中間転写ベルト21が裏面(すなわち第2主面)側から加圧された場合に、その表面(すなわち第1主面)がどの程度揺れ動くかを表わすパラメータである。より大きな変化をもって中間転写ベルト21の表面が揺れ動くものほど、これらパラメータがより大きい値をとることになる。 The overshoot rate E [-], the primary displacement rate k1 [μm / s], and the secondary displacement rate k2 [μm / s] are all pressurized by the intermediate transfer belt 21 from the back surface (that is, the second main surface) side. It is a parameter indicating how much the surface (that is, the first main surface) sways when the displacement is performed. The larger the change, the more the surface of the intermediate transfer belt 21 sways, the larger these parameters will be.

より詳細には、オーバーシュート率E[−]が相対的に大きい値をとる場合には、中間転写ベルト21の表面がより大きく変位していることになる。一次変位率k1[μm/s]が相対的に大きい値をとる場合には、中間転写ベルト21の一次変位がより高速で生じていることになる。二次変位率k2[μm/s]が相対的に大きい値をとる場合には、中間転写ベルト21の二次変位がより高速で生じていることになる。 More specifically, when the overshoot rate E [−] takes a relatively large value, the surface of the intermediate transfer belt 21 is displaced more significantly. When the primary displacement rate k1 [μm / s] takes a relatively large value, the primary displacement of the intermediate transfer belt 21 occurs at a higher speed. When the secondary displacement rate k2 [μm / s] takes a relatively large value, the secondary displacement of the intermediate transfer belt 21 occurs at a higher speed.

本実施の形態における中間転写ベルト21は、以下の第1ないし第3条件を満たしている。 The intermediate transfer belt 21 in the present embodiment satisfies the following first to third conditions.

第1条件は、上述したオーバーシュート率E[−]が、0.2≦E≦3を満たす条件である。当該第1条件を満たす中間転写ベルト21とすることにより、表面に凹凸を有する記録媒体に対しても高い転写性を実現することができ、また繰り返しの使用によっても画像品位が低下してしまうことが抑制できる。 The first condition is a condition in which the above-mentioned overshoot rate E [−] satisfies 0.2 ≦ E ≦ 3. By using the intermediate transfer belt 21 that satisfies the first condition, high transferability can be realized even on a recording medium having irregularities on the surface, and the image quality is deteriorated even after repeated use. Can be suppressed.

オーバーシュート率E[−]がE<0.2である場合には、中間転写ベルト21を裏面側から加圧した場合にもその表面が余り大きくは揺れ動かないことになり、転写性の面で十分な効果が期待できない。一方、オーバーシュート率E[−]が3<Eである場合には、繰り返しの使用によって中間転写ベルト21に割れや摩耗等が早期に発生してしまうおそれがあり、画像品位の低下が懸念されることになる。 When the overshoot rate E [-] is E <0.2, the front surface does not sway too much even when the intermediate transfer belt 21 is pressed from the back surface side, which is a transferable surface. Can not be expected to have a sufficient effect. On the other hand, when the overshoot rate E [-] is 3 <E, the intermediate transfer belt 21 may be cracked or worn at an early stage due to repeated use, and there is a concern that the image quality may be deteriorated. Will be.

第2条件は、上述した一次変位率k1[μm/s]が、60≦k1≦320を満たす条件である。当該第2条件を満たす中間転写ベルト21とすることにより、表面に凹凸を有する記録媒体に対しても高い転写性を実現することができる。繰り返しの使用によっても画像品位が低下してしまうことが抑制できる。 The second condition is a condition in which the above-mentioned primary displacement rate k1 [μm / s] satisfies 60 ≦ k1 ≦ 320. By using the intermediate transfer belt 21 that satisfies the second condition, high transferability can be realized even on a recording medium having irregularities on the surface. It is possible to prevent deterioration of image quality even after repeated use.

一次変位率k1[μm/s]がk1<60である場合には、中間転写ベルト21を裏面側から加圧した場合にもその表面が余り大きくは揺れ動かないことになり、転写性の面で十分な効果が期待できない。一方、一次変位率k1[μm/s]が320<k1である場合には、繰り返しの使用によって中間転写ベルト21に割れや摩耗等が早期に発生してしまうおそれがあり、画像品位の低下が懸念されることになる。 When the primary displacement rate k1 [μm / s] is k1 <60, the front surface does not sway too much even when the intermediate transfer belt 21 is pressed from the back surface side, which is a transferable surface. Can not be expected to have a sufficient effect. On the other hand, when the primary displacement rate k1 [μm / s] is 320 <k1, the intermediate transfer belt 21 may be cracked or worn at an early stage due to repeated use, resulting in deterioration of image quality. It will be a concern.

第3条件は、上述した二次変位率k2[μm/s]が、6≦k2≦30を満たす条件である。当該第3条件を満たす中間転写ベルト21とすることにより、表面に凹凸を有する記録媒体に対しても高い転写性を実現することができる。繰り返しの使用によっても画像品位が低下してしまうことが抑制できる。 The third condition is a condition in which the above-mentioned secondary displacement rate k2 [μm / s] satisfies 6 ≦ k2 ≦ 30. By using the intermediate transfer belt 21 that satisfies the third condition, high transferability can be realized even on a recording medium having irregularities on the surface. It is possible to prevent deterioration of image quality even after repeated use.

二次変位率k2[μm/s]がk2<6である場合には、中間転写ベルト21を裏面側から加圧した場合にもその表面が余り大きくは揺れ動かないことになり、転写性の面で十分な効果が期待できない。一方、二次変位率k2[μm/s]が30<k2である場合には、繰り返しの使用によって中間転写ベルト21に割れや摩耗等が早期に発生してしまうおそれがあり、画像品位の低下が懸念されることになる。 When the secondary displacement rate k2 [μm / s] is k2 <6, even when the intermediate transfer belt 21 is pressed from the back surface side, the front surface does not sway too much, and the transferability is high. Sufficient effect cannot be expected in terms of surface. On the other hand, when the secondary displacement rate k2 [μm / s] is 30 <k2, the intermediate transfer belt 21 may be cracked or worn at an early stage due to repeated use, resulting in deterioration of image quality. Will be a concern.

上述したオーバーシュート率E[−]、一次変位率k1[μm/s]および二次変位率k2[μm/s]は、上述した変位量測定装置100を用いた中間転写ベルト21の評価方法において、測定領域MRの位置を変更して得られた値である。合計で10個の時系列データからそれぞれ算出される値のうち、値がより大きい3個と値がより小さい3個とを除外した残る4個の値の平均値を算出することで求められる。 The overshoot rate E [−], the primary displacement rate k1 [μm / s], and the secondary displacement rate k2 [μm / s] described above are the methods for evaluating the intermediate transfer belt 21 using the displacement amount measuring device 100 described above. , It is a value obtained by changing the position of the measurement area MR. It is obtained by calculating the average value of the remaining 4 values excluding 3 larger values and 3 smaller values among the values calculated from each of the 10 time series data in total.

<変位のパターンと転写性との関係>
次に、オーバーシュート部分を有するパターンを呈するベルトを画像形成装置1の中間転写ベルト21として使用してエンボス紙に画像形成を行なった場合に、高い転写性が確保できる理由について詳細に説明する。
<Relationship between displacement pattern and transferability>
Next, the reason why high transferability can be ensured when an image is formed on embossed paper by using a belt exhibiting a pattern having an overshoot portion as an intermediate transfer belt 21 of the image forming apparatus 1 will be described in detail.

図12は、非弾性層のみからなる中間転写ベルト21Aを使用した場合の中間転写ベルト21Aからエンボス紙へのトナーの移動の様子を表わした概略図であり、図13は、その場合の印加電圧と転写効率との関係を示すグラフである。 FIG. 12 is a schematic view showing the state of toner transfer from the intermediate transfer belt 21A to the embossed paper when the intermediate transfer belt 21A composed of only the inelastic layer is used, and FIG. 13 is a schematic view showing the applied voltage in that case. It is a graph which shows the relationship between and transfer efficiency.

図12に示すように、非弾性層のみからなる中間転写ベルト21Aを用いてエンボス紙1000へのトナー像の転写を行なう場合には、エンボス紙1000の凹部1002が位置しない部分(これを便宜上、以下において凸部1003と称する)の記録面1001と、中間転写ベルト21Aの第1主面21s1上に位置するトナーTとが接触した状態になる。一方、エンボス紙1000の凹部1002が位置する部分の記録面1001と、中間転写ベルト21Aの第1主面21s1上に位置するトナーTとは、非接触の状態になる。 As shown in FIG. 12, when the toner image is transferred to the embossed paper 1000 using the intermediate transfer belt 21A composed of only the inelastic layer, the portion where the recess 1002 of the embossed paper 1000 is not located (for convenience, this is referred to as a portion). The recording surface 1001 (hereinafter referred to as the convex portion 1003) and the toner T located on the first main surface 21s1 of the intermediate transfer belt 21A are in contact with each other. On the other hand, the recording surface 1001 of the portion of the embossed paper 1000 where the recess 1002 is located and the toner T located on the first main surface 21s1 of the intermediate transfer belt 21A are in a non-contact state.

そのため、エンボス紙1000の凹部1002の底面にトナーTを移動させるためには、トナーTを中間転写ベルト21Aから飛翔させる必要がある。トナーTを中間転写ベルト21Aから飛翔させるためには、トナーTが電界から受ける力が、トナーTの中間転写ベルト21Aに対する付着力に打ち勝つ必要がある。当該付着力は、非静電的付着力(ファンデルワールス力)と静電的付着力(帯電したトナーがもつ電荷と中間転写ベルト21に生じる鏡像電荷とによる静電的引力)の合計である。 Therefore, in order to move the toner T to the bottom surface of the recess 1002 of the embossed paper 1000, it is necessary to fly the toner T from the intermediate transfer belt 21A. In order for the toner T to fly from the intermediate transfer belt 21A, the force received by the toner T from the electric field must overcome the adhesive force of the toner T on the intermediate transfer belt 21A. The adhesive force is the sum of the non-electrostatic adhesive force (Van der Waals force) and the electrostatic adhesive force (electrostatic attractive force due to the electric charge of the charged toner and the mirror image charge generated on the intermediate transfer belt 21). ..

トナーTが電界から受ける力Fは、トナーTの荷電量をqとし、エンボス紙1000と中間転写ベルト21Aとの間の電位差をdVとし、エンボス紙1000と中間転写ベルト21Aとの間の距離をdxとした場合に、F=q×dV/dxで表わされる。当該関係から理解されるように、上記力Fは、エンボス紙1000と中間転写ベルト21Aとの間の電位差dVに比例するため、距離dxが大きくなればなるほど、トナーTを飛翔させるために必要となる印加電圧は大きくなる。 The force F that the toner T receives from the electric field has the charge amount of the toner T as q, the potential difference between the embossed paper 1000 and the intermediate transfer belt 21A as dV, and the distance between the embossed paper 1000 and the intermediate transfer belt 21A. When dx is used, it is represented by F = q × dV / dx. As can be understood from this relationship, the force F is proportional to the potential difference dV between the embossed paper 1000 and the intermediate transfer belt 21A, so that the larger the distance dx, the more necessary for the toner T to fly. The applied voltage becomes large.

したがって、図13に示すように、凹部1002において転写効率が最大になる印加電圧V1は、凸部1003において転写効率が最大になる印加電圧V0よりも高くなってしまう。なお、図13においては、印加電圧と凸部1003に対する転写効率との関係を示す曲線に符号c1003を付し、印加電圧と凹部1002に対する転写効率との関係を示す曲線に符号c1002(21A)を付している。 Therefore, as shown in FIG. 13, the applied voltage V1 at which the transfer efficiency is maximized at the concave portion 1002 is higher than the applied voltage V0 at which the transfer efficiency is maximized at the convex portion 1003. In FIG. 13, reference numeral c1003 is attached to a curve showing the relationship between the applied voltage and the transfer efficiency with respect to the convex portion 1003, and reference numeral c1002 (21A) is attached to the curve showing the relationship between the applied voltage and the transfer efficiency with respect to the concave portion 1002. It is attached.

通常、画像形成装置1においては、上記印加電圧が凸部1003において転写効率が最大になる印加電圧V0付近に設定される。そのため、印加電圧V0付近において凹部1002における転写効率が高ければ高いほど、エンボス紙1000の凹部1002と凸部1003とにおける画像の濃度差が小さくなることになり、品位の高い画像が得られることになる。 Normally, in the image forming apparatus 1, the applied voltage is set in the vicinity of the applied voltage V0 at which the transfer efficiency is maximized in the convex portion 1003. Therefore, the higher the transfer efficiency in the concave portion 1002 in the vicinity of the applied voltage V0, the smaller the difference in image density between the concave portion 1002 and the convex portion 1003 of the embossed paper 1000, and a high-quality image can be obtained. Become.

図14は、弾性層を含む中間転写ベルト21Bを使用した場合の中間転写ベルト21Bからエンボス紙へのトナーの移動の様子を表わした概略図であり、図15は、その場合の印加電圧と転写効率との関係を示すグラフである。 FIG. 14 is a schematic view showing the state of toner transfer from the intermediate transfer belt 21B to the embossed paper when the intermediate transfer belt 21B including the elastic layer is used, and FIG. 15 shows the applied voltage and transfer in that case. It is a graph which shows the relationship with efficiency.

図14に示すように、弾性層を含む中間転写ベルト21Bを用いた場合には、一般的に、エンボス紙1000の凹部1002内に中間転写ベルト21Bの第1主面21s1側の一部が入り込むように中間転写ベルト21Bが変形することになり、これによってエンボス紙1000の凹部1002の底面と中間転写ベルト21Bとの間の距離dxが縮まるようになる。そのため、凹部1002において転写効率が最大になる印加電圧が下がる効果が得られる。この効果は、従来から知られている効果であり、ここではこれを追従変形効果と称する。 As shown in FIG. 14, when the intermediate transfer belt 21B including the elastic layer is used, a part of the intermediate transfer belt 21B on the first main surface 21s1 side generally enters the recess 1002 of the embossed paper 1000. As described above, the intermediate transfer belt 21B is deformed, whereby the distance dx between the bottom surface of the recess 1002 of the embossed paper 1000 and the intermediate transfer belt 21B is shortened. Therefore, the effect of lowering the applied voltage that maximizes the transfer efficiency in the recess 1002 can be obtained. This effect is a conventionally known effect, and here, it is referred to as a follow-up deformation effect.

一方で、当該弾性層を含む中間転写ベルト21Bが上述したオーバーシュート部分を有するパターンを呈するものである場合には、上述した中間転写ベルト21Bの変形の際に第1主面21s1が大きく揺れ動くことになり、当該第1主面21s1が伸縮変形することで中間転写ベルト21Bとこれに付着したトナーTとの位置関係(すなわちトナーTと第1主面21s1との間の距離やその接触面積等)が変わり、中間転写ベルト21Bに対するトナーTの付着力が低下することになる。そのため、凹部1002において転写効率が最大になる印加電圧がさらに下がる効果が得られる。この効果は、従前から知られているものではなく、本発明者が発見した効果であり、ここではこれを付着力低減効果と称する。 On the other hand, when the intermediate transfer belt 21B including the elastic layer exhibits the pattern having the overshoot portion described above, the first main surface 21s1 shakes significantly when the intermediate transfer belt 21B described above is deformed. As the first main surface 21s1 expands and contracts, the positional relationship between the intermediate transfer belt 21B and the toner T adhering to the intermediate transfer belt 21B (that is, the distance between the toner T and the first main surface 21s1 and its contact area, etc. ) Changes, and the adhesive force of the toner T to the intermediate transfer belt 21B decreases. Therefore, the effect of further lowering the applied voltage at which the transfer efficiency is maximized in the recess 1002 can be obtained. This effect is not known from the past, but is an effect discovered by the present inventor, and here, this effect is referred to as an adhesive force reducing effect.

