JP6863332B2 - Clad steel sheet manufacturing method and clad steel sheet manufacturing equipment - Google Patents

Clad steel sheet manufacturing method and clad steel sheet manufacturing equipment Download PDF

Info

Publication number
JP6863332B2
JP6863332B2 JP2018087451A JP2018087451A JP6863332B2 JP 6863332 B2 JP6863332 B2 JP 6863332B2 JP 2018087451 A JP2018087451 A JP 2018087451A JP 2018087451 A JP2018087451 A JP 2018087451A JP 6863332 B2 JP6863332 B2 JP 6863332B2
Authority
JP
Japan
Prior art keywords
material plate
rolling
laminated material
steel sheet
clad steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018087451A
Other languages
Japanese (ja)
Other versions
JP2019188463A (en
Inventor
慎也 山口
慎也 山口
三宅 勝
勝 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018087451A priority Critical patent/JP6863332B2/en
Publication of JP2019188463A publication Critical patent/JP2019188463A/en
Application granted granted Critical
Publication of JP6863332B2 publication Critical patent/JP6863332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、クラッド鋼板の製造方法およびクラッド鋼板の製造設備に関する。 The present invention relates to a method for manufacturing a clad steel sheet and a facility for manufacturing a clad steel sheet.

クラッド鋼板は、炭素鋼などの母材板と、母材板とは異なる材料であるニッケル基合金やステンレス鋼などの合せ材板とが圧着してなる鋼板である。クラッド鋼板では、このように異なる材料を組み合わせることにより、母材板と合せ材板がそれぞれ有する特性を活かし、優れた耐食性や耐摩耗性を発揮することができる。 The clad steel sheet is a steel sheet formed by crimping a base material plate such as carbon steel and a laminated material plate such as nickel-based alloy or stainless steel, which is a material different from the base material plate. By combining different materials in this way, the clad steel sheet can exhibit excellent corrosion resistance and wear resistance by taking advantage of the characteristics of the base material plate and the laminated material plate.

このようなクラッド鋼板の製造方法としては、母材板と合せ材板とを重ね合わせて作製した圧延用組立スラブを加熱し、次いで熱間圧延により圧着してクラッド鋼板とする方法が一般的である。 As a method for manufacturing such a clad steel sheet, a method of heating an assembly slab for rolling produced by superimposing a base material plate and a laminated material plate and then crimping by hot rolling to obtain a clad steel plate is common. is there.

特許文献1には、クラッド鋼板の製造方法として、以下の技術が開示されている。すなわち、まず、チタンを材料とする合せ材板の表面の薄い酸化膜を除去して、当該表面を活性化させる。次いで、当該表面上にニッケルめっき層を形成する。次いで、当該ニッケルめっき層を介して、母材板と合せ材板を重ね合せることにより圧延用組立スラブを作製する。次いで、圧延用組立スラブを600〜850℃に加熱して圧延圧着してクラッド鋼板とする。 Patent Document 1 discloses the following techniques as a method for producing a clad steel sheet. That is, first, the thin oxide film on the surface of the laminated material plate made of titanium is removed to activate the surface. Next, a nickel plating layer is formed on the surface. Next, an assembly slab for rolling is produced by superimposing the base material plate and the laminated material plate via the nickel plating layer. Next, the assembly slab for rolling is heated to 600 to 850 ° C. and rolled and crimped to obtain a clad steel sheet.

特開昭62-9788号公報Japanese Unexamined Patent Publication No. 62-9788

特許文献1では、ニッケルめっき層を介して、母材板と合せ材板とを重ね合わせることで、熱間圧延時における合せ材板の酸化と、母材板中の炭素がチタンの合せ材板に拡散することにより誘発されるチタン炭化物の形成を抑制して、母材板と合せ材板との接合性を高めている。しかしながら、このような方法でクラッド鋼板を製造すると、母材板と合せ材板との接合性は高くなるものの、熱間圧延時に反りが発生し、これに起因して通板不良が生じるという問題がある。 In Patent Document 1, by superimposing the base material plate and the laminated material plate via the nickel plating layer, the laminated material plate is oxidized during hot rolling and the carbon in the base material plate is titanium. The formation of titanium carbide induced by diffusion into the base plate is suppressed, and the bondability between the base material plate and the laminated material plate is improved. However, when the clad steel sheet is manufactured by such a method, although the bondability between the base material plate and the laminated material plate is improved, warpage occurs during hot rolling, which causes a problem that a plate passing defect occurs. There is.

