JP6865969B2 - Coil structure, 3D magnetic field generator, and directional / position measuring device - Google Patents

Coil structure, 3D magnetic field generator, and directional / position measuring device Download PDF

Info

Publication number
JP6865969B2
JP6865969B2 JP2018239357A JP2018239357A JP6865969B2 JP 6865969 B2 JP6865969 B2 JP 6865969B2 JP 2018239357 A JP2018239357 A JP 2018239357A JP 2018239357 A JP2018239357 A JP 2018239357A JP 6865969 B2 JP6865969 B2 JP 6865969B2
Authority
JP
Japan
Prior art keywords
magnetic field
coil
axis
space
coil structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018239357A
Other languages
Japanese (ja)
Other versions
JP2020102514A (en
Inventor
晋平 本蔵
晋平 本蔵
佑哉 加藤
佑哉 加藤
一彦 野口
一彦 野口
成弘 岩田
成弘 岩田
宏幸 有賀
宏幸 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denshijiki Industry Co Ltd
Original Assignee
Denshijiki Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denshijiki Industry Co Ltd filed Critical Denshijiki Industry Co Ltd
Priority to JP2018239357A priority Critical patent/JP6865969B2/en
Publication of JP2020102514A publication Critical patent/JP2020102514A/en
Application granted granted Critical
Publication of JP6865969B2 publication Critical patent/JP6865969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は、六軸のコイルからなる三次元磁界発生装置に関し、特に、患者を横臥させた状態で収容する空間を設けた三次元磁界発生装置に関する。 The present invention relates to a three-dimensional magnetic field generator composed of a six-axis coil, and more particularly to a three-dimensional magnetic field generator provided with a space for accommodating a patient in a lying state.

近年、医療現場において、内視鏡やカテーテル等の医療用デバイスを患者の生体内に挿入し、患部の映像やデバイスの向き(方位)や位置を確認しながら治療を行うことにより、大がかりな外科手術を回避し、患者の負担を和らげる治療方法が広く採用されている。 In recent years, in medical practice, large-scale surgery has been performed by inserting medical devices such as endoscopes and catheters into the patient's body and performing treatment while checking the image of the affected area and the orientation (orientation) and position of the device. Treatment methods that avoid surgery and ease the burden on the patient are widely adopted.

医療デバイスの先端部には、患部の映像を撮影するカメラとともに、デバイスの方位・位置を測定するためのセンサが搭載されている。センサとしては、磁界センサを好ましく採用できる。医療用デバイスに磁界センサを埋設し、患者の周りに磁界空間を形成し、磁界センサにより磁界を測定することで、デバイスの方位・位置を演算できる。 At the tip of the medical device, a camera that captures an image of the affected area and a sensor for measuring the orientation and position of the device are mounted. As the sensor, a magnetic field sensor can be preferably adopted. By embedding a magnetic field sensor in a medical device, forming a magnetic field space around the patient, and measuring the magnetic field with the magnetic field sensor, the orientation and position of the device can be calculated.

ここで、磁界センサによる測定精度は、磁界センサを高感度化し、測定範囲内での磁界強度の差を大きく設けるほど向上する。しかし、磁界センサを高感度化すると磁界センサは大型化し、測定範囲内の磁界強度の差を大きくするためには磁界発生源を近づけるか発生する磁界を強くする必要がある。磁界発生源を近づけると装置内部の空間が小さくなってしまい、磁界を強くすると電流増による発熱や強い磁界による周囲への影響が問題となる。方位・位置測定装置を実用化する場合には、医療用デバイスに搭載するセンサは小型であるほど望ましいため磁界センサの高感度化は難しく、また、装置内部の空間は患者を内包できる程度に大きく設ける必要がある。 Here, the measurement accuracy by the magnetic field sensor is improved as the sensitivity of the magnetic field sensor is increased and the difference in magnetic field strength within the measurement range is increased. However, when the sensitivity of the magnetic field sensor is increased, the size of the magnetic field sensor becomes large, and in order to increase the difference in magnetic field strength within the measurement range, it is necessary to bring the magnetic field generation source closer or strengthen the generated magnetic field. When the magnetic field source is brought closer, the space inside the device becomes smaller, and when the magnetic field is strengthened, heat generation due to an increase in current and the influence of the strong magnetic field on the surroundings become problems. When putting a directional / position measuring device into practical use, it is desirable that the smaller the sensor mounted on the medical device, the more sensitive the magnetic field sensor is, and the space inside the device is large enough to contain the patient. Need to be provided.

