JP6864335B2 - How to make chondrocytes - Google Patents

How to make chondrocytes Download PDF

Info

Publication number
JP6864335B2
JP6864335B2 JP2016163872A JP2016163872A JP6864335B2 JP 6864335 B2 JP6864335 B2 JP 6864335B2 JP 2016163872 A JP2016163872 A JP 2016163872A JP 2016163872 A JP2016163872 A JP 2016163872A JP 6864335 B2 JP6864335 B2 JP 6864335B2
Authority
JP
Japan
Prior art keywords
cells
days
gsk
medium
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016163872A
Other languages
Japanese (ja)
Other versions
JP2018029522A (en
Inventor
琢 齋藤
琢 齋藤
学 河田
学 河田
田中 栄
栄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2016163872A priority Critical patent/JP6864335B2/en
Publication of JP2018029522A publication Critical patent/JP2018029522A/en
Application granted granted Critical
Publication of JP6864335B2 publication Critical patent/JP6864335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は広く、軟骨細胞又はその前駆細胞、例えば沿軸中胚葉由来細胞及び/又は側板中胚葉由来細胞を製造する方法、当該沿軸中胚葉及び/又は側板中胚葉細胞から軟骨細胞等を製造する方法等に関する。 The present invention broadly relates to a method for producing paraxial mesoderm or progenitor cells thereof, for example, paraxial mesoderm-derived cells and / or lateral plate mesoderm-derived cells, and producing chondrocytes and the like from the paraxial mesoderm and / or lateral plate mesoderm cells. Regarding how to do it.

軟骨疾患として高齢者の変形性関節症、外傷による関節軟骨欠損、小児の骨格形成異常、少耳症、口唇口蓋裂による鼻変形、離断性骨軟骨炎、外傷性損傷などが知られている。特に、変形性膝関節症の患者数は日本だけでも有病者数が2,530万人、そして有症状者数が780万人と極めて多いため、関節軟骨は再生医療のニーズが非常に大きい組織であると言える。しかしながら、軟骨細胞は増殖能に乏しいため、ヒトの場合、軟骨が一度損傷すると殆ど再生しないという問題もあり、軟骨疾患を治療するための確立された再生医療は現時点で存在していないというのが実情である。 Known cartilage diseases include osteoarthritis in the elderly, articular cartilage defect due to trauma, skeletal dysplasia in children, hypotension, nasal deformity due to cleft lip and palate, osteochondritis dissecans, and traumatic injury. .. In particular, the number of patients with knee osteoarthritis is extremely high at 25.3 million in Japan alone and 7.8 million with symptoms, so there is a great need for regenerative medicine for articular cartilage. It can be said that it is an organization. However, since chondrocytes have poor proliferative capacity, in humans, there is a problem that once the cartilage is damaged, it hardly regenerates, and there is no established regenerative medicine for treating cartilage disease at this time. It is the actual situation.

外傷性軟骨欠損症や離断性骨軟骨炎を治療するために、患部に自家培養した軟骨を移植することも試みられているが、軟骨組織を採取するための関節鏡手術が必要であること、培養できる軟骨の量に限界があること、あくまでも線維軟骨様の再生であり正常な硝子軟骨の再生ができている訳ではない等の欠点がある。 In order to treat traumatic cartilage deficiency and osteochondritis dissecans, autologous cartilage transplantation has been attempted in the affected area, but arthroscopic surgery is required to collect cartilage tissue. , There is a limit to the amount of cartilage that can be cultured, and there are drawbacks such as fibrocartilage-like regeneration and not normal vitreous cartilage regeneration.

間葉系幹細胞を用いた軟骨再生医療も試みられているが、やはり培養できる細胞量には限界がある。このような量的な制限のため、従来の軟骨再生医療は膨大な細胞数を要する変形性関節症に応用できないものであった。 Cartilage regenerative medicine using mesenchymal stem cells has also been attempted, but the amount of cells that can be cultured is still limited. Due to such quantitative restrictions, conventional cartilage regenerative medicine cannot be applied to osteoarthritis, which requires a huge number of cells.

この点、多能性幹細胞は培養できる細胞量が無制限であることから、軟骨再生医療の有望な候補として考えられている。 In this respect, pluripotent stem cells are considered as promising candidates for cartilage regenerative medicine because the amount of cells that can be cultured is unlimited.

これまで、多能性幹細胞を用いた軟骨細胞分化誘導法の主なものとして、ヒトES細胞を用いたOldershawらの報告(非特許文献1)やヒトiPS細胞を用いたYamashitaらの報告(非特許文献2)などがある。 So far, Oldershaw et al. (Non-Patent Document 1) using human ES cells and Yamashita et al. (Non-Patent Document 1) using human iPS cells have been reported as the main methods for inducing chondrocyte differentiation using pluripotent stem cells. Patent Document 2) and the like.

Oldershawらの方法は、多種類のサイトカインを段階的に用いて、ヒトES細胞から中胚葉を経由して軟骨細胞に至るまで、約2週間かけて分化誘導している。最終的に軟骨系マーカーの上昇が示されているものの、その検証はin vitroでのものであり、その後の組織形成については言及されていない。本発明者らがOldershawらの方法をヒトiPS細胞に応用したところ、確かに軟骨細胞マーカーが良好に上昇したものの、その後に立体培養して免疫不全マウスの膝関節内に移植した結果、約7%に奇形腫の発生が見られた(Saito T et al. Biomed Res. 36:179-86,2015)。つまり、分化誘導後もごく一部の未分化細胞の残存があった可能性が考えられる。 The method of Oldershaw et al. Induces differentiation from human ES cells via mesoderm to chondrocytes over a period of about 2 weeks using multiple types of cytokines in stages. Although an increase in cartilage markers is finally shown, its verification is in vitro and no further tissue formation is mentioned. When the present inventors applied the method of Oldershaw et al. To human iPS cells, the chondrocyte markers were certainly elevated well, but after that, they were three-dimensionally cultured and transplanted into the knee joint of immunodeficient mice. As a result, about 7 The development of teratomas was observed in% (Saito T et al. Biomed Res. 36: 179-86, 2015). In other words, it is possible that a small part of undifferentiated cells remained even after the induction of differentiation.

いずれの方法もサイトカインを段階的に用いて、約2週間かけて多能性幹細胞を軟骨細胞にまで分化誘導しているが、使用するサイトカインの種類が多い。サイトカインは高額であるため、多くのサイトカインを必要とするこれらの方法は、臨床応用を見据えた場合、多額のコストがかかることが考えられる。また、サイトカインはタンパク質であることから、製造工程やその後の保存状態によって品質にばらつきが出やすく、分化誘導効率自体にも影響を与える可能性がある。 Both methods use cytokines stepwise to induce differentiation of pluripotent stem cells into chondrocytes over a period of about 2 weeks, but there are many types of cytokines used. Due to the high cost of cytokines, these methods, which require a large number of cytokines, may be costly for clinical application. In addition, since cytokines are proteins, their quality tends to vary depending on the manufacturing process and the subsequent storage state, which may affect the differentiation induction efficiency itself.

Nat Biotechnol. 28:1187-94, 2010Nat Biotechnol. 28: 1187-94, 2010 Stem Cell Rports. 4:404-18, 2015Stem Cell Rports. 4:404-18, 2015

この点、低分子化合物は大量生産を行った場合は非常に安価に製造可能であり、ロット間の品質のばらつきがほとんどない。またサイトカインを用いた分化誘導法と比較した場合、通常、低分子化合物はより短期間の培養でより良好な分化誘導効率で多能性幹細胞を分化誘導することができることが知られている。本発明は、かかる事情に鑑み、低分子化合物を用いて沿軸中胚葉細胞及び/又は側板中胚葉細胞を製造し、延いては軟骨細胞等に分化誘導する方法を提供することを目的とする。 In this respect, the low molecular weight compound can be produced at a very low cost when mass-produced, and there is almost no variation in quality between lots. In addition, it is generally known that low-molecular-weight compounds can induce differentiation of pluripotent stem cells with better differentiation-inducing efficiency by culturing for a shorter period of time as compared with the differentiation-inducing method using cytokines. In view of such circumstances, it is an object of the present invention to provide a method for producing paraxial mesoderm cells and / or lateral plate mesoderm cells using a low molecular weight compound and inducing differentiation into chondrocytes and the like. ..

本発明者らが鋭意検討した結果、Wnt/β-カテニンシグナルの活性化剤であるグリコーゲン合成酵素キナーゼ3β(GSK-3β)阻害薬を所定の濃度培地に添加して多能性幹細胞を培養したところ、驚くべきことに、中内胚葉、沿軸中胚葉及び/又は側板中胚葉を経由して軟骨細胞へと分化誘導されることを見出し、本発明を完成させるに至った。 As a result of diligent studies by the present inventors, pluripotent stem cells were cultured by adding a glycogen synthase kinase kinase 3β (GSK-3β) inhibitor, which is an activator of Wnt / β-catenin signal, to a predetermined concentration medium. However, surprisingly, they have found that differentiation is induced into chondrocytes via mesoderm, axial mesoderm and / or lateral plate mesoderm, and have completed the present invention.

即ち、本願は以下の発明を包含する。
[1]3 μM超の濃度のグリコーゲン合成酵素キナーゼ3β(GSK-3β)阻害剤を含む培地で多能性幹細胞を培養する工程を含む、軟骨細胞又はその前駆細胞の製造方法。
[2]GSK-3β阻害剤の培地への添加が中内胚葉マーカーの上昇を指標として中止される、[1]に記載の方法。
[3]前記培養工程の期間が1〜5日間、好ましくは2日間である、[1]又は[2]に記載の方法。
[4]前記培地が更にレチノイン酸受容体(RAR)アゴニストを含む、[1]〜[3]のいずれか1項に記載の方法。
[5]GSK-3β阻害剤とRARアゴニストを含む培地で1〜3日間、好ましくは2日間、RARアゴニストを含み、GSK-3β阻害剤を含まない培地で1日間以上、好ましくは2〜12日間培養する工程を含む、[4]に記載の方法。
[6]GSK-3β阻害剤がCHIR-99021、CHIR-98014、3F8、A 1070722、AR-A 014418、BIO、BIO-acetoxime、10Z-Hymenialdisine、Indirubin-3'-oxime、Kenpaullone、L803、L803-mts、MeBIO、NSC 693868、SB 216763、SB 415286、TC-G 24、TCS 2002、TCS 21311及びTWS 119から成る群から選択される化合物である、[1]〜[5]のいずれかに記載の製造方法。
[7]培地中のGSK-3β阻害剤の濃度が3〜20μM、好ましくは10μMである、[4]〜[6]のいずれかに記載の製造方法。
[8]RARアゴニストがTTNPB、AM580、AM80、9-cis レチノイン酸、オールトランス型レチノイン酸(ATRA)、LGD1550、E6060、AGN193312、AM555S、CD2314、AGN193174、LE540、CD437、CD666、CD2325、SR11254、SR11363、SR11364、AGN193078、TTNN(Ro19-0645)、CD270、CD271、CD2665、SR3985、AGN193273、Ch55、2AGN190521、CD2366、AGN193109及びRe80からなる群より選択される、[4]〜[7]のいずれかに記載の方法。
[9]培地中のRARアゴニストの濃度が1 nM〜10 μM、好ましくは100 nMである、請求項[4]〜[8]のいずれかに記載の方法。
[10]前記前駆細胞が沿軸中胚葉及び/又は側板中胚葉細胞である、[1]〜[9]のいずれかに記載の方法。
[11]GSK-3β阻害剤と、任意にRARアゴニストとを含む、軟骨細胞又はその前駆細胞を製造するためのキット。
That is, the present application includes the following inventions.
[1] A method for producing chondrocytes or progenitor cells thereof, which comprises a step of culturing pluripotent stem cells in a medium containing a glycogen synthase kinase kinase 3β (GSK-3β) inhibitor having a concentration of more than 3 μM.
[2] The method according to [1], wherein the addition of the GSK-3β inhibitor to the medium is discontinued with an increase in the middle endoderm marker as an index.
[3] The method according to [1] or [2], wherein the period of the culture step is 1 to 5 days, preferably 2 days.
[4] The method according to any one of [1] to [3], wherein the medium further contains a retinoic acid receptor (RAR) agonist.
[5] Medium containing GSK-3β inhibitor and RAR agonist for 1 to 3 days, preferably 2 days, medium containing RAR agonist and not containing GSK-3β inhibitor for 1 day or longer, preferably 2 to 12 days. The method according to [4], which comprises a step of culturing.
[6] GSK-3β inhibitors are CHIR-99021, CHIR-98014, 3F8, A 1070722, AR-A 014418, BIO, BIO-acetoxime, 10Z-Hymenialdisine, Indirubin-3'-oxime, Kenpaullone, L803, L803- The compound according to any one of [1] to [5], which is a compound selected from the group consisting of mts, MeBIO, NSC 693868, SB 216763, SB 415286, TC-G 24, TCS 2002, TCS 21311 and TWS 119. Production method.
[7] The production method according to any one of [4] to [6], wherein the concentration of the GSK-3β inhibitor in the medium is 3 to 20 μM, preferably 10 μM.
[8] RAR agonists are TTNPB, AM580, AM80, 9-cis retinoic acid, all-trans retinoic acid (ATRA), LGD1550, E6060, AGN193312, AM555S, CD2314, AGN193174, LE540, CD437, CD666, CD2325, SR11254, SR11363. , SR11364, AGN193078, TTNN (Ro19-0645), CD270, CD271, CD2665, SR3985, AGN193273, Ch55, 2AGN190521, CD2366, AGN193109 and Re80. The method described.
[9] The method according to any one of claims [4] to [8], wherein the concentration of the RAR agonist in the medium is 1 nM to 10 μM, preferably 100 nM.
[10] The method according to any one of [1] to [9], wherein the progenitor cells are paraxial mesoderm and / or lateral plate mesoderm cells.
[11] A kit for producing chondrocytes or progenitor cells thereof, which comprises a GSK-3β inhibitor and optionally a RAR agonist.

