JP6864553B2 - Biocompatibility evaluation method for hollow fibers - Google Patents

Biocompatibility evaluation method for hollow fibers Download PDF

Info

Publication number
JP6864553B2
JP6864553B2 JP2017098012A JP2017098012A JP6864553B2 JP 6864553 B2 JP6864553 B2 JP 6864553B2 JP 2017098012 A JP2017098012 A JP 2017098012A JP 2017098012 A JP2017098012 A JP 2017098012A JP 6864553 B2 JP6864553 B2 JP 6864553B2
Authority
JP
Japan
Prior art keywords
blood
hollow fiber
biocompatibility
hollow
dialyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017098012A
Other languages
Japanese (ja)
Other versions
JP2018017720A (en
Inventor
畑中 美博
美博 畑中
覚 井上
覚 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Medical Co Ltd filed Critical Asahi Kasei Medical Co Ltd
Publication of JP2018017720A publication Critical patent/JP2018017720A/en
Application granted granted Critical
Publication of JP6864553B2 publication Critical patent/JP6864553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、血液透析器や血漿分離器などの血液中の特定の物質を分離するための中空糸デバイス等に好適に用いられる中空糸の内表面の生体(血液)適合性の評価方法に関する。 The present invention relates to a method for evaluating biocompatibility of the inner surface of a hollow fiber, which is suitably used for a hollow fiber device for separating a specific substance in blood such as a hemodialyzer or a plasma separator.

近年、血液接触を伴う医療器具、特に体外循環型医療器具の進歩はめざましく、体外循環施行中に血液凝固などを起こして、体外循環が続行できなくなるなどのトラブルは少なくなった。血液透析に代表される体外循環治療時の主なトラブルは、異物である材料表面と血液が接触することにより、生体反応が惹起されることに始まる。主な臨床症状としては血液凝固、アナフィラキシーショック、白血球の一過性減少(ロイコペニア)、発熱、血圧の低下または上昇など多岐にわたる。これら急性の臨床症状を伴う体外循環時の問題発生のメカニズムは古くから研究されており、材料表面と血液が接触することによって、血小板が活性化されることや、セルロースなどの水酸基を多く持つ表面との接触による血液中の補体成分の活性化、陰性荷電表面と血液の接触によるブラジキニンの産生、透析液から血液側にエンドトキシンが逆流入することなどが原因と考えられている。
従来の医療機器はこれらのメカニズムを考慮し、材料の生体適合性または血液適合性を良くすることによって問題を改善してきた。
In recent years, medical devices with blood contact, especially extracorporeal circulation type medical devices, have made remarkable progress, and troubles such as blood coagulation during extracorporeal circulation and the inability to continue extracorporeal circulation have decreased. The main trouble during extracorporeal circulatory treatment represented by hemodialysis begins with the induction of a biological reaction by the contact of blood with the surface of a foreign material. The main clinical symptoms range from blood coagulation, anaphylactic shock, transient decrease in white blood cells (leucopenia), fever, and decrease or increase in blood pressure. The mechanism of problem occurrence during extracorporeal circulation accompanied by these acute clinical symptoms has been studied for a long time, and platelets are activated by contact between the material surface and blood, and a surface having many hydroxyl groups such as cellulose is used. It is thought that the cause is activation of complement components in blood by contact with blood, production of brazikinin by contact between negatively charged surface and blood, and regurgitation of endotoxin from dialysate to blood side.
Traditional medical devices have taken these mechanisms into account and have improved the problem by improving the biocompatibility or blood compatibility of the material.

より正確な材料の生体適合性や血液適合性を評価するためには、実際の透析中の患者様より採血して評価する必要があるが、そのためには、開発品の安全性や性能を満足してからでないと評価が出来ない。そこで、生体外で可能な限り臨床条件に近づけるため、中空糸型モジュールと血液を循環させるための回路をつないで血液をポンプなどで流しまたは循環させて、中空糸型モジュールに血液を通液させて、評価を行うことが一般に行われている。(例えば、特許文献1を参照)。
しかしながら、その場合、モジュールに接続している回路部分を満たすために血液量が余分に必要であったり、ポンプによる機械的な刺激によって血液が活性化されたり、又、回路とモジュールとの接続の段差があると血液のよどみができ、血液が凝固してしまう等の評価結果が評価対象である中空糸内表面とは関係のない要素の影響を受けるという欠点があった。
In order to evaluate the biocompatibility and blood compatibility of more accurate materials, it is necessary to collect blood from actual dialysis patients and evaluate it, but for that purpose, the safety and performance of the developed product are satisfied. Evaluation cannot be done until after that. Therefore, in order to bring the clinical conditions as close as possible to the clinical conditions in vitro, the hollow fiber type module is connected to a circuit for circulating blood, and blood is flowed or circulated by a pump or the like, and the blood is passed through the hollow fiber type module. It is common practice to make an evaluation. (See, for example, Patent Document 1).
However, in that case, extra blood volume is required to fill the circuit part connected to the module, blood is activated by mechanical stimulation by the pump, and the connection between the circuit and the module. If there is a step, blood stagnate, and the evaluation result such as blood coagulation is affected by factors unrelated to the inner surface of the hollow fiber to be evaluated.

よどみによる血液凝固の問題をなくすための方法が、特許文献2に開示されている。しかしながら、回路とポンプを設けたin vitroの血液を用いた評価方法では、現実的には、どうしても、ポンプによる刺激や回路との接触による刺激によって血液が活性化されてしまうために、モジュール内の中空糸内表面のみの生体適合性を精度よく評価することができないという問題点があった。 Patent Document 2 discloses a method for eliminating the problem of blood coagulation due to stagnation. However, in the evaluation method using in vitro blood provided with a circuit and a pump, in reality, the blood is activated by the stimulation by the pump or the stimulation by the contact with the circuit, so that the blood is activated in the module. There is a problem that the biocompatibility of only the inner surface of the hollow fiber cannot be evaluated accurately.

一方、特許文献3には、中空糸の内表面のみの生体適合性を評価する方法が開示されている。その具体的な方法としては、中空糸内表面の血液適合性を評価する目的で、0.1mm厚のポリエチレンテレフタレートフィルムに両面接着テープを貼り、その上に中空糸膜5本を長さ方向をそろえ貼り付ける。この中空糸膜の直径の約半分の厚みの隙間ゲージを中空糸膜の両側に置き、ミクロトーム用の刃を用いて2枚にそぐように切り、中空糸膜の内表面を露出させる。このフィルムを直径2cmの円形に打ち抜いて試料サンプルとして、18mmφのポリスチレンチューブの底に試料サンプルを貼り付け、内側に血液を保持できるように加工する。そのサンプルが入ったチューブ内にヘパリン濃度が50U/mlになるように調整したヒト血液を1ml入れて、37℃60min振盪速度120回/minで浸漬する、という方法が開示されている。
しかしながら、この方法では、中空糸膜を長さ方向に揃えてフィルムに貼り付け、そのうえで、中空糸の直径のおよそ半分をそぐように切るなど操作上、極めて煩雑であり、又、中空糸の内表面以外のチューブにも血液が接触したり、空気との接触が起こるなどして、正確に中空糸内表面の生体適合性を評価できないという欠点は残されたままであった。
On the other hand, Patent Document 3 discloses a method for evaluating the biocompatibility of only the inner surface of the hollow fiber. As a specific method, for the purpose of evaluating the blood compatibility of the inner surface of the hollow fiber, a double-sided adhesive tape is attached to a polyethylene terephthalate film having a thickness of 0.1 mm, and five hollow fiber membranes are formed on the hollow fiber membrane in the length direction. Align and paste. Feeler gauges with a thickness of about half the diameter of the hollow fiber membrane are placed on both sides of the hollow fiber membrane and cut into two pieces using a microtome blade to expose the inner surface of the hollow fiber membrane. This film is punched into a circle with a diameter of 2 cm, and a sample sample is attached to the bottom of an 18 mmφ polystyrene tube as a sample sample, and processed so that blood can be held inside. A method is disclosed in which 1 ml of human blood adjusted to have a heparin concentration of 50 U / ml is placed in a tube containing the sample and immersed at 37 ° C. for 60 min at a shaking rate of 120 times / min.
However, in this method, the hollow fiber membranes are aligned in the length direction and attached to the film, and then the hollow fiber membrane is cut so as to cut off about half of the diameter of the hollow fiber. The drawback of not being able to accurately evaluate the biocompatibility of the inner surface of the hollow fiber remains, such as blood contact with tubes other than the surface and contact with air.