この点、特許文献1では、磁界センサとしてGSRセンサを採用し、所定の三次元磁界発生装置を用いて、三次元一様磁界および三次元傾斜磁界からなる三次元磁界空間を形成することにより、十分な測定精度を保ちつつ、センサを小型化でき、かつ、患者を内包できる磁界空間を形成可能な技術が記載されている。 In this regard, in Patent Document 1, a GSR sensor is adopted as a magnetic field sensor, and a three-dimensional magnetic field space composed of a three-dimensional uniform magnetic field and a three-dimensional gradient magnetic field is formed by using a predetermined three-dimensional magnetic field generator. A technique that can reduce the size of a sensor and form a magnetic field space that can contain a patient while maintaining sufficient measurement accuracy is described.

特許6256962号公報Japanese Patent No. 6256962

ところが、特許文献1の三次元磁界発生装置によれば、図6に示すように、三次元傾斜磁界を生成するコイル対14,15,16のいずれかによってコイル構造体1の表面が塞がれ、患者を測定空間に搬入するための搬入口を確保することができないという問題があった。また、それぞれのコイルが大きく、装置の構造が複雑なため、コイルを頑丈に作って強度を持たせ、定盤の上で組み立てると言う一般的な方法では装置全体の重量が著しく大きくなり、膨大な組み立て作業手順により組み付け精度を維持することも困難となり、装置を組み上げることも困難である。 However, according to the three-dimensional magnetic field generator of Patent Document 1, as shown in FIG. 6, the surface of the coil structure 1 is blocked by any of the coil pairs 14, 15 and 16 that generate the three-dimensional gradient magnetic field. There is a problem that it is not possible to secure a carry-in entrance for bringing the patient into the measurement space. In addition, since each coil is large and the structure of the device is complicated, the weight of the entire device becomes extremely heavy and enormous in the general method of making the coil sturdy to give it strength and assembling it on a surface plate. It is also difficult to maintain the assembly accuracy due to the various assembly work procedures, and it is also difficult to assemble the device.

そこで、本発明の目的は、患者を搬入する搬入口を設け、内部に患者を収容することのできる簡単に組み立て可能なコイル構造体、三次元磁界発生装置、および方位・位置測定装置を提供することにある。 Therefore, an object of the present invention is to provide an easily assembling coil structure, a three-dimensional magnetic field generator, and an orientation / position measuring device, which are provided with a carry-in entrance for carrying a patient and can accommodate the patient inside. There is.

上記課題を解決するために、本発明のコイル構造体は、
(1)互いに直行するxyz軸により規定される三次元空間内に設けられたコイル構造体であって、xyz軸に沿う一様磁界を生成する一様磁界生成コイルと、xyz軸に沿う傾斜磁界を生成する傾斜磁界生成コイルと、x軸と平行に人体を横臥させた状態で搬入可能な空間と、を備え、該空間は、x軸に沿う一様磁界を生成するコイルにより囲まれる領域を貫くように設けられ、傾斜磁界生成コイルは、該空間を介してy軸方向またはz軸方向に相対するように配置されることを特徴とする。
In order to solve the above problems, the coil structure of the present invention is used.
(1) A coil structure provided in a three-dimensional space defined by xyz axes that are orthogonal to each other, a uniform magnetic field generating coil that generates a uniform magnetic field along the xyz axis, and a gradient magnetic field along the xyz axis. A gradient magnetic field generating coil that generates a magnetic field and a space that can be carried in with the human body lying down parallel to the x-axis. The space is a region surrounded by a coil that generates a uniform magnetic field along the x-axis. The gradient magnetic field generating coil is provided so as to penetrate the space, and is characterized in that the coil is arranged so as to face the y-axis direction or the z-axis direction via the space.

(2)一様磁界生成コイルはヘルムホルツコイルから構成され、傾斜磁界生成コイルは位置の計算精度が良好となるよう、発生磁界の直線性に優れる平行4線コイルから構成される。 (2) The uniform magnetic field generation coil is composed of a Helmholtz coil, and the gradient magnetic field generation coil is composed of a parallel 4-wire coil having excellent linearity of the generated magnetic field so that the position calculation accuracy is good.