このような追従変形効果またはこれに加えて付着力低減効果が発揮されることにより、図15に示すように、凹部1002において転写効率が最大になる印加電圧V2は、上述した非弾性層のみからなる中間転写ベルト21Aを用いた場合に凹部1002において転写効率が最大になる印加電圧V1よりも小さくなる。なお、図15においては、印加電圧と凹部1002に対する転写効率との関係を示す曲線に符号c1002(21B)を付している。 As shown in FIG. 15, the applied voltage V2 at which the transfer efficiency is maximized in the recess 1002 is obtained only from the above-mentioned inelastic layer by exerting such a follow-up deformation effect or an effect of reducing the adhesive force in addition to the effect. When the intermediate transfer belt 21A is used, the transfer efficiency is smaller than the applied voltage V1 at which the transfer efficiency is maximized in the recess 1002. In FIG. 15, reference numeral c1002 (21B) is attached to a curve showing the relationship between the applied voltage and the transfer efficiency with respect to the recess 1002.

したがって、上述した非弾性層のみからなる中間転写ベルト21Aを用いた場合に比べて、印加電圧V0付近において凹部1002における転写効率が高くなり、エンボス紙1000の凹部1002と凸部1003とにおける画像の濃度差が小さくなり、より品位の高い画像が得られることになる。 Therefore, as compared with the case of using the intermediate transfer belt 21A composed of only the non-elastic layer described above, the transfer efficiency in the concave portion 1002 becomes higher in the vicinity of the applied voltage V0, and the image in the concave portion 1002 and the convex portion 1003 of the embossed paper 1000 The density difference becomes small, and a higher quality image can be obtained.

付着力低減効果は、変位量測定装置100を用いて測定した変位量の推移にオーバーシュート部分を有するパターンを呈する中間転写ベルト21において、特に顕著に得られる効果である。得られる効果の程度は、上述したパターンにおけるオーバーシュート部分に大きく関係する。 The adhesive force reducing effect is particularly remarkable in the intermediate transfer belt 21 which exhibits a pattern having an overshoot portion in the transition of the displacement amount measured by using the displacement amount measuring device 100. The degree of effect obtained is largely related to the overshoot portion of the pattern described above.

すなわち、上述した一次変位率k1[μm/s]が十分に大きい場合には、中間転写ベルト21がニップ部を通過する序盤において、中間転写ベルト21の第1主面が高速に一次変位することとなり、高い付着力低減効果が得られることになる。上述したオーバーシュート率E[−]が十分に大きい場合には、中間転写ベルト21がニップ部を通過する中盤において、中間転写ベルト21の第1主面に高速でかつ複雑な変形が生じることとなり、高い付着力低減効果が得られることになる。 That is, when the above-mentioned primary displacement rate k1 [μm / s] is sufficiently large, the first main surface of the intermediate transfer belt 21 is primarily displaced at high speed in the early stage when the intermediate transfer belt 21 passes through the nip portion. Therefore, a high adhesive force reducing effect can be obtained. When the overshoot rate E [−] described above is sufficiently large, the first main surface of the intermediate transfer belt 21 is deformed at high speed and in a complicated manner in the middle stage where the intermediate transfer belt 21 passes through the nip portion. , A high adhesive force reducing effect can be obtained.

上述した二次変位率k2[μm/s]が十分に大きい場合には、中間転写ベルト21がニップ部を通過する終盤において、中間転写ベルト21の第1主面が高速に二次変位することとなり、高い付着力低減効果が得られることになる。 When the above-mentioned secondary displacement rate k2 [μm / s] is sufficiently large, the first main surface of the intermediate transfer belt 21 is secondarily displaced at high speed at the final stage when the intermediate transfer belt 21 passes through the nip portion. Therefore, a high adhesive force reducing effect can be obtained.

ここで、図15を参照して、上述した印加電圧V1と印加電圧V2との差をΔVtotalとし、上述した追従変形効果による、凹部1002において転写効率が最大になる印加電圧の低減幅をΔVgapとし、上述した付着力低減効果による、凹部1002において転写効率が最大になる印加電圧の低減幅をΔVadhとした場合には、ΔVtotal=ΔVgap+ΔVadhの関係が成立する。 Here, with reference to FIG. 15, the difference between the applied voltage V1 and the applied voltage V2 described above is defined as ΔVtotal, and the reduction width of the applied voltage at which the transfer efficiency is maximized in the recess 1002 due to the following deformation effect described above is defined as ΔVgap. When the reduction width of the applied voltage that maximizes the transfer efficiency in the recess 1002 due to the above-mentioned adhesive force reducing effect is ΔVadh, the relationship of ΔVtotal = ΔVgap + ΔVadh is established.

ΔVtotalは、上記のとおりV1−V2で表わされるため、ΔVadhは、V1−V2−ΔVgapで表わされることになる。V1およびV2は、いずれも中間転写ベルト21ごとに固有の値をとるが、実験によりその値を導くことが可能である。ΔVgapは、上述した変位量測定装置100を用いた中間転写ベルト21の評価方法において測定されたベルトSの測定領域MRの変位量yから実験的に導くことができる。したがって、これらの値から、ΔVadhを計算により算出することが可能である。 Since ΔVtotal is represented by V1-V2 as described above, ΔVadh is represented by V1-V2-ΔVgap. Both V1 and V2 have unique values for each intermediate transfer belt 21, but the values can be derived experimentally. ΔVgap can be experimentally derived from the displacement amount y of the measurement region MR of the belt S measured in the evaluation method of the intermediate transfer belt 21 using the displacement amount measuring device 100 described above. Therefore, it is possible to calculate ΔVadh from these values.

<オーバーシュート率E、一次変位率k1および二次変位率k2と、ΔVadhとの関係を確認した実験>
本発明者は、弾性層に含有される樹脂や添加剤、架橋剤等の種類や量を種々調製することで弾性層の組成が異なるベルトを多数製作し、これらを上述した変位量測定装置100を用いたベルトの評価方法に基づいてそれぞれ評価し、各ベルトのオーバーシュート率E、一次変位率k1および二次変位率k2を求めた。
<Experiment confirming the relationship between the overshoot rate E, the primary displacement rate k1 and the secondary displacement rate k2, and ΔVadh>
The present inventor has produced a large number of belts having different elastic layer compositions by preparing various types and amounts of resins, additives, cross-linking agents, etc. contained in the elastic layer, and these are used in the displacement amount measuring device 100 described above. Each belt was evaluated based on the evaluation method of the belts, and the overshoot rate E, the primary displacement rate k1 and the secondary displacement rate k2 of each belt were obtained.

これらの中から互いに異なるオーバーシュート率E、一次変位率k1および二次変位率k2を有する複数のベルトを選定し、選定した複数のベルトを用いて実験的にエンボス紙の凹部に対する転写効率を測定することにより、各ベルトのV2の値を求めた。ここで、当該V2の測定に際しては、図5に示す変位量測定装置100を用い、下側ブロック110と上側ブロック120との間に測定対象のベルトとエンボス紙とを挟んで配置し、下側ブロック110と上側ブロック120との間に電位差が生じるようにこれら下側ブロック110および上側ブロック120に電圧を印加した上で、当該印加電圧を種々変化させて最も転写効率がよくなった場合の電圧をV2とした。 From these, a plurality of belts having different overshoot rates E, a primary displacement rate k1 and a secondary displacement rate k2 were selected, and the transfer efficiency for the recesses of the embossed paper was experimentally measured using the selected multiple belts. By doing so, the value of V2 of each belt was obtained. Here, when measuring the V2, the displacement amount measuring device 100 shown in FIG. 5 is used, and the belt to be measured and the embossed paper are sandwiched between the lower block 110 and the upper block 120 and arranged on the lower side. A voltage is applied to the lower block 110 and the upper block 120 so that a potential difference is generated between the block 110 and the upper block 120, and then the applied voltage is variously changed to obtain the highest transfer efficiency. Was V2.

また、非弾性ベルトを用いて同様の測定を行ない、V1の値を求めるとともに、変位量測定装置100を用いた中間転写ベルト21の評価方法において測定された各ベルトの測定領域MRの変位量からΔVgapを計算により算出した。 Further, the same measurement is performed using an inelastic belt to obtain the value of V1 and from the displacement amount of the measurement region MR of each belt measured in the evaluation method of the intermediate transfer belt 21 using the displacement amount measuring device 100. ΔVgap was calculated by calculation.

これら各ベルトのデータをもとに、オーバーシュート率E、一次変位率k1および二次変位率k2と、ΔVadhとの関係を整理した。図16は、オーバーシュート率EとΔVadhとの関係を示すグラフである。図17は、一次変位率k1とΔVadhとの関係を示すグラフである。図18は、二次変位率k2とΔVadhとの関係を示すグラフである。 Based on the data of each of these belts, the relationship between the overshoot rate E, the primary displacement rate k1 and the secondary displacement rate k2, and ΔVadh was organized. FIG. 16 is a graph showing the relationship between the overshoot rate E and ΔVadh. FIG. 17 is a graph showing the relationship between the primary displacement rate k1 and ΔVadh. FIG. 18 is a graph showing the relationship between the secondary displacement rate k2 and ΔVadh.

図16から理解されるように、オーバーシュート率EとΔVadhとの関係においては、0≦E<0.2の範囲でΔVadhが50[V]未満であり、付着力低減効果がほぼ得られていないことが確認できた。一方で、0.2≦Eの範囲では、オーバーシュート率Eの値が大きくなるにつれてΔVadhが50[V]を超えて上昇する傾向にあり、高い付着力低減効果が得られることが確認できた。 As can be understood from FIG. 16, in the relationship between the overshoot rate E and ΔVadh, ΔVadh is less than 50 [V] in the range of 0 ≦ E <0.2, and the effect of reducing the adhesive force is almost obtained. I was able to confirm that there was no such thing. On the other hand, in the range of 0.2 ≦ E, ΔVadh tends to increase by more than 50 [V] as the value of the overshoot rate E increases, and it was confirmed that a high adhesive force reducing effect can be obtained. ..

図17から理解されるように、一次変位率k1とΔVadhとの関係においては、0≦k1<60の範囲でΔVadhが50[V]未満であり、付着力低減効果がほぼ得られていないことが確認できた。一方で、60≦k1の範囲では、一次変位率k1の値が大きくなるにつれてΔVadhが50[V]を超えて上昇する傾向にあり、高い付着力低減効果が得られることが確認できた。 As can be understood from FIG. 17, in the relationship between the primary displacement rate k1 and ΔVadh, ΔVadh is less than 50 [V] in the range of 0 ≦ k1 <60, and the effect of reducing the adhesive force is hardly obtained. Was confirmed. On the other hand, in the range of 60 ≦ k1, it was confirmed that ΔVadh tends to increase by more than 50 [V] as the value of the primary displacement rate k1 increases, and a high adhesive force reducing effect can be obtained.

図18から理解されるように、二次変位率k2とΔVadhとの関係においては、0≦k2<6の範囲でΔVadhが50[V]未満であり、付着力低減効果がほぼ得られていないことが確認できた。一方で、6≦k2の範囲では、二次変位率k2の値が大きくなるにつれてΔVadhが50[V]を超えて上昇する傾向にあり、高い付着力低減効果が得られることが確認できた。 As can be understood from FIG. 18, in the relationship between the secondary displacement rate k2 and ΔVadh, ΔVadh is less than 50 [V] in the range of 0 ≦ k2 <6, and the effect of reducing the adhesive force is hardly obtained. I was able to confirm that. On the other hand, in the range of 6 ≦ k2, ΔVadh tends to increase by more than 50 [V] as the value of the secondary displacement rate k2 increases, and it was confirmed that a high adhesive force reducing effect can be obtained.

以上の結果は、上述した第1ないし第3条件におけるオーバーシュート率E、一次変位率k1および二次変位率k2それぞれの下限値を定める根拠となるものであり、これら第1ないし第3条件のいずれかの下限値側の条件が満たされることにより、上述した追従変形効果に加えて十分な付着力低減効果が得られることを示すものである。 The above results are the basis for determining the lower limit values of the overshoot rate E, the primary displacement rate k1 and the secondary displacement rate k2 under the first to third conditions described above, and are the basis for determining the lower limit values of the first to third conditions. By satisfying any of the conditions on the lower limit value side, it is shown that a sufficient adhesive force reducing effect can be obtained in addition to the above-mentioned follow-up deformation effect.

<中間転写ベルト21の曲げによる効果>
オーバーシュート部分を有するパターンを呈する中間転写ベルト21を用いて画像形成する際に、ニップ部で特定の向きに中間転写ベルト21が曲げられることで、オーバーシュートが発現しやすくなる。すなわち、中間転写ベルト21の曲げ状態によって転写性が大きく変わる。中間転写ベルト21の曲げ状態は、凹曲げ、凸曲げ、ストレートの3パターンがある。以下、中間転写ベルト21の曲げ状態の3パターンについて説明する。
<Effect of bending the intermediate transfer belt 21>
When an image is formed using the intermediate transfer belt 21 exhibiting a pattern having an overshoot portion, the intermediate transfer belt 21 is bent in a specific direction at the nip portion, so that an overshoot is likely to occur. That is, the transferability changes greatly depending on the bending state of the intermediate transfer belt 21. The bending state of the intermediate transfer belt 21 has three patterns: concave bending, convex bending, and straight bending. Hereinafter, three patterns in the bent state of the intermediate transfer belt 21 will be described.

(凹曲げ状態)
図19は、一次転写部における凹曲げ状態の中間転写ベルト21を示す図である。一次転写部おいて、感光体ドラム13および一次転写ローラー22により一次転写ニップ部N1が形成される。一次転写部における凹曲げ状態とは、一次転写ニップ部N1において、感光体ドラム13に近い側である第1主面21s1(トナー担持面)が収縮し、対向ローラー24に近い側である第2主面21s2が延びるように曲げられる状態のことである。
(Concave bent state)
FIG. 19 is a diagram showing an intermediate transfer belt 21 in a concavely bent state in the primary transfer portion. In the primary transfer portion, the primary transfer nip portion N1 is formed by the photoconductor drum 13 and the primary transfer roller 22. The concave bending state in the primary transfer portion means that in the primary transfer nip portion N1, the first main surface 21s1 (toner supporting surface) on the side close to the photoconductor drum 13 contracts, and the second side close to the opposing roller 24. This is a state in which the main surface 21s2 is bent so as to extend.

感光体ドラム13の表面の硬度が、一次転写ローラー22の表面の硬度よりも高い場合、感光体ドラム13および一次転写ローラー22によって挟み込まれた部分の中間転写ベルト21は、感光体ドラム13の表面に沿うように湾曲することになる。感光体ドラム13および一次転写ローラー22等の表面の硬度は、マイクロゴム硬度計(例えば、高分子計器社製:MD−1)を用いて測定することができる。 When the hardness of the surface of the photoconductor drum 13 is higher than the hardness of the surface of the primary transfer roller 22, the intermediate transfer belt 21 of the portion sandwiched between the photoconductor drum 13 and the primary transfer roller 22 is the surface of the photoconductor drum 13. It will be curved along. The hardness of the surfaces of the photoconductor drum 13 and the primary transfer roller 22 can be measured using a micro rubber hardness tester (for example, manufactured by Polymer Instruments Co., Ltd .: MD-1).