本発明によれば、サイトカインを用いた従来の分化誘導法と比較して、よりシンプルで且つ効率的に多能性幹細胞を軟骨細胞又はその前駆細胞、例えば沿軸中胚葉由来細胞及び/又は側板中胚葉へと分化誘導することができる。特に、本発明は、多能性幹細胞から、中内胚葉を経由して沿軸中胚葉及び/又は側板中胚葉、延いては軟骨細胞へと自律的且つ段階的な分化誘導を実現することができるため、再生医療への応用は勿論のこと、軟骨発生過程の基礎的研究、さらには軟骨疾患に対する創薬研究にも応用可能なものである。 According to the present invention, pluripotent stem cells are more simply and efficiently converted into chondrocytes or progenitor cells thereof, for example, axial mesoderm-derived cells and / or side plates, as compared with conventional differentiation induction methods using cytokines. It can induce differentiation into the mesoderm. In particular, the present invention can realize autonomous and stepwise differentiation induction from pluripotent stem cells to axial mesoderm and / or lateral plate mesoderm, and thus to chondrocytes via mesoderm. Therefore, it can be applied not only to regenerative medicine but also to basic research on cartilage development process and drug discovery research for cartilage disease.

特に、低分子化合物としてGSK-3β阻害剤とRARアゴニストを組み合わせた場合、多能性幹細胞から軟骨細胞又はその前駆細胞への分化誘導を更に促進することができるが、この結果は、レチノイン酸受容体γが軟骨分化の抑制に関与するとの報告(Shimono K et al. Nat Med 2011)を考慮すると驚くべきものである。 In particular, when a GSK-3β inhibitor and a RAR agonist are combined as a low molecular weight compound, the induction of differentiation of pluripotent stem cells into chondrocytes or their progenitor cells can be further promoted, and the result is retinoic acid receptor. It is surprising considering the report that body γ is involved in the suppression of chondrocyte differentiation (Shimono K et al. Nat Med 2011).

なお、特表2015-500630号公報には、GSK-3β阻害剤とレチノイン酸誘導体とを含む培地でヒト多能性幹細胞を培養する工程を含む、中間中胚葉細胞の製造方法が開示されている。同公報はGSK-3β阻害剤とレチノイン酸誘導体を使用する点で本発明と共通しているが、GSK-3β阻害剤として実施例で使用されたCHIR-99021の濃度の上限が「3 μM」であり、また、最終産物が「後腎細胞」であって、その途中で軟骨細胞の前駆細胞、例えば沿軸中胚葉等を経由しない点で本発明と相違する。 Japanese Patent Application Laid-Open No. 2015-500630 discloses a method for producing intermediate mesoderm cells, which comprises a step of culturing human pluripotent stem cells in a medium containing a GSK-3β inhibitor and a retinoic acid derivative. .. This publication is common to the present invention in that it uses a GSK-3β inhibitor and a retinoic acid derivative, but the upper limit of the concentration of CHIR-99021 used in the examples as a GSK-3β inhibitor is "3 μM". It is different from the present invention in that the final product is "retrorenal cells" and does not pass through the progenitor cells of chondrocytes, such as paraxial mesoderm, on the way.