また、本発明の三次元磁界発生装置は、
(3)上記(1)または(2)に記載のコイル構造体を含み、コイル構造体を支持する支持柱を備えたことを特徴とする。各コイルは必要最小限の強度であり、組み付け時の強度、精度は支持柱によって保証する。
Further, the three-dimensional magnetic field generator of the present invention is
(3) The coil structure according to the above (1) or (2) is included, and a support column for supporting the coil structure is provided. Each coil has the minimum required strength, and the strength and accuracy at the time of assembly are guaranteed by the support columns.

(4)このとき、上記(3)の三次元磁界発生装置は、通電前の状態において、コイル構造体は、外部からの磁界を相殺し、コイル構造体内部の磁界をゼロに維持することが好ましい。 (4) At this time, in the three-dimensional magnetic field generator of (3) above, in the state before energization, the coil structure cancels the magnetic field from the outside and maintains the magnetic field inside the coil structure at zero. preferable.

また、本発明の方位・位置測定装置は、
(5)上記(3)または(4)に記載の三次元磁界発生装置と、一軸以上の磁界センサと、磁界センサの測定情報に基づいて磁界センサの方位および位置を演算する演算装置と、を備えたことを特徴とする。
Further, the directional / position measuring device of the present invention is
(5) The three-dimensional magnetic field generator according to (3) or (4) above, a magnetic field sensor having one or more axes, and an arithmetic unit that calculates the orientation and position of the magnetic field sensor based on the measurement information of the magnetic field sensor. It is characterized by being prepared.

本発明の三次元磁界発生装置によれば、コイル構造体のx軸に沿う一様磁界を生成するコイルにより囲まれる領域に検査対象物を収容する空間を設け、該空間を避けて傾斜磁界を生成するコイル対を配置したため、傾斜磁界用のコイル対がコイル構造体の表面に開口した搬入口から患者を搬入し、コイル構造体内、三次元磁界発生装置および方位・位置測定装置の内部に患者を収容することができるという優れた効果を有する。また、家屋を建設するように支持柱を立ててコイルを床や壁のパネルのように設置することで、それぞれのコイルに強度を持たせる必要がないため、装置全体の重量を小さくし、簡単に組み立てることができる。 According to the three-dimensional magnetic field generator of the present invention, a space for accommodating an inspection object is provided in a region surrounded by a coil that generates a uniform magnetic field along the x-axis of the coil structure, and a gradient magnetic field is avoided by avoiding the space. Since the coil pair to be generated is arranged, the coil pair for the gradient magnetic field carries in the patient from the carry-in inlet opened on the surface of the coil structure, and the patient is inside the coil structure, the three-dimensional magnetic field generator, and the orientation / position measuring device. Has the excellent effect of being able to accommodate. In addition, by installing the coils like floor or wall panels by erecting support columns like building a house, it is not necessary to give strength to each coil, so the weight of the entire device can be reduced and it is easy. Can be assembled.

(a)本発明の一実施形態を示すコイル構造体の斜視図、(b)コイル構造体における検査対象物の収容位置を示す概略図である。(A) is a perspective view of a coil structure showing an embodiment of the present invention, and (b) is a schematic view showing a storage position of an inspection object in the coil structure. コイル構造体の(a)平面図、(b)側面図、(c)正面図である。It is (a) plan view, (b) side view, (c) front view of the coil structure. 図1のコイル構造体を構成する、(a)x軸、(c)y軸、(c)z軸方向に沿う一様磁界をそれぞれ生成するコイル対を示す概略図である。It is a schematic diagram which shows the coil pair which generates the uniform magnetic field along the (a) x-axis, (c) y-axis, and (c) z-axis directions which form the coil structure of FIG. 図1のコイル構造体を構成する、(a)x軸、(c)y軸、(c)z軸方向に沿う傾斜磁界をそれぞれ生成するコイル対を示す概略図である。It is a schematic diagram which shows the coil pair which generates the gradient magnetic field along the (a) x-axis, (c) y-axis, and (c) z-axis directions which form the coil structure of FIG. 方位・位置測定装置の(a)側面図、(b)正面図である。It is (a) side view and (b) front view of the direction / position measuring apparatus. 従来のコイル構造体のうち、平行4線コイル対のみを表示した斜視図である。It is a perspective view which displayed only the parallel 4-wire coil pair among the conventional coil structures.