図20は、二次転写部における凹曲げ状態の中間転写ベルト21を示す図である。二次転写部において、二次転写ローラー33および対向ローラー24により二次転写ニップ部N2が形成される。二次転写部における凹曲げ状態とは、二次転写ニップ部N2において、二次転写ローラー33に近い側である第1主面21s1(トナー担持面)が収縮し、対向ローラー24に近い側である第2主面21s2が延びるように曲げられる状態のことである。 FIG. 20 is a diagram showing an intermediate transfer belt 21 in a concavely bent state in the secondary transfer portion. In the secondary transfer portion, the secondary transfer nip portion N2 is formed by the secondary transfer roller 33 and the opposing roller 24. The concave bending state in the secondary transfer portion means that in the secondary transfer nip portion N2, the first main surface 21s1 (toner supporting surface) on the side close to the secondary transfer roller 33 contracts, and the side close to the opposing roller 24. This is a state in which a second main surface 21s2 is bent so as to extend.

二次転写ローラー33は、記録媒体1000及び中間転写ベルト21を介して対向ローラー24に圧接される。外層に弾性部24bを有する対向ローラー24にむけて、二次転写ローラー33を押圧することによって、二次転写ローラー33の一部が記録媒体1000及び中間転写ベルト21を介して対向ローラー24に食い込むような形態となることがある。その結果、二次転写ニップ部N2における中間転写ベルト21は凹曲げ状態となる。 The secondary transfer roller 33 is pressed against the opposing roller 24 via the recording medium 1000 and the intermediate transfer belt 21. By pressing the secondary transfer roller 33 toward the opposing roller 24 having the elastic portion 24b on the outer layer, a part of the secondary transfer roller 33 bites into the opposing roller 24 via the recording medium 1000 and the intermediate transfer belt 21. It may take the form of. As a result, the intermediate transfer belt 21 in the secondary transfer nip portion N2 is in a concavely bent state.

(凸曲げ状態)
以下、二次転写部における凸曲げ状態について説明する。一次転写部における凸曲げ状態についての説明は、二次転写部における凸曲げ状態と同様に説明できるため省略する。
(Convex bent state)
Hereinafter, the convex bending state in the secondary transfer unit will be described. The description of the convex bending state in the primary transfer section will be omitted because it can be described in the same manner as the convex bending state in the secondary transfer section.

図21は、二次転写部における凸曲げ状態の中間転写ベルト21を示す図である。凸曲げ状態とは、二次転写ニップ部N2において、二次転写ローラー33に近い側である第1主面21s1(トナー担持面)が延び、対向ローラー24に近い側である第2主面21s2が収縮するように曲げられる状態のことである。 FIG. 21 is a diagram showing an intermediate transfer belt 21 in a convexly bent state in the secondary transfer portion. In the convex bending state, in the secondary transfer nip portion N2, the first main surface 21s1 (toner supporting surface) on the side close to the secondary transfer roller 33 extends, and the second main surface 21s2 on the side close to the opposing roller 24. Is a state in which is bent so as to contract.

二次転写ローラー33として外層に弾性部33bを有するようなローラーを用いた場合には、二次転写ローラー33を対向ローラー24に向けて押圧することによって、対向ローラー24の一部が中間転写ベルト21及び記録媒体1000を介して二次転写ローラー33に食い込むような形態となることがある。その結果、二次転写ニップ部N2における中間転写ベルト21は凸曲げ状態となる。 When a roller having an elastic portion 33b in the outer layer is used as the secondary transfer roller 33, the secondary transfer roller 33 is pressed toward the opposing roller 24 so that a part of the opposing roller 24 is an intermediate transfer belt. It may be in the form of biting into the secondary transfer roller 33 via the 21 and the recording medium 1000. As a result, the intermediate transfer belt 21 in the secondary transfer nip portion N2 is in a convex bending state.

(ストレート状態)
図22は、二次転写部におけるストレート状態の中間転写ベルト21を示す図である。ストレート状態とは、二次転写ニップ部N2において、中間転写ベルト21が直線もしくは、ほぼ直線となった状態のことである。ストレート状態は、上記の凹曲げ状態と凸曲げ状態との間の状態である。
(Straight state)
FIG. 22 is a diagram showing an intermediate transfer belt 21 in a straight state in the secondary transfer section. The straight state is a state in which the intermediate transfer belt 21 is a straight line or a substantially straight line in the secondary transfer nip portion N2. The straight state is a state between the concave bending state and the convex bending state.

二次転写ローラー33および対向ローラー24がともに外層に弾性部を有するローラーであり、双方のローラーの径と硬さが概ね等しい場合には、二次転写ニップ部N2で中間転写ベルト21が直線もしくは、ほぼ直線となる。 When both the secondary transfer roller 33 and the opposing roller 24 are rollers having an elastic portion in the outer layer and the diameter and hardness of both rollers are substantially the same, the intermediate transfer belt 21 is straight or straight in the secondary transfer nip portion N2. , Almost straight.

二次転写ローラー33および対向ローラー24の硬さに差があったとしても、ストレート状態になることはある。例えば、二次転写ローラー33が剛体ローラーではあるが非常に径の大きいローラーであった場合、中間転写ベルト21は、二次転写ニップ部N2でほぼ直線に近い凹曲げ形状になるが、この場合も、ストレート状態とみなす。 Even if there is a difference in hardness between the secondary transfer roller 33 and the opposing roller 24, the straight state may be obtained. For example, when the secondary transfer roller 33 is a rigid roller but has a very large diameter, the intermediate transfer belt 21 has a concave bending shape that is almost straight at the secondary transfer nip portion N2. Is also regarded as a straight state.

<凹曲げの効果>
図23は、図20の二次転写ニップ部N2におけるXXIIIで囲われた領域の拡大図である。図中の第1主面21s1に沿う方向を面内方向DR1とする。凹曲げ状態になると、第1主面21s1と第2主面21s2との間の曲率差により、第1主面21s1が面内方向DR1において圧縮される向きに力がかかる。すなわち、第2主面21s2の長さ(図23中の両矢印A)はそのままで、第1主面21s1の長さ(図23中の両矢印B)が圧縮されるように力がかかる。
<Effect of concave bending>
FIG. 23 is an enlarged view of the region surrounded by XXIII in the secondary transfer nip portion N2 of FIG. 20. The direction along the first main surface 21s1 in the figure is defined as the in-plane direction DR1. In the concave bending state, a force is applied in the direction in which the first main surface 21s1 is compressed in the in-plane direction DR1 due to the difference in curvature between the first main surface 21s1 and the second main surface 21s2. That is, the length of the second main surface 21s2 (double-headed arrow A in FIG. 23) remains unchanged, and a force is applied so that the length of the first main surface 21s1 (double-headed arrow B in FIG. 23) is compressed.

ゴムは一般的に非圧縮性の物体であるので、圧力を受けたときその容積を維持する方向に変形しようとする。そのため、凹曲げにより第1主面21s1が面内方向DR1において圧縮される向きに力を受けた際、記録媒体1000の表面に凹部があれば、その凹部に向かって弾性層21bが膨らむ方向(図23中の矢印C)に変形しやすい状態になる。 Since rubber is generally an incompressible object, it tends to deform in a direction that maintains its volume when pressure is applied. Therefore, when the first main surface 21s1 is subjected to a force in the direction of being compressed in the in-plane direction DR1 due to the concave bending, if there is a recess on the surface of the recording medium 1000, the direction in which the elastic layer 21b swells toward the recess ( It becomes easy to be deformed as shown by the arrow C) in FIG.

図24は、凹曲げ状態の中間転写ベルト21が加圧された状態を表す図である。二次転写ローラー33と対向ローラー24との圧接により、中間転写ベルト21が記録媒体1000に押し付けられるように圧力がかかり、凹凸を有する記録媒体1000の凸部1003に対向する弾性層21b(図24中の両矢印D)に強い圧力がかかる。 FIG. 24 is a diagram showing a state in which the intermediate transfer belt 21 in the concavely bent state is pressurized. Due to the pressure contact between the secondary transfer roller 33 and the opposing roller 24, pressure is applied so that the intermediate transfer belt 21 is pressed against the recording medium 1000, and the elastic layer 21b facing the convex portion 1003 of the recording medium 1000 having irregularities (FIG. 24). Strong pressure is applied to the double-headed arrow D) inside.

一方、凹凸を有する記録媒体1000の凹部1002に対向する弾性層21bは、直接圧力を受けないので、弾性層21bは記録媒体1000の凸部1003に対向する弾性層21bから凹部1002に対向する部分に向かって変形し(図24中の矢印E)、凹部1002に向かって弾性層21bが膨らむ結果となる(図24中の矢印F)。 On the other hand, since the elastic layer 21b facing the concave portion 1002 of the recording medium 1000 having unevenness does not receive direct pressure, the elastic layer 21b is a portion facing the concave portion 1002 from the elastic layer 21b facing the convex portion 1003 of the recording medium 1000. (Arrow E in FIG. 24), resulting in the elastic layer 21b bulging toward the recess 1002 (arrow F in FIG. 24).

したがって、凹曲げ状態で加圧されると、凹部1002に対向する第1主面21s1付近が変形しやすい状態で加圧されることとなり、内部応力によって瞬間的に大きな歪みが引き起こされて、凹部1002に対向する部分に向かって集中し、凹部1002に対向する弾性層21bが瞬間的に大きく膨らむこととなる。このように、凹曲げ状態で加圧されることで、オーバーシュートが発現しやすくなる。 Therefore, when the pressure is applied in the concavely bent state, the vicinity of the first main surface 21s1 facing the concave portion 1002 is pressurized in a state of being easily deformed, and the internal stress momentarily causes a large strain to cause the concave portion. The elastic layer 21b, which concentrates toward the portion facing the 1002 and faces the recess 1002, momentarily swells greatly. By applying pressure in the concavely bent state in this way, overshoot is likely to occur.

<一次転写部におけるガサツキの抑制および二次転写部における良好な凹部転写性の両立>
二次転写部において、表面に凹凸を有するエンボス紙のような紙に対して、弾性層を有する中間転写ベルトの弾性層を紙の凹部に追随変形させることで、紙の凹部に対する転写性が高まる。表面に凹凸を有するエンボス紙のような紙に対して画像形成する際は、二次転写部において比較的高い圧力をかけて、弾性層を大きく変形させる必要がある。
<Both suppression of roughness in the primary transfer section and good concave transferability in the secondary transfer section>
In the secondary transfer section, the elastic layer of the intermediate transfer belt having an elastic layer is deformed to follow the recesses of the paper with respect to paper such as embossed paper having irregularities on the surface, so that the transferability to the recesses of the paper is enhanced. .. When forming an image on a paper such as embossed paper having an uneven surface, it is necessary to apply a relatively high pressure at the secondary transfer portion to greatly deform the elastic layer.

一方、一次転写部において、弾性層を有する中間転写ベルトが一次転写ローラーによって感光体ドラムに圧接される際、感光体ドラムの表面は平滑であるため、二次転写部における紙の凹部のように、中間転写ベルトの弾性層の変形を吸収する空間はない。そのため、一次転写ローラーより圧力を受けたときの弾性層は、一次転写ニップ部前後の空間に向かって変形する。 On the other hand, in the primary transfer section, when the intermediate transfer belt having the elastic layer is pressed against the photoconductor drum by the primary transfer roller, the surface of the photoconductor drum is smooth, so that it looks like a recess of paper in the secondary transfer section. , There is no space to absorb the deformation of the elastic layer of the intermediate transfer belt. Therefore, the elastic layer when pressure is applied from the primary transfer roller is deformed toward the space before and after the primary transfer nip portion.

中間転写ベルトの弾性層が過剰に変形することによって、中間転写ベルトに転写されるトナー像が乱れたり、トナーの荷電量が変化したりする。従って、一次転写部においては中間転写ベルトにかける圧力を比較的低くして、弾性層の変形を抑制するのが望ましい。 When the elastic layer of the intermediate transfer belt is excessively deformed, the toner image transferred to the intermediate transfer belt is disturbed or the amount of charge of the toner changes. Therefore, in the primary transfer portion, it is desirable to relatively reduce the pressure applied to the intermediate transfer belt to suppress the deformation of the elastic layer.

従来の中間転写ベルトを用いる場合は、表面に凹凸を有するエンボス紙のような紙の凹部に対する転写性とガサツキの抑制とを両立することが難しかった。この理由を以下に詳細に説明する。 When a conventional intermediate transfer belt is used, it is difficult to achieve both transferability to recesses in paper such as embossed paper having irregularities on the surface and suppression of roughness. The reason for this will be described in detail below.

<従来の弾性ベルト>
図25は、ベルトAおよびベルトBにおける印加圧力と変形量との関係を示すグラフである。ベルトAおよびベルトBは、弾性層の硬度が異なる。ベルトAの硬度は、ベルトBの硬度よりも大きい。ベルトAは、ベルトBよりも変形しにくい。
<Conventional elastic belt>
FIG. 25 is a graph showing the relationship between the applied pressure on the belt A and the belt B and the amount of deformation. The hardness of the elastic layer of the belt A and the belt B is different. The hardness of the belt A is larger than the hardness of the belt B. Belt A is less likely to be deformed than Belt B.

縦軸の変形量は、図5で説明した変位量測定装置100を用いた通常の変位量測定とは異なり、圧力を印加して十分時間が経ったあとに測定した変位量のことである。印加圧力を50kPa、100kPa、150kPa、200kPaと変化させていき、それぞれの印加圧力に対するベルトの変形量を記録した。 The amount of deformation on the vertical axis is the amount of displacement measured after a sufficient time has passed after applying pressure, unlike the normal displacement amount measurement using the displacement amount measuring device 100 described with reference to FIG. The applied pressure was changed to 50 kPa, 100 kPa, 150 kPa, and 200 kPa, and the amount of deformation of the belt with respect to each applied pressure was recorded.

図25中の直線は、各印加圧力に対する変形量の測定プロットを、原点を通る直線にフィッティングさせたものである。変形量は、印加圧力に比例している。印加圧力の変化量に対する変形量の変化量(図25中の直線の傾き)は、柔らかいベルトであるベルトBの方が変形しやすいため、ベルトAよりも大きくなる。 The straight line in FIG. 25 is obtained by fitting the measurement plot of the amount of deformation with respect to each applied pressure to a straight line passing through the origin. The amount of deformation is proportional to the applied pressure. The amount of change in the amount of deformation (inclination of the straight line in FIG. 25) with respect to the amount of change in the applied pressure is larger than that of the belt A because the belt B, which is a soft belt, is more easily deformed.

(一次転写部における印加圧力とガサツキとの関係)
上記のベルトAおよびベルトBを中間転写ベルトとして用いて、画像形成装置の一次転写部における印加圧力を変更しながら、印加圧力とガサツキとの関係を調べた。
(Relationship between applied pressure and roughness in the primary transfer section)
Using the above belts A and B as intermediate transfer belts, the relationship between the applied pressure and the roughness was investigated while changing the applied pressure in the primary transfer portion of the image forming apparatus.

ガサツキの評価には、コニカミノルタ社製の画像形成装置(デジタル印刷機:bizhub PRESS C8000)を用い、これに具備されている中間転写ベルトを上述のベルトA、Bに付け替えて、一次転写部における印加圧力を変更して画像形成を実際に行なった。ベタ画像を印刷し、当該ベタ画像のガサツキ具合を観察した。 An image forming apparatus (digital printing machine: bizhub PRESS C8000) manufactured by Konica Minolta Co., Ltd. was used for the evaluation of the roughness, and the intermediate transfer belt provided in the image forming apparatus (digital printing machine: bizhub PRESS C8000) was replaced with the above-mentioned belts A and B in the primary transfer unit. Image formation was actually performed by changing the applied pressure. A solid image was printed, and the roughness of the solid image was observed.

なお、二次転写部における条件(圧力やバイアス等)は、トナー像を乱さずに用紙上に転写できるような最適な条件とすることによって、一次転写部に起因するガサツキの評価を行った。 By setting the conditions (pressure, bias, etc.) in the secondary transfer section to the optimum conditions so that the toner image can be transferred onto the paper without disturbing the toner image, the roughness caused by the primary transfer section was evaluated.