図1は、多能性幹細胞を分化誘導するのに適したCHIR99021の濃度及び投与期間について検討した結果を示す(RARアゴニストは不使用)。中内胚葉マーカーとしてT及びMIXL1を用いた。縦軸の発現量はβアクチンで標準化した値である。FIG. 1 shows the results of examining the concentration and administration period of CHIR99021 suitable for inducing differentiation of pluripotent stem cells (RAR agonist is not used). T and MIXL1 were used as mesoderm markers. The expression level on the vertical axis is a value standardized by β-actin. 図2は、多能性幹細胞を軟骨細胞へ分化誘導するのに適したTTNPBの濃度について検討した結果を示す(CHIRは10μM×2日間使用)。軟骨系マーカーとしてCOL2A1, COL11A2, SOX5,9を用いた。縦軸の発現量はβアクチンで標準化した値である。FIG. 2 shows the results of examining the concentration of TTNPB suitable for inducing differentiation of pluripotent stem cells into chondrocytes (CHIR was used at 10 μM × 2 days). COL2A1, COL11A2, SOX5,9 were used as cartilage markers. The expression level on the vertical axis is a value standardized by β-actin. 図3は、多能性幹細胞を分化誘導するのに適したTTNPBの濃度について検討した結果を示す(CHIRは10μM×2日間使用)。中内胚葉マーカーとしてT及びMIXL1を用いた。縦軸の発現量はβアクチンで標準化した値である。FIG. 3 shows the results of examining the concentration of TTNPB suitable for inducing differentiation of pluripotent stem cells (CHIR was used at 10 μM × 2 days). T and MIXL1 were used as mesoderm markers. The expression level on the vertical axis is a value standardized by β-actin. 図4は、多能性幹細胞を軟骨細胞へ分化誘導するのに適したTTNPBの投与期間について検討した結果を示す(CHIRは10μM×2日間使用)。TTNPBの投与開始時期はday 0〜3で振り分けた。軟骨系マーカーとしてCOL2A1, COL11A2, SOX9を用いた。縦軸の発現量はβアクチンで標準化した値である。FIG. 4 shows the results of examining the administration period of TTNPB suitable for inducing differentiation of pluripotent stem cells into chondrocytes (CHIR was used at 10 μM × 2 days). The start time of TTNPB administration was divided between days 0 and 3. COL2A1, COL11A2 and SOX9 were used as cartilage markers. The expression level on the vertical axis is a value standardized by β-actin. 図5は、CHIRを2日間10μM投与し、TTNPBは連日100 nM投与した場合の軟骨系マーカー(COL2A1, COL11A2, SOX5,9)の発現量の経時的な変化を示す。縦軸の発現量はβアクチンで標準化した値である。サンプルは連日回収したものが解析にかけられた。FIG. 5 shows the time course of the expression level of cartilage markers (COL2A1, COL11A2, SOX5, 9) when CHIR was administered at 10 μM for 2 days and TTNPB was administered at 100 nM every day. The expression level on the vertical axis is a value standardized by β-actin. Samples collected daily were analyzed. 図6は、CHIRを2日間10μM投与し、TTNPBは連日100 nM投与した場合の軟骨系マーカー(SOX6, ACAN)の発現量の経時的な変化を示す。縦軸の発現量はβアクチンで標準化した値である。サンプルは連日回収したものが解析にかけられた。FIG. 6 shows the time course of the expression level of cartilage markers (SOX6, ACAN) when CHIR was administered at 10 μM for 2 days and TTNPB was administered at 100 nM every day. The expression level on the vertical axis is a value standardized by β-actin. Samples collected daily were analyzed. 図7は、CHIRを2日間10μM投与し、TTNPBは連日100 nM投与した場合の肥大化マーカー(COL10A1)の発現量の経時的な変化を示す。縦軸の発現量はβアクチンで標準化した値である。サンプルは連日回収したものが解析にかけられた。FIG. 7 shows the time course of the expression level of the hypertrophy marker (COL10A1) when CHIR was administered at 10 μM for 2 days and TTNPB was administered at 100 nM every day. The expression level on the vertical axis is a value standardized by β-actin. Samples collected daily were analyzed. 図8は、CHIRを2日間10μM投与し、TTNPBは連日100 nM投与した場合の中内胚葉マーカー(T及びMIXL1)の発現量の経時的な変化を示す。縦軸の発現量はβアクチンで標準化した値である。サンプルは連日回収したものが解析にかけられた。FIG. 8 shows the time course of the expression level of the mesoendoderm marker (T and MIXL1) when CHIR was administered at 10 μM for 2 days and TTNPB was administered at 100 nM every day. The expression level on the vertical axis is a value standardized by β-actin. Samples collected daily were analyzed. 図9は、CHIRを2日間10μM投与し、TTNPBは連日100 nM投与した場合の中胚葉マーカー(TBX6, MEOX1及びHAND1)の発現量の経時的な変化を示す。縦軸の発現量はβアクチンで標準化した値である。サンプルは連日回収したものが解析にかけられた。FIG. 9 shows changes over time in the expression levels of mesoderm markers (TBX6, MEOX1 and HAND1) when CHIR was administered at 10 μM for 2 days and TTNPB was administered at 100 nM daily. The expression level on the vertical axis is a value standardized by β-actin. Samples collected daily were analyzed. 図10は、多能性幹細胞を軟骨細胞へ分化誘導するのに適したCHIR99021の濃度について検討した結果を示す(TTNPBは連日100 nM投与)。軟骨系マーカーとしてCOL2A1, COL11A2, SOX5,9を用いた。縦軸の発現量はβアクチンで標準化した値である。FIG. 10 shows the results of examining the concentration of CHIR99021 suitable for inducing differentiation of pluripotent stem cells into chondrocytes (TTNPB was administered at 100 nM daily). COL2A1, COL11A2, SOX5,9 were used as cartilage markers. The expression level on the vertical axis is a value standardized by β-actin. 図11は、多能性幹細胞を軟骨細胞へ分化誘導するのに適したCHIR99021の濃度について検討した結果を示す(TTNPBは連日100 nM投与)。中内胚葉マーカーとしてT及びMIXL1を用いた。縦軸の発現量はβアクチンで標準化した値である。FIG. 11 shows the results of examining the concentration of CHIR99021 suitable for inducing differentiation of pluripotent stem cells into chondrocytes (TTNPB was administered at 100 nM daily). T and MIXL1 were used as mesoderm markers. The expression level on the vertical axis is a value standardized by β-actin. 図12は、多能性幹細胞を軟骨細胞へ分化誘導するのに適したCHIR99021の濃度について検討した結果を示す(TTNPBは連日1μM投与)。軟骨系マーカーとしてCOL2A1, COL11A2, SOX5,9を用いた。縦軸の発現量はβアクチンで標準化した値である。FIG. 12 shows the results of examining the concentration of CHIR99021 suitable for inducing differentiation of pluripotent stem cells into chondrocytes (TTNPB was administered at 1 μM daily). COL2A1, COL11A2, SOX5,9 were used as cartilage markers. The expression level on the vertical axis is a value standardized by β-actin. 図13は、CHIR99021の濃度とOSR1の発現量との関係を示す図である。CHIRは2日間所定の濃度で投与し、TTNPBは連日100 nM投与した。縦軸の発現量はβアクチンで標準化した値である。なお、OSR1は特表2015-500630号公報(上掲)で使用された中間中胚葉マーカーである。FIG. 13 is a diagram showing the relationship between the concentration of CHIR99021 and the expression level of OSR1. CHIR was administered at the prescribed concentration for 2 days, and TTNBP was administered at 100 nM daily. The expression level on the vertical axis is a value standardized by β-actin. OSR1 is an intermediate mesoderm marker used in Japanese Patent Publication No. 2015-500630 (above). 図14は、多能性幹細胞を軟骨細胞へ分化誘導するのに適したCHIR99021の濃度について検討した結果を示す(TTNPBは連日100 nM投与)。軟骨系マーカーとしてCOL2A1, COL11A2, SOX5,9を用いた。縦軸の発現量はβアクチンで標準化した値である。FIG. 14 shows the results of examining the concentration of CHIR99021 suitable for inducing differentiation of pluripotent stem cells into chondrocytes (TTNPB was administered at 100 nM daily). COL2A1, COL11A2, SOX5,9 were used as cartilage markers. The expression level on the vertical axis is a value standardized by β-actin. 図15は、軟骨系マーカー(SOX6, ACAN)の発現量について本発明の分化誘導プロトコルと、非特許文献1(Oldershawら)及び非特許文献2(Yamashitaら)に記載のプロトコルとを比較した図である。いずれのプロトコルを用いた分化誘導群においても、同一クローン由来で、かつEssential 8(登録商標) Medium Kitを用いた同一のフィーダーフリー条件下で維持培養された同一継代数のiPS細胞を多能性幹細胞として使用した。縦軸の発現量はβアクチンで標準化した値である。FIG. 15 is a diagram comparing the differentiation induction protocol of the present invention with respect to the expression level of cartilage markers (SOX6, ACAN) and the protocols described in Non-Patent Document 1 (Oldershaw et al.) And Non-Patent Document 2 (Yamashita et al.). Is. In the differentiation induction group using either protocol, iPS cells of the same passage number derived from the same clone and maintained and cultured under the same feeder-free conditions using the Essential 8® Medium Kit are pluripotent. Used as stem cells. The expression level on the vertical axis is a value standardized by β-actin. 図16は、骨化マーカー(COL1A1, RUNX2)の発現量について本発明の分化誘導プロトコルと、非特許文献1(Oldershawら)及び非特許文献2(Yamashitaら)に記載のプロトコルとを比較した図である。いずれのプロトコルを用いた分化誘導群においても、同一クローン由来で、かつEssential 8(登録商標) Medium Kitを用いた同一のフィーダーフリー条件下で維持培養された同一継代数のiPS細胞を多能性幹細胞として使用した。縦軸の発現量はβアクチンで標準化した値である。FIG. 16 is a diagram comparing the differentiation induction protocol of the present invention with respect to the expression level of the ossification markers (COL1A1, RUNX2) and the protocols described in Non-Patent Document 1 (Oldershaw et al.) And Non-Patent Document 2 (Yamashita et al.). Is. In the differentiation induction group using either protocol, iPS cells of the same passage number derived from the same clone and maintained and cultured under the same feeder-free conditions using the Essential 8® Medium Kit are pluripotent. Used as stem cells. The expression level on the vertical axis is a value standardized by β-actin. 図17は、軟骨系マーカーと骨化マーカー以外の他系統のマーカーの発現量について本発明の分化誘導プロトコルと、非特許文献1(Oldershawら)及び非特許文献2(Yamashitaら)に記載のプロトコルとを比較した図である。いずれのプロトコルを用いた分化誘導群においても、同一クローン由来で、かつEssential 8(登録商標) Medium Kitを用いた同一のフィーダーフリー条件下で維持培養された同一継代数のiPS細胞を多能性幹細胞として使用した。縦軸の発現量はβアクチンで標準化した値である。FIG. 17 shows the differentiation induction protocol of the present invention and the protocols described in Non-Patent Document 1 (Oldershaw et al.) And Non-Patent Document 2 (Yamashita et al.) Regarding the expression levels of markers of other strains other than cartilage markers and ossification markers. It is a figure comparing with. In the differentiation induction group using either protocol, iPS cells of the same passage number derived from the same clone and maintained and cultured under the same feeder-free conditions using the Essential 8® Medium Kit are pluripotent. Used as stem cells. The expression level on the vertical axis is a value standardized by β-actin. 図18は、非特許文献1(Oldershawら)のプロトコルに従い得られた軟骨細胞のFACS解析結果を示す。いずれのプロトコルを用いた分化誘導群(分化誘導プロトコルを開始する前のiPS細胞)においても、またコントロール群においても、同一クローン由来で、かつEssential 8(登録商標) Medium Kitを用いた同一のフィーダーフリー条件下で維持培養された同一継代数のiPS細胞を多能性幹細胞として使用した。また、各抗体はAlexa Fluor(登録商標)647で標識したものを用いた。FIG. 18 shows the results of FACS analysis of chondrocytes obtained according to the protocol of Non-Patent Document 1 (Oldershaw et al.). The same feeder derived from the same clone and using the Essential 8® Medium Kit in the differentiation induction group (iPS cells before initiating the differentiation induction protocol) using either protocol and in the control group. IPS cells of the same passage number maintained and cultured under free conditions were used as pluripotent stem cells. In addition, each antibody used was labeled with Alexa Fluor (registered trademark) 647. 図19は、非特許文献2(Yamashitaら)のプロトコルに従い得られた軟骨細胞のFACS解析結果を示す。いずれのプロトコルを用いた分化誘導群(分化誘導プロトコルを開始する前のiPS細胞)においても、またコントロール群においても、同一クローン由来で、かつEssential 8(登録商標) Medium Kitを用いた同一のフィーダーフリー条件下で維持培養された同一継代数のiPS細胞を多能性幹細胞として使用した。また、各抗体はAlexa Fluor(登録商標)647で標識したものを用いた。FIG. 19 shows the results of FACS analysis of chondrocytes obtained according to the protocol of Non-Patent Document 2 (Yamashita et al.). The same feeder derived from the same clone and using the Essential 8® Medium Kit in the differentiation induction group (iPS cells before initiating the differentiation induction protocol) using either protocol and in the control group. IPS cells of the same passage number maintained and cultured under free conditions were used as pluripotent stem cells. In addition, each antibody used was labeled with Alexa Fluor (registered trademark) 647. 図20は、非特許文献2(Yamashitaら)のプロトコルに従い得られた軟骨細胞のFACS解析結果を示す。いずれのプロトコルを用いた分化誘導群(分化誘導プロトコルを開始する前のiPS細胞)においても、またコントロール群においても、同一クローン由来で、かつEssential 8(登録商標) Medium Kitを用いた同一のフィーダーフリー条件下で維持培養された同一継代数のiPS細胞を多能性幹細胞として使用した。また、各抗体はAlexa Fluor(登録商標)647で標識したものを用いた。FIG. 20 shows the results of FACS analysis of chondrocytes obtained according to the protocol of Non-Patent Document 2 (Yamashita et al.). The same feeder derived from the same clone and using the Essential 8® Medium Kit in the differentiation induction group (iPS cells before initiating the differentiation induction protocol) using either protocol and in the control group. IPS cells of the same passage number maintained and cultured under free conditions were used as pluripotent stem cells. In addition, each antibody used was labeled with Alexa Fluor (registered trademark) 647. 図21は、軟骨系マーカー(COL2A1, COL11A2, SOX5,9)の発現量についてTTNPBとその他のレチノイン酸受容体(RAR)アゴニストとを比較した図である。CHIRは2日間10μM投与し、TTNPBは連日100 nM投与した。縦軸の発現量はβアクチンで標準化した値である。FIG. 21 is a diagram comparing TTNPB with other retinoic acid receptor (RAR) agonists for the expression levels of cartilage markers (COL2A1, COL11A2, SOX5,9). CHIR was administered at 10 μM for 2 days, and TTNBP was administered at 100 nM daily. The expression level on the vertical axis is a value standardized by β-actin. 図22は、本発明に従い得られた軟骨細胞が移植されたSCID(Sevefe Combined ImmunoDeficiency)マウス膝関節の免疫染色写真である。左側の写真では移植後 8週目の大腿骨膝蓋大腿関節面(矢状断)の硝子軟骨がサフラニンOで赤く染色されており(中央の四角で囲まれた部分)、これを拡大した右側の写真では、本発明により得られたと考えられるヒト由来の軟骨細胞がビメンチンで緑色に染色されている。なお、青く染まっているのはDAPIで染色された細胞核で、ヒト・マウスの細胞ともに染色されている。FIG. 22 is an immunostaining photograph of a SCID (Sevefe Combined ImmunoDeficiency) mouse knee joint into which chondrocytes obtained according to the present invention have been transplanted. In the photo on the left, the hyaline cartilage of the femoral patellar femoral joint surface (sagittal cut) 8 weeks after transplantation is stained red with safranin O (the part surrounded by the central square), and this is enlarged on the right side. In the photograph, human-derived chondrocytes believed to have been obtained by the present invention are stained green with vimentin. The cells stained in blue are the cell nuclei stained with DAPI, and both human and mouse cells are stained.

本発明に係る軟骨細胞又はその前駆細胞の製造方法は、3μM超の濃度のGSK-3β阻害剤を含む培地で多能性幹細胞を培養する工程を含む。 The method for producing chondrocytes or progenitor cells thereof according to the present invention includes a step of culturing pluripotent stem cells in a medium containing a GSK-3β inhibitor having a concentration of more than 3 μM.

軟骨細胞は、コラーゲンやプロテオグリカンなど軟骨を構成する細胞外マトリックスを産生する細胞である。別の態様において、軟骨細胞は、COL2A1(II型コラーゲン), COL11A2(XI型コラーゲン), SOX5,6,9及びACAN(アグリカン)から成る群から選択される軟骨系マーカーを発現する細胞としても定義される。本明細書で使用する場合、軟骨細胞の「前駆細胞」という用語は、多能性幹細胞から誘導される細胞であって、軟骨細胞に分化可能な細胞を意味する。このような前駆細胞の集団には中内胚葉由来の細胞、例えば中胚葉、特に沿軸中胚葉及び/又は側板中胚葉、好ましくは沿軸中胚葉に由来する細胞が含まれ得る。 Chondrocytes are cells that produce extracellular matrix that constitutes cartilage, such as collagen and proteoglycans. In another embodiment, chondrocytes are also defined as cells expressing cartilage markers selected from the group consisting of COL2A1 (type II collagen), COL11A2 (type XI collagen), SOX5,6,9 and ACAN (aggrecan). Will be done. As used herein, the term "progenitor cell" of a chondrocyte means a cell derived from a pluripotent stem cell that is capable of differentiating into a chondrocyte. Such a population of progenitor cells can include cells derived from the mesoderm, such as paraxial mesoderm and / or lateral plate mesoderm, preferably paraxial mesoderm.

沿軸中胚葉細胞は、骨格筋、骨、軟骨へと分化する、原条の両側に存在する中胚葉系細胞である。沿軸中胚葉は分節化して体節を形成した後、腹内側の椎板と背外側の皮筋板に分化する。軟骨は椎板が更に分化したものである。中胚葉は沿軸中胚葉の他、脊索中胚葉、中間中胚葉、側板中胚葉等に分類することができる。 Paraxial mesoderm cells are mesoderm cells present on both sides of the primitive streak that differentiate into skeletal muscle, bone, and cartilage. The paraxial mesoderm segmentes to form a segment and then differentiates into the ventromedial vertebral plate and the dorsolateral skin muscle plate. Cartilage is a further differentiated vertebral plate. The mesoderm can be classified into paraxial mesoderm, spinal mesoderm, intermediate mesoderm, lateral plate mesoderm, and the like.

本発明で製造される軟骨細胞又はその前駆細胞は多能性幹細胞を出発材料として調製することができる。本発明で使用する多能性幹細胞としては、iPS細胞やES細胞のみならず、胚性生殖幹細胞(EG細胞)、体細胞由来ES(ntES)細胞などが例示される。しかしながら、GSK-3β阻害剤と、任意にRARアゴニストを含む培地において軟骨細胞又はその前駆細胞、例えば沿軸中胚葉に分化可能であるかぎり、どのような多能性幹細胞であっても本発明に使用することができる。 The chondrocytes produced in the present invention or progenitor cells thereof can be prepared using pluripotent stem cells as a starting material. Examples of pluripotent stem cells used in the present invention include not only iPS cells and ES cells, but also embryonic reproductive stem cells (EG cells) and somatic cell-derived ES (ntES) cells. However, any pluripotent stem cell can be used in the present invention as long as it can differentiate into chondrocytes or progenitor cells thereof, such as paraxial mesoderm, in a medium containing a GSK-3β inhibitor and optionally a RAR agonist. Can be used.