そこで本発明は、上記課題に鑑み、高い接合性を有するクラッド鋼板を、熱間圧延時における反りの発生を抑制して製造することが可能なクラッド鋼板の製造方法を提供することを目的とする。また、本発明は、高い接合性を有するクラッド鋼板を、熱間圧延時における反りの発生を抑制して製造することが可能なクラッド鋼板の製造設備を提供することを目的とする。 Therefore, in view of the above problems, it is an object of the present invention to provide a method for producing a clad steel sheet capable of producing a clad steel sheet having high bondability while suppressing the occurrence of warpage during hot rolling. .. Another object of the present invention is to provide a clad steel sheet manufacturing facility capable of manufacturing a clad steel sheet having high bondability while suppressing the occurrence of warpage during hot rolling.

本発明者らは、上記課題を解決すべく検討したところ、熱間圧延時における反りは、熱間圧延に供する圧延用組立スラブにおいて、合せ材板の表層における変形抵抗と、母材板と合せ材板との接合面近傍における変形抵抗との差が大きくなることに起因して生じることが判明した。そして、さらなる検討を進めたところ、合せ材板の表層を加熱することによって、これらの変形抵抗の差を小さくした状態で熱間圧延を行うと、熱間圧延時における反りの発生を抑制することができることを知見した。 As a result of studies to solve the above problems, the present inventors have found that the warp during hot rolling is combined with the deformation resistance in the surface layer of the laminated material plate and the base material plate in the assembly slab for rolling to be subjected to hot rolling. It was found that this is caused by a large difference from the deformation resistance in the vicinity of the joint surface with the material plate. Then, as a result of further studies, when hot rolling is performed in a state where the difference in deformation resistance is reduced by heating the surface layer of the laminated material plate, the occurrence of warpage during hot rolling is suppressed. It was found that it can be done.

本発明は、上記知見に基づくものであり、その要旨構成は以下のとおりである。
(1)炭素鋼からなる母材板と、前記母材板とは異なる材料からなる合せ材板とが圧着されてなるクラッド鋼板の製造方法において、
前記合せ材板の表面にめっき処理を施して、前記表面上にめっき層を形成する第1工程と、
前記第1工程の後に、前記めっき層を介して、前記母材板と前記合せ材板とを重ね合わせて、圧延用組立スラブを作製する第2工程と、
前記第2工程の後に、前記圧延用組立スラブを加熱炉内で加熱する第3工程と、
前記第3工程の後に、前記加熱炉から搬出された前記圧延用組立スラブの合せ材板側の表層を加熱する第4工程と、
前記第4工程の後に、前記圧延用組立スラブを熱間圧延してクラッド鋼板とする第5工程と、
を有することを特徴とするクラッド鋼板の製造方法。
The present invention is based on the above findings, and its gist structure is as follows.
(1) In a method for manufacturing a clad steel sheet in which a base material plate made of carbon steel and a laminated material plate made of a material different from the base material plate are crimped together.
The first step of forming a plating layer on the surface by plating the surface of the laminated material plate, and
After the first step, a second step of superimposing the base material plate and the laminated material plate via the plating layer to prepare an assembly slab for rolling, and
After the second step, a third step of heating the rolling assembly slab in a heating furnace and
After the third step, a fourth step of heating the surface layer on the laminated material plate side of the rolling assembly slab carried out from the heating furnace, and
After the fourth step, a fifth step of hot rolling the rolling assembly slab into a clad steel sheet, and
A method for producing a clad steel sheet, which comprises.

(2)前記第4工程では、前記合せ材板の板厚方向の変形抵抗の平均値が前記母材板の板厚方向の変形抵抗の平均値の0.9倍以上1.1倍以下となるように、前記合せ材板の表層を加熱する、上記(1)に記載のクラッド鋼板の製造方法。 (2) In the fourth step, the average value of the deformation resistance of the laminated material plate in the plate thickness direction is 0.9 times or more and 1.1 times or less of the average value of the deformation resistance of the base material plate in the plate thickness direction. The method for producing a clad steel sheet according to (1) above, wherein the surface layer of the laminated material plate is heated so as to be.