用紙は、王子製紙社製のコート紙、OKトップコート+を使用した。このコート紙の坪量は、104.7[g/m]とした。 As the paper, coated paper manufactured by Oji Paper Co., Ltd., OK Top Coat + was used. The basis weight of this coated paper was 104.7 [g / m 2 ].

図26は、ベルトAおよびベルトBを画像形成装置の中間転写ベルトとして用いた場合において、一次転写部におけるそれぞれの印加圧力に対するガサツキの評価結果を示すグラフである。図25で説明したベルトAおよびベルトBにおける印加圧力と変形量との関係を示すグラフ上に、各印加圧力におけるガサツキの評価結果を、○(許容レベル以上)もしくは×(不可レベル)で示している。 FIG. 26 is a graph showing the evaluation results of roughness with respect to the respective applied pressures in the primary transfer unit when the belt A and the belt B are used as the intermediate transfer belts of the image forming apparatus. On the graph showing the relationship between the applied pressure and the amount of deformation in the belt A and the belt B described with reference to FIG. 25, the evaluation result of the roughness at each applied pressure is indicated by ○ (permissible level or higher) or × (impossible level). There is.

例えば、ベルトAにおいて印加圧力が50[kPa]のとき、変位量測定装置100を用いて測定した変形量は約2[μm]である。一次転写部における印加圧力を50[kPa]に設定した画像形成装置の中間転写ベルトとしてベルトAを用いた場合、ガサツキの評価結果は許容レベル以上であった。この場合、図26中のx=50[kPa]、y=2[μm]の位置に○印を付けている。図26のガサツキの評価結果から、ガサツキを抑制するには、変形量を約5[μm]以下に抑える必要があると言える。 For example, when the applied pressure of the belt A is 50 [kPa], the amount of deformation measured by the displacement amount measuring device 100 is about 2 [μm]. When the belt A was used as the intermediate transfer belt of the image forming apparatus in which the applied pressure in the primary transfer unit was set to 50 [kPa], the evaluation result of the roughness was above the permissible level. In this case, the positions of x = 50 [kPa] and y = 2 [μm] in FIG. 26 are marked with a circle. From the evaluation result of the roughness in FIG. 26, it can be said that it is necessary to suppress the deformation amount to about 5 [μm] or less in order to suppress the roughness.

ガサツキを抑制するには、変形量をなるべく抑える方がよく、そのために印加圧力を小さく設定した方がよい。しかし、印加圧力を小さくすると、一次転写ニップ部において圧接状態が不安定になり、感光体ドラムの軸方向に画像ムラが発生しやすくなる。当該画像出力条件では、印加圧力が48[kPa]未満のときに、軸方向の画像ムラが発生しやすくなる。 In order to suppress the roughness, it is better to suppress the amount of deformation as much as possible, and therefore it is better to set the applied pressure to be small. However, when the applied pressure is reduced, the pressure contact state becomes unstable at the primary transfer nip portion, and image unevenness tends to occur in the axial direction of the photoconductor drum. Under the image output condition, when the applied pressure is less than 48 [kPa], image unevenness in the axial direction is likely to occur.

図27は、軸方向の画像ムラの発生を抑制しながら、ガサツキを抑制できる印加圧力および変形量の範囲を示すグラフである。変形量が5[μm]以下であって、印加圧力が48[kPa]以上である、斜線部Uで示す範囲が好適な条件となる。 FIG. 27 is a graph showing a range of applied pressure and deformation amount that can suppress roughness while suppressing the occurrence of image unevenness in the axial direction. The range indicated by the shaded area U, in which the amount of deformation is 5 [μm] or less and the applied pressure is 48 [kPa] or more, is a suitable condition.

(二次転写部における印加圧力と凹部転写性との関係)
ベルトAおよびベルトBを中間転写ベルトとして用いて、画像形成装置の二次転写部における印加圧力を変更しながら、印加圧力と凹凸紙の凹部への転写性(凹部転写性)との関係を調べた。
(Relationship between applied pressure in secondary transfer section and concave transferability)
Using belt A and belt B as intermediate transfer belts, the relationship between the applied pressure and the transferability of the uneven paper to the recesses (recess transferability) was investigated while changing the applied pressure in the secondary transfer section of the image forming apparatus. It was.

図28は、ベルトAおよびベルトBを画像形成装置の中間転写ベルトとして用いた場合において、二次転写部におけるそれぞれの印加圧力に対する凹部転写性の評価結果を示すグラフである。図25で説明したベルトAおよびベルトBにおける印加圧力と変形量との関係を示すグラフ上に、各印加圧力における凹部転写性の評価結果を、○(許容レベル以上)もしくは×(不可レベル)で示している。 FIG. 28 is a graph showing the evaluation results of the recess transferability with respect to the respective applied pressures in the secondary transfer section when the belt A and the belt B are used as the intermediate transfer belts of the image forming apparatus. On the graph showing the relationship between the applied pressure and the amount of deformation in the belt A and the belt B described with reference to FIG. 25, the evaluation result of the recess transferability at each applied pressure is indicated by ○ (permissible level or higher) or × (impossible level). Shown.

凹部転写性の評価には、コニカミノルタ社製の画像形成装置(デジタル印刷機:bizhub PRESS C8000)を用い、これに具備されている中間転写ベルトを上述のベルトA、Bに付け替えて、二次転写部における印加圧力を変更して画像形成を実際に行なった。 An image forming apparatus (digital printing machine: bizhub PRESS C8000) manufactured by Konica Minolta Co., Ltd. was used for the evaluation of the concave transferability, and the intermediate transfer belt provided therein was replaced with the above-mentioned belts A and B to perform secondary printing. Image formation was actually performed by changing the applied pressure in the transfer section.

用紙は、特種東海製紙株式会社製のエンボス紙、商品名レザック66(レザックは登録商標)を使用した。このエンボス紙の坪量は、302[g/m]とした。 The paper used was embossed paper manufactured by Tokushu Tokai Paper Co., Ltd., and the product name Rezac 66 (Rezac is a registered trademark). The basis weight of this embossed paper was 302 [g / m 2 ].

この用紙上にベタ画像を印刷し、判定に際しては、マイクロデンシトメーターを用いてシャープで深さの深い凹部(溝部)の反射濃度と凸部の反射濃度とを測定し、これらの濃度差を算出した。濃度差が0.25未満である良好な場合には「良」と判定し、濃度差が0.25以上0.40未満の許容レベルである場合には「可」と判定し、濃度差が0.40以上の許容できないレベルである場合には「不可」と判定した。 A solid image is printed on this paper, and when making a judgment, the reflection density of the sharp and deep recesses (grooves) and the reflection density of the protrusions are measured using a microdensitometer, and the difference between these densities is measured. Calculated. If the concentration difference is less than 0.25, it is judged as "good", and if the concentration difference is 0.25 or more and less than 0.40, it is judged as "OK", and the concentration difference is When it was an unacceptable level of 0.40 or more, it was judged as "impossible".

なお、一次転写部における条件(圧力やバイアス等)は、トナー像を乱さずに中間転写ベルト上に転写できるような最適な条件とすることによって、二次転写部に起因する凹凸紙への転写性の評価を行った。 By setting the conditions (pressure, bias, etc.) in the primary transfer section to the optimum conditions so that the toner image can be transferred onto the intermediate transfer belt without disturbing the toner image, the transfer to uneven paper caused by the secondary transfer section is performed. Sexual evaluation was performed.

図28の凹部転写性の評価結果から、良好な凹部転写性を確保するには、変形量を約19[μm]以上にする必要があると言える。 From the evaluation result of the concave transferability of FIG. 28, it can be said that the deformation amount needs to be about 19 [μm] or more in order to secure good concave transferability.

良好な凹部転写性を確保するには、変形量をなるべく大きくする方がよく、そのためには印加圧力を大きくした方がよい。しかし、印加圧力を大きくすると、細線つぶれが発生しやすくなる。当該画像出力条件では、印加圧力が350[kPa]を超えたときに、細線つぶれが発生しやすくなる。 In order to ensure good concave transferability, it is better to increase the amount of deformation as much as possible, and for that purpose, it is better to increase the applied pressure. However, when the applied pressure is increased, fine line crushing is likely to occur. Under the image output condition, when the applied pressure exceeds 350 [kPa], fine line crushing is likely to occur.

図29は、細線つぶれを抑制しながら良好な凹部転写性を確保できる印加圧力および変形量の範囲を示すグラフである。変形量19[μm]以上であって、印加圧力が350[kPa]以下である、図29の斜線部Vで示す範囲が好適な条件となる。 FIG. 29 is a graph showing a range of applied pressure and deformation amount that can secure good concave transferability while suppressing thin line crushing. The range shown by the shaded portion V in FIG. 29, in which the deformation amount is 19 [μm] or more and the applied pressure is 350 [kPa] or less, is a suitable condition.

(画像形成に最適な条件の領域)
図30は、軸方向の画像ムラの発生および細線つぶれを抑制しながら、ガサツキを抑制できる範囲Xおよび良好な凹部転写性を確保できる範囲Yを示したグラフである。
(Area of optimum conditions for image formation)
FIG. 30 is a graph showing a range X in which roughness can be suppressed and a range Y in which good recess transferability can be ensured while suppressing the occurrence of image unevenness in the axial direction and crushing of fine lines.

一次転写部においてガサツキを抑制できる変形量の上限をεth1で示す。変形量がεth1以下であって、軸方向の画像ムラの発生を抑制するための下限の印加圧力と、細線つぶれを抑制するための上限の印加圧力とに囲まれた図30中の斜線部Xの領域が一次転写部の条件設定可能領域である。 The upper limit of the amount of deformation that can suppress rattling in the primary transfer section is indicated by εth1. The shaded portion X in FIG. 30 in which the amount of deformation is εth1 or less and is surrounded by the lower limit applied pressure for suppressing the occurrence of image unevenness in the axial direction and the upper limit applied pressure for suppressing thin line crushing. Is the region where the conditions of the primary transfer unit can be set.

二次転写において凹部転写性を確保できる変形量の下限をεth2で示す。変形量がεth2以上であって、軸方向の画像ムラの発生を抑制するための下限の印加圧力と、細線つぶれを抑制するための上限の印加圧力とに囲われた図30中の斜線部Yの領域が二次転写部の条件設定可能領域である。 The lower limit of the amount of deformation that can secure the concave transferability in the secondary transfer is indicated by εth2. The shaded portion Y in FIG. 30 in which the amount of deformation is εth2 or more and is surrounded by the lower limit applied pressure for suppressing the occurrence of image unevenness in the axial direction and the upper limit applied pressure for suppressing fine line crushing. Is the region where the conditions of the secondary transfer unit can be set.

比較的硬くて変形しにくいベルトAを用いると、Xの領域内に重なり部分W1があるため、ベルトAを用いてW1の範囲にて一次転写部における印加圧力の条件を設定することで、一次転写ニップ部における軸方向の画像ムラの発生を抑制しながら、ガサツキを抑制できる。 When the belt A, which is relatively hard and hard to be deformed, has an overlapping portion W1 in the region of X, the condition of the applied pressure in the primary transfer portion is set in the range of W1 by using the belt A. Roughness can be suppressed while suppressing the occurrence of image unevenness in the axial direction in the transfer nip portion.

しかし、ベルトAを用いた場合、Yの領域内に重なり部分がない。そのため、二次転写部において、細線つぶれを抑制しながら凹部転写性は確保できるような印加圧力の条件に設定することができない。 However, when the belt A is used, there is no overlapping portion in the region of Y. Therefore, in the secondary transfer section, it is not possible to set the conditions of the applied pressure so that the concave transferability can be ensured while suppressing the crushing of fine lines.

一方、比較的柔らかくて変形しやすいベルトBを用いると、Y領域内に重なり部分W2があるため、ベルトBを用いてW2の範囲にて二次転写部における印加圧力を設定することで、細線つぶれを発生させることなく、良好な凹部転写性が確保できる。 On the other hand, when the belt B, which is relatively soft and easily deformed, has an overlapping portion W2 in the Y region, the applied pressure in the secondary transfer portion is set in the range of W2 by using the belt B to make a thin line. Good recess transferability can be ensured without causing crushing.

しかし、ベルトBを用いた場合、Xの領域内に重なり部分がない。そのため、一次転写部において、一次転写ニップ部における軸方向の画像ムラの発生を抑制しながら、ガサツキを抑制できるような条件に設定することができない。 However, when the belt B is used, there is no overlapping portion in the region of X. Therefore, it is not possible to set the conditions in the primary transfer section so as to suppress the roughness while suppressing the occurrence of image unevenness in the axial direction in the primary transfer nip section.

以上のように、従来の弾性ベルトであるベルトAおよびベルトBを用いた場合、良好な凹部転写性の確保およびガサツキの抑制のいずれか片方の条件を満たすことしかできず、双方の条件を満たすように設定することはできなかった。 As described above, when the conventional elastic belts A and B are used, only one of the conditions of ensuring good recess transferability and suppressing roughness can be satisfied, and both conditions are satisfied. Could not be set.

<本発明におけるオーバーシュート変形を呈するベルト>
本発明者は、図11に示すオーバーシュート部分を有するパターンを呈する中間転写ベルト21の特有の性質を適切に利用することによって、一次転写部におけるガサツキの抑制および二次転写部における良好な凹部転写性の両立ができることを見出した。なお、以下の説明における「変位量」とは、変位量測定装置100を用いてベルトを測定したときの変位量をいう。
<Belt exhibiting overshoot deformation in the present invention>
The present inventor appropriately utilizes the peculiar property of the intermediate transfer belt 21 exhibiting the pattern having the overshoot portion shown in FIG. 11, to suppress the roughness in the primary transfer portion and to perform good concave transfer in the secondary transfer portion. I found that it is possible to achieve both sex. The "displacement amount" in the following description means the displacement amount when the belt is measured by using the displacement amount measuring device 100.

図31は、オーバーシュート変形を呈するベルトの測定領域における変位量の経時変化を示したグラフである。最大変位量δ[μm](図11の変位量測定装置100における変位測定の最大値a)は、過渡成分ε[μm]および定常成分ε[μm]の和として考えることができる。 FIG. 31 is a graph showing the time course of the displacement amount in the measurement region of the belt exhibiting overshoot deformation. The maximum displacement amount δ [μm] (maximum value a of the displacement measurement in the displacement amount measuring device 100 in FIG. 11) can be considered as the sum of the transient component ε t [μm] and the stationary component ε s [μm].

定常成分εは、図11の変位量測定装置100における変位測定の収束値bとして得ることができる。過渡成分εは、図11の変位量測定装置100における変位測定の最大値aと収束値bとの差として得ることができる。 The steady-state component ε s can be obtained as the convergence value b of the displacement measurement in the displacement amount measuring device 100 of FIG. The transient component ε t can be obtained as the difference between the maximum value a and the convergence value b of the displacement measurement in the displacement amount measuring device 100 of FIG.

(過渡成分ε
図32は、ベルトに印加する圧力の4つのパターンを簡易的に示したグラフである。最大圧力がp1[kPa]もしくはp2[kPa]であって、加圧速度(単位時間当たりの圧力の増加量)がs1[kPa/ms]もしくはs2[kPa/ms]である4つのパターンを印加した場合を考える。
(Transient component ε t )
FIG. 32 is a graph simply showing four patterns of pressure applied to the belt. Four patterns are applied in which the maximum pressure is p1 [kPa] or p2 [kPa] and the pressurization rate (increase in pressure per unit time) is s1 [kPa / ms] or s2 [kPa / ms]. Consider the case.