セリン・スレオニンキナーゼの一種であるグリコーゲン合成酵素 3には二種類のアイソフォーム、αとβが存在する。本明細書で使用する場合、「GSK-3β阻害剤」とはGSK-3βタンパク質のキナーゼ活性を阻害する物質を意味する。本発明の効果を損なわない限り、複数のGSK-3β阻害剤を使用してもよい。GSK-3β阻害剤として、例えば、CHIR(CHIR99021又はCHIR98014)、3F8、A 1070722、AR-A 014418、BIO、BIO-acetoxime、10Z-Hymenialdisine、Indirubin-3'-oxime、Kenpaullone、L803、L803-mts、MeBIO、NSC 693868、SB 216763、SB 415286、TC-G 24、TCS 2002、TCS 21311、TWS 119等が例示される。中でもCHIR99021が好ましい。 Glycogen synthase 3, a type of serine-threonine kinase, has two isoforms, α and β. As used herein, "GSK-3β inhibitor" means a substance that inhibits the kinase activity of the GSK-3β protein. Multiple GSK-3β inhibitors may be used as long as the effects of the present invention are not impaired. As GSK-3β inhibitors, for example, CHIR (CHIR99021 or CHIR98014), 3F8, A 1070722, AR-A 014418, BIO, BIO-acetoxime, 10Z-Hymenialdisine, Indirubin-3'-oxime, Kenpaullone, L803, L803-mts , MeBIO, NSC 693868, SB 216763, SB 415286, TC-G 24, TCS 2002, TCS 21311, TWS 119 and the like. Of these, CHIR99021 is preferable.

GSK-3β阻害剤は終濃度が3 μM超、例えば3〜20μM、好ましくは10μMとなるよう培地に添加される。20 μM以上でも多能性幹細胞を分化誘導することができるが、細胞の生存度が低下し得る。また、30 μM以上の濃度の場合、マーカーの種類によっては発現上昇が見られないこともある。 The GSK-3β inhibitor is added to the medium to a final concentration greater than 3 μM, such as 3-20 μM, preferably 10 μM. Pluripotent stem cells can be induced to differentiate even at 20 μM or more, but the viability of the cells can be reduced. In addition, at a concentration of 30 μM or higher, no increase in expression may be observed depending on the type of marker.

本発明で使用する培地は、本発明の効果を損なわないかぎり特に限定されないが、例えば、動物細胞の培養に用いられる基礎培地を用いることができる。基礎培地としては、例えばDulbecco's modified Eagle's Medium (DMEM)培地、Eagle's Minimum Essential Medium (EMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、Neurobasal Medium(ライフテクノロジーズ)、あるいはこれらの混合培地などが包含される。培地には、血清が含有されていてもよいし、あるいは無血清でもよい。必要に応じて、培地は、例えば、アルブミン、インスリン、トランスフェリン、セレン、脂肪酸、微量元素、β-メルカプトエタノール、チオールグリセロール、脂質、アミノ酸、L-グルタミン、非必須アミノ酸、ビタミン、増殖因子、GSK-3β阻害剤や RARアゴニスト以外の低分子化合物、抗生物質、抗酸化剤、緩衝剤、無機塩類、サイトカインなどの1つ以上の物質を含有してもよい。培地は適切な頻度で、例えば培養2日目以降毎日、GSK-3β阻害剤や RARアゴニストが所望の濃度となるよう調製された培地に交換され得る。その際、培養物をPBS等で洗浄してもよい。 The medium used in the present invention is not particularly limited as long as the effects of the present invention are not impaired, and for example, a basal medium used for culturing animal cells can be used. The basal medium includes, for example, Dulbecco's modified Eagle's Medium (DMEM) medium, Eagle's Minimum Essential Medium (EMEM) medium, Ham's F12 medium, RPMI 1640 medium, Fischer's medium, Neurobasal Medium (Life Technologies), or a mixture of these. Be done. The medium may contain serum or may be serum-free. If desired, the medium may be, for example, albumin, insulin, transferase, selenium, fatty acids, trace elements, β-mercaptoethanol, thiolglycerol, lipids, amino acids, L-glutamine, non-essential amino acids, vitamins, growth factors, GSK- It may contain one or more substances such as low molecular weight compounds other than 3β inhibitors and RAR agonists, antibiotics, antioxidants, buffers, inorganic salts, cytokines and the like. The medium can be replaced at an appropriate frequency, eg, daily after day 2 of culture, with medium prepared to the desired concentration of GSK-3β inhibitor or RAR agonist. At that time, the culture may be washed with PBS or the like.

本発明においては、培地を馴化するために、あるいは、培養中の多能性幹細胞の増殖をサポートするためにフィーダー細胞を使用することができる。別の態様において、本発明における培養はフィーダーフリー条件下で行ってもよい。培養は平面(単層)培養でも三次元培養でも行うことができるが、培養方法は目的とする細胞の種類によって適宜変更され得る。例えば、軟骨細胞は長期間平面培養することで細胞外マトリックス等の基質を産生する能力が低下したり、あるいは、脱分化型軟骨細胞になるため、途中で立体培養に変更することも考えられる。 In the present invention, feeder cells can be used to acclimate the medium or to support the proliferation of pluripotent stem cells in culture. In another embodiment, the culture in the present invention may be carried out under feeder-free conditions. The culture can be carried out by either a plane (monolayer) culture or a three-dimensional culture, but the culture method can be appropriately changed depending on the type of target cells. For example, chondrocytes may be changed to three-dimensional culture in the middle because the ability to produce substrates such as extracellular matrix is reduced by long-term planar culture, or they become dedifferentiated chondrocytes.

多能性幹細胞は、GSK-3β阻害剤を含む培地において所定の期間培養することにより軟骨細胞又はその前駆細胞へと分化誘導される。培養条件によっても異なるが、培養を1〜5日間程度行うことで多能性幹細胞を中内胚葉、更には沿軸中胚葉および側板中胚葉へと分化誘導することができる。細胞培養における温度等の諸条件は特に限定されるものではなく、一般的な条件(例えば、37℃,5%CO2下)でもよいし、あるいは目的に応じて適宜変更されたものでもよい。限定することを意図するものではないが、多能性幹細胞からの分化誘導は以下に列記するようなマーカー遺伝子の発現を指標として確認することができる。
・未分化マーカー:OCT3/4, NANOG
・中内胚葉マーカー:T, MIXL1
・中胚葉マーカー:TBX6, MEOX1, HAND1, OSR1
・軟骨系マーカー:COL2A1, COL11A2, SOX5,6,9, ACAN
・肥大化マーカー:COL10A1
・骨化マーカー:COL1A1, RUNX2
・神経外胚葉マーカー:SOX1
・内胚葉マーカー:SOX17
・心筋マーカー:NKX2-5
・血球血管芽細胞マーカー:VEGFα
Pluripotent stem cells are induced to differentiate into chondrocytes or progenitor cells thereof by culturing in a medium containing a GSK-3β inhibitor for a predetermined period of time. Although it depends on the culture conditions, pluripotent stem cells can be induced to differentiate into mesoderm, paraxial mesoderm, and lateral plate mesoderm by culturing for about 1 to 5 days. Various conditions such as temperature in cell culture are not particularly limited, and may be general conditions (for example, 37 ° C., under 5% CO 2 ), or may be appropriately changed according to the purpose. Although not intended to be limited, the induction of differentiation from pluripotent stem cells can be confirmed using the expression of marker genes as listed below as an index.
・ Undifferentiated markers: OCT3 / 4, NANOG
・ Medium endoderm marker: T, MIXL1
・ Mesoderm markers: TBX6, MEOX1, HAND1, OSR1
・ Cartilage markers: COL2A1, COL11A2, SOX5,6,9, ACAN
・ Hypertrophy marker: COL10A1
・ Ossification markers: COL1A1, RUNX2
・ Neuroectoderm marker: SOX1
・ Endoderm marker: SOX17
・ Myocardial marker: NKX2-5
・ Blood cell hemangioblast marker: VEGFα

例えば、多能性幹細胞をGSK-3β阻害剤の存在下で培養する際、培養開始から所定期間経過後、例えば数日の間に中内胚葉マーカーや中胚葉マーカーの発現の変化をモニタリングすることで、軟骨前駆細胞への分化誘導が経時的に生じていることを確認することができる。例えば、培養条件等によっても異なるが、多能性幹細胞をGSK-3β阻害剤の存在下で培養すると、培養1〜2日目頃に中内胚葉マーカーの発現が上昇し、培養3〜4日目頃に中内胚葉マーカーの発現が低下して中胚葉マーカーの発現が上昇し得る。そのため、中胚葉由来の細胞、例えば軟骨細胞への分化誘導が所望とされる場合、培地へのGSK-3β阻害剤の添加は中内胚葉マーカーの上昇を指標として中止することができる。 For example, when pluripotent stem cells are cultured in the presence of a GSK-3β inhibitor, changes in the expression of mesoderm markers and mesoderm markers should be monitored after a lapse of a predetermined period from the start of culture, for example, within a few days. Therefore, it can be confirmed that the induction of differentiation into cartilage progenitor cells occurs over time. For example, although it depends on the culture conditions, when pluripotent stem cells are cultured in the presence of a GSK-3β inhibitor, the expression of the mesoderm marker increases around the 1st to 2nd day of the culture, and the 3rd to 4th day of the culture. The expression of the mesoderm marker may decrease and the expression of the mesoderm marker may increase around the time. Therefore, when it is desired to induce differentiation into mesoderm-derived cells, for example, chondrocytes, the addition of the GSK-3β inhibitor to the medium can be stopped using the increase in the mesoderm marker as an index.

上記の基礎培地は、GSK-3β阻害剤に加えて、所望の分化誘導等を実現するためのその他の低分子化合物、好ましくはレチノイン酸受容体(RAR)アゴニストを更に含んでもよい。培地中に含めるべきその他の成分は適宜当業者が決定することができる。 In addition to the GSK-3β inhibitor, the above-mentioned basal medium may further contain other low-molecular-weight compounds for achieving desired differentiation induction and the like, preferably a retinoic acid receptor (RAR) agonist. Other components to be included in the medium can be appropriately determined by those skilled in the art.

ここで、レチノイン酸(RA)は細胞内の核内受容体に結合して種々の生理作用に関与することが知られている。例えば、レチノイン酸の核内受容体には、レチノイン酸受容体(retinoic acid receptor: RAR)とレチノイドX受容体(retinoid X receptor: RXR)があり、それぞれα、β、γのサブタイプが存在するが、RARγ選択的アゴニストは間葉系幹細胞が軟骨細胞へ分化するのを抑制するとの報告がある(Shimono K et al. Nat Med 2011(上掲))。一方、本願発明においては、GSK-3β阻害剤とRARアゴニストを併用することで、多能性幹細胞から軟骨細胞又はその前駆細胞への分化誘導を更に促進することができる。RARアゴニストは終濃度が1 nM〜10 μM、好ましくは10〜100 nM、より好ましくは100 nMとなるよう培地に添加されうる。しかしながら、これらの濃度はあくまでも例示であって、低分子化合物の濃度は所望とする分化誘導レベルに応じて当業者によって適宜調節され得る。 Here, retinoic acid (RA) is known to bind to intracellular nuclear receptors and participate in various physiological actions. For example, retinoic acid nuclear receptors include retinoic acid receptor (RAR) and retinoid X receptor (RXR), each of which has α, β, and γ subtypes. However, it has been reported that RARγ-selective agonists suppress the differentiation of mesenchymal stem cells into cartilage cells (Shimono K et al. Nat Med 2011 (above)). On the other hand, in the present invention, the combined use of a GSK-3β inhibitor and a RAR agonist can further promote the induction of differentiation of pluripotent stem cells into chondrocytes or progenitor cells thereof. The RAR agonist can be added to the medium to a final concentration of 1 nM to 10 μM, preferably 10 to 100 nM, more preferably 100 nM. However, these concentrations are merely examples, and the concentration of the low molecular weight compound can be appropriately adjusted by those skilled in the art depending on the desired level of differentiation induction.

GSK-3β阻害剤とRARアゴニストを併用する場合、いずれも培養当初から培地に添加されるのが好ましい。多能性幹細胞を軟骨細胞に分化する場合、GSK-3β阻害剤とRARアゴニストを含む培地で所定の期間、例えば1〜3日間、好ましくは2日間培養し、続いて、RARアゴニストを含み、GSK-3β阻害剤を含まない培地で更に所定の期間、例えば1日間以上、好ましくは2〜12日間、より好ましくは3〜7日間培養してもよい。 When a GSK-3β inhibitor and a RAR agonist are used in combination, it is preferable that both are added to the medium from the beginning of the culture. When pluripotent stem cells are differentiated into chondrocytes, they are cultured in a medium containing a GSK-3β inhibitor and a RAR agonist for a predetermined period of time, for example, 1 to 3 days, preferably 2 days, followed by GSK containing a RAR agonist. It may be further cultured in a medium containing no -3β inhibitor for a predetermined period of time, for example, for 1 day or longer, preferably 2 to 12 days, and more preferably 3 to 7 days.