以下、本発明を具体化した一実施形態を図面に基づいて説明する。図1,2に示すように、コイル構造体1は、互いに直行するxyz軸により規定される三次元空間内に設けられ、x,y,z軸方向に沿う一様磁界をそれぞれ生成するコイル対11,12,13と、x,y,z軸方向に沿う傾斜磁界をそれぞれ生成するコイル対14,15,16を備える。このとき、一様磁界を生成するコイル対11,12,13は、ヘルムホルツコイルであり、傾斜磁界を生成するコイル対14,15,16は平行4線コイルであることが好ましい。 Hereinafter, an embodiment embodying the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, the coil structure 1 is provided in a three-dimensional space defined by xyz axes orthogonal to each other, and a coil pair that generates a uniform magnetic field along the x, y, z axis directions, respectively. It includes 11, 12, and 13 and coil pairs 14, 15, and 16 that generate gradient magnetic fields along the x, y, and z-axis directions, respectively. At this time, it is preferable that the coil pairs 11, 12, and 13 that generate a uniform magnetic field are Helmholtz coils, and the coil pairs 14, 15, and 16 that generate a gradient magnetic field are parallel 4-wire coils.

コイル構造体1は、人体等の検査対象物を横臥させた状態でx軸と平行(矢印の方向)に搬入可能な空間Sを備える。空間Sは、x軸に沿う一様磁界を生成するコイル対11により囲まれる領域A(図3(a)参照)を貫くように形成されており、空間Sを間に挟み込むように、x,y,z軸方向に沿う傾斜磁界をそれぞれ生成するコイル対14,15,16が配置されている。また、コイル対11を取り囲むようにして、y軸に沿う一様磁界を生成するコイル対12と、z軸に沿う一様磁界を生成するコイル対13が配置されている。 The coil structure 1 includes a space S that can be carried in parallel to the x-axis (in the direction of the arrow) with an object to be inspected such as a human body lying down. The space S is formed so as to penetrate a region A (see FIG. 3A) surrounded by a coil pair 11 that generates a uniform magnetic field along the x-axis, and x, so as to sandwich the space S in between. Coil pairs 14, 15 and 16 that generate gradient magnetic fields along the y and z axis directions are arranged. Further, a coil pair 12 that generates a uniform magnetic field along the y-axis and a coil pair 13 that generates a uniform magnetic field along the z-axis are arranged so as to surround the coil pair 11.

図3に、三次元一様磁界を生成するコイル対を一次元毎に分解して示す。コイル対11は、y軸方向に相対して配置される一対のコイル11a,11bから構成され、コイル対12は、x軸方向に相対して配置される一対のコイル12a,12bから構成され、コイル対13は、z軸方向に相対して配置される一対のコイル13a,13bから構成されている。 FIG. 3 shows a pair of coils that generate a three-dimensional uniform magnetic field decomposed for each dimension. The coil pair 11 is composed of a pair of coils 11a and 11b arranged relative to each other in the y-axis direction, and the coil pair 12 is composed of a pair of coils 12a and 12b arranged relative to each other in the x-axis direction. The coil pair 13 is composed of a pair of coils 13a and 13b arranged so as to face each other in the z-axis direction.

図4に、三次元傾斜磁界を生成するコイル対を一次元毎に分解して示す。コイル対14は、z軸方向に空間Sを介して相対して配置される一対のコイル14a,14bから構成され、コイル対15は、z軸方向に空間Sを介して相対して配置される一対のコイル15a,15bから構成され、コイル対16は、y軸方向に空間Sを介して相対して配置される一対のコイル16a,16bから構成されている。 FIG. 4 shows a pair of coils that generate a three-dimensional gradient magnetic field decomposed for each dimension. The coil pair 14 is composed of a pair of coils 14a and 14b arranged relative to each other in the z-axis direction via the space S, and the coil pair 15 is arranged relative to each other through the space S in the z-axis direction. The coil pair 16 is composed of a pair of coils 15a and 15b, and the coil pair 16 is composed of a pair of coils 16a and 16b arranged so as to face each other with respect to the space S in the y-axis direction.