そこで、評価のために必要な血液量を少なくすると共に、中空糸材料の内表面そのものの生体適合性や血液適合性を正確にかつ簡便に評価できる方法の開発が望まれていた。 Therefore, it has been desired to develop a method capable of accurately and easily evaluating the biocompatibility and blood compatibility of the inner surface itself of the hollow fiber material while reducing the blood volume required for the evaluation.

特開2006−305333号公報Japanese Unexamined Patent Publication No. 2006-30533 特開2010−82068号公報Japanese Unexamined Patent Publication No. 2010-82068 特開2005−69966号公報Japanese Unexamined Patent Publication No. 2005-69966

本発明は、少量の血液で、血液に機械的な刺激を与えることなく、簡易な手法で、より正確に中空糸デバイスの生体適合性を評価できる方法を提供することを課題とする。 An object of the present invention is to provide a method capable of more accurately evaluating the biocompatibility of a hollow fiber device with a small amount of blood without giving mechanical stimulation to the blood by a simple method.

本発明者らは、前記課題を解決するために鋭意研究を行い、中空糸内部に血液を導入し、そのまま、中空糸を回転させるだけで、血液ポンプや血液回路を使用せずとも中空糸内部で血液の流れが十分に生じ、中空糸内表面と血液との相互作用を実際に血液透析等において使用されているのと同程度にまで高めることができることを見出した。
そして、このような知見に基づき、内部に血液を導入後回転撹拌させた中空糸の内部から導出した血液及び/又は中空糸内表面に付着した血液を評価すれば、簡便かつ正確に中空糸の生体適合性を評価できることに想到し、本発明を完成するに至った。
The present inventors conducted diligent research to solve the above problems, introduced blood into the hollow fiber, and simply rotated the hollow fiber as it was, without using a blood pump or a blood circuit, and inside the hollow fiber. It was found that the blood flow is sufficiently generated in the above, and the interaction between the inner surface of the hollow fiber and the blood can be enhanced to the same extent as that actually used in hemodialysis or the like.
Then, based on such findings, if the blood derived from the inside of the hollow fiber and / or the blood adhering to the inner surface of the hollow fiber, which is rotated and stirred after introducing the blood into the inside, is evaluated, the hollow fiber can be easily and accurately obtained. The idea of being able to evaluate biocompatibility led to the completion of the present invention.

すなわち、本発明は、以下に示すとおりである。
[1]血液を中空糸内部に導入する工程、前記中空糸を回転させる工程、及び、中空糸内部から導出した血液及び/又は中空糸内表面に付着した血液について、その特性及び/又は成分の濃度を測定する工程を、この順に含む、中空糸の生体適合性評価方法。
[2]前記回転工程において、前記中空糸を中空糸デバイス内に収容した状態で回転させる、[1]に記載の中空糸の生体適合性評価方法。
[3]前記回転をローテーターを用いて行う、[1]または[2]に記載の中空糸の生体適合性評価方法。
[4]前記成分が、赤血球、血小板、白血球、血漿タンパク、白血球由来の産生物、血小板由来の産生物、血液凝固因子、血液凝固因子活性化物質、血液線溶系活性化物質、及び、補体活性化物質からなる群から選ばれる少なくとも一つである、[1]〜[3]のいずれかに記載の中空糸の生体適合性評価方法。
[5]前記成分がサイトカイン又はケモカインである、[4]に記載の方法。
That is, the present invention is as shown below.
[1] The characteristics and / or components of the step of introducing blood into the hollow fiber, the step of rotating the hollow fiber, and the blood derived from the inside of the hollow fiber and / or the blood adhering to the inner surface of the hollow fiber. A method for evaluating the biocompatibility of hollow fibers, which comprises the steps of measuring the concentration in this order.
[2] The method for evaluating biocompatibility of a hollow fiber according to [1], wherein in the rotation step, the hollow fiber is rotated while being housed in the hollow fiber device.
[3] The method for evaluating the biocompatibility of a hollow fiber according to [1] or [2], wherein the rotation is performed using a rotator.
[4] The components are erythrocytes, platelets, leukocytes, plasma proteins, leukocyte-derived products, platelet-derived products, blood coagulation factors, blood coagulation factor activators, blood fibrinolytic activators, and complements. The method for evaluating biocompatibility of hollow filaments according to any one of [1] to [3], which is at least one selected from the group consisting of activating substances.
[5] The method according to [4], wherein the component is a cytokine or chemokine.

本発明の中空糸の生体適合性評価方法によれば、血液ポンプや血液回路を使用しないので評価に要する血液量を低減でき、簡易な手法で正確に中空糸の生体適合性を評価することができる。 According to the method for evaluating the biocompatibility of hollow yarns of the present invention, since a blood pump or blood circuit is not used, the amount of blood required for evaluation can be reduced, and the biocompatibility of hollow yarns can be accurately evaluated by a simple method. it can.

ローテーターに比較的大きな中空糸デバイスをセットした状態を示す概略図である。It is the schematic which shows the state which set the relatively large hollow fiber device in the rotator. ローテーターに比較的小さな中空糸デバイスをセットした状態を示す概略図である。It is the schematic which shows the state which set the relatively small hollow fiber device in the rotator.

以下、本発明を実施するための形態(以下、「本実施形態」という。)についてさらに詳細に説明する。詳細に本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, a mode for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in more detail. In detail, the present invention is not limited to this, and various modifications can be made without departing from the gist thereof.

本実施形態において、生体適合性評価の対象となる中空糸は、中空糸デバイス等に収容されて、血液中の特定の物質を分離するために使用できる。
ここで、中空糸デバイスとは、流体から特定の物質を分離するための部品として中空糸を用いるデバイスであり、通常、流体入口と流体出口とを有する可撓性あるいは剛性の容器と、該容器内に収容された中空糸束とから構成される。
中空糸デバイスとしては、例えば、血液透析器、血液濾過器、血液透析濾過器、血漿分離器、血漿成分濾過器などが挙げられ、これらは、特に血液浄化療法で用いられ、主に人工透析(濾過)療法やアフェレシス療法分野において広く用いられる。
In the present embodiment, the hollow fiber to be evaluated for biocompatibility can be housed in a hollow fiber device or the like and used to separate a specific substance in blood.
Here, the hollow fiber device is a device that uses a hollow fiber as a component for separating a specific substance from a fluid, and is usually a flexible or rigid container having a fluid inlet and a fluid outlet, and the container. It is composed of a hollow fiber bundle housed inside.
Examples of the hollow thread device include a hemodialysis device, a blood filter, a hemodiadiafiltration device, a plasma separator, a plasma component filter, and the like, which are used especially in blood purification therapy and are mainly used for artificial dialysis (artificial dialysis). Widely used in the fields of (filtration) therapy and aferesis therapy.