本明細書で使用する場合、「RARアゴニスト」はRARα、RARβ又はRARγのいずれか、あるいは、これら全てに対するアゴニスト活性を有する化合物を意味する。限定されることを意図するものではないが、RARアゴニストは、例えば、TTNPB、AM580、AM80、9-cis レチノイン酸、オールトランス型レチノイン酸(ATRA)、LGD1550、E6060、、AGN193312、AM555S、CD2314、AGN193174、LE540、CD437、CD666、CD2325、SR11254、SR11363、SR11364、AGN193078、TTNN(Ro19-0645)、CD270、CD271、CD2665、SR3985、AGN193273、Ch55、2AGN190521、CD2366、AGN193109及びRe80からなる群より選択され得る。これらの低分子化合物の中でも、TTNPB、AM580、AM80、ATRA、9-cis-Retinoic AcidがRARアゴニストとして好ましい。 As used herein, "RAR agonist" means a compound having agonistic activity on any or all of RARα, RARβ or RARγ. Although not intended to be limited, RAR agonists include, for example, TTNPB, AM580, AM80, 9-cis retinoic acid, all-trans retinoic acid (ATRA), LGD1550, E6060, AGN193312, AM555S, CD2314, Selected from the group consisting of AGN193174, LE540, CD437, CD666, CD2325, SR11254, SR11363, SR11364, AGN193078, TTNN (Ro19-0645), CD270, CD271, CD2665, SR3985, AGN193273, Ch55, 2AGN190521, CD2366, AGN193109 and Re80. obtain. Among these low molecular weight compounds, TTNPB, AM580, AM80, ATRA and 9-cis-Retinoic Acid are preferable as RAR agonists.

GSK-3β阻害剤等で分化誘導された細胞を追加の培養工程にかけてもよく、例えば更なる分化、増殖、成熟を促進するために、軟骨細胞分化を増強し、軟骨細胞の増殖を引き起こし、あるいは軟骨基質産生を増加させるような化合物の存在下で培養することも意図される。 Cells that have been induced to differentiate with a GSK-3β inhibitor or the like may be subjected to an additional culture step, for example, to enhance chondrocyte differentiation, induce chondrocyte proliferation, or to promote further differentiation, proliferation, and maturation. It is also intended to be cultured in the presence of compounds that increase chondrocyte matrix production.

本発明に従い製造される軟骨細胞は、軟骨組織の修復、再建に利用することができる。このような軟骨組織としては、例えば関節軟骨、肋軟骨、甲状軟骨、気管軟骨、関節半月、関節円板、椎間円板、恥骨結合、喉頭蓋軟骨、外耳道軟骨、耳介軟骨等がある。本発明により製造された軟骨細胞は、種々の軟骨疾患、例えば高齢者の変形性関節症、外傷による関節軟骨欠損、小児の骨格形成異常、少耳症、口唇口蓋裂による鼻変形、離断性骨軟骨炎、外傷性損傷の治療等に使用されることが意図される。また、患者由来の多能性幹細胞を用いることで、本発明により得られた軟骨細胞を患部に自家移植することもできる。 The chondrocytes produced according to the present invention can be used for repair and reconstruction of cartilage tissue. Examples of such cartilage tissue include articular cartilage, costal cartilage, thyroid cartilage, tracheal cartilage, articular meniscus, articular disc, intervertebral disc, pubic symphysis, laryngeal cartilage, external auditory canal cartilage, and ear cartilage. The chondrocytes produced by the present invention have various cartilage diseases such as osteoarthritis in the elderly, articular cartilage defect due to trauma, skeletal dysplasia in children, hypotension, nasal deformity due to lip cleft, and osteochondritis. It is intended to be used for the treatment of osteochondritis, traumatic injuries, etc. In addition, by using pluripotent stem cells derived from a patient, the chondrocytes obtained by the present invention can be autologously transplanted into the affected area.

更に、得られた軟骨細胞は、軟骨形成を増強し、あるいは軟骨基質産生を増加させる医薬組成物中に含めてもよい。このような医薬組成物は、上記軟骨疾患の予防又は治療のために用いることができる。医薬組成物は、軟骨細胞に加え、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、細胞保護剤(例えばジメチルスルフォキシド(DMSO)や血清アルブミン)、抗生物質、pH調整剤、細胞の活性化や増殖又は分化誘導などを目的とした各種の成分(ビタミン類、サイトカイン、成長因子、ステロイド、骨誘導因子(BMP)等)を含んでもよい。対象となる被験動物はヒト、ウシ、ウマ、ブタ、ヒツジ、ヤギ、ネコ、イヌ、ウサギ、ラット、マウス等の哺乳動物である。 In addition, the resulting chondrocytes may be included in pharmaceutical compositions that enhance chondrogenesis or increase cartilage substrate production. Such a pharmaceutical composition can be used for the prevention or treatment of the cartilage disease. In addition to chondrocytes, pharmaceutical compositions include carriers, excipients, disintegrants, buffers, emulsifiers, suspending agents, soothing agents, stabilizers, preservatives, preservatives, cytoprotectants (eg, dimethylsulfoxide). (DMSO) and serum albumin), antibiotics, pH regulators, various components (vitamins, cytokines, growth factors, steroids, bone inducers (BMP), etc.) for the purpose of cell activation, proliferation or differentiation induction, etc. ) May be included. The target test animals are mammals such as humans, cows, horses, pigs, sheep, goats, cats, dogs, rabbits, rats, and mice.

別の態様において、本発明は更に、3 μM超の濃度のグリコーゲン合成酵素キナーゼ3β(GSK-3β)阻害剤を含む培地で多能性幹細胞を培養する工程を含む、多能性幹細胞を骨細胞又は筋細胞の製造方法を提供する。培地中に含めるべき成分は適宜当業者が決定することができる。 In another embodiment, the invention further comprises culturing pluripotent stem cells in a medium containing a glycogen synthase kinase kinase 3β (GSK-3β) inhibitor at a concentration greater than 3 μM. Alternatively, a method for producing muscle cells is provided. Those skilled in the art can appropriately determine the components to be included in the medium.

本発明は更に、軟骨細胞、骨細胞及び/又は筋肉細胞に関連する疾患の治療を必要とする被験者に対し、得られた細胞を投与することで当該疾患を治療する方法を提供する。標的部位への投与方法は特に限定されないが、例えば、組織欠損部等の患部に必要とされる細胞を注入等することが意図される。 The present invention further provides a method for treating a disease by administering the obtained cells to a subject who needs treatment for a disease related to chondrocytes, osteoocytes and / or muscle cells. The method of administration to the target site is not particularly limited, but it is intended, for example, to inject the required cells into the affected area such as a tissue defect.

更に別の態様において、本発明はGSK-3β阻害剤と、任意にRARアゴニストとを含む、軟骨細胞又はその前駆細胞を製造するためのキットを提供する。本発明のキットは更に、培地やその他の低分子化合物を含むこともできる。GSK-3β阻害剤と任意にRARアゴニストは、別々の容器に保存されていることが好ましいが、同一の容器中に保存されていてもよい。各容器は低分子化合物と一緒に予め培地を含んでいてもよい。本発明に係るキットは本開示にかかる分化誘導方法について記載した説明書又は表示を更に有していてもよい。このようなキットは主に試薬として提供されることが意図される。 In yet another aspect, the invention provides a kit for producing chondrocytes or progenitor cells thereof, comprising a GSK-3β inhibitor and optionally a RAR agonist. The kits of the invention can also further include media and other low molecular weight compounds. The GSK-3β inhibitor and optionally the RAR agonist are preferably stored in separate containers, but may be stored in the same container. Each container may pre-fill with medium along with the low molecular weight compounds. The kit according to the present invention may further have instructions or indications describing the differentiation-inducing method according to the present disclosure. Such kits are intended primarily provided as reagents.

本発明は更に、GSK-3β阻害剤と、任意にRARアゴニストとを含む、軟骨細胞又はその前駆細胞への分化誘導促進剤を提供する。 The present invention further provides an agent for inducing differentiation into chondrocytes or progenitor cells thereof, which comprises a GSK-3β inhibitor and optionally a RAR agonist.

以下に実施例を挙げて本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

(ヒトiPS細胞の樹立)
ヒトiPS細胞は、新生児表皮線維芽細胞(Lonza Japan社)にヒトOCT4, SOX2, KLF4, MYCの4遺伝子をpMXsレトロウイルスベクターを用いて導入し (Takahashi et al., Cell 2007)、樹立した(クローン名; 7F3955)。
(Establishment of human iPS cells)
Human iPS cells were established by introducing the four genes of human OCT4, SOX2, KLF4, and MYC into neonatal epidermal fibroblasts (Lonza Japan) using a pMXs retroviral vector (Takahashi et al., Cell 2007) (Takahashi et al., Cell 2007). Clone name; 7F3955).

(ヒトiPS細胞の維持およびフィーダーフリー培養への馴化)
前述の通りに樹立したヒトiPS細胞は、マウス胎仔由来線維芽細胞(MEF)にマイトマイシンC (Wako, 134-07911) による処理を行うことで作成したフィーダー細胞上で、StemSure(登録商標)D-MEM(High Glucose)with Phenol Red and Sodium Pyruvate (Wako, 197-16275) をベースとし、15% StemSure(登録商標) Serum Replacement (Wako, 197-16775), 2 mM L-Glutamine (Gibco, 25030-081), 1% Non-essential amino acid (Gibco, 11140-050), 50 U/ml Penicillinおよび50 ug/ml Streptomycin (Sigma, P4333), 0.1 mM β-mercaptoethanol (Gibco, 21985-023), 5 ng/ml ヒトFGF2 (オリエンタル酵母, 47079000) から成る培地で維持した。
(Maintenance of human iPS cells and adaptation to feeder-free culture)
Human iPS cells established as described above are StemSure® D- on feeder cells prepared by treating mouse embryo-derived fibroblasts (MEF) with mitomycin C (Wako, 134-07911). Based on MEM (High Glucose) with Phenol Red and Sodium Pyruvate (Wako, 197-16275), 15% StemSure® Serum Replacement (Wako, 197-16775), 2 mM L-Glutamine (Gibco, 25030-081) ), 1% Non-essential amino acid (Gibco, 11140-050), 50 U / ml Penicillin and 50 ug / ml Streptomycin (Sigma, P4333), 0.1 mM β-mercaptoethanol (Gibco, 21985-023), 5 ng / It was maintained in a medium consisting of ml human FGF2 (Oriental yeast, 47079000).

これらのフィーダー上で維持されたヒトiPS細胞を、マトリゲル(登録商標)基底膜マトリックス (Corning, 356234)でコーティングした培養ディッシュに撒き、Essential 8(登録商標) Medium Kit (Gibco, A1517001)あるいはEssential 8(登録商標) Flex Medium Kit (Gibco, A2858501) に50 U/ml Penicillinおよび50 ug/ml Streptomycin (Sigma, P4333)を加えた培地でフィーダーフリー培養を行い、5-10継代を行うことで同条件下でのフィーダーフリー培養に十分に馴化させた。 Human iPS cells maintained on these feeders are sprinkled on a culture dish coated with Matrigel® Basement Membrane Matrix (Corning, 356234) and Essential 8® Medium Kit (Gibco, A1517001) or Essential 8 Feeder-free culture was performed in a medium containing 50 U / ml Penicillin and 50 ug / ml Streptomycin (Sigma, P4333) to Flex Medium Kit (Gibco, A2858501), and the same was performed by 5-10 passages. Sufficiently acclimatized to feeder-free culture under conditions.

(軟骨細胞への分化誘導プロトコル)
35 mmディッシュ上の細胞数が1.0-2.0×106 個に達した段階でプロトコルを開始した。
(Protocol for inducing differentiation into chondrocytes)
The protocol was initiated when the number of cells on a 35 mm dish reached 1.0-2.0 × 10 6.

分化誘導プロトコルの基本培地は、DMEM/F-12, GlutaMAX(登録商標) supplement (Gibco, 10565-018)をベースとし、2% B27 supplement (Gibco, 17504-044), 1% ITS-X (Gibco, 51500-056), 1% Non-essential amino acid (Gibco, 11140-050), 50 ug/ml L(+)-Ascorbic Acid (ナカライテスク, 03420-52), 50 U/ml Penicillinおよび50 ug/ml Streptomycin (Sigma, P4333), 90 uM β-mercaptoethanol (Gibco, 21985-023)を含む組成から成った。 The basal medium for the differentiation induction protocol is based on DMEM / F-12, GlutaMAX® supplement (Gibco, 10565-018), 2% B27 supplement (Gibco, 17504-044), 1% ITS-X (Gibco). , 51500-056), 1% Non-essential amino acid (Gibco, 11140-050), 50 ug / ml L (+)-Ascorbic Acid (Nacalai Tesque, 03420-52), 50 U / ml Penicillin and 50 ug / It consisted of a composition containing ml Streptomycin (Sigma, P4333), 90 uM β-mercaptoethanol (Gibco, 21985-023).