(3)前記第3工程の後であって、前記第4工程の前に、前記圧延用組立スラブに対して、圧下率が5%以下の熱間圧延を1回行う、上記(1)または(2)に記載のクラッド鋼板の製造方法。 (3) After the third step and before the fourth step, the rolling assembly slab is hot-rolled once with a rolling reduction ratio of 5% or less. The method for producing a clad steel sheet according to (2).

(4)前記合せ材板の材料をニッケル基合金とし、前記めっき層をニッケルめっき層とする、上記(1)〜(3)のいずれか一つに記載のクラッド鋼板の製造方法。 (4) The method for producing a clad steel sheet according to any one of (1) to (3) above, wherein the material of the laminated material plate is a nickel-based alloy and the plating layer is a nickel plating layer.

(5)めっき層を介して、炭素鋼からなる母材板と、前記母材板とは異なる材料からなる合せ材板とを重ね合わせて作製された圧延用組立スラブを加熱する加熱炉と、
前記加熱炉の下流に配置され、前記圧延用組立スラブの合せ材板側の表層を加熱する表層加熱装置と、
前記表層加熱装置の下流に配置され、前記圧延用組立スラブを熱間圧延してクラッド鋼板とする熱間圧延機と、
を備えることを特徴とするクラッド鋼板の製造設備。
(5) A heating furnace for heating an assembly slab for rolling produced by superimposing a base material plate made of carbon steel and a laminated material plate made of a material different from the base material plate via a plating layer.
A surface heating device arranged downstream of the heating furnace and heating the surface layer on the laminated material plate side of the rolling assembly slab, and a surface heating device.
A hot rolling mill located downstream of the surface heating device and hot rolling the rolling assembly slab into a clad steel sheet.
Clad steel sheet manufacturing equipment characterized by being equipped with.

(6)前記加熱炉と前記表層加熱装置との間に、さらなる熱間圧延機を備える、上記(5)に記載のクラッド鋼板の製造設備。 (6) The clad steel sheet manufacturing equipment according to (5) above, further comprising a hot rolling mill between the heating furnace and the surface heating device.

(7)前記合せ材板の材料はニッケル基合金であり、前記めっき層はニッケルめっき層である、上記(5)または(6)に記載のクラッド鋼板の製造設備。 (7) The equipment for manufacturing a clad steel sheet according to (5) or (6) above, wherein the material of the laminated material plate is a nickel-based alloy and the plating layer is a nickel plating layer.

本発明によれば、高い接合性を有するクラッド鋼板を、熱間圧延時における反りの発生を抑制して製造することができる。 According to the present invention, a clad steel sheet having high bondability can be manufactured while suppressing the occurrence of warpage during hot rolling.

本発明の一実施形態におけるクラッド鋼板の製造方法において作製される圧延用組立スラブ20の概略断面図である。It is the schematic sectional drawing of the assembly slab 20 for rolling produced by the manufacturing method of the clad steel sheet in one Embodiment of this invention. 本発明の一実施形態におけるクラッド鋼板の製造設備の概略図である。It is the schematic of the manufacturing equipment of the clad steel sheet in one Embodiment of this invention.

以下、図面を適宜参照して、本発明によるクラッド鋼板の製造方法およびその製造設備の一実施形態を説明する。 Hereinafter, an embodiment of a method for manufacturing a clad steel sheet and a manufacturing facility thereof according to the present invention will be described with reference to the drawings as appropriate.