基準となるのはパターン(1)であり、最大圧力がp1、加圧速度がs1である。パターン(2)は、加圧速度がパターン(1)と同じs1で、最大圧力がp2(p1の2倍)である。パターン(3)は、最大圧力はパターン(1)と同じp1であり、加圧速度はs2(s1の2倍)である。パターン(4)は、最大圧力がp2であり、加圧速度がs2である。 The reference is the pattern (1), the maximum pressure is p1 and the pressurizing speed is s1. In the pattern (2), the pressurizing speed is s1 which is the same as that of the pattern (1), and the maximum pressure is p2 (twice the p1). In the pattern (3), the maximum pressure is p1 which is the same as the pattern (1), and the pressurizing speed is s2 (twice the s1). In the pattern (4), the maximum pressure is p2 and the pressurizing speed is s2.

図33は、パターン(1)からパターン(4)の圧力を印加した場合のそれぞれの場合における過渡成分εを示したグラフである。過渡成分εは、最大圧力pに比例して増加する。パターン(2)は最大圧力がパターン(1)の2倍であるので、過渡成分εもパターン(1)の2倍になる。パターン(4)は最大圧力がパターン(3)の2倍であるので、過渡成分εもパターン(3)の2倍になる。 FIG. 33 is a graph showing the transient component ε t in each case when the pressures of the patterns (1) to (4) are applied. The transient component ε t increases in proportion to the maximum pressure p. Since the maximum pressure of the pattern (2) is twice that of the pattern (1), the transient component ε t is also twice that of the pattern (1). Since the maximum pressure of the pattern (4) is twice that of the pattern (3), the transient component ε t is also twice that of the pattern (3).

さらに、過渡成分εは、加圧速度sに依存して増減する。パターン(1)およびパターン(2)と、パターン(3)およびパターン(4)とは、それぞれ加圧速度sがs1、s2である。パターン(1)およびパターン(2)の圧力を印加した場合よりも、加圧速度sが大きいパターン(3)およびパターン(4)の圧力を印加した方が、過渡成分εは、大きくなる。過渡成分εは、最大圧力pに比例して増減するとともに、加圧速度sに依存して増減する。 Further, the transient component ε t increases or decreases depending on the pressurization rate s. The patterns (1) and (2) and the patterns (3) and (4) have pressurizing speeds s1 and s2, respectively. The transient component ε t becomes larger when the pressures of the patterns (3) and (4) having a higher pressurizing speed s are applied than when the pressures of the patterns (1) and (2) are applied. The transient component ε t increases or decreases in proportion to the maximum pressure p, and increases or decreases depending on the pressurizing speed s.

図34は、加圧速度sと、最大圧力pの増加量に対する過渡成分εの増加量Δε/Δp[μm/kPa](図33中の直線の傾き)との関係を示すグラフである。Δε/Δpは、加圧速度sに比例して増減する。 FIG. 34 is a graph showing the relationship between the pressurizing speed s and the increase amount Δε t / Δp [μm / kPa] (slope of a line in FIG. 33) of the transient component ε t with respect to the increase amount of the maximum pressure p. .. Δε t / Δp increases or decreases in proportion to the pressurizing speed s.

図33に示すように、過渡成分εが最大圧力pに比例するので過渡成分εは式(1)のように表される。 As shown in FIG. 33, transients epsilon t since transients epsilon t is proportional to the maximum pressure p is expressed by equation (1).

ε=k×p(k:係数)・・・(1)
図34に示すように、Δε/Δp(すなわち式(1)の係数k)が加圧速度sに比例するので、kは式(2)のように表される。
ε t = k × p (k: coefficient) ・ ・ ・ (1)
As shown in FIG. 34, since Δε t / Δp (that is, the coefficient k of the equation (1)) is proportional to the pressurizing speed s, k is expressed as the equation (2).

k=α×s(α:係数)・・・(2)
式(1)および式(2)をまとめると式(3)のように表される。
k = α × s (α: coefficient) ・ ・ ・ (2)
The equation (1) and the equation (2) can be summarized as the equation (3).

ε=α×s×p・・・(3)
過渡成分εは、最大圧力pと加圧速度sとの積に比例する。従って、最大圧力pと加圧速度sの両方を大きくしていくと、εは二次関数的に増加することになる。例えば、パターン(4)は、(1)に対して、最大圧力pを2倍、加圧速度sを2倍としたものであるため、パターン(4)の過渡成分εは、パターン(1)の過渡成分εの4倍となる。
ε t = α × s × p ・ ・ ・ (3)
The transient component ε t is proportional to the product of the maximum pressure p and the pressurizing speed s. Therefore, as both the maximum pressure p and the pressurizing speed s are increased, ε t increases quadratically. For example, in the pattern (4), the maximum pressure p is doubled and the pressurizing speed s is doubled with respect to (1). Therefore, the transient component ε t of the pattern (4) is the pattern (1). ) Is four times the transient component ε t.

(定常成分ε
図35は、パターン(1)からパターン(4)の圧力を印加した場合のそれぞれの場合における定常成分εを示したグラフである。定常成分εも、過渡成分εと同じく、最大圧力pに比例する。パターン(2)は最大圧力がパターン(1)の2倍であるので、定常成分εもパターン(1)の2倍になる。パターン(4)は、最大圧力pがパターン(3)の2倍であるので、定常成分εもパターン(3)の2倍になる。
(Standing component ε s )
FIG. 35 is a graph showing the steady-state component ε s in each case when the pressures of the patterns (1) to (4) are applied. The steady component ε s is also proportional to the maximum pressure p, like the transient component ε t. Since the maximum pressure of the pattern (2) is twice that of the pattern (1), the steady-state component ε s is also twice that of the pattern (1). Since the maximum pressure p of the pattern (4) is twice that of the pattern (3), the steady-state component ε s is also twice that of the pattern (3).

定常成分εは、加圧速度sに依存して増減しない。加圧速度sがs1、s2のいずれの場合であっても、最大圧力pに対する定常成分εは、略同じである。 The steady-state component ε s does not increase or decrease depending on the pressurization rate s. Regardless of whether the pressurizing speed s is s1 or s2, the steady-state component ε s with respect to the maximum pressure p is substantially the same.

図36は、加圧速度sと、最大圧力pの増加量に対する定常成分εの増加量Δε/Δp[μm/kPa](図35中の直線の傾き)との関係を示すグラフである。定常成分εは、最大圧力pに比例して増減するが、過渡成分εの場合と異なり、加圧速度sに依存しない。 FIG. 36 is a graph showing the relationship between the pressurizing speed s and the increase amount Δε s / Δp [μm / kPa] (slope of a line in FIG. 35) of the steady component ε s with respect to the increase amount of the maximum pressure p. .. The steady-state component ε s increases and decreases in proportion to the maximum pressure p, but unlike the case of the transient component ε t , it does not depend on the pressurizing speed s.

図35に示すように、定常成分εは、最大圧力pに比例し加圧速度sに依存しないため、式(4)のように表される。 As shown in FIG. 35, the steady-state component ε s is proportional to the maximum pressure p and does not depend on the pressurizing speed s, and is therefore expressed by the equation (4).

ε=β×p(β:係数)・・・(4)
式(3)および式(4)より、最大変位量δは式(5)のように表される。
ε s = β × p (β: coefficient) ・ ・ ・ (4)
From equations (3) and (4), the maximum displacement amount δ is expressed as in equation (5).

δ=ε+ε
=α×s×p+β×p(α、β:ゴムの粘弾性や膜厚等で決まる係数)・・・(5)
最大変位量δは、過渡成分εがpとsとの積に比例することから、二次関数的に増減することになる。最大圧力pと加圧速度sを調整し、最大変位量δを調整することで画像品質を良好に保つことができる。
δ = ε t + ε s
= Α × s × p + β × p (α, β: coefficient determined by rubber viscoelasticity, film thickness, etc.) ・ ・ ・ (5)
Since the transient component ε t is proportional to the product of p and s, the maximum displacement amount δ increases or decreases in a quadratic function. The image quality can be kept good by adjusting the maximum pressure p and the pressurizing speed s and adjusting the maximum displacement amount δ.

(最大変位量δを調整するためのパラメータ(押圧力P、ローラー半径r))
図37は、一方のローラーが他方のローラーに押圧する様子を示した図である。画像形成装置1におけるパラメータとして、押圧力P[N]とローラー半径r[mm]との比(P/r)に着目した。Pはローラー間の押圧力で、rは硬い方のローラーの半径である。
(Parameters for adjusting the maximum displacement amount δ (pressing pressure P, roller radius r))
FIG. 37 is a diagram showing how one roller presses against the other roller. As a parameter in the image forming apparatus 1, attention was paid to the ratio (P / r) of the pressing force P [N] and the roller radius r [mm]. P is the pressing force between the rollers, and r is the radius of the harder roller.

一次転写部においては、一次転写ローラー22を感光体ドラム13に押圧するときの押圧力がPとなり、感光体ドラム13の半径がrとなる。二次転写部においては、二次転写ローラー33を対向ローラー24に押圧するときの押圧力がPとなり、二次転写ローラー33の半径がrとなる。 In the primary transfer unit, the pressing force when the primary transfer roller 22 is pressed against the photoconductor drum 13 is P, and the radius of the photoconductor drum 13 is r. In the secondary transfer unit, the pressing force when the secondary transfer roller 33 is pressed against the opposing roller 24 is P, and the radius of the secondary transfer roller 33 is r.

本発明者らは、画像形成装置1を好適に使用可能な範囲において、最大変位量δがP/rに対して二次関数的に増減する、ということを見出した。以下にその理由を説明する。 The present inventors have found that the maximum displacement amount δ increases or decreases quadratically with respect to P / r within a range in which the image forming apparatus 1 can be preferably used. The reason will be explained below.

図38は、押圧力PをPR1およびPR2に設定した場合、ニップ部を通過する中間転写ベルト21が受ける圧力の時間変化を示すグラフである。押圧力PがPR1のときの最大圧力をp1として、押圧力PがPR2のときの最大圧力をp2とする。PR2は、PR1の2倍であり、p2は、p1の2倍である。ローラー半径rを固定して、押圧力Pを2倍(PR1からPR2)にすると、最大圧力pは約2倍(p1からp2)になる。そして加圧速度s(図38中の太線の傾き)も約2倍になる。なおこの場合の加圧速度は、最大圧力pの20%から最大圧力pに至るまでの間における加圧速度とする。最大圧力pと加圧速度sの両方が約2倍になるので、式(3)より過渡成分εは約4倍になる。 FIG. 38 is a graph showing the time change of the pressure received by the intermediate transfer belt 21 passing through the nip portion when the pressing force P is set to PR1 and PR2. Let p1 be the maximum pressure when the pressing pressure P is PR1, and p2 be the maximum pressure when the pressing pressure P is PR2. PR2 is twice as much as PR1 and p2 is twice as much as p1. When the roller radius r is fixed and the pressing force P is doubled (PR1 to PR2), the maximum pressure p is approximately doubled (p1 to p2). And the pressurization speed s (inclination of the thick line in FIG. 38) is also about doubled. The pressurization rate in this case is the pressurization rate between 20% of the maximum pressure p and the maximum pressure p. Since both the maximum pressure p and the pressurizing speed s are approximately doubled, the transient component ε t is approximately quadrupled from Eq. (3).

図39は、押圧力Pと過渡成分εとの関係を示すグラフである。過渡成分εは、押圧力Pに対して二次関数的に増減することになる。押圧力Pが増減することで、最大圧力pおよび加圧速度sがともに増減するためである。 FIG. 39 is a graph showing the relationship between the pressing force P and the transient component ε t. The transient component ε t increases or decreases quadratically with respect to the pressing force P. This is because the maximum pressure p and the pressurizing speed s both increase or decrease as the pressing force P increases or decreases.

図40は、半径が比較的小さい一方のローラー(半径r2)を他方のローラーに押圧する様子を示す図である。図41は、図40に示すローラーの半径(r2)の2倍の半径を有する一方のローラー(半径r1)を他方のローラーに押圧する様子を示す図である。図42は、図40および図41のローラーを用いた場合、ニップ部を通過する中間転写ベルト21が受ける圧力の時間変化を示すグラフである。ローラー半径rがr1のときの最大圧力pをp1として、ローラー半径rがr2のときの最大圧力pをp2とする。r2は、r1の半分であり、p2は、p1の2倍である。 FIG. 40 is a diagram showing how one roller (radius r2) having a relatively small radius is pressed against the other roller. FIG. 41 is a diagram showing a state in which one roller (radius r1) having a radius twice the radius (r2) of the roller shown in FIG. 40 is pressed against the other roller. FIG. 42 is a graph showing the time change of the pressure received by the intermediate transfer belt 21 passing through the nip portion when the rollers of FIGS. 40 and 41 are used. Let p1 be the maximum pressure p when the roller radius r is r1, and p2 be the maximum pressure p when the roller radius r is r2. r2 is half of r1 and p2 is twice as much as p1.

押圧力Pを固定して、ローラー半径rを半分(r1からr2)にすると、圧力が中央に集中するので、最大圧力pは約2倍となり、加圧速度sも約2倍になる。最大圧力pと加圧速度sの両方が約2倍になるので、式(3)より過渡成分εは約4倍になる。 When the pressing force P is fixed and the roller radius r is halved (r1 to r2), the pressure is concentrated in the center, so that the maximum pressure p is about doubled and the pressurizing speed s is also about doubled. Since both the maximum pressure p and the pressurizing speed s are approximately doubled, the transient component ε t is approximately quadrupled from Eq. (3).

図43は、ローラー半径rの逆数1/r[mm−1]と過渡成分εとの関係を示すグラフである。過渡成分εは、ローラー半径rの逆数1/rに対して二次関数的に増減することになる。ローラー半径rが増減することで、最大圧力pおよび加圧速度sがともに増減するためである。 FIG. 43 is a graph showing the relationship between the reciprocal 1 / r [mm -1 ] of the roller radius r and the transient component ε t. The transient component ε t increases or decreases quadratically with respect to the reciprocal 1 / r of the roller radius r. This is because the maximum pressure p and the pressurizing speed s both increase or decrease as the roller radius r increases or decreases.

図44は、P/rと過渡成分εとの関係を示したグラフである。ローラー半径rを固定したときに過渡成分εは、押圧力Pの二乗に比例して増減し、押圧力Pを固定したときに、ローラー半径rの逆数1/rの二乗に比例して増減する。よって、過渡成分εは、P/rの二乗に比例して増減する。 FIG. 44 is a graph showing the relationship between P / r and the transient component ε t. When the roller radius r is fixed, the transient component ε t increases or decreases in proportion to the square of the pressing force P, and when the pressing force P is fixed, it increases or decreases in proportion to the square of the reciprocal 1 / r of the roller radius r. To do. Therefore, the transient component ε t increases or decreases in proportion to the square of P / r.

<オーバーシュート変形を呈するベルトと示さないベルトとの比較>
(オーバーシュート変形を呈さないベルト)
図45は、オーバーシュート変形を呈さないベルトA,Bおよびオーバーシュート変形を呈するベルトPにおける、P/rと最大変位量δとの関係を示すグラフである。ガサツキを抑制するための上限の最大変位量δをεth1、良好な凹部転写性を確保するための下限の最大変位量δをεth2とする。P1/r1は、軸方向の画像ムラを抑制するための下限値である。P2/r2は、細線つぶれを抑制するための上限値である。
<Comparison between belts with overshoot deformation and belts without overshoot deformation>
(Belt that does not exhibit overshoot deformation)
FIG. 45 is a graph showing the relationship between P / r and the maximum displacement amount δ in the belts A and B that do not exhibit overshoot deformation and the belt P that exhibits overshoot deformation. Let εth1 be the upper limit maximum displacement amount δ for suppressing rattling, and εth2 be the lower limit maximum displacement amount δ for ensuring good recess transferability. P1 / r1 is a lower limit value for suppressing image unevenness in the axial direction. P2 / r2 is an upper limit value for suppressing thin line crushing.

オーバーシュート変形を示さないベルトにおいて、過渡成分εは、ほぼ0である。そのため、式(5)より、最大変位量δは下記の式(6)のように定常成分εだけで表される。 In a belt that does not show overshoot deformation, the transient component ε t is approximately zero. Therefore, from the equation (5), the maximum displacement amount δ is expressed only by the steady component ε s as in the following equation (6).