この基本培地に、CHIR99021 (Cayman, 13122), TTNPB (Santa Cruz, 203303), AM580 (Santa Cruz, 203505), AM80 (Cayman, 71770), ATRA (Cayman, 11017), 9-cis-Retinoic Acid (Cayman, 14587) の各低分子化合物を投与期間や投与濃度を振り分けて加えることで、沿軸中胚葉及び/又は側板中胚葉、および軟骨細胞への分化誘導能を検討した。 CHIR99021 (Cayman, 13122), TTNPB (Santa Cruz, 203303), AM580 (Santa Cruz, 203505), AM80 (Cayman, 71770), ATRA (Cayman, 11017), 9-cis-Retinoic Acid (Cayman) , 14587) were added at different dose periods and concentrations to examine the ability to induce differentiation into paraxial mesoderm and / or lateral plate mesoderm and chondrocytes.

本実施例における各マーカーの解析にはリアルタイムRT-PCRやFluorescence Activated Cell Sorting (FACS)を用いた。リアルタイムRT-PCRにおける tRNAはTRI Reagent(コスモバイオ, TR118)を用いて回収し、Tissue Total RNA Mini Kit(チヨダサイエンス, FATRK 001)を用いて精製した。1.0 μgのtRNAをReverTra Ace qPCR RT Master Mix with gDNA Remover(東洋紡, FSQ-301)により逆転写してsingle-stranded cDNAを得た。THUNDERBIRD SYBR qPCR Mix(東洋紡, QPS-201)、各種プライマーを用いて定量PCRを行った。 Real-time RT-PCR and Fluorescence Activated Cell Sorting (FACS) were used for the analysis of each marker in this example. TRNA in real-time RT-PCR was recovered using TRI Reagent (Cosmo Bio, TR118) and purified using Tissue Total RNA Mini Kit (Chiyoda Science, FATRK 001). 1.0 μg of tRNA was reverse transcribed by ReverTra Ace qPCR RT Master Mix with gDNA Remover (Toyobo, FSQ-301) to obtain single-stranded cDNA. Quantitative PCR was performed using THUNDERBIRD SYBR qPCR Mix (Toyobo, QPS-201) and various primers.

FACSについては、対象の細胞サンプルをBD Pharmingen(登録商標) Transcription Factor Buffer Set (BD Pharmingen, 562574)を用いてプロトコル通りに処理し、Alexa Fluor 647 Mouse Anti-Sox9 (BD Pharmingen, 565493), Alexa Fluor 647 Mouse anti-Oct3/4 (BD Pharmingen, 560329), Alexa Fluor 647 Mouse anti-Human Nanog (BD Pharmingen, 561300)をメーカー推奨の濃度・反応時間で抗体処理を行った。続いてFACSAria(登録商標) Fusion cell sorter (BD Biosciences)を用いて各マーカーにつき10,000 cells×3セットのFACSを行い、陽性細胞率を算出した。 For FACS, target cell samples were treated according to the protocol using the BD Pharmingen® Transcription Factor Buffer Set (BD Pharmingen, 562574), Alexa Fluor 647 Mouse Anti-Sox9 (BD Pharmingen, 565493), Alexa Fluor. Antibody treatment was performed on 647 Mouse anti-Oct3 / 4 (BD Pharmingen, 560329) and Alexa Fluor 647 Mouse anti-Human Nanog (BD Pharmingen, 561300) at the concentration and reaction time recommended by the manufacturer. Subsequently, FACSAria (registered trademark) Fusion cell sorter (BD Biosciences) was used to perform FACS of 10,000 cells × 3 sets for each marker, and the positive cell rate was calculated.

実施例1:GSK-3β阻害剤単独の至適濃度の検討
中内胚葉マーカーであるT及びMIXL1を用い、GSK-3β阻害剤が多能性幹細胞の分化能に及ぼす影響を検討した。上記分化誘導プロトコルの基本培地にGSK-3β阻害剤を所定の濃度となるように添加した培地で、フィーダーフリー培養に馴化したヒトiPS細胞 (7F3955)の平面培養を行った。以降、特に断らないかぎり、ヒトiPS細胞は7F3955を使用したものとする。培地は、上記基本培地2mlに対しGSK-3β阻害剤の終濃度が当初と同じ濃度となるように添加したものと毎日交換した。このような条件のもと、1-4日間培養したところ、CHIR99021 の濃度を5-10 μMとした場合には濃度依存的に中内胚葉マーカーが上昇した(図1)。しかしながら、CHIR99021 20 μM以上ではcell viabilityが低下し, 30 μMではマーカーの上昇が見られず、なおかつ細胞がほぼ死滅した(結果は示さず)。
Example 1: Examining the optimum concentration of the GSK-3β inhibitor alone The effect of the GSK-3β inhibitor on the differentiation potential of pluripotent stem cells was investigated using the endoderm markers T and MIXL1. Planar culture of human iPS cells (7F3955) acclimatized to feeder-free culture was performed in a medium in which a GSK-3β inhibitor was added to a basal medium of the above differentiation induction protocol to a predetermined concentration. Hereinafter, unless otherwise specified, 7F3955 is used for human iPS cells. The medium was replaced daily with 2 ml of the above basal medium added so that the final concentration of the GSK-3β inhibitor was the same as the initial concentration. After culturing for 1-4 days under these conditions, the medium endoderm marker increased in a concentration-dependent manner when the concentration of CHIR99021 was 5-10 μM (Fig. 1). However, at CHIR99021 20 μM and above, cell viability decreased, and at 30 μM, no increase in markers was observed, and cells were almost killed (results not shown).

実施例2:GSK-3β阻害剤とRARアゴニストの併用効果の検討
特表2015-500630号公報(上掲)には、GSK-3β阻害剤としてのCHIR99021(3 μM)とRARアゴニストとしてのTTNPB(1 μM)の存在下でヒトiPS細胞が中間中胚葉細胞に分化したことが記載されている。本実施例では、GSK-3β阻害剤とRARアゴニストの併用が多能性幹細胞の分化能に及ぼす影響について検討した。
Example 2: Examination of the combined effect of a GSK-3β inhibitor and a RAR agonist In Japanese Patent Publication No. 2015-500630 (above), CHIR99021 (3 μM) as a GSK-3β inhibitor and TTNPB as a RAR agonist ( It is described that human iPS cells differentiated into intermediate mesoderm cells in the presence of 1 μM). In this example, the effect of the combined use of a GSK-3β inhibitor and a RAR agonist on the differentiation potential of pluripotent stem cells was investigated.

2−1:RARアゴニストの至適濃度についての検討
CHIR99021の濃度を10 μMとし、また、低分子化合物として更に、異なる濃度のTTNPB(1nM〜10 μM)を添加した点を除き、実施例1と同様の方法によりヒトiPS細胞を培養した。培養から1日経過後、培地を各低分子化合物の終濃度が当初と同じ濃度となるように調製したものと交換した。培養から2日後、培養物をPBSで2回洗浄し、それ以降はCHIR99021を添加せずに、上記基本培地にTTNPBの終濃度が当初と同じ濃度となるように添加したものと毎日交換し、計5日間培養した。
2-1: Examination of optimum concentration of RAR agonist
Human iPS cells were cultured by the same method as in Example 1 except that the concentration of CHIR99021 was 10 μM and a different concentration of TTNPB (1 nM to 10 μM) was further added as a low molecular weight compound. One day after culturing, the medium was replaced with one prepared so that the final concentration of each low molecular weight compound was the same as the initial concentration. Two days after culturing, the culture was washed twice with PBS, and thereafter, without adding CHIR99021, it was replaced daily with the basal medium added so that the final concentration of TTNPB was the same as the initial concentration. The cells were cultured for a total of 5 days.

培養物におけるマーカーの発現量を解析した。その結果、TTNPBはいずれの濃度でもCHIR99021との組み合わせで軟骨系のマーカーを上昇させることが明らかとなった(図2)。これらの低分子化合物の併用による軟骨系マーカーの上昇は特に、TTNPBの濃度が10〜100 nMの場合に最も顕著であった。しかしながら、それ以上の濃度では一部の軟骨系マーカーで値の減少が見られた。また培養2日後における中内胚葉マーカー値は、CHIR99021投与単独の場合と比較して、TTNPBを投与した場合、濃度依存的に低下が見られた(図3)。理論に拘束されることを意図するものではないが、この結果は、CHIR99021投与単独の場合と比較して、TTNPBを併用した場合、培養2日後の時点で細胞が中内胚葉よりもより先の段階に分化していることを示しているとも考えられる。 The expression level of the marker in the culture was analyzed. As a result, it was clarified that TTNPB increased cartilage markers in combination with CHIR99021 at any concentration (Fig. 2). The increase in cartilage markers due to the combined use of these low molecular weight compounds was particularly remarkable when the concentration of TTNPB was 10 to 100 nM. However, at higher concentrations, some cartilage markers showed a decrease in value. In addition, the endoderm marker value after 2 days of culturing was decreased in a concentration-dependent manner when TTNPB was administered as compared with the case where CHIR99021 was administered alone (Fig. 3). Although not intended to be bound by theory, the results show that when TTNPB is used in combination compared to CHIR99021 alone, the cells are ahead of the endoderm at 2 days of culture. It is also considered to indicate that it is differentiated into stages.

以上の結果から、軟骨細胞への分化誘導を確実にするためには、GSK-3β阻害剤と組み合わされるRARアゴニストの濃度を調節することが重要と考えられる。 From the above results, it is considered important to adjust the concentration of RAR agonist combined with GSK-3β inhibitor in order to ensure the induction of differentiation into chondrocytes.

2−2:RARアゴニストを投与するタイミングについての検討
CHIR99021を10 μMに、そしてTTNPBの濃度を100 nMに固定した条件でTTNPBを投与するタイミングについて検討した。サンプルは、2−1と同様に培養0日目から毎日同じ濃度のTTNPBを添加して得られた培養物と、培養2日目に初めてTTNPBを添加し、その後毎日同じ濃度で添加して得られた培養物と、培養3日目に初めてTTNPBを添加し、その後毎日同じ濃度で添加して得られた培養物の3種類を準備した。なお、CHIR99021はいずれの培養においても2−1と同様に培養2日目の培地交換のタイミングで投与を終了した。各サンプルを比較したところ、培養当初よりTTNPBを添加した方が軟骨系マーカーの上昇が良好であった(図4)。
2-2: Examination of timing of administration of RAR agonist
The timing of administration of TTNPB was investigated under the condition that CHIR99021 was fixed at 10 μM and the concentration of TTNPB was fixed at 100 nM. The sample was obtained by adding TTNPB at the same concentration every day from the 0th day of culture as in 2-1 and adding TTNPB for the first time on the 2nd day of culture and then adding at the same concentration every day. Three kinds of the obtained cultures and the cultures obtained by adding TTNPB for the first time on the third day of the culture and then adding the same concentration every day were prepared. In all cultures, CHIR99021 was administered at the timing of medium replacement on the second day of culture, as in 2-1. When each sample was compared, the increase of cartilage markers was better when TTNPB was added from the beginning of the culture (Fig. 4).

培地中に10μMのCHIR99021を培養初日から培養2日目の培地の交換のタイミングまで、そして、100 nMのTTNPBを毎日添加した上記サンプルにおける軟骨系マーカーの経時的な変化を調べた。14日間培養したサンプルを毎日同じタイミングで回収し、それぞれについて種々のマーカーの変化を解析したところ、軟骨系マーカーの値は培養から4〜5日以降で急激な上昇が見られた(図5及び6)。一方、軟骨の肥大分化を示す肥大化マーカーは平面培養実施中に値の上昇は認めなかった(図7)。それ以前については、培養1〜2日にかけて中内胚葉マーカーが上昇し、培養2〜4日にかけて沿軸中胚葉および中胚葉マーカーが上昇した(それぞれ、図8及び図9)。この結果から、本発明の培養条件のもとでは継時的に段階的な分化誘導が進行していると考えられる。 The change over time of the cartilage marker in the above sample to which 10 μM CHIR99021 was added to the medium from the first day of the culture to the timing of the medium change on the second day of the culture and 100 nM of TTNBP was added daily was examined. Samples cultured for 14 days were collected at the same timing every day, and changes in various markers were analyzed for each. As a result, the values of cartilage markers showed a sharp increase 4 to 5 days after the culture (Fig. 5 and FIG. 5). 6). On the other hand, no increase in the value of the hypertrophy marker indicating cartilage hypertrophy differentiation was observed during the plane culture (Fig. 7). Prior to that, the mesoderm markers increased from 1 to 2 days of culture, and the paraxial mesoderm and mesoderm markers increased from 2 to 4 days of culture (FIGS. 8 and 9, respectively). From this result, it is considered that the stepwise differentiation induction is progressing over time under the culture conditions of the present invention.