本実施形態において、中空糸とは、内部にその長手方向に平行な中空部を有する糸状体であって、壁面に複数の細孔を有するものをいう。一般に、中空糸はその壁面に多数の細孔を有しており、その粒径に応じて、中空糸内外での各種物質の交換が可能である。
中空糸の素材には、特に限定はなく、例えば、ポリスルホン、ポリスルホンとポリビニルピロリドンとからなる共重合体等のポリスルホン系ポリマー、ビタミンE固定化ポリスルホン、エチレンビニルアルコール、ポリアクリルニトリル、ポリエチレン、再生セルロース、セルロースジアセテート、セルローストリアセテート、ポリエーテルスルホン、ポリメチルメタクリレート等が挙げられる。
In the present embodiment, the hollow fiber is a filamentous body having a hollow portion parallel to the longitudinal direction thereof inside and having a plurality of pores on the wall surface. Generally, the hollow fiber has a large number of pores on its wall surface, and various substances can be exchanged inside and outside the hollow fiber according to the particle size.
The material of the hollow yarn is not particularly limited, and is, for example, polysulfone, a polysulfone polymer such as a copolymer composed of polysulfone and polyvinylpyrrolidone, vitamin E-immobilized polysulfone, ethylene vinyl alcohol, polyacrylic nitrile, polyethylene, regenerated cellulose. , Cellulose diacetate, cellulose triacetate, polyethersulfone, polymethylmethacrylate and the like.

評価の際に使用する中空糸の長さに特段の制限はないが、通常長さ1〜100cm、より好ましくは、5cmから50cmの範囲のものが良く用いられる。中空糸の膜の厚さに限定はなく、一般的には、5μm〜100μm、より好ましくは、10μm〜50μmがより好適に使用される。中空糸の内径にも限定はないが、中空糸内部に血液を流すこと、及び物質交換効率の観点から、100〜300μmが好ましい。 The length of the hollow fiber used in the evaluation is not particularly limited, but a hollow fiber having a length usually in the range of 1 to 100 cm, more preferably 5 cm to 50 cm is often used. The thickness of the hollow fiber membrane is not limited, and generally, 5 μm to 100 μm, more preferably 10 μm to 50 μm is more preferably used. The inner diameter of the hollow fiber is not limited, but 100 to 300 μm is preferable from the viewpoint of allowing blood to flow inside the hollow fiber and the efficiency of substance exchange.

本実施形態において、血液とは、血液成分を含んだ溶液、若しくは、血液系細胞由来の継代可能な培養細胞を含んだ溶液の事を言う。なお、血液成分とは、赤血球、血小板、白血球、血漿タンパク、白血球由来の産生物、血小板由来の産生物、血液凝固因子、血液凝固因子活性化物質、血液線溶系活性化物質、及び、補体活性化物質等のことを言う。
本実施形態においては、血液として、上記のいずれを用いることもできるが、血球測定がコールターカウンター等によって計測可能でかつ操作が簡便であることを考慮すると、特に、比較的多量の白血球、血小板を含有する溶液である全血や培養細胞を含んだ溶液が好適に用いられる。
In the present embodiment, the blood refers to a solution containing a blood component or a solution containing subcultured cells derived from blood line cells. The blood components include red blood cells, platelets, leukocytes, plasma proteins, leukocyte-derived products, platelet-derived products, blood coagulation factors, blood coagulation factor activators, blood fibrinolytic activators, and complements. It refers to an activating substance, etc.
In the present embodiment, any of the above can be used as the blood, but considering that the blood cell measurement can be measured by a Coulter counter or the like and the operation is simple, a relatively large amount of white blood cells and platelets are particularly used. A solution containing whole blood or cultured cells, which is a contained solution, is preferably used.

血液の由来としては、動物の血液であれば特に制限はなく、例えば、ヒト、ウシ、ブタ、ラット、マウス、ウサギ、ヤギ、ヒツジ、サルなどの血液を用いることができる。とりわけ、中空糸デバイスはヒトでの使用が意図されている場合が多く、ヒトの血液が好適に用いられる。
又、血液系細胞由来の培養細胞については、細胞の種類に特に制限はないが、例えば、ヒト単球系細胞株であるTHP−1細胞やマウスのマクロファージ由来の細胞株であるRAW264.7細胞株などを用いることができる。
The origin of the blood is not particularly limited as long as it is animal blood, and for example, blood from humans, cows, pigs, rats, mice, rabbits, goats, sheep, monkeys and the like can be used. In particular, hollow fiber devices are often intended for use in humans, and human blood is preferably used.
Regarding cultured cells derived from blood line cells, the type of cells is not particularly limited. For example, THP-1 cells, which are human monocytic cell lines, and RAW264.7 cells, which are cell lines derived from mouse macrophages. Stocks and the like can be used.

本実施形態において、中空糸の生体適合性評価とは、中空糸内表面と接触した後の血液、又は、中空糸内表面に付着した血液の、接触(付着)前からの変化(具体的には、各種成分の量や質の変化等)を定量的又は定性的に評価することをいう。 In the present embodiment, the biocompatibility evaluation of the hollow fiber means a change (specifically) of blood after contact with the inner surface of the hollow fiber or blood adhering to the inner surface of the hollow fiber from before contact (adhesion). Means to quantitatively or qualitatively evaluate (changes in quantity and quality of various components, etc.).

具体的には、例えば、中空糸内表面と接触させた後の血液の成分の量的な変化としては、血小板や白血球などの血液細胞;C3a、C5a、SC5b−9などのような補体の活性化に伴って増加する補体活性化成分;血液凝固系や血液線溶系の活性化に伴って増加するTATやPIC;血小板の活性化に伴って産生される、β−TGやPF−4;白血球系の細胞の活性化に伴って産生される顆粒球エラスターゼやミエロペルオキシダーゼ、IL−1、TNF−α、IL−6などのサイトカインやMIP−1、MCP−1、RANTESなどのケモカイン等の量(濃度)の変化が挙げられる。さらに、近年では、血液の抗酸化能の指標となるPAO(Potential Anti Oxidant)やBAP(Biological Anti−oxidant Potential)、脂質過酸化分解生成物の一つであるMDA(Malondialdehyde)、スーパーオキサイドアニオンを分解する酵素であるSOD(Super Oxide Dismutase)、酸化ストレス度のマーカーであるヒドロペルオキシドの量(濃度の変化)も、代表的な生体適合性を評価する測定項目として挙げられる。 Specifically, for example, as a quantitative change in the components of blood after contact with the inner surface of the hollow thread, blood cells such as platelets and white blood cells; complements such as C3a, C5a, SC5b-9 and the like Complement activating components that increase with activation; TAT and PIC that increase with activation of blood coagulation system and blood fibrinolytic system; β-TG and PF-4 produced with activation of platelets ; Cytokines such as granulocyte elastase, myeloperoxidase, IL-1, TNF-α, IL-6 produced by activation of leukocyte cells, and chemokines such as MIP-1, MCP-1, RANTES, etc. Changes in quantity (concentration) can be mentioned. Furthermore, in recent years, PAO (Potential Anti Oxidant) and BAP (Biological Anti-oxidant Potential), which are indicators of blood antioxidant capacity, MDA (Malondiardide), which is one of the lipid peroxidation products, and superoxide anion have been introduced. SOD (Superoxide Dismutase), which is an enzyme that decomposes, and the amount (change in concentration) of hydroperoxide, which is a marker of the degree of oxidative stress, are also listed as typical measurement items for evaluating biocompatibility.