図1を参照して、本発明の一実施形態によるクラッド鋼板100の製造方法は、炭素鋼からなる母材板10と、母材板10とは異なる材料からなる合せ材板12とが圧着されてなるクラッド鋼板100を製造するに際して、以下の工程を有する。すなわち、まず、合せ材板12の表面にめっき処理を施して、合せ材板12の表面上にめっき層14を形成する(第1工程)。次に、めっき層14を介して、母材板10と合せ材板12とを重ね合わせて圧延用組立スラブ20を作製する(第2工程)。次に、圧延用組立スラブ20を加熱炉内で加熱する(第3工程)。次に、該加熱炉から搬出された圧延用組立スラブ20に対して、圧下率が5%以下の熱間圧延を1回行う。次に、圧延用組立スラブ20の合せ材板12側の表層を加熱する(第4工程)。次に、圧延用組立スラブ20を熱間圧延してクラッド鋼板100とする(第5工程)。 With reference to FIG. 1, in the method for manufacturing the clad steel sheet 100 according to the embodiment of the present invention, the base material plate 10 made of carbon steel and the laminated material plate 12 made of a material different from the base material plate 10 are pressure-bonded. The clad steel sheet 100 is manufactured by the following steps. That is, first, the surface of the laminated material plate 12 is subjected to a plating treatment to form a plating layer 14 on the surface of the laminated material plate 12 (first step). Next, the base material plate 10 and the laminated material plate 12 are overlapped with each other via the plating layer 14 to produce a rolling assembly slab 20 (second step). Next, the rolling assembly slab 20 is heated in a heating furnace (third step). Next, hot rolling with a rolling reduction ratio of 5% or less is performed once on the rolling assembly slab 20 carried out from the heating furnace. Next, the surface layer on the laminated material plate 12 side of the assembly slab 20 for rolling is heated (fourth step). Next, the assembly slab 20 for rolling is hot-rolled to obtain a clad steel sheet 100 (fifth step).

ここで、母材板10として用いる炭素鋼は、特に限定されず、クラッド鋼板100の適用先に応じた規格および機械的特性を有する炭素鋼を適宜選択することができる。また、母材板10とは異なる材料からなる合せ材板12は、例えばAlloy625やAlloy825などのニッケル基合金、単体のニッケル(NW2200やNW2201など)、単体のチタン(工業用純チタン1種:TP270Hや工業用純チタン2種:TP35Hなど)、SUS316Lなどのステンレス鋼を用いることができる。 Here, the carbon steel used as the base material plate 10 is not particularly limited, and a carbon steel having specifications and mechanical properties according to the application destination of the clad steel plate 100 can be appropriately selected. Further, the laminated material plate 12 made of a material different from the base material plate 10 includes, for example, a nickel-based alloy such as Alloy625 or Alloy825, a single nickel (NW2200, NW2201 or the like), or a single titanium (industrial pure titanium type 1: TP270H). , Industrial pure titanium 2 types: TP35H, etc.), stainless steel such as SUS316L can be used.

上述した第1〜第5工程は、例えば図2に示すクラッド鋼板の製造設備により行うことができる。図2において、矢印はクラッド鋼板100の搬送方向である。クラッド鋼板の製造設備では、クラッド鋼板の搬送方向の上流側から、スラブ組立装置(不図示)と、加熱炉1と、第1圧延スタンド2と、表層加熱装置3と、第2圧延スタンド4と、がこの順で配置されている。以下では、図1,2を参照して、本実施形態における各工程を詳細に説明する。 The above-mentioned first to fifth steps can be performed, for example, by the clad steel sheet manufacturing equipment shown in FIG. In FIG. 2, the arrow indicates the transport direction of the clad steel plate 100. In the clad steel sheet manufacturing equipment, from the upstream side in the transport direction of the clad steel sheet, a slab assembly device (not shown), a heating furnace 1, a first rolling stand 2, a surface heating device 3, and a second rolling stand 4 , Are arranged in this order. Hereinafter, each step in the present embodiment will be described in detail with reference to FIGS. 1 and 2.

[第1工程:めっき処理]
図1を参照して、第1工程では、合せ材板12の表面にめっき処理を施して、合せ材板12の表面上にめっき層14を形成する。第1工程において形成されるめっき層14の種類は、合せ材板12の材料に応じて適宜選択することができる。合せ材板12をニッケル基合金、単体のニッケルやチタン、あるいはステンレス鋼とする場合は、めっき層14は、金属間化合物を形成しないようにニッケルめっき層とすることが好ましい。この場合、めっき層14は、公知のワット浴やクエン酸浴などを用いて電界めっき法により形成することができる。また、合せ材板12をチタンとする場合は、めっき層14は、金属間化合物を形成しないようにアルミめっき層または鉄めっき層としてもよい。この場合、めっき層14は、溶融アルミニウム液や塩化物浴などを用いて電界めっき法により形成することができる。なお、めっき処理の方法は、電界めっき法に限定されず、公知の無電解めっき法を好適に用いてもよい。
[First step: Plating process]
With reference to FIG. 1, in the first step, the surface of the laminated material plate 12 is subjected to a plating treatment to form a plating layer 14 on the surface of the laminated material plate 12. The type of the plating layer 14 formed in the first step can be appropriately selected according to the material of the laminated material plate 12. When the laminated material plate 12 is a nickel-based alloy, a simple substance of nickel or titanium, or stainless steel, the plating layer 14 is preferably a nickel plating layer so as not to form an intermetallic compound. In this case, the plating layer 14 can be formed by an electric field plating method using a known watt bath, citric acid bath, or the like. When the laminated material plate 12 is made of titanium, the plating layer 14 may be an aluminum plating layer or an iron plating layer so as not to form an intermetallic compound. In this case, the plating layer 14 can be formed by an electric field plating method using a molten aluminum liquid, a chloride bath, or the like. The plating method is not limited to the electroplating method, and a known electroless plating method may be preferably used.