コイル11a,b〜16a,bは、略矩形枠状に形成され、枠体内部には複数本の導線(図示無し)が挿通されている。また、挿通された複数本の導線はコネクタを介して接続され、枠体内部を周回してコイルを形成している。本発明のコイル構造体を製造する際には、一のコイル枠を分割し、分割したコイル枠を他のコイル枠に挿通し、内部の導線をコネクタ部分で再接続することで、所望の構成にコイル構造体を組み立てることが可能である。 The coils 11a, b to 16a, b are formed in a substantially rectangular frame shape, and a plurality of conducting wires (not shown) are inserted inside the frame body. Further, the plurality of inserted conductors are connected via a connector and circulate inside the frame to form a coil. When manufacturing the coil structure of the present invention, one coil frame is divided, the divided coil frame is inserted into another coil frame, and the internal conducting wire is reconnected at the connector portion to obtain a desired configuration. It is possible to assemble a coil structure.

図3,4に、コイル対11〜16を分解した状態を示す。コイル構造体1のサイズは、一辺が0.5m〜3mであり、図3,4中の矢印の向きに電流を流すことにより、コイル対11〜13は一様磁界、コイル対14〜16は傾斜磁界を生成する。このとき、一様磁界は、コイル構造体1の中心部を原点として±2.5cm〜±15cmの範囲に形成される。また、このときの傾斜磁界の傾斜度は、約0.05mG/μm〜1mG/μmである。図3(a)は、x軸方向に沿う一様磁界を生成するコイル対11の正面図と斜視図、図3(b)は、y軸方向に沿う一様磁界を生成するコイル対12の側面図と斜視図、図3(c)は、z軸方向に沿う一様磁界を生成するコイル対13の平面図である。また、図4(a)は、x軸方向に沿う傾斜磁界を生成するコイル対14の平面図と斜視図、図4(b)は、y軸方向に沿う一様磁界を生成するコイル対15の平面図と斜視図、図4(c)は、z軸方向に沿う一様磁界を生成するコイル対16の側面図と斜視図である。 FIGS. 3 and 4 show a state in which the coil pairs 11 to 16 are disassembled. The size of the coil structure 1 is 0.5 m to 3 m on each side, and by passing a current in the direction of the arrow in FIGS. 3 and 4, the coil pairs 11 to 13 have a uniform magnetic field, and the coil pairs 14 to 16 have a uniform magnetic field. Generates a gradient magnetic field. At this time, the uniform magnetic field is formed in the range of ± 2.5 cm to ± 15 cm with the central portion of the coil structure 1 as the origin. The inclination of the gradient magnetic field at this time is about 0.05 mG / μm to 1 mG / μm. FIG. 3A is a front view and a perspective view of the coil pair 11 that generates a uniform magnetic field along the x-axis direction, and FIG. 3B is a perspective view of the coil pair 12 that generates a uniform magnetic field along the y-axis direction. A side view and a perspective view, FIG. 3C is a plan view of a coil pair 13 that generates a uniform magnetic field along the z-axis direction. Further, FIG. 4A is a plan view and a perspective view of a coil pair 14 that generates a gradient magnetic field along the x-axis direction, and FIG. 4B is a coil pair 15 that generates a uniform magnetic field along the y-axis direction. 4 (c) is a side view and a perspective view of a coil pair 16 that generates a uniform magnetic field along the z-axis direction.

続いて、上述のコイル構造体1を含んで構成した三次元磁界発生装置2および方位・位置測定装置3について説明する。図5に示すように、本発明の三次元磁界発生装置2は、コイル構造体1と、コイル構造体1を支持する支持柱21から構成されている。また、方位・位置測定装置3は、三次元磁界発生装置2と、カテーテル等の医療デバイス33に搭載される磁界センサ31と、磁界センサ31の三次元空間内における方位・位置を演算する演算装置32から構成されている。 Subsequently, the three-dimensional magnetic field generator 2 and the azimuth / position measuring device 3 configured to include the coil structure 1 described above will be described. As shown in FIG. 5, the three-dimensional magnetic field generator 2 of the present invention is composed of a coil structure 1 and a support column 21 that supports the coil structure 1. The orientation / position measuring device 3 is a three-dimensional magnetic field generator 2, a magnetic field sensor 31 mounted on a medical device 33 such as a catheter, and a calculation device that calculates the orientation / position of the magnetic field sensor 31 in the three-dimensional space. It is composed of 32.