δ≒ε
=β×p・・・(6)
図25で説明したように、オーバーシュート変形を呈さないベルトA,Bの変形量(最大変位量δ)は、最大圧力pに比例する。図38および図42に示すように、最大圧力pは押圧力Pに略比例し、かつ、1/rに略比例するため、P/rに略比例する。オーバーシュート変形を呈さないベルトA,Bは、P/rにほぼ比例するように最大変位量δが変化する特性を示す。
δ ≒ ε s
= Β × p ・ ・ ・ (6)
As described with reference to FIG. 25, the amount of deformation (maximum displacement amount δ) of the belts A and B that do not exhibit overshoot deformation is proportional to the maximum pressure p. As shown in FIGS. 38 and 42, the maximum pressure p is substantially proportional to the pressing force P and substantially proportional to 1 / r, and therefore is substantially proportional to P / r. Belts A and B that do not exhibit overshoot deformation exhibit a characteristic that the maximum displacement amount δ changes so as to be substantially proportional to P / r.

図45に示すように、最大変位量δがεth1以下であって、P1/r1と、P2/r2とに囲まれた図45中の斜線部Xの領域が一次転写部における条件設定可能領域である。最大変位量δがεth2以上であって、P1/r1と、P2/r2とに囲まれた図45中の斜線部Yの領域が二次転写部における条件設定可能領域である。 As shown in FIG. 45, the maximum displacement amount δ is εth1 or less, and the region of the shaded area X in FIG. 45 surrounded by P1 / r1 and P2 / r2 is the condition-settable region in the primary transfer unit. is there. The region of the shaded area Y in FIG. 45 surrounded by P1 / r1 and P2 / r2 when the maximum displacement amount δ is εth2 or more is a condition-settable region in the secondary transfer unit.

図30において説明したように、オーバーシュート変形を示さないベルトA、Bにおいては、印加圧力に対する変形量(最大変位量δ)の関係において、ガサツキの抑制と良好な凹部転写性の確保を両立させるような適切な印加圧力に条件設定にすることができなかった。 As described with reference to FIG. 30, in the belts A and B that do not show overshoot deformation, in relation to the amount of deformation (maximum displacement amount δ) with respect to the applied pressure, both suppression of rattling and ensuring good recess transferability are achieved. It was not possible to set the conditions for such an appropriate applied pressure.

同様に、P/rに対する最大変位量δの関係についても、ガサツキの抑制と良好な凹部転写性の確保を両立させるような適切な条件に設定することができない。 Similarly, the relationship of the maximum displacement amount δ with respect to P / r cannot be set to an appropriate condition that both suppresses rattling and secures good recess transferability.

(オーバーシュート変形を呈するベルト)
オーバーシュート変形を呈するベルトPにおいては、図44に示すように、過渡成分εは、P/rに対して、二次関数的に増減する。すなわち、最大変位量δ(=過渡成分ε+定常成分ε)も二次関数的に増減する。
(Belt exhibiting overshoot deformation)
In the belt P exhibiting overshoot deformation, as shown in FIG. 44, the transient component ε t increases / decreases in a quadratic function with respect to P / r. That is, the maximum displacement amount δ (= transient component ε t + steady component ε s ) also increases or decreases in a quadratic function.

図45に示すように、オーバーシュート変形を呈するベルトPは、P/rが小さい領域において、P/rの増加量に対する最大変位量δの増加量は小さく、P/rが大きい領域において、P/rの増加量に対する最大変位量δの増加量は大きいという非線形な特性を示す。 As shown in FIG. 45, the belt P exhibiting overshoot deformation has a small increase in the maximum displacement amount δ with respect to an increase in P / r in a region where P / r is small, and P in a region where P / r is large. It shows a non-linear characteristic that the amount of increase in the maximum displacement amount δ with respect to the amount of increase in / r is large.

上記の特性により、軸方向の画像ムラを抑制できるようなP/rの条件でありながら、一次転写部において最大変位量δを十分抑えてガサツキを抑制できるようになる。また、細線つぶれを抑制できるようなP/rの条件でありながら、二次転写部において最大変位量δを大きくして良好な凹部転写性を確保できるようになる。 Due to the above characteristics, it is possible to sufficiently suppress the maximum displacement amount δ in the primary transfer portion and suppress the roughness while the condition is P / r so that the image unevenness in the axial direction can be suppressed. Further, the maximum displacement amount δ can be increased in the secondary transfer portion to ensure good recess transferability, even though the condition is P / r so that the fine line crushing can be suppressed.

図14で説明したように、オーバーシュート変形を呈するベルトには付着力低減効果がある。ベルトがオーバーシュート変形を示すとき、ベルト表面が短時間に大きく伸縮するため、トナーの付着力が低減する。トナーの付着力が低減する結果、紙の凹部に対してトナーが移動されやすくなる。この効果により、従来のオーバーシュート変形を呈さないベルトに比べて、より小さい変形量で良好な凹部転写性を確保することが可能である。 As described with reference to FIG. 14, the belt exhibiting overshoot deformation has an adhesive force reducing effect. When the belt exhibits overshoot deformation, the surface of the belt expands and contracts significantly in a short time, so that the adhesive force of the toner is reduced. As a result of reducing the adhesive force of the toner, the toner is easily moved to the concave portion of the paper. Due to this effect, it is possible to secure good recess transferability with a smaller amount of deformation as compared with a conventional belt that does not exhibit overshoot deformation.

図45に示すように、オーバーシュート変形を呈するベルトPを用いた場合は、上記で説明した付着力低減効果によって、良好な凹部転写性を確保するための下限の最大変位量δは、εth2よりも小さいεth2Aとなる。 As shown in FIG. 45, when the belt P exhibiting overshoot deformation is used, the maximum displacement amount δ of the lower limit for ensuring good recess transferability is more than εth2 due to the adhesive force reducing effect described above. Is also small εth2A.

よって、最大変位量δがεth2A以上εth2以下であって、P1/r1と、P2/r2とに囲まれた図45中の斜線部Zの領域においても良好な凹部転写性を確保するための条件設定が可能となり、二次転写部における良好な凹部転写性を確保するための条件設定可能領域が拡張される。 Therefore, a condition for ensuring good recess transferability even in the shaded area Z in FIG. 45 surrounded by P1 / r1 and P2 / r2 when the maximum displacement amount δ is εth2A or more and εth2 or less. The setting becomes possible, and the condition-settable area for ensuring good concave transferability in the secondary transfer portion is expanded.

オーバーシュート変形を呈するベルトPを用いた場合、一次転写部及び二次転写部におけるP/rの値を、Xの領域内の重なり部分W1およびZの領域内に重なり部分W3の範囲内で設定することによって、ガサツキの抑制と良好な凹部転写性とを両立することができる。 When a belt P exhibiting overshoot deformation is used, the value of P / r in the primary transfer portion and the secondary transfer portion is set within the range of the overlapping portion W1 in the region of X and the overlapping portion W3 in the region of Z. By doing so, it is possible to achieve both suppression of roughness and good concave transferability.

(最大変位量δを調整するための画像形成装置1におけるパラメータ(線圧P、ベルト搬送速度Vsys))
図46は、ローラー間を中間転写ベルト21が通過する様子を示した画像形成装置1の内部の模式図である。図47は、図46に示すニップ部Nにおける中間転写ベルト21の搬送方向DR2の線圧の圧力分布を示すグラフである。図48は、図46に示すニップ部Nを通過する中間転写ベルト21が受ける線圧の時間変化を示すグラフである。
(Parameters in the image forming apparatus 1 for adjusting the maximum displacement amount δ (linear pressure P x , belt transport speed V sys ))
FIG. 46 is a schematic view of the inside of the image forming apparatus 1 showing how the intermediate transfer belt 21 passes between the rollers. FIG. 47 is a graph showing the pressure distribution of the linear pressure of the intermediate transfer belt 21 in the transport direction DR2 at the nip portion N shown in FIG. FIG. 48 is a graph showing the time change of the linear pressure received by the intermediate transfer belt 21 passing through the nip portion N shown in FIG.

図46に示すように、ローラーによってニップ部Nが形成されている。押圧力Pをニップ部Nのローラー軸方向DR3における長さL[mm]で割った値を線圧P(=P/L)[N/mm]とする。図47および図48に示すように、ニップ部Nにおける最大線圧Pの20%となる位置からニップ部Nにおける最大線圧Pの位置までの距離をw[mm]とし、wの間を中間転写ベルト21が通過する時間をN[s]とする。また、中間転写ベルト21の搬送速度である、ベルト搬送速度をVsys[mm/s]とする。 As shown in FIG. 46, the nip portion N is formed by the roller. The value obtained by dividing the pressing force P by the length L [mm] of the nip portion N in the roller axial direction DR3 is defined as the linear pressure P x (= P / L) [N / mm]. As shown in FIGS. 47 and 48, the distance of 20% and a position of the maximum line pressure P x in the nip portion N to the position of the maximum line pressure P x in the nip portion N and w [mm], between w Let N [s] be the time for the intermediate transfer belt 21 to pass through. Further, the belt transfer speed, which is the transfer speed of the intermediate transfer belt 21, is set to V sys [mm / s].

線圧における加圧速度をsaとすると、線圧における加圧速度saは、以下の式(7)にて表される。 Assuming that the pressurizing speed at the linear pressure is sa, the pressurizing speed sa at the linear pressure is represented by the following equation (7).

sa=(P−0.2×P)/N
=(0.8×P)/(w/Vsys)・・・(7)
ここで、w∝rと見なすことができるので、sa∝Vsys×0.8×P/rとなる。
sa = (P x −0.2 × P x ) / N
= (0.8 × P x ) / (w / V sys ) ・ ・ ・ (7)
Here, since it can be regarded as w∝r, it becomes sa∝V sys × 0.8 × P × / r.

また、sa∝sと見なすことができ、さらに、p∝P/rなので、実機ニップ部での最大変位量δは、以下の式(8)で表される。 Further, it can be regarded as sa ∝ s, and since it is p ∝ P x / r, the maximum displacement amount δ at the actual nip portion is expressed by the following equation (8).

δ=ε+ε
=α×s×p+β×p
=α×c×Vsys×(P/r)×(P/r)+β×d×(P/r)(c,d:係数)
=α×c×Vsys×γ+β×d×γ・・・(8) (γ=P/r)
式(8)のように、最大変位量δは、線圧Pおよびローラー半径rからなるパラメータγ(=P/r)およびベルト搬送速度Vsysの関数として表される。
δ = ε t + ε s
= Α × s × p + β × p
= Α × c × V sys × (P x / r) × (P x / r) + β × d × (P x / r) (c, d: coefficient)
= Α × c × V sys × γ 2 + β × d × γ ・ ・ ・ (8) (γ = P x / r)
As shown in equation (8), the maximum displacement amount δ is expressed as a function of the parameter γ (= P x / r) consisting of the linear pressure P x and the roller radius r and the belt transport speed V sys.

(画像品質への影響度を表す指標値ε
ここで、過渡成分εと定常成分εとの品質(ガサツキ、凹部転写性)への寄与度を加味した指標をδとするとδは式(9)で表される。
(Indicator value ε c indicating the degree of influence on image quality)
Here, if the index in which the contribution of the transient component ε t and the steady component ε s to the quality (roughness, concave transferability) is taken as δ j , δ j is expressed by the equation (9).

δ=α×c×e×Vsys×γ+β×d×f×γ(e、f:それぞれ過渡成分ε、定常成分εの寄与度を表す係数)・・・(9)
式(9)の両辺をβ×d×fで割り、係数をA(=α×c×e/(β×d×f))でまとめると、以下の式(10)のようになる。
δ j = α × c × e × V sys × γ 2 + β × d × f × γ (e, f: coefficients representing the contribution of the transient component ε t and the steady component ε s, respectively) (9)
Dividing both sides of the equation (9) by β × d × f and summarizing the coefficients by A (= α × c × e / (β × d × f)), the following equation (10) is obtained.

δ/(β×d×f)=A×Vsys×γ+γ
ε=A×Vsys×γ+γ (ε=δ/(β×d×f))・・・(10)
式(10)の左辺εは、画像品質(ガサツキおよび凹部転写性等)への影響度を表す指標値となる。一次転写部におけるガサツキの抑制に対して、εの上限値が定まる。
δ j / (β × d × f) = A × V sys × γ 2 + γ
ε c = A × V sys × γ 2 + γ (ε c = δ j / (β × d × f)) ・ ・ ・ (10)
The left side ε c of the formula (10) is an index value indicating the degree of influence on the image quality (roughness, concave transferability, etc.). The upper limit of ε c is determined for the suppression of rattling in the primary transfer section.

一次転写ローラー22が感光体ドラム13を押圧する押圧力をP1、一次転写ニップ部N1のローラー軸方向DR3における長さをL1、感光体ドラム13の半径をr1とすると、εの上限値は、係数A、ベルト搬送速度Vsys、一次転写部のγ1(=P1/(L1×r1))の関数となる。 Assuming that the pressing force of the primary transfer roller 22 pressing the photoconductor drum 13 is P1, the length of the primary transfer nip portion N1 in the roller axial direction DR3 is L1, and the radius of the photoconductor drum 13 is r1, the upper limit of ε c is , Coefficient A, belt transport speed V sys , and γ1 (= P1 / (L1 × r1)) of the primary transfer unit.

なお、r1∝W1(W1:一次転写ニップ幅)なので、押圧力P1を長さL1と感光体ドラム13の半径r1との積で除したγ1は、一次転写ニップ部N1における面圧に相当する。 Since r1∝W1 (W1: primary transfer nip width), γ1 obtained by dividing the pressing force P1 by the product of the length L1 and the radius r1 of the photoconductor drum 13 corresponds to the surface pressure in the primary transfer nip portion N1. ..

二次転写部における凹部転写性に対して、εの下限値が定まる。二次転写ローラー33が対向ローラー24を押圧する押圧力をP2、二次転写ニップ部N2のローラー軸方向DR3における長さをL2、二次転写ローラー33の半径をr2とすると、εの下限値は、係数A、ベルト搬送速度Vsys、二次転写部のγ2(=P2/(L2×r2))の関数となる。 The lower limit of ε c is determined for the concave transferability in the secondary transfer section. Assuming that the pressing force with which the secondary transfer roller 33 presses the opposing roller 24 is P2, the length of the secondary transfer nip portion N2 in the roller axial direction DR3 is L2, and the radius of the secondary transfer roller 33 is r2, the lower limit of ε c. The value is a function of the coefficient A, the belt transport speed V sys , and γ2 (= P2 / (L2 × r2)) of the secondary transfer unit.

なお、r2∝W2(W2:二次転写ニップ幅)なので、押圧力P2を長さL2と二次転写ローラー33の半径r2との積で除したγ2は、二次転写ニップ部N2における面圧に相当する。 Since r2∝W2 (W2: secondary transfer nip width), γ2 obtained by dividing the pressing force P2 by the product of the length L2 and the radius r2 of the secondary transfer roller 33 is the surface pressure in the secondary transfer nip portion N2. Corresponds to.

上記の式(10)の右辺第1項は、過渡成分εの品質(ガサツキおよび凹部転写性等)への影響度を表す量である。Aは過渡成分εの品質への寄与度合(同じ変位量の定常成分εに対して何倍影響しやすいか)を決定する係数である。Aは弾性ベルトの粘弾性や膜厚、表面の形状(表面粗さ)などが関係して決まると考えられる。 The first term on the right side of the above equation (10) is a quantity representing the degree of influence of the transient component ε t on the quality (roughness, concave transferability, etc.). A is a coefficient that determines the degree of contribution of the transient component ε t to the quality (how many times it is likely to affect the steady component ε s of the same displacement amount). It is considered that A is determined in relation to the viscoelasticity and film thickness of the elastic belt, the surface shape (surface roughness), and the like.