2−3:GSK-3β阻害剤の至適濃度についての検討
異なる濃度のCHIR99021と100 nMのTTNPBを添加した点を除き、2−1と同様の方法によりヒトiPS細胞を培養した。培養から1日経過後、培地を各低分子化合物の終濃度が当初と同じ濃度となるように調製したものと交換した。培養から2日後、培養物をPBSで2回洗浄し、それ以降はCHIR99021を添加せずに、上記基本培地にTTNPBの終濃度が当初と同じ濃度となるように添加したものと毎日交換し、計5日間培養した。その結果、CHIR99021は3 μM超、特に5〜10 μMの濃度のときにTTNPBとの組み合わせで軟骨系のマーカーを上昇させることが明らかとなった。20 μMの濃度では一部の軟骨系マーカーで値の減少が見られた。5日間培養したときの結果を図10に示す。
2-3: Examination of the optimum concentration of GSK-3β inhibitor Human iPS cells were cultured by the same method as in 2-1 except that CHIR99021 and 100 nM TTNPB were added at different concentrations. One day after culturing, the medium was replaced with one prepared so that the final concentration of each low molecular weight compound was the same as the initial concentration. Two days after culturing, the culture was washed twice with PBS, and thereafter, without adding CHIR99021, it was replaced daily with the basal medium added so that the final concentration of TTNPB was the same as the initial concentration. The cells were cultured for a total of 5 days. As a result, it was clarified that CHIR99021 raises cartilage markers in combination with TTNPB at a concentration of more than 3 μM, especially 5 to 10 μM. At a concentration of 20 μM, some cartilage markers showed a decrease in value. The results after culturing for 5 days are shown in FIG.

また、CHIR99021は1 μMから20 μMにかけて濃度依存的に中内胚葉マーカーを上昇させた(図11)。 In addition, CHIR99021 increased the mesoendoderm marker from 1 μM to 20 μM in a concentration-dependent manner (Fig. 11).

軟骨系のマーカーの上昇は特に5〜10μMの濃度のときに顕著であった(図12)。ここで、図12に示したCHIR99021が3μMの濃度であるときの条件は、特表2015-500630号公報(上掲)の実施例に記載の濃度と完全に一致している。また、3 μMのCHIR99021は、その前後の濃度と比較して中間中胚葉マーカーであるOSR1を顕著に上昇させた(図13)。これらの結果から、多能性幹細胞は、CHIR99021の濃度が3μM超の場合には軟骨系細胞へと分化誘導され、この濃度以下の場合には、特表2015-500630号公報(上掲)に記載のとおり、中間中胚葉へと分化誘導されるものと考えられる。 The elevation of cartilage markers was particularly pronounced at concentrations of 5-10 μM (Fig. 12). Here, the conditions when CHIR99021 shown in FIG. 12 has a concentration of 3 μM are completely in agreement with the concentration described in the examples of Japanese Patent Publication No. 2015-500630 (above). In addition, 3 μM CHIR99021 markedly increased the intermediate mesoderm marker OSR1 as compared with the concentrations before and after that (Fig. 13). From these results, pluripotent stem cells are induced to differentiate into cartilage cells when the concentration of CHIR99021 is more than 3 μM, and when the concentration is less than this concentration, it is published in JP-A-2015-500630 (above). As described, it is considered that differentiation is induced into the intermediate mesoderm.

2−4:GSK-3β阻害剤を投与する至適期間についての検討
CHIR99021を10 μMに、そしてTTNPBの濃度を100 nMに固定した条件でCHIR99021を投与する至適期間について検討した。本実験では、CHIR99021の投与期間を0〜5日間で振り分けて、各細胞培地に投与された。CHIR99021投与終了時には培養物をPBSで2回洗浄し、それ以降はCHIR99021を添加せずに、上記基本培地にTTNPBの終濃度が100 nMとなるように添加したものを毎日交換し、計5日間培養した。結果を図14に示す。
2-4: Examination of the optimal period for administration of GSK-3β inhibitor
The optimal duration of administration of CHIR99021 was investigated under the condition that CHIR99021 was fixed at 10 μM and the concentration of TTNPB was fixed at 100 nM. In this experiment, the administration period of CHIR99021 was divided into 0 to 5 days, and each cell medium was administered. At the end of CHIR99021 administration, the culture was washed twice with PBS, and thereafter, without adding CHIR99021, the basal medium added so that the final concentration of TTNPB was 100 nM was replaced daily for a total of 5 days. It was cultured. The results are shown in FIG.

図14に示した結果から明らかなとおり、CHIR99021を2日間投与したサンプルにおいて軟骨系マーカーの上昇が最も良好であった。 As is clear from the results shown in FIG. 14, the elevation of cartilage markers was the best in the sample to which CHIR99021 was administered for 2 days.

以上の結果から、CHIR 10 μMを培養から2日間、そしてTTNPB 100 nMを連日投与し、4日以上培養する条件がヒトiPS細胞を軟骨細胞へ分化誘導するのに最適な条件と考えられる。同様の傾向は、他のヒトiPS細胞クローンやマウスES細胞でも確認された。なお、確認を行った他のヒトiPS細胞クローンは、同意を得たボランティアより採取した成人末梢血にセンダイウイルスベクターを用いてヒトOCT4, SOX2, KLF4, MYCの4遺伝子を導入する (Masaki et al., Development 2015)ことで樹立したものである(クローン名; PB001, PB004)。マウスES細胞は以下の方法に従い維持され、フィーダーフリー培養への馴化が行われた。 From the above results, it is considered that the optimum condition for inducing the differentiation of human iPS cells into chondrocytes is that CHIR 10 μM is administered for 2 days after culturing and TTNPB 100 nM is administered daily for 4 days or more. Similar trends were confirmed in other human iPS cell clones and mouse ES cells. For the other confirmed human iPS cell clones, the four genes of human OCT4, SOX2, KLF4, and MYC were introduced into adult peripheral blood collected from volunteers who obtained consent using the Sendai virus vector (Masaki et al). ., Development 2015) It was established by (clone name; PB001, PB004). Mouse ES cells were maintained according to the following method and acclimated to feeder-free culture.

マウス胎仔由来線維芽細胞(MEF)にマイトマイシンC処理を行うことで作成したフィーダー細胞上で、StemSure(登録商標) D-MEM (High Glucose) with Phenol Red and Sodium Pyruvate (Wako, 197-16275) をベースとし、15% StemSure(登録商標) Serum Replacement (Wako, 197-16775), 2 mM L-Glutamine (Gibco, 25030-081), 1% Non-essential amino acid (Gibco, 11140-050), 50 U/ml Penicillinおよび50 ug/ml Streptomycin (Sigma, P4333), 0.1 mM β-mercaptoethanol (Gibco, 21985-023), 103 units/ml マウスLIF (Wako, 199-16051) を含む培地で維持した。 StemSure® D-MEM (High Glucose) with Phenol Red and Sodium Pyruvate (Wako, 197-16275) was applied on feeder cells prepared by treating mouse embryonic fibroblasts (MEF) with mitomycin C. Based on 15% StemSure® Serum Replacement (Wako, 197-16775), 2 mM L-Glutamine (Gibco, 25030-081), 1% Non-essential amino acid (Gibco, 11140-050), 50 U It was maintained in medium containing / ml Penicillin and 50 ug / ml Streptomycin (Sigma, P4333), 0.1 mM β-mercaptoethanol (Gibco, 21985-023), 10 3 units / ml mouse LIF (Wako, 199-16051).

これらのフィーダー上で維持されたマウスES細胞を、ゼラチンでコーティングした培養ディッシュに撒き、DMEM/F-12, GlutaMAX(登録商標) supplement (Gibco, 10565-018)とNeurobasal Medium (Gibco, 21103-049)の1:1混合培地をベースとし、0.5% N2 supplement (Gibco, 17502-048), 1% B27 supplement (Gibco, 17504-044), 25 ug/ml BSA fraction V (Wako, 015-23295), 50 U/ml Penicillinおよび50 ug/ml Streptomycin (Sigma, P4333), 103 units/ml マウスLIF (Wako, 199-16051), 1 uM PD0325901 (Wako, 163-24001), and 3 uM CHIR99021 (Cayman, 13122)を加えた培地でのフィーダーフリー培養を行い、5-10継代を行うことで同条件下でのフィーダーフリー培養に十分に馴化させた(Silva J et al., PLoS Biol 2008. and Ying QL et al., Nature 2008)。 Mouse ES cells maintained on these feeders were sprinkled on a gelatin-coated culture dish in DMEM / F-12, GlutaMAX® supplement (Gibco, 10565-018) and Neurobasal Medium (Gibco, 21103-049). ) 1: 1 mixed medium, 0.5% N2 supplement (Gibco, 17502-048), 1% B27 supplement (Gibco, 17504-044), 25 ug / ml BSA fraction V (Wako, 015-23295), 50 U / ml Penicillin and 50 ug / ml Streptomycin (Sigma, P4333), 10 3 units / ml Mouse LIF (Wako, 199-16051), 1 uM PD0325901 (Wako, 163-24001), and 3 uM CHIR99021 (Cayman, Feeder-free culture was performed in a medium supplemented with 13122), and 5-10 passages were sufficiently acclimatized to the feeder-free culture under the same conditions (Silva J et al., PLoS Biol 2008. and Ying). QL et al., Nature 2008).

実施例3:サイトカインを用いた分化誘導法との比較
3−1:リアルタイムRT-PCRによる比較
本発明に係る分化誘導方法と、非特許文献1(Oldershaw)及び非特許文献2(Yamashita)に記載されているようなサイトカインを用いた従来の分化誘導法とを比較した。本発明については実施例2で決定した最適な分化誘導条件を用いた。培養は最長9日間行った。一方、従来技術については、各非特許文献に記載のプロトコルに従い分化誘導を行った。Oldershawのサンプルについては13日間、そしてYamashitaのサンプルについては14日間それぞれ培養した。各群の条件をできるだけ同一にする為に、いずれのプロトコルにおいても、同一クローン由来で、かつEssential 8(登録商標) Medium Kitを用いた同一のフィーダーフリー条件下で維持培養された同一継代数のiPS細胞を使用して比較実験を行った。各サンプルをリアルタイムRT-PCRにかけた結果を図15及び16に示す。図15に示すとおり、本発明に係る分化誘導方法は従来のプロトコルよりも、軟骨系マーカーの上昇が良好であった。一方、Yamashitaらのプロトコルで得られたサンプルにおいては著明な骨化マーカーの上昇が確認された(図16)。また、その他のマーカーについても解析したところ、本発明の分化誘導法の方が従来技術よりも概して低値であった(図17)。
Example 3: Comparison with differentiation induction method using cytokines 3-1: Comparison by real-time RT-PCR The differentiation induction method according to the present invention is described in Non-Patent Document 1 (Oldershaw) and Non-Patent Document 2 (Yamashita). It was compared with the conventional differentiation induction method using cytokines as described above. For the present invention, the optimum differentiation-inducing conditions determined in Example 2 were used. Culturing was carried out for a maximum of 9 days. On the other hand, with respect to the prior art, differentiation induction was performed according to the protocol described in each non-patent document. Oldershaw samples were cultured for 13 days, and Yamashita samples were cultured for 14 days. In order to make the conditions of each group as similar as possible, in each protocol, the same number of passages derived from the same clone and maintained and cultured under the same feeder-free conditions using the Essential 8® Medium Kit. A comparative experiment was performed using iPS cells. The results of real-time RT-PCR of each sample are shown in FIGS. 15 and 16. As shown in FIG. 15, the differentiation-inducing method according to the present invention had a better elevation of cartilage markers than the conventional protocol. On the other hand, a marked increase in ossification markers was confirmed in the samples obtained by the protocol of Yamashita et al. (Fig. 16). Further, when other markers were also analyzed, the value of the differentiation induction method of the present invention was generally lower than that of the prior art (FIG. 17).

なお、軟骨細胞への分化にとって好ましくないマーカー、例えば肥大化マーカー、神経外胚葉マーカー、内胚葉マーカーは正常組織よりも十分に低値であった(結果は示さず)。 Markers unfavorable for chondrocyte differentiation, such as hypertrophy markers, neuroectoderm markers, and endoderm markers, were sufficiently lower than normal tissues (results not shown).