このように合せ材板12の表面上にめっき層14を形成しておくことで、熱間圧延時などに、母材板10と、めっき層14が形成された合せ材板12との接合面が酸化されるのが抑制される。また、母材板10中の炭素が合せ材板12に拡散することにより誘発される金属炭化物の形成が抑制される。これにより、母材板10と合せ材板12との接合性が高まる。 By forming the plating layer 14 on the surface of the laminated material plate 12 in this way, the joint surface between the base material plate 10 and the laminated material plate 12 on which the plating layer 14 is formed at the time of hot rolling or the like. Is suppressed from being oxidized. Further, the formation of metal carbide induced by the diffusion of carbon in the base material plate 10 into the laminated material plate 12 is suppressed. As a result, the bondability between the base material plate 10 and the laminated material plate 12 is improved.

めっき層14の厚さは20μm以上100μm以下とすることが好ましい。20μm以上であれば、接合面の酸化や金属炭化物の形成をより抑制することができ、100μm以下であれば、めっき層の割れや欠けが生じるおそれもないからである。 The thickness of the plating layer 14 is preferably 20 μm or more and 100 μm or less. This is because if it is 20 μm or more, oxidation of the joint surface and formation of metal carbides can be further suppressed, and if it is 100 μm or less, there is no possibility that the plating layer is cracked or chipped.

なお、第1工程に先立って、合せ材板12の表面のうちめっき処理に供する表面を任意又は公知の方法で研磨して、当該表面に形成された薄い酸化膜を除去することが好ましい。これにより、合せ材板12の表面に対するめっき層14の密着性が向上するからである。 Prior to the first step, it is preferable to polish the surface of the laminated material plate 12 to be subjected to the plating treatment by an arbitrary or known method to remove the thin oxide film formed on the surface. This is because the adhesion of the plating layer 14 to the surface of the laminated material plate 12 is improved.

[第2工程:圧延用スラブの組み立て]
図1を参照して、第2工程では、スラブ組立装置内で、めっき層14を介して、母材板10と合せ材板12とを重ね合わせて、圧延用組立スラブ20を作製する。第2工程は、例えば公知のオープンサンドイッチ方式を用いて、スラブ組立装置内で、めっき層14を介して、母材板10と合せ材板12とを重ね合わせた状態で、母材板10とめっき層14を形成した合せ材板12との接合面の周囲を溶接することによって行うことができる。
[Second step: Assembly of rolling slab]
With reference to FIG. 1, in the second step, the base material plate 10 and the laminated material plate 12 are overlapped with each other via the plating layer 14 in the slab assembling apparatus to produce a rolling assembly slab 20. In the second step, for example, using a known open sandwich method, the base material plate 10 and the laminated material plate 12 are superposed on the base material plate 10 via the plating layer 14 in the slab assembling device. This can be done by welding around the joint surface with the laminated material plate 12 on which the plating layer 14 is formed.

ここで、母材板10とめっき層14との間に酸素が存在すると、接合面が酸化するおそれがある。そこで、スラブ組立装置としては、例えば真空チャンバと、真空チャンバ内で接合面の周囲を溶接することが可能な電子ビームと、を有する装置を用いることが好ましい。真空チャンバ内で真空引きしながら、接合面の周囲を溶接することで、接合面の酸化を抑制することができるからである。 Here, if oxygen is present between the base material plate 10 and the plating layer 14, the joint surface may be oxidized. Therefore, as the slab assembling device, it is preferable to use, for example, a device having a vacuum chamber and an electron beam capable of welding the periphery of the joint surface in the vacuum chamber. This is because oxidation of the joint surface can be suppressed by welding around the joint surface while evacuating in the vacuum chamber.