過渡成分εの影響は、ベルト搬送速度Vsysに比例するとともに、γの2乗に比例する。これにより、小さいγでは過渡成分εの影響は比較的小さくなり、γを大きくしていくとその2乗に比例して過渡成分εの影響は二次関数的に大きくなっていく。このとき、Vsysが大きい方が、過渡成分εの寄与が相対的に大きくなることも分かる。 The effect of the transient component ε t is proportional to the belt transport speed V sys and proportional to the square of γ. As a result, the effect of the transient component ε t becomes relatively small for a small γ, and as γ increases, the effect of the transient component ε t increases quadratically in proportion to the square of the γ. At this time, it can be seen that the larger V sys is, the larger the contribution of the transient component ε t is.

右辺第2項は、変位量の定常成分εの品質(ガサツキおよび凹部転写性等)への影響度を表す量である。ただし、係数で両辺を割って整理したので、右辺第2項はγそのものである。定常成分εの影響は、押圧力Pに比例し、ニップ部Nのローラー軸方向DR3における長さL、およびローラー半径rに反比例する。 The second term on the right side is a quantity representing the degree of influence of the displacement amount on the quality (roughness, concave transferability, etc.) of the constant component ε s. However, since both sides are divided by the coefficient and arranged, the second term on the right side is γ itself. The influence of the steady-state component ε s is proportional to the pressing force P, and is inversely proportional to the length L of the nip portion N in the roller axial direction DR3 and the roller radius r.

画像形成装置1にて、ベルト搬送速度Vsys、押圧力P等を変えながら、ガサツキおよび凹部転写性との関係を調べた。具体的には、コニカミノルタ社製の画像形成装置1(デジタル印刷機:bizhub PRESS C8000)を用い、これに具備されている中間転写ベルト21を、オーバーシュート部分を有するパターンを呈するベルトに付け替えて、画像形成を実際に行なった。 In the image forming apparatus 1, the relationship between the roughness and the concave transferability was investigated while changing the belt transport speed V sys, the pressing force P, and the like. Specifically, an image forming apparatus 1 (digital printing machine: bizhub PRESS C8000) manufactured by Konica Minolta Co., Ltd. is used, and the intermediate transfer belt 21 provided therein is replaced with a belt exhibiting a pattern having an overshoot portion. , Image formation was actually performed.

画像形成装置1の一次転写ローラー22は、直径12mmの芯金の周りにゴムからなる弾性層を設けた、直径24mmのローラーとした。マイクロゴム硬度計(高分子計器社製MD−1)で計測した弾性層の硬度は40度であった。一次転写圧接部の軸方向長さは335mmとした。 The primary transfer roller 22 of the image forming apparatus 1 is a roller having a diameter of 24 mm in which an elastic layer made of rubber is provided around a core metal having a diameter of 12 mm. The hardness of the elastic layer measured with a micro rubber hardness tester (MD-1 manufactured by Polymer Meter Co., Ltd.) was 40 degrees. The axial length of the primary transfer pressure contact portion was set to 335 mm.

画像形成装置1の二次転写ローラー33は、金属(材質はSUS)の剛体ローラーとした。対向ローラー24は、直径24mmの芯金の周りにスポンジとゴムとからなる弾性層を設けた、直径40mmのローラーとした。マイクロゴム硬度計(高分子計器社製MD−1)で計測した弾性層の硬度は40度であった。二次転写圧接部の軸方向長さは340mmとした。 The secondary transfer roller 33 of the image forming apparatus 1 is a rigid body roller made of metal (material is SUS). The opposing roller 24 was a roller having a diameter of 40 mm in which an elastic layer made of sponge and rubber was provided around a core metal having a diameter of 24 mm. The hardness of the elastic layer measured with a micro rubber hardness tester (MD-1 manufactured by Polymer Meter Co., Ltd.) was 40 degrees. The axial length of the secondary transfer pressure contact portion was set to 340 mm.

評価に使用する用紙は、特種東海製紙株式会社製のエンボス紙、商品名レザック66(レザックは登録商標)を使用した。このエンボス紙の坪量は、302[g/m]とした。形成する画像は、ベタ画像とした。 The paper used for the evaluation was embossed paper manufactured by Tokushu Tokai Paper Co., Ltd., and the trade name Rezac 66 (Rezac is a registered trademark). The basis weight of this embossed paper was 302 [g / m 2 ]. The image to be formed was a solid image.

(一次転写部に起因するガサツキ評価結果)
図49は、ベルト搬送速度Vsysおよび一次転写部における押圧力P1の各条件に対するガサツキの評価結果を示すグラフである。図26で説明した場合と同様に、二次転写部における条件(圧力やバイアス等)は、トナー像を乱さずに用紙上に転写できるような最適な条件とすることによって、一次転写部に起因するガサツキの評価を行った。
(Roughness evaluation result due to the primary transfer part)
FIG. 49 is a graph showing the evaluation results of roughness for each condition of the belt transport speed V sys and the pressing force P1 in the primary transfer unit. Similar to the case described with reference to FIG. 26, the conditions (pressure, bias, etc.) in the secondary transfer section are caused by the primary transfer section by setting the optimum conditions so that the toner image can be transferred onto the paper without disturbing the toner image. We evaluated the quality of the paper.

目視評価にて、ガサツキが良好レベルのとき○を、許容レベルのとき△を、不可レベルのとき×で示している。この結果より、ガサツキが○から△もしくは×に変わる境界を調べたところ、以下の式(11)に表される曲線を境にして、ガサツキが○から×に変わることが分かった。 In the visual evaluation, ○ is indicated when the roughness is at a good level, Δ is indicated when the level is acceptable, and × is indicated when the level is not acceptable. From this result, when the boundary where the roughness changes from ○ to Δ or × is investigated, it is found that the roughness changes from ○ to × with the curve represented by the following equation (11) as the boundary.

2×Vsys×γ+γ=0.0075・・・(11)
すなわち、ガサツキに対する過渡成分εの寄与度合を決める係数AはA=2であり、このときの指標値ε1は、ε1=0.0075である。ε1=2×Vsys×γ+γで表されるε1が、以下の式(12)を満たすとき、ガサツキが抑制された良好な画質が得られる。
2 × V sys × γ 2 + γ = 0.0075 ... (11)
That is, the coefficient A that determines the degree of contribution of the transient component ε t to the roughness is A = 2, and the index value ε c 1 at this time is ε c 1 = 0.0075. ε c 1 = 2 × V sys × ε c 1 represented by the gamma 2 + gamma is, when satisfying the following equation (12), good image quality is obtained coarseness is suppressed.

ε1≦0.0075・・・(12)
(二次転写部に起因する凹部転写性の評価結果)
図50は、ベルト搬送速度Vsysおよび二次転写部における押圧力P2の各条件に対する凹部転写性の評価結果を示すグラフである。図28で説明した場合と同様に、一次転写部における条件(圧力やバイアス等)は、トナー像を乱さずに用紙上に転写できるような最適な条件とすることによって、二次転写部に起因する凹部転写性の評価を行った。
ε c 1 ≤ 0.0075 ... (12)
(Evaluation result of concave transferability due to secondary transfer part)
FIG. 50 is a graph showing the evaluation results of the recess transferability under each condition of the belt transfer speed V sys and the pressing force P2 in the secondary transfer unit. Similar to the case described with reference to FIG. 28, the conditions (pressure, bias, etc.) in the primary transfer section are caused by the secondary transfer section by setting the optimum conditions so that the toner image can be transferred onto the paper without disturbing the toner image. The concave transferability was evaluated.

目視評価にて、凹部転写性が良好レベルのとき○を、許容レベルのとき△を、不可レベルのとき×で示している。ベルト搬送速度Vsysと二次転写部押圧力P2とを変更しながら、凹部転写性を評価した。 In the visual evaluation, ○ is indicated when the concave transferability is at a good level, Δ is indicated when the concave transferability is at an acceptable level, and × is indicated when the concave transferability is at an impossible level. The concave transferability was evaluated while changing the belt transfer speed V sys and the secondary transfer section pressing force P2.

この結果より、凹部転写性が○から△もしくは×に変わる境界を調べたところ、以下の式(13)に表される曲線を境にして、凹部転写性が○から×に変わることが分かった。 From this result, when the boundary where the concave transferability changes from ○ to Δ or × was investigated, it was found that the concave transferability changed from ○ to × with the curve represented by the following equation (13) as the boundary. ..

5×Vsys×γ+γ=0.088・・・(13)
すなわち、凹部転写性に対する過渡成分εの寄与度合を決める係数AはA=5であり、このときの指標値ε2は、ε2=0.088である。ε2=5×Vsys×γ2+γで表されるε2が、以下の式(14)を満たすとき、凹部転写性が確保された良好な画質が得られることが分かった。
5 × V sys × γ 2 + γ = 0.088 ... (13)
That is, the coefficient A that determines the degree of contribution of the transient component ε t to the recess transferability is A = 5, and the index value ε c 2 at this time is ε c 2 = 0.088. It was found that when ε c 2 represented by ε c 2 = 5 × V sys × γ 2 + γ satisfies the following equation (14), good image quality with recessed transferability is ensured.

ε2≧0.088・・・(14)
以上をまとめると、以下の(15)式を満たすとき、一次転写部においてガサツキを抑制することができ、以下の(16)式を満たすとき、二次転写部において良好な凹部転写性を確保することができる。
ε c 2 ≧ 0.088 ・ ・ ・ (14)
Summarizing the above, when the following equation (15) is satisfied, rattling can be suppressed in the primary transfer portion, and when the following equation (16) is satisfied, good recess transferability is ensured in the secondary transfer portion. be able to.

2×Vsys×γ1+γ1≦0.0075・・・(15)(γ1=P1/(L1×r1))
5×Vsys×γ2+γ2≧0.088・・・(16)(γ2=P2/(L2×r2))
図51は、実施例1から実施例7、比較例1から比較例4、および従来例1から従来例4のベルトを用いた場合の各条件に対する画像評価結果を示すグラフである。目視評価にて、画像品質が良好レベル(良)、許容レベル(可)、不可レベル(不可)で示している。実施例1から実施例7および比較例1から比較例4ではベルトPを用いて、従来例1から4では、ベルトAおよびベルトBを用いて評価を実施した。
2 × V sys × γ1 2 + γ1 ≦ 0.0075 ・ ・ ・ (15) (γ1 = P1 / (L1 × r1))
5 × V sys × γ2 2 + γ2 ≧ 0.088 ... (16) (γ2 = P2 / (L2 × r2))
FIG. 51 is a graph showing image evaluation results for each condition when the belts of Examples 1 to 7, Comparative Example 1 to Comparative Example 4, and Conventional Example 1 to Conventional Example 4 are used. Visual evaluation shows that the image quality is good (good), acceptable (possible), and unacceptable (impossible). The evaluation was carried out using the belt P in Examples 1 to 7 and Comparative Examples 1 to 4, and the belts A and B in the conventional examples 1 to 4.

ベルト種Pは、本発明者が製作したものであり、基層の材質がポリイミドであり、弾性層の材質がニトリルゴムである。一方、ベルト種A、Bは、本発明者が製作したものではなく、市販の画像形成装置において用いられている中間転写ベルトである。ベルト種Aは、基層の材質がポリイミドであり、弾性層の材質がクロロプレンゴムである。ベルト種Bは、基層の材質がポリイミドであり、弾性層の材質がアクリルゴムである。 The belt type P is manufactured by the present inventor, and the material of the base layer is polyimide and the material of the elastic layer is nitrile rubber. On the other hand, the belt types A and B are not manufactured by the present inventor, but are intermediate transfer belts used in a commercially available image forming apparatus. In the belt type A, the material of the base layer is polyimide and the material of the elastic layer is chloroprene rubber. In the belt type B, the material of the base layer is polyimide and the material of the elastic layer is acrylic rubber.

(実施例1から実施例7)
実施例1から実施例5は、いずれもE=1.0を示すベルトPを用いており、ε1およびε2が式(12)と式(14)とを満たすように、押圧力P、ローラー半径r、およびベルト搬送速度Vsysを設定している。実施例1から実施例5のベルトPの画像評価結果は、ガサツキ、凹部転写性、軸方向の画像ムラ、および細線つぶれのいずれの項目においても「可」以上となっている。
(Examples 1 to 7)
In each of Examples 1 to 5, a belt P showing E = 1.0 is used, and a pressing force is applied so that ε c 1 and ε c 2 satisfy the equations (12) and (14). P, roller radius r, and belt transfer speed V sys are set. The image evaluation results of the belts P of Examples 1 to 5 are "OK" or higher in all of the items of roughness, concave transferability, axial image unevenness, and fine line crushing.

実施例6に示すE=0.2を示すベルト、実施例7に示すE=3.0を示すベルトを用いて画像評価しても、実施例1から実施例5で示すE=1.0を示すベルトを用いた場合と同様にガサツキ、凹部転写性、軸方向の画像ムラ、および細線つぶれのいずれの項目においても「可」以上となっている。 Even if the image is evaluated using the belt showing E = 0.2 shown in Example 6 and the belt showing E = 3.0 shown in Example 7, E = 1.0 shown in Examples 1 to 5 As in the case of using the belt showing the above, all of the items of roughness, concave transferability, axial image unevenness, and fine line crushing are “OK” or higher.

E=0.2、E=3.0を示すベルトにおいても、ε1およびε2が式(12)と式(14)とを満たすように、押圧力P、ローラー半径r、およびベルト搬送速度Vsysを設定することで、良好な画像品質を確保することができる。 Even in the belt showing E = 0.2 and E = 3.0, the pressing force P, the roller radius r, and the belt so that ε c 1 and ε c 2 satisfy the equations (12) and (14). Good image quality can be ensured by setting the transport speed V sys.

一方、E=3.5を示すベルトを用いた場合、凹凸紙転写性には問題なかったものの、一万枚印刷後において画像ノイズが発生しやすくなっており、繰り返し使用時の耐久性に難があった。 On the other hand, when a belt showing E = 3.5 was used, there was no problem with the transferability of uneven paper, but image noise was likely to occur after printing 10,000 sheets, and durability during repeated use was difficult. was there.

0.2≦E≦3を満たすベルトを中間転写ベルト21とすることにより、良好な凹部転写性を確保しながら、繰り返しの使用によっても画像品位が低下してしまうことが抑制できる。 By setting the belt that satisfies 0.2 ≦ E ≦ 3 as the intermediate transfer belt 21, it is possible to prevent the image quality from being deteriorated even by repeated use while ensuring good concave transferability.

(比較例1から比較例4)
比較例1から比較例4からわかるように、オーバーシュート変形を呈するベルトPを用いた場合であっても、ε1またはε2が適正範囲から外れると、ガサツキ、凹部転写性、軸方向の画像ムラ、および細線つぶれのいずれかで不可レベルとなり、高画質を実現することができなかった。
(Comparative Example 1 to Comparative Example 4)
As can be seen from Comparative Example 1 to Comparative Example 4, even when a belt P exhibiting overshoot deformation is used, if ε c 1 or ε c 2 deviates from the appropriate range, rattling, recess transferability, and axial direction are observed. It was not possible to achieve high image quality due to either image unevenness or thin line crushing.

実施例4および比較例3の結果より、γ1が以下の(17)式を満たすとき、軸方向の画像ムラが抑制できることがわかる。 From the results of Example 4 and Comparative Example 3, it can be seen that when γ1 satisfies the following equation (17), image unevenness in the axial direction can be suppressed.

γ1≧0.00074・・・(17)
また、実施例5および比較例4の結果より、γ2が以下の(18)式を満たすとき、細線つぶれが抑制できることがわかる。
γ1 ≧ 0.00074 ・ ・ ・ (17)
Further, from the results of Example 5 and Comparative Example 4, it can be seen that when γ2 satisfies the following equation (18), fine line crushing can be suppressed.