又、中空糸内表面と接触させた後の血液の成分の質的な変化としては、白血球系の細胞である顆粒球細胞の表面マーカーであるインテグリンCD11b/CD18(Mac−1としても知られる)発現又は増加や血小板の活性化に伴うCD62Pの発現又は増加なども挙げられる。 In addition, as a qualitative change in blood components after contact with the inner surface of the hollow thread, integrin CD11b / CD18 (also known as Mac-1), which is a surface marker of granulocyte cells, which are leukocyte cells, is used. Expression or increase of CD62P associated with expression or increase of platelets and activation of platelets may also be mentioned.

さらに、中空糸内表面に付着した血液の変化の測定としては、中空糸内表面に付着した血小板や白血球の数や形態をSEM観察したり、血小板と相互作用するフィブリノーゲンの中空糸内表面への吸着量やその変性度合いを測定することなどが挙げられる。 Furthermore, as a measurement of changes in blood adhering to the inner surface of the hollow thread, the number and morphology of platelets and leukocytes attached to the inner surface of the hollow thread can be observed by SEM, or fibrinogen interacting with the platelets can be measured on the inner surface of the hollow thread. For example, measuring the amount of adsorption and the degree of modification thereof.

ところで、生体適合性の優れた中空糸としては、ビタミンEを内表面に固定化したポリスルホン製の中空糸が知られている。
その臨床評価の例示として以下のことが報告されている。例えば、ビタミンEを固定化したポリスルホン製の中空糸を含む透析器を使用して透析治療を行った結果、ビタミンEを固定化していないポリスルホン製中空糸を用いた場合に比べて、TATは低値になり、血液凝固系の亢進が抑制されたとの報告がある(寺嶋ら、仙台赤十字病医雑Vol.12,N0.1,95−103,2003)。又、透析患者が、ポリスルホン中空糸を6か月使用した後に、ビタミンE固定化ポリスルホン中空糸を含むダイアライザーに変更した結果、透析開始後15分の補体活性化産物であるC3a濃度が有意に低かったとの報告がある(本橋ら、2007年度Vitamembrane 研究会、ビタミンE固定化ポリスルホン膜(VPS)の臨床評価)。又、ビタミンE固定化中空糸のダイアライザーを使用した場合、ビタミンEを固定化していない中空糸のダイアライザーを使用した場合と比べて、炎症度合いのマーカーであるCRPやIL−6の値が顕著に減少する(Panichi et. al. Blood Purification, 2011;32;7−14.)。さらに、66名の維持透析患者の透析中のd−ROMの値は、ビタミンE固定化ポリスルホン中空糸ダイアライザーでは、その変化が見られなかったが、ビタミンEを固定化していないポリスルホン中空糸ダイアライザーでは、その値が透析後半に有意に上昇した。すなわち、ビタミンE固定化ポリスルホン中空糸ダイアライザーは、透析中の酸化ストレスの影響を受けにくいと推察されている(高橋ら、2014年度Vitamembrane 研究会、維持透析患者の酸化ストレス度(d−ROM)および抗酸化力の検討)。
このように、ビタミンE固定化ポリスルホン中空糸は、ビタミンEを固定化していないポリスルホン中空糸に比べて、生体適合性がすぐれていることが数多く報告されている。
By the way, as a hollow fiber having excellent biocompatibility, a hollow fiber made of polysulfone in which vitamin E is immobilized on the inner surface is known.
The following has been reported as an example of the clinical evaluation. For example, as a result of performing dialysis treatment using a dialysis machine containing a polysulfone hollow fiber on which vitamin E is immobilized, the TAT is lower than when a polysulfone hollow fiber on which vitamin E is not immobilized is used. It has been reported that the increase in blood coagulation system was suppressed (Terashima et al., Sendai Red Cross Disease Medical Miscellaneous Vol.12, N0.1, 95-103, 2003). In addition, as a result of the dialysis patient changing to a dialyzer containing the vitamin E-immobilized polysulfone hollow fiber after using the polysulfone hollow fiber for 6 months, the concentration of C3a, which is a complement activation product, was significantly increased 15 minutes after the start of dialysis. It was reported to be low (Honbashi et al., 2007 Vitamembrane Study Group, clinical evaluation of vitamin E-immobilized polysulfone membrane (VPS)). In addition, when a vitamin E-immobilized hollow fiber dialyzer is used, the values of CRP and IL-6, which are markers of the degree of inflammation, are significantly higher than when a vitamin E-immobilized hollow fiber dialyzer is used. Decreases (Panichi et. Al. Blood Purification, 2011; 32; 7-14.). Furthermore, the d-ROM values during dialysis of 66 maintenance dialysis patients did not change with the vitamin E-immobilized polysulfone hollow fiber dialyzer, but with the non-vitamin E-immobilized polysulfone hollow fiber dialyzer. , The value increased significantly in the latter half of dialysis. That is, it is speculated that the vitamin E-immobilized polysulfone hollow fiber dialyzer is less susceptible to oxidative stress during dialysis (Takahashi et al., 2014 Vitamembrane Study Group, oxidative stress level (d-ROM) of maintenance dialysis patients and Examination of antioxidant power).
As described above, it has been reported that the vitamin E-immobilized polysulfone hollow fiber is superior in biocompatibility to the non-vitamin E-immobilized polysulfone hollow fiber.

本実施形態においては、まず、中空糸内部に血液を導入する。導入量に限定はないが、中空糸内部を血液で満たすことが好ましい。後述のように中空糸が容器に収容されている場合には、例えば、容器中を血液で満たすことが好ましい。 In the present embodiment, first, blood is introduced into the hollow fiber. The amount to be introduced is not limited, but it is preferable to fill the inside of the hollow fiber with blood. When the hollow fiber is contained in the container as described later, it is preferable to fill the container with blood, for example.

次に、本実施形態の評価方法においては、血液を内部に導入した中空糸を回転させる工程を含む。
中空糸内部に血液を導入するだけでは、血液成分、とりわけ、白血球や血小板などの血球成分と中空糸内表面との接触頻度が極めて低いために、臨床を反映した正確なデータを取得することができない。
しかしながら、本実施形態においては、血液導入後に中空糸を回転させるという単純な操作を行うことによって、臨床を反映した正確なデータの取得を実現した。
Next, the evaluation method of the present embodiment includes a step of rotating the hollow fiber into which blood is introduced.
By simply introducing blood into the hollow fiber, the frequency of contact between blood components, especially blood cell components such as white blood cells and platelets, and the inner surface of the hollow fiber is extremely low, so accurate data that reflects clinical practice can be obtained. Can not.
However, in the present embodiment, accurate data reflecting clinical practice has been obtained by performing a simple operation of rotating the hollow fiber after introducing blood.

本実施形態において、中空糸を回転させる際には、内部に導入した血液がこぼれないようにすることが好ましく、例えば、中空糸の端部を塞いだり、あるいは、中空糸を密栓できる容器に収容して回転させることが好ましい。
中空糸を収容する密栓できる容器に限定はなく、いかなる形状のものも使用できるが、例えば、このような容器として、上述した中空糸デバイスを利用することも好ましい。その際、中空糸デバイスの長さ、太さ、質量、血液保持容量などに特段の制限はないが、回転を行うに際して支障がないことを考慮すると、それぞれ、長さは1cm〜100cm、太さは1mm〜50cm、質量は0.01g〜10Kg、血液保持容量は10μl〜200ml程度の範囲であることが好ましい。
In the present embodiment, when rotating the hollow fiber, it is preferable to prevent the blood introduced into the hollow fiber from spilling. For example, the end of the hollow fiber is closed or the hollow fiber is housed in a container that can be sealed. It is preferable to rotate it.
The container that can contain the hollow fiber and can be sealed is not limited, and any shape can be used. For example, it is preferable to use the above-mentioned hollow fiber device as such a container. At that time, there are no particular restrictions on the length, thickness, mass, blood retention capacity, etc. of the hollow fiber device, but considering that there is no problem in performing rotation, the length is 1 cm to 100 cm and the thickness, respectively. Is preferably 1 mm to 50 cm, the mass is 0.01 g to 10 kg, and the blood retention capacity is preferably in the range of about 10 μl to 200 ml.