[第3工程:圧延用スラブの加熱]
図1,2を参照して、第3工程では、加熱炉1内で圧延用組立スラブ20を加熱する。ここで、加熱温度(スラブ加熱温度)は、合せ材板12の材料に応じて以下の観点から設定することが好ましい。すなわち、加熱温度の下限は、合せ材板12を十分に溶体化する観点から設定することが好ましい。また、加熱温度の上限は、熱間圧延時における合せ材板12の表面疵の原因となるスケールの生成を抑制する観点から設定することが好ましい。例えば、合せ材板12の材料がニッケル基合金やニッケルの場合は1100℃以上1200℃以下とすることが好ましく、合せ材板12の材料がチタンの場合は600℃以上850℃以下とすることが好ましく、合せ材板12の材料がステンレス鋼の場合は1100℃以上1300℃以下とすることが好ましい。
[Third step: Heating of rolling slab]
With reference to FIGS. 1 and 2, in the third step, the rolling assembly slab 20 is heated in the heating furnace 1. Here, the heating temperature (slab heating temperature) is preferably set from the following viewpoints according to the material of the laminated material plate 12. That is, it is preferable to set the lower limit of the heating temperature from the viewpoint of sufficiently dissolving the laminated material plate 12. Further, the upper limit of the heating temperature is preferably set from the viewpoint of suppressing the generation of scales that cause surface defects of the laminated material plate 12 during hot rolling. For example, when the material of the laminated material plate 12 is a nickel-based alloy or nickel, the temperature is preferably 1100 ° C. or higher and 1200 ° C. or lower, and when the material of the laminated material plate 12 is titanium, the temperature is 600 ° C. or higher and 850 ° C. or lower. Preferably, when the material of the laminated material plate 12 is stainless steel, the temperature is preferably 1100 ° C. or higher and 1300 ° C. or lower.

なお、第3工程では、一般に圧延用組立スラブ20は均一に加熱される。ここで、本明細書において、特に断らない限り、温度や冷却速度の条件は、圧延用組立スラブやクラッド鋼板の板厚方向の平均温度で規定する。これらの平均温度は、板厚や表面温度などから、差分法を用いて板厚方向の温度分布を計算することが可能なシミュレーションを用いて判断することができる。そして、圧延用組立スラブ20が均一に加熱されたか否かは、このようにして計算した温度分布に基づいて判断することができる。 In the third step, the rolling assembly slab 20 is generally heated uniformly. Here, in the present specification, unless otherwise specified, the conditions of the temperature and the cooling rate are defined by the average temperature in the plate thickness direction of the assembly slab for rolling and the clad steel sheet. These average temperatures can be determined by using a simulation that can calculate the temperature distribution in the plate thickness direction using the difference method from the plate thickness, surface temperature, and the like. Then, whether or not the rolling assembly slab 20 is uniformly heated can be determined based on the temperature distribution calculated in this way.

[1パス目の熱間圧延]
図1,2を参照して、加熱炉1から搬出された圧延用組立スラブ20に対して、第1圧延スタンド2を用いて、圧下率が5%以下の熱間圧延を1回行う。これにより、以下の効果を得ることができる。
[Hot rolling in the first pass]
With reference to FIGS. 1 and 2, hot rolling with a rolling reduction ratio of 5% or less is performed once on the rolling assembly slab 20 carried out from the heating furnace 1 using the first rolling stand 2. Thereby, the following effects can be obtained.