3−2:FACSによる比較
上記の各サンプルをFACSにかけた結果、従来技術のサンプルは平面培養終了の時点で、OCT3/4, NANOGといった未分化マーカー陽性細胞の残存が見られた(図18及び19)。これは、従来技術のサンプルでは均一な分化誘導が実現できていないことを示している。このような細胞をこのまま移植に用いた際には、腫瘍化のリスクを否定できない。但し、Yamashitaらは、平面培養終了後にさらに長期間浮遊培養を行ってから移植を行っており、その限りでは腫瘍化を生じた移植例はなかったと報告している。
3-2: Comparison by FACS As a result of applying each of the above samples to FACS, undifferentiated marker-positive cells such as OCT3 / 4 and NANOG remained in the prior art sample at the end of planar culture (Fig. 18 and FIG. 19). This indicates that uniform differentiation induction has not been achieved with the samples of the prior art. When such cells are used for transplantation as they are, the risk of tumorigenesis cannot be ruled out. However, Yamashita et al. Reported that transplantation was performed after suspension culture was performed for a longer period of time after the completion of planar culture, and as far as this was concerned, there were no transplant cases that caused tumorigenesis.

一方、本発明の分化誘導プロトコルでは、9日間の平面培養終了の時点で、SOX9陽性細胞率が97.9%と非常に効率よく軟骨細胞に分化誘導できている上に、OCT3/4, NANOGといった未分化マーカー陽性細胞の残存は一切見られなかった(図20)。 On the other hand, in the differentiation induction protocol of the present invention, at the end of 9-day planar culture, the SOX9-positive cell rate was 97.9%, which was very efficient in inducing differentiation into chondrocytes, and OCT3 / 4, NANOG, etc. were not yet available. No residual differentiation marker-positive cells were observed (Fig. 20).

実施例4:その他のRARアゴニストについての検討
TTNPB以外のRARアゴニストについてもGSK-3β阻害剤との併用効果を確認した。RARアゴニストとして、AM580 (Santa Cruz, 203505), AM80 (Cayman, 71770), ATRA (Cayman, 11017), 9-cis-Retinoic Acid (Cayman, 14587)を使用した。各RARアゴニストの濃度は100nMとし、その他の分化誘導条件は実施例2で決定した最適なものを用いた。その結果、いずれのRARアゴニストを用いた場合でもTTNPBに匹敵する軟骨系マーカーの上昇が認められた(図21)。
Example 4: Examination of other RAR agonists
The combined effect of RAR agonists other than TTNPB with GSK-3β inhibitors was also confirmed. AM580 (Santa Cruz, 203505), AM80 (Cayman, 71770), ATRA (Cayman, 11017), 9-cis-Retinoic Acid (Cayman, 14587) were used as RAR agonists. The concentration of each RAR agonist was 100 nM, and the other optimal differentiation-inducing conditions determined in Example 2 were used. As a result, an increase in cartilage markers comparable to TTNPB was observed regardless of which RAR agonist was used (Fig. 21).

実施例5:SCID(Severe Combined ImmunoDeficiency)マウス膝関節への移植および移植後の組織学的検討
実施例2で最適であると決定されたプロトコルの9日目に細胞を解離し、75mm Transwell(登録商標) with 0.4um Pore Polycarbonate Membrane Insert, Sterile (Corning, 3419)上に置いた内径3.4 mmのクローニングリング(IWAKI, RING-05)内にプロトコル基本培地で1.7×106個の細胞を懸濁した懸濁液を入れた。このままプロトコル基本培地で1週間培養し、ディスクを形成した(Saito et al., Biomed Res 2015. を一部改変)。
Example 5: SCID (Severe Combined ImmunoDeficiency) Mouse Knee Joint Transplantation and Histological Examination After Transplantation Cell dissociation was performed on day 9 of the protocol determined to be optimal in Example 2, and 75 mm Transwell (registration). 1.7 × 10 6 cells were suspended in protocol basal medium in a 3.4 mm inner diameter cloning ring (IWAKI, RING-05) placed on 0.4um Pore Polycarbonate Membrane Insert, Sterile (Corning, 3419) with 0.4um Pore Polycarbonate Membrane Insert, Sterile (Corning, 3419). The suspension was added. As it was, it was cultured in the protocol basal medium for 1 week to form a disk (Saito et al., Biomed Res 2015. was partially modified).

形成したディスクをSCIDマウスの大腿骨膝蓋大腿関節に移植した。移植から8週後に関節面(矢状断)について、硝子軟骨を赤く染めるサフラニンOで染色した結果を図22の左側に示す。図22の右側は、抗ヒトビメンチン/DAPIで二重染色した移植部位(左側の図の四角で覆われた箇所)の拡大写真である。これらの結果は、サフラニンO染色陽性領域が綺麗にヒト細胞由来であり、また、移植したヒト細胞が生着したことを示している。移植実験を実施した個体に、奇形腫やその他の腫瘍形成は認めた例はなかった。要するに、本発明によれば、サイトカイン等を用いていた従来の分化誘導方法と比較して、より短期間の培養でより良好な分化誘導効率で多能性幹細胞を軟骨細胞又はその前駆細胞へと分化誘導することができるだけでなく、腫瘍化のリスクが極めて低く、また、生着性が高い軟骨細胞を提供することが可能になる。 The formed disc was transplanted into the femoral patellofemoral joint of SCID mice. The results of staining the articular surface (sagittal section) with safranin O, which stains hyaline cartilage red, 8 weeks after transplantation are shown on the left side of FIG. 22. The right side of FIG. 22 is an enlarged photograph of the transplantation site (the part covered by the square in the left figure) double-stained with anti-human vimentin / DAPI. These results indicate that the safranin O-staining positive region was clearly derived from human cells, and that the transplanted human cells were engrafted. No teratoma or other tumorigenesis was observed in the individuals who underwent the transplantation experiment. In short, according to the present invention, pluripotent stem cells become chondrocytes or progenitor cells thereof with better differentiation induction efficiency in a shorter period of culture as compared with conventional differentiation induction methods using cytokines and the like. Not only can it induce differentiation, but it also makes it possible to provide chondrocytes with extremely low risk of tumorigenesis and high engraftment.

Claims (7)

1)3 μM超〜20 μMの濃度のグリコーゲン合成酵素キナーゼ3β(GSK-3β)阻害剤と、レチノイン酸受容体(RAR)アゴニストとを含む培地で多能性幹細胞を培養する工程と、
2)多能性幹細胞の中内胚葉マーカーの上昇が確認された後、培養された細胞を、RARアゴニストを含み、GSK-3β阻害剤を含まない培地で更に培養する工程を含む、軟骨細胞又はその前駆細胞の製造方法。
1) A step of culturing pluripotent stem cells in a medium containing a glycogen synthase kinase kinase 3β (GSK-3β) inhibitor at a concentration of more than 3 μM to 20 μM and a retinoic acid receptor (RAR) agonist.
2) Chondrocytes or cells comprising a step of further culturing the cultured cells in a medium containing a RAR agonist and not containing a GSK-3β inhibitor after the elevation of the endoderm marker of pluripotent stem cells is confirmed. A method for producing the progenitor cell.
前記1)の培養工程の期間が最長3日間であり、前記2)の培養工程の期間が最長12日間である、請求項に記載の方法。 Wherein 1) is a period of the culturing process of up to three days, the duration of the culturing step of the two) is up to 12 days The method of claim 1. 前記1)の培養工程の期間が1〜3日間であり、前記2)の培養工程の期間が1〜12日間である、請求項2に記載の方法。The method according to claim 2, wherein the period of the culturing step of 1) is 1 to 3 days, and the period of the culturing step of 2) is 1 to 12 days. GSK-3β阻害剤がCHIR-99021、CHIR-98014、3F8、A 1070722、AR-A 014418、BIO、BIO-acetoxime、10Z-Hymenialdisine、Indirubin-3'-oxime、Kenpaullone、L803、L803-mts、MeBIO、NSC 693868、SB 216763、SB 415286、TC-G 24、TCS 2002、TCS 21311及びTWS 119から成る群から選択される1又は複数の化合物である、請求項1〜のいずれか1項に記載の製造方法。 GSK-3β inhibitors are CHIR-99021, CHIR-98014, 3F8, A 1070722, AR-A 014418, BIO, BIO-acetoxime, 10Z-Hymenialdisine, Indirubin-3'-oxime, Kenpaullone, L803, L803-mts, MeBIO , NSC 693868, SB 216763, which is SB 415286, TC-G 24, TCS 2002, 1 or more compounds selected from the group consisting of TCS 21311 and TWS 119, according to any one of claims 1 to 3 Manufacturing method. RARアゴニストがTTNPB、AM580、AM80、9-cis レチノイン酸、オールトランス型レチノイン酸(ATRA)、LGD1550、E6060、AGN193312、AM555S、CD2314、AGN193174、LE540、CD437、CD666、CD2325、SR11254、SR11363、SR11364、AGN193078、TTNN(Ro19-0645)、CD270、CD271、CD2665、SR3985、AGN193273、Ch55、2AGN190521、CD2366、AGN193109及びRe80からなる群より選択される、請求項1〜4のいずれか1項に記載の方法。 RAR agonists are TTNPB, AM580, AM80, 9-cis retinoic acid, all-trans retinoic acid (ATRA), LGD1550, E6060, AGN193312, AM555S, CD2314, AGN193174, LE540, CD437, CD666, CD2325, SR11254, SR11363, SR11364, The method according to any one of claims 1 to 4 , which is selected from the group consisting of AGN193078, TTNN (Ro19-0645), CD270, CD271, CD2665, SR3985, AGN193273, Ch55, 2AGN190521, CD2366, AGN193109 and Re80. .. 培地中のRARアゴニストの濃度が1 nM〜10 μMである、請求項1〜5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5 , wherein the concentration of the RAR agonist in the medium is 1 nM to 10 μM. 前記前駆細胞が沿軸中胚葉及び/又は側板中胚葉細胞である、請求項1〜のいずれか1項に記載の方法。 The method according to any one of claims 1 to 6 , wherein the progenitor cells are paraxial mesoderm and / or lateral plate mesoderm cells.
JP2016163872A 2016-08-24 2016-08-24 How to make chondrocytes Active JP6864335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016163872A JP6864335B2 (en) 2016-08-24 2016-08-24 How to make chondrocytes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016163872A JP6864335B2 (en) 2016-08-24 2016-08-24 How to make chondrocytes

Publications (2)

Publication Number Publication Date
JP2018029522A JP2018029522A (en) 2018-03-01
JP6864335B2 true JP6864335B2 (en) 2021-04-28

Family

ID=61302786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016163872A Active JP6864335B2 (en) 2016-08-24 2016-08-24 How to make chondrocytes

Country Status (1)

Country Link
JP (1) JP6864335B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3141455A1 (en) * 2019-05-20 2020-11-26 Ajinomoto Co., Inc. Expansion culture method for cartilage or bone precursor cells
CN115369078A (en) * 2022-08-19 2022-11-22 创芯国际生物科技(广州)有限公司 Cartilage organoid induction culture medium and induction method

Also Published As

Publication number Publication date
JP2018029522A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
US20230330152A1 (en) Methods and compositions for generating chondrocyte lineage cells and/or cartilage like tissue
JP7458012B2 (en) Method for inducing differentiation from intermediate mesoderm cells to renal progenitor cells, and method for inducing differentiation from pluripotent stem cells to renal progenitor cells
US9725697B2 (en) Chondrogenic progenitor cells, protocol for derivation of cells and uses thereof
JPWO2014200115A1 (en) Method for producing renal progenitor cells and medicament containing renal progenitor cells
JP6694215B2 (en) New chondrocyte induction method
JPWO2012173207A1 (en) Method for inducing differentiation into retinal cells
AU2011236653A1 (en) Chondrogenic progenitor cells, protocol for derivation of cells and uses thereof
JP2017502071A (en) Stem cells derived from trophoblast basement layer and cell therapeutic agent containing the same
KR102415441B1 (en) Culture medium for mesenchymal stem cells
JP6864335B2 (en) How to make chondrocytes
WO2021045217A1 (en) Method for producing cell aggregate including glial progenitor cells
JP2022189188A (en) Method for producing mesenchymal stem cell
Chen et al. The potential use of platelet-rich plasma to reconstruct the microtia chondrocyte in human auricular cartilage regeneration
CN117836404A (en) Method for producing kidney interstitial precursor cells, erythropoietin-producing cells, and method for producing renin-producing cells
Handorf Sequential growth factor induction of human bone marrow stromal/stem cell chondrogenesis
Diekman Stem Cell-Based Strategies to Study, Prevent, and Treat Cartilage Injury and Osteoarthritis
NZ713111B2 (en) Methods and compositions for generating chondrocyte lineage cells and/or cartilage like tissue

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210326

R150 Certificate of patent or registration of utility model

Ref document number: 6864335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150