本実施形態において、回転は、中空糸の長手方向と略平行な面内で行うことが好ましい。さらに、その際、中空糸又はその延長線が、回転の中心の近傍を通ることがより好ましい。このような方向で中空糸を回転させると、中空糸内部で血液の流れがより効率的に生じ、中空糸内表面と血液との相互作用をより高めることができる。
また、本実施形態において、回転はローテーターを用いて行うことが好ましい。ここで、ローテーターとは、回転対象物を、平板状の回転体であってその面内で回転する回転体に設置して、回転させる装置のことをいう。
中空糸や中空糸デバイスのローテーターの回転体へのセットの方法に限定はないが、回転体が接地面に対して垂直である場合には、中空糸を回転体にセットした際に、中空糸が接地面に触れないようにセットすることが好ましい。具体的には、図1に示すように、中空糸(デバイス)がローテーターの回転体のほぼ中心をとおるように、回転体の直径に沿って中空糸デバイスをセットしても良い。あるいは、中空糸(デバイス)が比較的小さい場合は、図2に示すようにローテーターの回転体の円周に沿って円周(接線)に垂直に(回転体の中心が中空糸の延長線上に乗るように)、中空糸(デバイス)を並べてセットしても良い。また、中空糸(デバイス)は回転体からはみ出すように設置してもよい。
In the present embodiment, the rotation is preferably performed in a plane substantially parallel to the longitudinal direction of the hollow fiber. Further, at that time, it is more preferable that the hollow fiber or an extension line thereof passes near the center of rotation. When the hollow fiber is rotated in such a direction, blood flow is more efficiently generated inside the hollow fiber, and the interaction between the inner surface of the hollow fiber and blood can be further enhanced.
Further, in the present embodiment, the rotation is preferably performed by using a rotator. Here, the rotator refers to a device that rotates an object to be rotated by installing it on a rotating body that is a flat plate-shaped rotating body and that rotates in the plane.
There is no limitation on the method of setting the hollow fiber or the rotator of the hollow fiber device on the rotating body, but when the rotating body is perpendicular to the ground plane, the hollow fiber is set when the hollow fiber is set on the rotating body. It is preferable to set it so that it does not touch the ground surface. Specifically, as shown in FIG. 1, the hollow fiber device may be set along the diameter of the rotating body so that the hollow fiber (device) is substantially centered on the rotating body of the rotator. Alternatively, when the hollow fiber (device) is relatively small, as shown in FIG. 2, the center of the rotating body is on the extension line of the hollow fiber perpendicular to the circumference (tangent) along the circumference of the rotating body of the rotator. Hollow fibers (devices) may be set side by side (as if riding). Further, the hollow fiber (device) may be installed so as to protrude from the rotating body.

ローテーターの回転体の接地面に対する角度については特に制限はないが、ローテーターが設置されている接地面に対して平行になった場合、血球成分が遠心力によって中空糸の両端に偏ってしまい、中空糸内表面と均一に接触することができなくなってしまうので好ましくない。従って、ローテーターの回転体と接地面とがなす角度は、5度〜175度の範囲であることが好ましく、45度〜135度の範囲がより好ましく、さらに好ましくは、60度〜120度の範囲であり、回転体が接地面に対して垂直となるようにすることはとても好ましい。 The angle of the rotating body of the rotator with respect to the ground plane is not particularly limited, but when the rotator is parallel to the ground plane on which the rotator is installed, the blood cell component is biased to both ends of the hollow fiber due to centrifugal force, and the hollow fiber is hollow. This is not preferable because it will not be possible to make uniform contact with the inner surface of the thread. Therefore, the angle formed by the rotating body of the rotator and the ground plane is preferably in the range of 5 degrees to 175 degrees, more preferably in the range of 45 degrees to 135 degrees, and even more preferably in the range of 60 degrees to 120 degrees. Therefore, it is very preferable that the rotating body is perpendicular to the ground plane.

本実施形態において、回転の具体的な方法に特に限定はないが、中空糸の損傷を起こさないこと、極端な血液細胞の破壊が起こらないようにすること、工程の簡便さ等を考慮に入れると、中空糸を中空糸デバイスに収容し、該中空糸デバイスをローテーターの回転体に設置して回転させることによって、中空糸内表面と血液を比較的穏やかに接触させる方法が好ましい。 In the present embodiment, the specific method of rotation is not particularly limited, but takes into consideration such as not causing damage to the hollow fiber membrane, preventing extreme destruction of blood cells, and simplicity of the process. A method in which the hollow fiber is housed in the hollow fiber device and the hollow fiber device is placed on the rotating body of the rotator and rotated to bring the inner surface of the hollow fiber into relatively gentle contact with blood is preferable.

また、ローテーターの回転体の大きさには特に限定はないが、取り扱い性の面から比較的小型で半径の小さな回転体が好ましく、例えば、直径が1cm〜200cm、より好ましくは5cm〜100cm、さらに好ましくは10cm〜50cmの円板が好ましい。そのような回転体を有するローテーターとしては、例えば、「ROTATORRT50」(日本国、タイテック社製)等が挙げられる。なお、回転体は、必ずしもその幅や直径が中空糸(デバイス)の長さより大きい必要はない。 The size of the rotating body of the rotator is not particularly limited, but a rotating body having a relatively small size and a small radius is preferable from the viewpoint of handleability, and for example, the diameter is 1 cm to 200 cm, more preferably 5 cm to 100 cm, and further. A disk of 10 cm to 50 cm is preferable. Examples of the rotator having such a rotating body include "ROTATORRT50" (manufactured by TIETECH Co., Ltd., Japan). The width and diameter of the rotating body do not necessarily have to be larger than the length of the hollow fiber (device).

回転速度についても特に限定はないが、遠心力によって血液成分が移動するような速い速度は、血液成分を中空糸内表面に十分に接触させることができず、また操作上の安全性の面で好ましくない。従って、比較的ゆっくりした回転速度で撹拌することが好ましく、1から10rpmが実用的であり、さらに好ましくは1から5rpmである。 The rotation speed is also not particularly limited, but a high speed at which the blood component moves due to centrifugal force does not allow the blood component to sufficiently contact the inner surface of the hollow thread, and in terms of operational safety. Not preferred. Therefore, it is preferable to stir at a relatively slow rotation speed, 1 to 10 rpm is practical, and even more preferably 1 to 5 rpm.

本実施形態において、回転させる時間については、特に限定はないが、できるだけ実臨床における生体適合性評価結果と相関するデータが得られるような時間設定が必要である。そのような観点からは、回転撹拌時間としては、10秒以上であれば良いが、精度の面から、20分以上が好ましい。さらに実臨床時の施行時間を考慮に入れると、30分から24時間が好ましく、さらに好ましくは60分から4時間が好ましい。 In the present embodiment, the rotation time is not particularly limited, but it is necessary to set the time so as to obtain data that correlates with the biocompatibility evaluation result in actual clinical practice as much as possible. From such a viewpoint, the rotary stirring time may be 10 seconds or more, but 20 minutes or more is preferable from the viewpoint of accuracy. Further, taking into consideration the execution time in actual clinical practice, 30 minutes to 24 hours is preferable, and 60 minutes to 4 hours is more preferable.