加熱炉1から搬出された圧延用組立スラブ20の接合面近傍には微小な空隙が生じているので、1パス目の熱間圧延によりこの空隙を減少させる。なぜならば、この空隙を減少させた状態で、圧延用組立スラブ20の合せ材板側の表層加熱(第4工程)を行うと、表層加熱時および表層加熱後の熱間圧延時に、接合面において、合せ材板12中のクロム原子やニッケル原子、あるいは母材板10中の鉄原子の拡散がより促進される。これにより、母材板10と合せ材板12との接合性がさらに向上するからである。このような効果を得る観点から、本工程における圧下率は1%以上とすることが好ましい。なお、圧下率が5%以下であれば、表層加熱(第4工程)前に熱間圧延を1回行ったとしても、通板不良につながるような反りは発生しない。 Since minute voids are generated in the vicinity of the joint surface of the rolling assembly slab 20 carried out from the heating furnace 1, these voids are reduced by hot rolling in the first pass. This is because when the surface layer heating (fourth step) on the laminated material plate side of the assembly slab 20 for rolling is performed with the voids reduced, the joint surface is heated during the surface layer heating and during hot rolling after the surface layer heating. , The diffusion of chromium atoms and nickel atoms in the laminated material plate 12 or iron atoms in the base material plate 10 is further promoted. This is because the bondability between the base material plate 10 and the laminated material plate 12 is further improved. From the viewpoint of obtaining such an effect, the reduction rate in this step is preferably 1% or more. If the rolling reduction is 5% or less, even if hot rolling is performed once before the surface layer heating (fourth step), warpage that leads to poor plate passing does not occur.

なお、第1圧延スタンド2は、L1が20m以上30m以下となるように、加熱炉1と表層加熱装置3との間に配置することが好ましい。L1が20m以上であれば、先行材と後続材の干渉を防止することができ、30m以下であれば、搬送中の圧延用組立スラブ20の温度の低下を抑制することができるからである。 The first rolling stand 2 is preferably arranged between the heating furnace 1 and the surface heating device 3 so that L1 is 20 m or more and 30 m or less. This is because if L1 is 20 m or more, interference between the preceding material and the succeeding material can be prevented, and if it is 30 m or less, the temperature drop of the rolling assembly slab 20 during transportation can be suppressed.

[第4工程:表層加熱]
図1,2を参照して、第4工程では、表層加熱装置3を用いて、圧延用組立スラブ20の合せ材板12側の表層を加熱する。本実施形態では、1パス目の熱間圧延の後であって、2パス目の熱間圧延の前に、圧延用組立スラブ20の合せ材板側12の表層を加熱することが重要である。以下では、この技術的意義を説明する。
[Fourth step: Surface heating]
With reference to FIGS. 1 and 2, in the fourth step, the surface layer heating device 3 is used to heat the surface layer on the laminated material plate 12 side of the rolling assembly slab 20. In the present embodiment, it is important to heat the surface layer of the laminated material plate side 12 of the assembly slab 20 for rolling after the hot rolling of the first pass and before the hot rolling of the second pass. .. The technical significance of this will be described below.

圧延用組立スラブ20が加熱炉1から搬出されると、合せ材板12の表層の温度は、大気との接触により急速に低下する。一方で、母材板10と合せ材板12との接合面近傍の温度は、合せ材板12の表層の温度に比べてなだらかに低下する。そのため、合せ材板12の表層における変形抵抗と、母材板10と合せ材板12との接合面近傍における変形抵抗との差が大きくなる。このように変形抵抗の差が大きくなった圧延用組立スラブ20に対して熱間圧延を施すと、熱間圧延中に反りが発生し、これに起因して通板不良が発生することがある。そこで、本実施形態では、1パス目の熱間圧延の後であって、2パス目の熱間圧延の前に、圧延用組立スラブ20の合せ材板12側の表層のみを加熱する。これによって、2パス目以降の熱間圧延(第5工程)に供する圧延用組立スラブ20において、合せ材板12の表層における変形抵抗と、母材板10と合せ材板12との接合面近傍における変形抵抗との差が小さくなる。その結果、熱間圧延時における反りの発生が抑制され、通板不良の発生率が低下する。 When the rolling assembly slab 20 is carried out from the heating furnace 1, the temperature of the surface layer of the laminated material plate 12 drops rapidly due to contact with the atmosphere. On the other hand, the temperature in the vicinity of the joint surface between the base material plate 10 and the laminated material plate 12 is gently lowered as compared with the temperature of the surface layer of the laminated material plate 12. Therefore, the difference between the deformation resistance in the surface layer of the laminated material plate 12 and the deformation resistance in the vicinity of the joint surface between the base material plate 10 and the laminated material plate 12 becomes large. When hot rolling is performed on the assembly slab 20 for rolling in which the difference in deformation resistance is large in this way, warpage occurs during hot rolling, which may cause a plate passing defect. .. Therefore, in the present embodiment, only the surface layer on the laminated material plate 12 side of the rolling assembly slab 20 is heated after the hot rolling of the first pass and before the hot rolling of the second pass. As a result, in the rolling assembly slab 20 used for hot rolling (fifth step) in the second and subsequent passes, the deformation resistance in the surface layer of the laminated material plate 12 and the vicinity of the joint surface between the base material plate 10 and the laminated material plate 12 The difference from the deformation resistance in is small. As a result, the occurrence of warpage during hot rolling is suppressed, and the occurrence rate of plate passing defects is reduced.