γ2≦0.028・・・(18)
(従来例1から従来例4)
オーバーシュート変形を呈さない、弾性層が比較的硬いベルトAを用い、従来例1のようにε1およびε2が式(12)と式(14)とをそれぞれ満たすような条件で画出ししたところ、良好な凹部転写性が確保できなかった。二次転写部における押圧力P2を増加させたが、P2=210[N]に至ったところで細線つぶれが発生した(従来例2)。このとき、凹部転写性も改善されなかった。
γ2 ≦ 0.028 ・ ・ ・ (18)
(Conventional Example 1 to Conventional Example 4)
A belt A having a relatively hard elastic layer that does not exhibit overshoot deformation is used, and images are drawn under conditions such that ε c 1 and ε c 2 satisfy equations (12) and (14) as in the conventional example 1. When it was taken out, good concave transferability could not be secured. Although the pressing force P2 in the secondary transfer section was increased, fine line crushing occurred when P2 = 210 [N] (conventional example 2). At this time, the concave transferability was not improved either.

オーバーシュート変形を呈さない、弾性層が比較的柔らかいベルトBを用い、従来例3のようにε1およびε2が式(12)と式(14)とをそれぞれ満たすような条件で画出ししたところ、良好な凹部転写性は確保できたが、ガサツキが発生した。一次転写部における押圧力P1を低下させて画像評価を実施したが、P1=9[N]としたところで軸方向の画像ムラが発生した(従来例4)。このとき、ガサツキも改善されなかった。 A belt B having a relatively soft elastic layer that does not exhibit overshoot deformation is used, and images are drawn under conditions such that ε c 1 and ε c 2 satisfy equations (12) and (14) as in the conventional example 3. When it was put out, good concave transferability could be secured, but roughening occurred. Image evaluation was performed by reducing the pressing force P1 in the primary transfer unit, but image unevenness in the axial direction occurred when P1 = 9 [N] (conventional example 4). At this time, the roughness was not improved either.

このように、オーバーシュート変形を呈さないベルトAおよびベルトBを中間転写ベルトとして用いた場合は、ガサツキの抑制と良好な凹部転写性とを両立させることはできなかった。 As described above, when the belt A and the belt B, which do not exhibit overshoot deformation, are used as the intermediate transfer belts, it is not possible to achieve both suppression of rattling and good recess transferability.

さらに実験を繰り返し、ベルトAとベルトBとの中間の硬さを持つベルトを多数試作して検討したが、オーバーシュート変形を呈さないベルトにおいては、ガサツキ抑制と良好な凹部転写性とを両立させることはできなかった。 Further experiments were repeated, and a large number of belts having a hardness intermediate between the belt A and the belt B were prototyped and examined. I couldn't.

以上より、オーバーシュート変形を呈するベルトPを用いて、ε1およびε2が適正になるように押圧力P、ローラー半径r、およびベルト搬送速度Vsysの設定をすることで、良好な凹部転写性とガサツキの抑制とを両立させることができる。すなわち、深い凹部を有する記録媒体に対して高い転写性を確保しながら、ガサツキを抑制し、良好な画像品質を確保できる画像形成装置を実現することができる。 From the above, it is good to set the pressing force P, the roller radius r, and the belt transport speed V sys so that ε c 1 and ε c 2 are appropriate using the belt P exhibiting overshoot deformation. It is possible to achieve both recess transferability and suppression of roughness. That is, it is possible to realize an image forming apparatus capable of suppressing rattling and ensuring good image quality while ensuring high transferability for a recording medium having a deep recess.

以上において説明した本実施の形態においては、画像形成装置としていわゆるデジタル複合機やデジタル印刷機に本発明を適用した場合を例示して説明を行なったが、その他の画像形成装置に本発明を適用することも当然に可能である。 In the present embodiment described above, the case where the present invention is applied to a so-called digital multifunction device or digital printing machine as an image forming apparatus has been described as an example, but the present invention is applied to other image forming apparatus. Of course, it is possible to do so.

このように、今回開示した上記実施の形態および実施例はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は特許請求の範囲によって画定され、また特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As described above, the above-described embodiments and examples disclosed this time are exemplary in all respects and are not restrictive. The technical scope of the present invention is defined by the claims and is intended to include all modifications within the meaning and scope equivalent to the claims.

1 画像形成装置、13 像担持体、21 中間転写ベルト、21s1 第1主面、21s2 第2主面、22 一次転写ローラー、24 対向ローラー、24b 弾性部、33 二次転写ローラー、33b 弾性部、70 押圧力調整機構、80 ベルト搬送速度調整機構、100 変位量測定装置、110 下側ブロック、111 上面、112 湾曲凸条面、113 穴部、120 上側ブロック、121 下面、122 湾曲凹条面、1000 エンボス紙,記録媒体、1001 記録面、1002 凹部、1003 凸部、DR1 面内方向、DR2 搬送方向、DR3 ローラー軸方向。 1 image forming apparatus, 13 image carrier, 21 intermediate transfer belt, 21s1 first main surface, 21s2 second main surface, 22 primary transfer roller, 24 opposed roller, 24b elastic part, 33 secondary transfer roller, 33b elastic part, 70 Push pressure adjustment mechanism, 80 Belt transfer speed adjustment mechanism, 100 Displacement amount measuring device, 110 Lower block, 111 upper surface, 112 curved convex surface, 113 hole, 120 upper block, 121 lower surface, 122 curved concave surface, 1000 embossed paper, recording medium, 1001 recording surface, 1002 concave part, 1003 convex part, DR1 in-plane direction, DR2 transport direction, DR3 roller axial direction.

Claims (4)

トナー像を担持する像担持体と、
弾性層を少なくとも含み、相対して位置する第1主面および第2主面からなる一対の露出主面のうちの一方である前記第1主面に担持したトナー像を記録媒体に対して転写するための中間転写ベルトと、
前記像担持体に担持されたトナー像を前記中間転写ベルトに転写する、前記像担持体よりも表面の硬度が小さい一次転写ローラーと、
前記中間転写ベルトに担持されたトナー像を記録媒体に転写する二次転写部と、を備える画像形成装置であって、
前記二次転写部は、二次転写ローラーおよび前記二次転写ローラーに対向し前記二次転写ローラーよりも表面の硬度が小さい対向ローラーを含み、
幅が20[mm]であって曲率半径が20[mm]である湾曲凸条面を上面に有するとともに前記湾曲凸条面の頂部に直径が1.25[mm]である穴部が設けられてなる下側ブロックと、幅が20[mm]であって曲率半径が20.3[mm]である湾曲凹条面を下面に有する上側ブロックとを用い、前記第1主面が前記下側ブロックの前記上面に面するように前記中間転写ベルトを前記下側ブロックの前記上面上に載置するとともに、前記上側ブロックを前記下側ブロックに向けて下降させることで前記中間転写ベルトの一部が前記湾曲凸条面と前記湾曲凹条面とによって挟み込まれるようにすることにより、前記中間転写ベルトの前記一部である被加圧領域が予め定められた加圧速度[kPa/ms]で200[kPa]の加圧力に到達してその後200[kPa]の加圧力で一定に加圧されるようにした場合に、
前記中間転写ベルトが、前記第1主面のうちの前記穴部に対応する部分である測定領域の変位に局所的なピークが発生し、その後時間の経過とともに変位が減少に転じ、最終的に漸減して所定の変位量に収束する変位パターンを呈し、
前記像担持体および前記一次転写ローラーによって一次転写ニップ部が形成され、
前記二次転写ローラーおよび前記対向ローラーによって二次転写ニップ部が形成され、
前記中間転写ベルトのベルト搬送速度をVsys[mm/s]、前記一次転写ローラーが前記像担持体を押圧する押圧力をP1[N]、前記一次転写ニップ部の前記一次転写ローラーの軸方向における長さをL1[mm]、前記像担持体の半径をr1[mm]とし、前記P1、前記L1および前記r1を用いてP1/(L1×r1)で算出されるγ1[N/mm]が、2×Vsys×γ1+γ1≦0.0075の条件を満たし、
前記二次転写ローラーが前記対向ローラーを押圧する押圧力をP2[N]、前記二次転写ニップ部の前記二次転写ローラーの軸方向における長さをL2[mm]、前記二次転写ローラーの半径をr2[mm]とし、前記P2、前記L2および前記r2を用いてP2/(L2×r2)で算出されるγ2[N/mm]が、5×Vsys×γ2+γ20.088の条件を満たす、画像形成装置。
An image carrier that supports a toner image and
A toner image supported on the first main surface, which includes at least an elastic layer and is one of a pair of exposed main surfaces composed of a first main surface and a second main surface located opposite to each other, is transferred to a recording medium. With an intermediate transfer belt for
A primary transfer roller having a surface hardness smaller than that of the image carrier, which transfers the toner image supported on the image carrier to the intermediate transfer belt.
An image forming apparatus including a secondary transfer unit that transfers a toner image supported on the intermediate transfer belt to a recording medium.
The secondary transfer unit includes a secondary transfer roller and an opposing roller facing the secondary transfer roller and having a surface hardness smaller than that of the secondary transfer roller.
A curved convex surface having a width of 20 [mm] and a radius of curvature of 20 [mm] is provided on the upper surface, and a hole having a diameter of 1.25 [mm] is provided at the top of the curved convex surface. The lower block and the upper block having a curved concave surface having a width of 20 [mm] and a radius of curvature of 20.3 [mm] on the lower surface are used, and the first main surface is the lower side. A part of the intermediate transfer belt is placed on the upper surface of the lower block so as to face the upper surface of the block, and the upper block is lowered toward the lower block. Is sandwiched between the curved convex surface and the curved concave surface so that the area under pressure, which is a part of the intermediate transfer belt, is pressed at a predetermined pressure rate [kPa / ms]. When the pressing force of 200 [kPa] is reached and then the pressing force of 200 [kPa] is applied to keep the pressure constant.
A local peak occurs in the displacement of the measurement region of the intermediate transfer belt, which is a portion of the first main surface corresponding to the hole, and then the displacement starts to decrease with the passage of time, and finally. It presents a displacement pattern that gradually decreases and converges to a predetermined displacement amount.
The primary transfer nip portion is formed by the image carrier and the primary transfer roller, and the primary transfer nip portion is formed.
The secondary transfer nip portion is formed by the secondary transfer roller and the opposing roller, and the secondary transfer nip portion is formed.
The belt transport speed of the intermediate transfer belt is V sys [mm / s], the pressing force with which the primary transfer roller presses the image carrier is P1 [N], and the axial direction of the primary transfer roller of the primary transfer nip portion. Is L1 [mm], the radius of the image carrier is r1 [mm], and γ1 [N / mm 2) calculated by P1 / (L1 × r1) using the P1, the L1 and the r1. ] Satisfies the condition of 2 × V sys × γ1 2 + γ1 ≦ 0.0075.
The pressing force of the secondary transfer roller pressing the opposing roller is P2 [N], the axial length of the secondary transfer nip portion of the secondary transfer roller is L2 [mm], and the length of the secondary transfer roller is L2 [mm]. The radius is r2 [mm], and γ2 [N / mm 2 ] calculated by P2 / (L2 × r2) using the P2, the L2, and the r2 is 5 × V sys × γ2 2 + γ2 0. An image forming apparatus that satisfies the condition of 088.
前記予め定められた加圧速度が4[kPa/ms]の場合に、前記測定領域の変位量の最大値をa[μm]とし、前記測定領域の変位が収束した後の前記測定領域の変位量をb[μm]とした場合に、前記aおよび前記bを用いて(a−b)/bで算出されるE[−]が、0.2≦E≦3.0の条件を満たす、請求項1に記載の画像形成装置。 When the predetermined pressurizing speed is 4 [kPa / ms], the maximum value of the displacement amount of the measurement region is set to a [μm], and the displacement of the measurement region after the displacement of the measurement region converges. When the amount is b [μm], E [−] calculated by (ab) / b using the above a and the said b satisfies the condition of 0.2 ≦ E ≦ 3.0. The image forming apparatus according to claim 1. 前記γ1が、γ1≧0.00074の条件を満たす、請求項1または請求項2に記載の画像形成装置。 The image forming apparatus according to claim 1 or 2, wherein the γ1 satisfies the condition of γ1 ≧ 0.00074. 前記γ2が、γ2≦0.028の条件を満たす、請求項1から請求項3のいずれか1項に記載の画像形成装置。 The image forming apparatus according to any one of claims 1 to 3, wherein the γ2 satisfies the condition of γ2 ≦ 0.028.
JP2017037285A 2017-02-28 2017-02-28 Image forming device Active JP6866689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017037285A JP6866689B2 (en) 2017-02-28 2017-02-28 Image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017037285A JP6866689B2 (en) 2017-02-28 2017-02-28 Image forming device

Publications (2)

Publication Number Publication Date
JP2018141920A JP2018141920A (en) 2018-09-13
JP6866689B2 true JP6866689B2 (en) 2021-04-28

Family

ID=63528094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017037285A Active JP6866689B2 (en) 2017-02-28 2017-02-28 Image forming device

Country Status (1)

Country Link
JP (1) JP6866689B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021015243A (en) * 2019-07-16 2021-02-12 株式会社リコー Image forming apparatus
CN117338461A (en) * 2022-06-27 2024-01-05 东莞市力博得电子科技有限公司 Pressure-sensing real-time visual control method, system, intelligent terminal and storage medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001312159A (en) * 2000-04-28 2001-11-09 Ricoh Co Ltd Intermediate transfer body and image forming device
JP2002031961A (en) * 2000-07-18 2002-01-31 Canon Inc Image forming device
JP2004061941A (en) * 2002-07-30 2004-02-26 Canon Inc Image forming apparatus
JP2005128180A (en) * 2003-10-22 2005-05-19 Canon Inc Image forming apparatus
JP2006267951A (en) * 2005-03-25 2006-10-05 Fuji Xerox Co Ltd Image forming apparatus
JP2011197543A (en) * 2010-03-23 2011-10-06 Konica Minolta Business Technologies Inc Intermediate transfer body and image forming apparatus
JP5675318B2 (en) * 2010-12-16 2015-02-25 キヤノン株式会社 Image forming apparatus

Also Published As

Publication number Publication date
JP2018141920A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
US9195176B2 (en) Image forming apparatus
US7454154B2 (en) Image forming device, charging device and cleaning device
JP5744255B2 (en) Image forming apparatus and image forming method
JP6866689B2 (en) Image forming device
US8121527B2 (en) Image forming apparatus having a neutralizing member of determined resistivity
JP2002341572A (en) Image forming device, image forming method, photoreceptor and its manufacturing method and process cartridge for forming image
JP5630154B2 (en) Image forming apparatus and image forming method
JP6828357B2 (en) Image forming device
EP3267262B1 (en) Transfer belt and image forming device
JP6790859B2 (en) Image forming device
JP6828356B2 (en) Image forming device
JP6834320B2 (en) Transfer belt and image forming device
JP6699405B2 (en) Image forming device
US9989877B2 (en) Transfer belt and image formation apparatus
US9983520B2 (en) Transfer belt and image forming apparatus
JP6862980B2 (en) Image forming device
JP5517390B2 (en) Image forming apparatus and image forming method
JP7114345B2 (en) image forming device
JP2018120143A (en) Image forming apparatus
JP2018005031A (en) Transfer belt and image forming apparatus
JP7043895B2 (en) Image forming device
JP5867017B2 (en) Image forming apparatus
JP6904178B2 (en) Tubular body for infrared light fixing device, infrared light fixing device, and image forming device
JP2005157177A (en) Image forming device
JP2014115566A (en) Image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210322

R150 Certificate of patent or registration of utility model

Ref document number: 6866689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150