以下実施例をあげて本発明をさらに詳細に説明するが、本発明は何らこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

[実施例1]
健常人からディスポーザブルシリンジと18G翼状針にて180mlの採血を行い、直ちに抗凝固剤としてヘパリン濃度が1000U/Lになるようにヘパリンの入った血液バッグに移し、よく混合した。
[Example 1]
180 ml of blood was collected from a healthy person using a disposable syringe and an 18G winged needle, and immediately transferred to a blood bag containing heparin as an anticoagulant so that the heparin concentration became 1000 U / L, and mixed well.

ポリスルホン製中空糸透析器APS−08SA(旭化成メディカル社製)(以後、透析器1と略す)と、透析器1より生体適合性の高いことがすでに確認されているビタミンEが固定化されたポリスルホン製中空糸透析器VPS−08HA(旭化成メディカル社製)(以後、透析器2と略す)を用意し、それぞれ、予め生理食塩水(2L)で、血液接触面側である中空糸内表面、及び、透析液側である中空糸外表面側を洗浄した。その後、中空糸外表面側(透析液側)に残留した生理食塩水は廃液し、透析液導入出口をキャップで密栓した。
次いで、透析器1、透析器2それぞれに、ヘパリン濃度が1000U/Lの全血液60mlを血液導入口側から、100ml用シリンジを用いてゆっくりと導入し、血液導出口から出てきた液体を排出し、血液導出口と血液導入口にキャップを嵌めて密栓した。
その後、各透析器を、ローテーター「ROTATOR RT−50」(日本国、タイテック社製)の直径20cmの円板状回転体に、図1のように透析器が回転体の中心付近を通るようにセットして、5rpmの速度で240分間回転撹拌した。
Polysulfone hollow thread dialyzer APS-08SA (manufactured by Asahi Kasei Medical Co., Ltd.) (hereinafter abbreviated as dialyzer 1) and polysulfone on which vitamin E, which has already been confirmed to be more biocompatible than dialyzer 1, is immobilized. A hollow thread dialyzer VPS-08HA (manufactured by Asahi Kasei Medical Co., Ltd.) (hereinafter abbreviated as dialyzer 2) is prepared, and the inner surface of the hollow thread on the blood contact surface side and the inner surface of the hollow thread on the blood contact surface side are prepared in advance with physiological saline (2 L). , The outer surface side of the hollow thread, which is the dialysate side, was washed. After that, the physiological saline remaining on the outer surface side of the hollow fiber (dialysate side) was drained, and the dialysate introduction outlet was sealed with a cap.
Next, 60 ml of total blood having a heparin concentration of 1000 U / L is slowly introduced into each of the dialyzer 1 and the dialyzer 2 from the blood inlet side using a 100 ml syringe, and the liquid discharged from the blood outlet is discharged. Then, a cap was put on the blood outlet and the blood inlet to seal the blood.
After that, each dialyzer is placed on a disk-shaped rotating body with a diameter of 20 cm of the rotator "ROTATOR RT-50" (manufactured by Titec, Japan) so that the dialyzer passes near the center of the rotating body as shown in FIG. It was set and rotated and stirred at a speed of 5 rpm for 240 minutes.

回転撹拌終了後に各透析器の血液導出口より取り出した血液を、別の2ml容のエッペンドルフチューブに移し、血球測定装置「XT−1800i」(日本、Sysmex社製)にて白血球数および血小板数を測定した。 After the rotation stirring is completed, the blood taken out from the blood outlet of each dialyzer is transferred to another 2 ml Eppendorf tube, and the white blood cell count and platelet count are measured with a blood cell measuring device "XT-1800i" (manufactured by Sysmex, Japan). It was measured.

結果を表1に示す。尚、表1中、透析器に導入する前の元の血液の白血球数および血小板数をpreとして表した。その結果、透析器2の中空糸内表面に接触した血液は、透析器1の中空糸内表面に接触した血液に比べて、白血球数、血小板数共に多く、元の血液の値と近い値となった。これは、透析器2は、透析器1に比べて白血球や血小板を接着させない事、すなわち、透析器2は透析器1より生体適合性が良いことを示しており、本発明の評価方法による評価結果は、実際の生体適合性と一致することが確認できた。 The results are shown in Table 1. In Table 1, the white blood cell count and platelet count of the original blood before being introduced into the dialyzer are shown as pre. As a result, the blood in contact with the inner surface of the hollow fiber of the dialyzer 2 has a larger number of white blood cells and platelets than the blood in contact with the inner surface of the hollow fiber of the dialyzer 1, which is close to the value of the original blood. became. This indicates that the dialysis machine 2 does not adhere leukocytes and platelets as compared with the dialysis machine 1, that is, the dialysis machine 2 has better biocompatibility than the dialysis machine 1, and is evaluated by the evaluation method of the present invention. It was confirmed that the results were consistent with the actual biocompatibility.

Figure 0006864553
Figure 0006864553

又、透析器1及び透析器2より取り出した血液を、各々、テーブルトップ遠心機4000(日本、KUBOTA社製)にて3500rpmで10分間、遠心分離し、得られた血漿中の6種類のサイトカイン類(IL−1β,IL−5,IL−6,IL−8,IFN−γ,TNF−α)及びケモカイン類(MIP1−α、RANTES)の濃度をBio−Plexシステム(Bio−Rad社製 Bio−Plex Pro ヒト サイトカイン GI27−plex パネル)を用いて測定した。
結果を表2に示す。尚、元の血液について測定した結果をpreとして表した。その結果、透析器2の中空糸内表面に接触した血液は、透析器1の中空糸内表面に接触した血液に比べて、サイトカイン類、ケモカイン類共に低い値を示しており、元の血液の値と近い値であった。これは、透析器2は、透析器1に比べて生体適合性が良いことを示しており、本発明の評価方法による評価結果は、実際の生体適合性と一致することが確認できた。
In addition, blood taken out from dialyzer 1 and dialyzer 2 was centrifuged at 3500 rpm for 10 minutes with a tabletop centrifuge 4000 (manufactured by KUBOTA, Japan), and 6 types of cytokines in the obtained plasma were obtained. Bio-Plex system (Bio-Rad Bio) for the concentrations of chemokines (MIP1-α, RANTES) and chemokines (IL-1β, IL-5, IL-6, IL-8, IFN-γ, TNF-α) -Plex Pro human cytokine GI27-plex panel) was used for measurement.
The results are shown in Table 2. The result of measurement on the original blood was expressed as pre. As a result, the blood that came into contact with the inner surface of the hollow fiber of the dialyzer 2 showed lower values for both cytokines and chemokines than the blood that came into contact with the inner surface of the hollow fiber of the dialyzer 1, and the blood of the original blood. It was close to the value. This indicates that the dialyzer 2 has better biocompatibility than the dialyzer 1, and it was confirmed that the evaluation result by the evaluation method of the present invention matches the actual biocompatibility.

Figure 0006864553
Figure 0006864553

[実施例2]
健常人からディスポーザブルシリンジと18G翼状針にて180mlの採血を行い、直ちに抗凝固剤としてヘパリン濃度が1000U/Lになるようにヘパリンの入った血液バッグに移し、よく混合した。
[Example 2]
180 ml of blood was collected from a healthy person using a disposable syringe and an 18G winged needle, and immediately transferred to a blood bag containing heparin as an anticoagulant so that the heparin concentration became 1000 U / L, and mixed well.