磁界センサ31は、医療デバイス33とともに人体Pの内部を移動し、磁界分布強度を測定する。また、磁界センサ31は、測定した磁界分布強度をデジタル変換して磁界分布強度データを生成し、外部の演算装置32に転送する。磁界分布強度データを受信した演算装置32では、所定の演算を実施し、磁界センサ31の三次元空間内における方位・位置を演算する。なお、磁界センサ31としては、一軸の磁界センサであるGSRセンサを好ましく採用できる。GSRセンサは、三次元空間内における磁界分布強度を1mG以下の分解能で測定可能な高精度の磁界センサである。 The magnetic field sensor 31 moves inside the human body P together with the medical device 33 and measures the magnetic field distribution intensity. Further, the magnetic field sensor 31 digitally converts the measured magnetic field distribution intensity to generate magnetic field distribution intensity data, and transfers the measured magnetic field distribution intensity data to the external arithmetic unit 32. The arithmetic unit 32 that has received the magnetic field distribution intensity data performs a predetermined calculation to calculate the orientation and position of the magnetic field sensor 31 in the three-dimensional space. As the magnetic field sensor 31, a GSR sensor, which is a uniaxial magnetic field sensor, can be preferably adopted. The GSR sensor is a high-precision magnetic field sensor capable of measuring the magnetic field distribution intensity in a three-dimensional space with a resolution of 1 mG or less.

このとき、三次元磁界発生装置2は、通電開始前には外部からの磁界を相殺し、コイル構造体内部の磁界をゼロに維持するように構成されている。地磁気、鉄製の機械装置、鉄筋の建物などから生ずる外部磁界をゼロに維持することにより、xyz座標系におけるGSRセンサが測定した方向ベクトルの座標位置を精度よく測定することができる。 At this time, the three-dimensional magnetic field generator 2 is configured to cancel the magnetic field from the outside and maintain the magnetic field inside the coil structure at zero before the start of energization. By keeping the external magnetic field generated from geomagnetism, iron machinery, reinforced buildings, etc. at zero, the coordinate position of the direction vector measured by the GSR sensor in the xyz coordinate system can be measured accurately.

支持柱21は、コイル対11〜16に沿うように設けられてコイル構造体1を支持している。コイル構造体1の構造は複雑であるため、コイル対11〜16自体を補強すると、コイル対11〜16の重量が上がり、組み立て作業が困難になる。支持柱21をもちいることにより、コイル対11〜16自体を補強することなく、コイル対11〜16を所望の配置に支持することができる。 The support column 21 is provided along the coil pairs 11 to 16 to support the coil structure 1. Since the structure of the coil structure 1 is complicated, if the coil pairs 11 to 16 themselves are reinforced, the weight of the coil pairs 11 to 16 increases, which makes the assembly work difficult. By using the support column 21, the coil pairs 11 to 16 can be supported in a desired arrangement without reinforcing the coil pairs 11 to 16 themselves.

以上のように構成されたコイル構造体1、三次元磁界発生装置2、および、方位・位置測定装置3によれば、コイル構造体1を構成する全てのコイル対11〜16は、空間Sに侵入しないため、人体等の検査対象物を横たえた状態でコイル構造体1の内部に向けてx軸と平行に搬入することで、各種の測定や試験を実施することが可能である。また、支持柱21を用いてコイル構造体1を支持することとしたため、各コイル対11〜16の重量を抑制でき、運搬や組み立て作業を省力化できる。 According to the coil structure 1, the three-dimensional magnetic field generator 2, and the orientation / position measuring device 3 configured as described above, all the coil pairs 11 to 16 constituting the coil structure 1 are in the space S. Since it does not invade, it is possible to carry out various measurements and tests by carrying an inspection object such as a human body lying down toward the inside of the coil structure 1 in parallel with the x-axis. Further, since the coil structure 1 is supported by using the support columns 21, the weight of each coil pair 11 to 16 can be suppressed, and the transportation and assembly work can be saved.