実施例1で用いたのと同一の透析器1及び透析器2を用意し、それぞれ、予め生理食塩水(2L)で、血液接触面側である中空糸内表面、及び、透析液側である中空糸外表面側を洗浄した。その後、中空糸外表面側(透析液側)に残留した生理食塩水は廃液し、透析液導入出口をキャップで密栓した。
次いで、透析器1、透析器2それぞれに、ヘパリン濃度が1000U/Lの全血液60mlを血液導入口側から、100ml用シリンジを用いてゆっくりと導入し、血液導出口から出てきた液体を排出し、血液導出口と血液導入口にキャップを嵌めて密栓した。
その後、各透析器を、ローテーター「ROTATOR RT−50」(日本国、タイテック社製)の直径20cmの円板状回転体に、図1のように透析器が回転体の中心付近を通るようにセットして、5rpmの速度で240分間回転撹拌した。
The same dialyzer 1 and dialyzer 2 used in Example 1 are prepared, and the inner surface of the hollow fiber on the blood contact surface side and the dialysate side are prepared in advance with physiological saline (2 L), respectively. The outer surface side of the hollow fiber was washed. After that, the physiological saline remaining on the outer surface side of the hollow fiber (dialysate side) was drained, and the dialysate introduction outlet was sealed with a cap.
Next, 60 ml of total blood having a heparin concentration of 1000 U / L is slowly introduced into each of the dialyzer 1 and the dialyzer 2 from the blood inlet side using a 100 ml syringe, and the liquid discharged from the blood outlet is discharged. Then, a cap was put on the blood outlet and the blood inlet to seal the blood.
After that, each dialyzer is placed on a disk-shaped rotating body with a diameter of 20 cm of the rotator "ROTATOR RT-50" (manufactured by Titec, Japan) so that the dialyzer passes near the center of the rotating body as shown in FIG. It was set and rotated and stirred at a speed of 5 rpm for 240 minutes.

回転撹拌終了後に各透析器の血液導出口より血液を取り出した。取り出した血液について、a)血液凝固因子の活性化の指標であるTAT(トロンビン・アンチトロンビンIII複合体)、b)血小板活性化の指標であるβ―TG(β−トロンボグロブリン)、c)抗酸化能の指標であるPAO(Potential Anti Oxidant)、及び、d)抗酸化力を示すBAP(Biological Anti―oxidant Potential)について、以下の手順で測定した。
a)TAT
血液1.8mlを、遠心機「ハイブリッド高速冷却遠心機6200」(日本国、KUBOTA社製)にて室温で、3,500rpmで10分間、遠心分離して血漿を取得し、その血漿中のTAT濃度を酵素免疫測定法で測定した。
b)β―TG
血液2.7mlを15分氷冷し、遠心機「ハイブリッド高速冷却遠心機6200」(日本国、KUBOTA社製)にて4℃で、2000Gで30分間、遠心分離して血漿を取得し、その血漿中のβ―TGを酵素免疫測定法にて測定した。
c)PAO
血液0.5mlを遠心機「ハイブリッド高速冷却遠心機6200」(日本国、KUBOTA社製)にて室温で、3,500rpmで10分間、遠心分離して血漿を取得し、その血漿を用いて、抗酸化能測定キット「PAO」(日本国、日研ザイル株式会社 日本老化制御研究所)を用いて測定した。
d)BAP
血液0.5mlを遠心機「ハイブリッド高速冷却遠心機6200」(日本国、KUBOTA社製)にて室温で、3,500rpmで10分間、遠心分離して血漿を取得し、その血漿を用いて、FREE Carrio Duo フリーラジカル解析装置(日本国、株式会社ウィスマー社製)を用いて測定した。
After the rotary stirring was completed, blood was taken out from the blood outlet of each dialyzer. Regarding the extracted blood, a) TAT (thrombin / antithrombin III complex), which is an index of blood coagulation factor activation, b) β-TG (β-thromboglobulin), which is an index of platelet activation, and c) anti-antioxidant. PAO (Potential Anti Oxidant), which is an index of oxidative ability, and BAP (Biological Anti-oxidant Potential), which shows d) antioxidant power, were measured by the following procedure.
a) TAT
1.8 ml of blood was centrifuged at a centrifuge "Hybrid High Speed Cooling Centrifuge 6200" (manufactured by KUBOTA, Japan) at room temperature for 10 minutes at 3,500 rpm to obtain plasma, and TAT in the plasma was obtained. The concentration was measured by enzyme immunoassay.
b) β-TG
2.7 ml of blood was ice-cooled for 15 minutes and centrifuged at 4 ° C. for 30 minutes at 2000 G in a centrifuge "Hybrid High Speed Cooling Centrifuge 6200" (manufactured by KUBOTA, Japan) to obtain plasma. Β-TG in plasma was measured by enzyme immunoassay.
c) PAO
0.5 ml of blood was centrifuged in a centrifuge "Hybrid High Speed Cooling Centrifuge 6200" (manufactured by KUBOTA, Japan) at room temperature for 10 minutes at 3,500 rpm to obtain plasma, and the plasma was used. The measurement was performed using the antioxidant capacity measurement kit "PAO" (Japan, Nikken Zile Co., Ltd. Japan Aging Control Laboratory).
d) BAP
0.5 ml of blood was centrifuged in a centrifuge "Hybrid High Speed Cooling Centrifuge 6200" (manufactured by KUBOTA, Japan) at room temperature for 10 minutes at 3,500 rpm to obtain plasma, and the plasma was used. Measurement was performed using a FREE Carrio Duo free radical analyzer (manufactured by Wismer Co., Ltd., Japan).

又、回転撹拌終了後に各透析器の血液導出口より血液を取り出した後、生理食塩水(500mL)を血液導入口から、流速100ml/minで流し、中空糸内表面を洗浄した。各透析器のハウジングを解体して、赤血球の残っていない中空糸の長さ10cm、本数100本を取り出し、2,3mmにカットした後、e)中空糸膜内表面に吸着した総タンパク量及びf)中空糸膜内表面に吸着したフィブリノーゲン量について、以下の手順で測定した。
e)中空糸膜内表面に吸着した総タンパク量
カットした中空糸膜に1.0%SDS溶液4.0mlを加え、4時間撹拌した。その後、上清をサンプルとして、総タンパク量をMicro BCA Protein Assay Reagent(米国、Thermo Fisher Scientific社)にて測定し、中空糸内膜面積当たりの総タンパク吸着量として算出した。
f)中空糸膜内表面に吸着したフィブリノーゲン量
カットした中空糸膜に0.5%TritonX−100溶液 2.0mlを加え、1時間撹拌した。その後、上清をサンプルとして、フィブリノーゲン量をAssayMaxTM Human Fibrinogen ELISA Kit(米国、Assaypro LLC社)にて測定し、中空糸内膜面積当たりのフィブリノーゲン吸着量として算出した。
After the blood was taken out from the blood outlet of each dialyzer after the rotation stirring was completed, physiological saline (500 mL) was flowed from the blood inlet at a flow rate of 100 ml / min to wash the inner surface of the hollow fiber. After disassembling the housing of each dialyzer, taking out a hollow fiber having a length of 10 cm and 100 pieces with no red blood cells remaining and cutting it to a few mm, e) the total amount of protein adsorbed on the inner surface of the hollow fiber membrane and f) The amount of fibrinogen adsorbed on the inner surface of the hollow fiber membrane was measured by the following procedure.
e) Total amount of protein adsorbed on the inner surface of the hollow fiber membrane 4.0 ml of a 1.0% SDS solution was added to the cut hollow fiber membrane, and the mixture was stirred for 4 hours. Then, using the supernatant as a sample, the total protein amount was measured by Micro BCA Protein Assay Reagent (Thermo Fisher Scientific, USA), and calculated as the total protein adsorption amount per hollow fiber membrane area.
f) Amount of fibrinogen adsorbed on the inner surface of the hollow fiber membrane 2.0 ml of a 0.5% Triton X-100 solution was added to the cut hollow fiber membrane, and the mixture was stirred for 1 hour. Then, using the supernatant as a sample, the amount of fibrinogen was measured with an AssayMax TM Human Fibrinogen ELISA Kit (Assaypro LLC, USA), and calculated as the amount of fibrinogen adsorbed per hollow fiber inner membrane area.