その他、本発明は、上記実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲で、各部の構成を任意に変更して実施することも可能である。例えば、x,y軸に沿う一様磁界/傾斜磁界を生成するコイルを各々y,x軸に沿う一様磁界/傾斜磁界を生成するコイルとして用いることも可能である。 In addition, the present invention is not limited to the above-described embodiment, and the configuration of each part can be arbitrarily changed and implemented without departing from the spirit of the invention. For example, a coil that generates a uniform magnetic field / gradient magnetic field along the x and y axes can be used as a coil that generates a uniform magnetic field / gradient magnetic field along the y and x axes, respectively.

1 コイル構造体
2 三次元磁界発生装置
3 方位・位置測定装置
11 x軸に沿う一様磁界を生成するコイル対
12 y軸に沿う一様磁界を生成するコイル対
13 z軸に沿う一様磁界を生成するコイル対
14 x軸に沿う傾斜磁界を生成するコイル対
15 y軸に沿う傾斜磁界を生成するコイル対
16 z軸に沿う傾斜磁界を生成するコイル対
17 空間
21 支持柱
31 磁界センサ
32 演算装置
33 医療デバイス
S 空間
P 人体
1 Coil structure 2 Three-dimensional magnetic field generator 3 Direction / position measuring device 11 Coil pair that generates a uniform magnetic field along the x-axis 12 Coil pair that generates a uniform magnetic field along the y-axis 13 Uniform magnetic field along the z-axis Coil pair 14 Generates a gradient magnetic field along the x-axis Coil pair 15 Generates a gradient magnetic field along the y-axis Coil pair 16 Generates a gradient magnetic field along the z-axis Coil pair 17 Space 21 Support column 31 Magnetic field sensor 32 Computing device 33 Medical device S Space P Human body

Claims (5)

互いに直行するxyz軸により規定される三次元空間内に設けられたコイル構造体であって、
xyz軸に沿う一様磁界を各々生成する一様磁界生成コイルと、xyz軸に沿う傾斜磁界を各々生成する傾斜磁界生成コイルと、x軸と平行に人体を横臥させた状態で搬入可能な空間と、を備え、
前記空間は、x軸に沿う一様磁界を生成する一様磁界生成コイルにより囲まれる領域を貫くように設けられ、
前記x軸に沿う傾斜磁界を生成する傾斜磁界生成コイルは、前記空間を介してz軸方向に相対するように配置され、
前記y軸に沿う傾斜磁界を生成する傾斜磁界生成コイルは、前記空間を介してz軸方向に相対するように配置され、
前記z軸に沿う傾斜磁界を生成する傾斜磁界生成コイルは、前記空間を介してy軸方向に相対するように配置されたことを特徴とするコイル構造体。
A coil structure provided in a three-dimensional space defined by xyz axes that are orthogonal to each other.
a uniform magnetic field generating coil for generating each a uniform magnetic field along the xyz axes, the gradient magnetic field generating coil for generating respective magnetic gradient fields along the xyz axes space available carried while being recumbent human body parallel to the x-axis And with
The space is provided so as to penetrate a region surrounded by a uniform magnetic field generation coil that generates a uniform magnetic field along the x-axis.
The gradient magnetic field generation coil that generates the gradient magnetic field along the x-axis is arranged so as to face the z-axis direction via the space.
The gradient magnetic field generation coil that generates the gradient magnetic field along the y-axis is arranged so as to face the z-axis direction via the space.
A coil structure characterized in that the gradient magnetic field generation coil for generating a gradient magnetic field along the z-axis is arranged so as to face each other in the y-axis direction via the space.
前記一様磁界生成コイルはヘルムホルツコイルから構成され、前記傾斜磁界生成コイルは平行4線コイルから構成される請求項1に記載のコイル構造体。 The coil structure according to claim 1, wherein the uniform magnetic field generating coil is composed of a Helmholtz coil, and the gradient magnetic field generating coil is composed of a parallel 4-wire coil. 請求項1または2に記載のコイル構造体を含み、
前記コイル構造体を支持する支持柱を備えたことを特徴とする三次元磁界発生装置。
The coil structure according to claim 1 or 2 is included.
A three-dimensional magnetic field generator comprising a support column for supporting the coil structure.
通電前の状態において、前記コイル構造体は、外部からの磁界を相殺し、コイル構造体内部の磁界をゼロに維持する請求項3に記載の三次元磁界発生装置。 The three-dimensional magnetic field generator according to claim 3, wherein the coil structure cancels the magnetic field from the outside and maintains the magnetic field inside the coil structure at zero in the state before energization. 請求項3または4に記載の三次元磁界発生装置と、前記三次元空間に配置された磁界センサと、前記磁界センサの測定情報に基づいて磁界センサの方位および位置を演算する演算装置と、を備えたことを特徴とする方位・位置測定装置。 The three-dimensional magnetic field generator according to claim 3 or 4, the magnetic field sensor arranged in the three-dimensional space, and a calculation device that calculates the orientation and position of the magnetic field sensor based on the measurement information of the magnetic field sensor. An orientation / position measuring device characterized by being equipped.
JP2018239357A 2018-12-21 2018-12-21 Coil structure, 3D magnetic field generator, and directional / position measuring device Active JP6865969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018239357A JP6865969B2 (en) 2018-12-21 2018-12-21 Coil structure, 3D magnetic field generator, and directional / position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018239357A JP6865969B2 (en) 2018-12-21 2018-12-21 Coil structure, 3D magnetic field generator, and directional / position measuring device