上記a)〜f)の測定結果について、表3に示した。その結果、透析器2は、透析器1に比べて、フィブリノーゲン吸着を抑制し、血液凝固因子の活性化や血小板の活性化を起こしにくく、さらには、抗酸化能を有していることが確認された。すなわち、透析器2は透析器1より生体適合性が良いことを示しており、本発明の評価方法による評価結果は、実際の生体適合性と一致することが確認できた。 The measurement results of a) to f) above are shown in Table 3. As a result, it was confirmed that the dialyzer 2 suppresses fibrinogen adsorption, is less likely to activate blood coagulation factors and platelets, and has antioxidant ability as compared with the dialyzer 1. Was done. That is, it was shown that the dialyzer 2 has better biocompatibility than the dialyzer 1, and it was confirmed that the evaluation result by the evaluation method of the present invention matches the actual biocompatibility.

Figure 0006864553
Figure 0006864553

本発明の方法によれば、少ない血液量で簡便かつ正確に中空糸の生体適合性を評価できるので、血液透析器や血漿分離器などの各種デバイスに使用するための中空糸の評価に好適に利用できる。 According to the method of the present invention, the biocompatibility of the hollow fiber can be easily and accurately evaluated with a small amount of blood, which is suitable for the evaluation of the hollow fiber for use in various devices such as a hemodialyzer and a plasma separator. Available.

Claims (5)

血液を中空糸内部に導入する工程、
前記中空糸を回転させる工程、及び、
中空糸内部から導出した血液及び/又は中空糸内表面に付着した血液について、その特性及び/又は成分の濃度を測定する工程を、
この順に含む、中空糸の生体適合性評価方法。
The process of introducing blood into the hollow fiber,
The process of rotating the hollow fiber and
A step of measuring the characteristics and / or the concentration of components of blood derived from the inside of the hollow fiber and / or blood adhering to the inner surface of the hollow fiber.
A method for evaluating the biocompatibility of hollow fibers, which includes this order.
前記回転工程において、前記中空糸を中空糸デバイス内に収容した状態で回転させる、請求項1に記載の中空糸の生体適合性評価方法。 The biocompatibility evaluation method for a hollow fiber according to claim 1, wherein in the rotation step, the hollow fiber is rotated while being housed in the hollow fiber device. 前記回転をローテーターを用いて行う、請求項1または2に記載の中空糸の生体適合性評価方法。 The biocompatibility evaluation method for hollow fibers according to claim 1 or 2, wherein the rotation is performed using a rotator. 前記成分が、赤血球、血小板、白血球、血漿タンパク、白血球由来の産生物、血小板由来の産生物、血液凝固因子、血液凝固因子活性化物質、血液線溶系活性化物質、及び、補体活性化物質からなる群から選ばれる少なくとも一つである、請求項1〜3のいずれかに記載の中空糸の生体適合性評価方法。 The components are erythrocytes, platelets, leukocytes, plasma proteins, leukocyte-derived products, platelet-derived products, blood coagulation factors, blood coagulation factor activators, blood fibrinolytic system activators, and complement activators. The method for evaluating biocompatibility of hollow yarn according to any one of claims 1 to 3, which is at least one selected from the group consisting of. 前記成分が、サイトカイン又はケモカインである、請求項4に記載の方法。 The method of claim 4, wherein the component is a cytokine or chemokine.
JP2017098012A 2016-07-13 2017-05-17 Biocompatibility evaluation method for hollow fibers Active JP6864553B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016138520 2016-07-13
JP2016138520 2016-07-13

Publications (2)

Publication Number Publication Date
JP2018017720A JP2018017720A (en) 2018-02-01
JP6864553B2 true JP6864553B2 (en) 2021-04-28

Family

ID=61081587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017098012A Active JP6864553B2 (en) 2016-07-13 2017-05-17 Biocompatibility evaluation method for hollow fibers

Country Status (1)

Country Link
JP (1) JP6864553B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043033A (en) * 2001-08-03 2003-02-13 Asahi Kasei Corp Method for evaluating biocompatibility, and biocompatible material
JP2005069966A (en) * 2003-08-27 2005-03-17 Toray Ind Inc Blood compatibility evaluating method
JP4992104B2 (en) * 2005-03-29 2012-08-08 旭化成メディカル株式会社 Module for hemofiltration or hemodiafiltration
JP2010082068A (en) * 2008-09-30 2010-04-15 Toray Ind Inc Blood circuit and circulation system for evaluation and inspection of blood compatibility

Also Published As

Publication number Publication date
JP2018017720A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
CA3001444A1 (en) Phosphorus adsorbent, porous fiber and phosphorus adsorption column
JP5843345B2 (en) β-amyloid removal system
JP3899128B2 (en) Apparatus and method for biospecific removal of heparin
JP2016195589A (en) Cell separation filter, and production method of cell concentrate using the same
Gurland et al. Comparative evaluation of filters used in membrane plasmapheresis
Mehta et al. Extracorporeal blood purification strategies in sepsis and septic shock: An insight into recent advancements
JP6864553B2 (en) Biocompatibility evaluation method for hollow fibers
CN106139284A (en) The film for the treatment of hemolytic event and device
Chew et al. Ultrahigh packing density next generation microtube array membrane: A novel solution for absorption‐based extracorporeal endotoxin removal device
CN106110423B (en) Female tire blood group incompatibility adsorbing therapy instrument
CN106267407B (en) Female tire Rh blood group incompatibility blood purifying therapeutical instrument
CN106267418A (en) Female tire blood group incompatibility antibody adsorbing therapy instrument
JP6621414B2 (en) Filtration device
JP3870468B2 (en) Plasma or serum separation filter
JP2019136499A (en) Material for removing activated leukocyte-activated platelet complex
JP2012078334A (en) Method for separating plasma or serum from very small amount of blood, and instrument for the same
Suaudeau et al. The Ito “Flow‐Through” Centrifuge A New Device for Long‐Term (24 hours) Plasmapheresis without Platelet Deterioration
Vienken Membranes in hemodialysis
CN113049508B (en) Hemolytic test method for dialyzer hollow fiber
CN106267421A (en) Female fetal blood type does not conforms to blood plasma depurator
Chen et al. Short-term in vivo preclinical biocompatibility evaluation of FW-II axial blood pump in a sheep model
Otsuki et al. Blood-Separating Device Without Energy Source for Implantable Medical Devices
古賀陽子 et al. Studies on Effects of Hemodialysis Membranes on Activation of Blood Cells
Mason et al. Some interactions of blood with tubular biomaterials
JP2734571B2 (en) Hollow fiber type plasma separation membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210402

R150 Certificate of patent or registration of utility model

Ref document number: 6864553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150