Publications (2)

Publication Number Publication Date
JP2020102514A JP2020102514A (en) 2020-07-02
JP6865969B2 true JP6865969B2 (en) 2021-04-28

Family

ID=71139895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018239357A Active JP6865969B2 (en) 2018-12-21 2018-12-21 Coil structure, 3D magnetic field generator, and directional / position measuring device

Country Status (1)

Country Link
JP (1) JP6865969B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005027761A (en) * 2003-07-09 2005-02-03 Ge Medical Systems Global Technology Co Llc Magnetic state maintaining device, magnet system and magnetic resonance imaging device
JP2006186139A (en) * 2004-12-28 2006-07-13 Tamakawa Co Ltd Magnetic-field generator
JP5032247B2 (en) * 2007-09-03 2012-09-26 株式会社東芝 Magnetic fine particle imaging apparatus and coil arrangement method
JP6256962B1 (en) * 2017-06-21 2018-01-10 朝日インテック株式会社 Magnetic orientation / position measuring device

Also Published As

Publication number Publication date
JP2020102514A (en) 2020-07-02

Similar Documents

Publication Publication Date Title
US8232798B2 (en) Magnetic tracking system for an imaging system
JP6256962B1 (en) Magnetic orientation / position measuring device
CN104665833B (en) Compensate the magnetic disturbance produced by fluoroscope
US20050093544A1 (en) System for contactless moving or holding magnetic body in working space using magnet coil
US8818486B2 (en) Position and orientation algorithm for a single axis sensor
JPH03267054A (en) Stationary lobotomy aid
AU2014277683B2 (en) Adaptive fluoroscope location for the application of field compensation
JP2019080934A (en) Position tracking system
JP2020195159A (en) Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
JP6865969B2 (en) Coil structure, 3D magnetic field generator, and directional / position measuring device
JP4110108B2 (en) Biomagnetic field measurement device, horizontal position setting method for biomagnetic field measurement
Wu et al. Voice coil navigation sensor for flexible silicone intubation
Lin et al. Mathematical models of 3D magnetic field and 3D positioning system by magnetic field
JP2020503082A (en) System and method for determining the position and / or orientation of an electromagnetic sensor based on a map
US11944388B2 (en) Systems and methods for magnetic interference correction
JPWO2018061423A1 (en) Surgical site monitoring system and surgical site monitoring method
JP2023506865A (en) Sparse calibration of magnetic fields produced by coils in metal-enriched environments
Lin et al. Analytical and Experimental Investigation of Electromagnetic Tracking System for Location and Orientation Estimation
WO2023079081A1 (en) Improvements in and relating to magnetic field nulling
JP2010162210A (en) Magnetic field measurement device
JP2015119772A (en) Shape detection system
CN109730770A (en) Method, magnetic field receiving unit, electromagnetic tracking system and the purposes for reducing magnetic field receiving unit volume, measuring rate of change of magnetic
WO2016088661A1 (en) Position estimation method, position estimation system, and magnetic field generation device
JP2009000409A (en) Magnetic resonance therapy device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210331

R150 Certificate of patent or registration of utility model

Ref document number: 6865969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250