また、合せ材板12側の表層を加熱することによって、表層加熱時および表層加熱後の熱間圧延時に、接合面において、合せ材板12中のクロム原子やニッケル原子、あるいは母材板10中の鉄原子の拡散が促進される。その結果、母材板10と合せ材板12との接合性がさらに向上する。 Further, by heating the surface layer on the laminated material plate 12, the chromium atoms and nickel atoms in the laminated material plate 12 or the base material plate 10 at the joint surface during the surface layer heating and the hot rolling after the surface layer heating. The diffusion of iron atoms is promoted. As a result, the bondability between the base material plate 10 and the laminated material plate 12 is further improved.

反りを十分に抑制する観点からは、母材板10の板厚方向の変形抵抗の平均値と合せ材板12の板厚方向の変形抵抗の平均値との差の絶対値が、母材板10の板厚方向の変形抵抗の平均値の1割以下となるように、圧延用組立スラブの合せ材板12側の表層を加熱することが好ましい。すなわち、合せ材板12の板厚方向の変形抵抗の平均値を母材板10の板厚方向の変形抵抗の平均値の0.9倍以上1.1倍以下とすることが好ましい。なお、母材板10の変形抵抗と合せ材板12の変形抵抗の温度依存性は、以下の方法により予め求めておくことができる。すなわち、本実施形態におけるクラッド鋼板の製造方法に供する母材板10および合せ材板12と同一の材料の母材板および合せ材板を、例えば600〜1300℃の温度範囲の中から材質に応じて適宜選択した温度範囲でそれぞれ単独で熱間圧延する。その際の圧延荷重、圧延温度、および板厚などから、母材板および合せ材板の変形抵抗の温度依存性を求めることができる。 From the viewpoint of sufficiently suppressing warpage, the absolute value of the difference between the average value of the deformation resistance of the base material plate 10 in the plate thickness direction and the average value of the deformation resistance of the mating material plate 12 in the plate thickness direction is the base material plate. It is preferable to heat the surface layer on the laminated material plate 12 side of the assembly slab for rolling so that it is 10% or less of the average value of the deformation resistance in the plate thickness direction of 10. That is, it is preferable that the average value of the deformation resistance of the laminated material plate 12 in the plate thickness direction is 0.9 times or more and 1.1 times or less of the average value of the deformation resistance of the base material plate 10 in the plate thickness direction. The temperature dependence of the deformation resistance of the base material plate 10 and the deformation resistance of the laminated material plate 12 can be obtained in advance by the following method. That is, the base material plate and the laminated material plate of the same material as the base material plate 10 and the laminated material plate 12 used in the method for manufacturing the clad steel plate in the present embodiment are selected according to the material from the temperature range of, for example, 600 to 1300 ° C. In each case, hot rolling is performed independently in a temperature range selected as appropriate. From the rolling load, rolling temperature, plate thickness, etc. at that time, the temperature dependence of the deformation resistance of the base material plate and the laminated material plate can be obtained.

例えば、炭素鋼からなる母材板10とニッケル基合金の合せ材板12を用いて、めっき層14をニッケルめっき層とする場合、1100℃以上1200℃以下の温度範囲で均一に加熱された圧延用組立スラブ20は、加熱炉1から搬出されると、合せ材板12側の表層の温度が1000℃程度に急速に低下する。すると、母材板10の板厚方向の変形抵抗の平均値と合せ材板12の板厚方向の変形抵抗の平均値との差の絶対値が、母材板10の板厚方向の変形抵抗の平均値の1割を超えてしまう。そこで、この差の絶対値が母材板10の板厚方向の変形抵抗の平均値の1割以下となるように、合せ材板12側の表層(表面から板厚方向に15〜20mmの深さ位置までの領域)を35℃〜75℃程度上昇させることが好ましい。 For example, when a base material plate 10 made of carbon steel and a laminated material plate 12 made of a nickel-based alloy are used and the plating layer 14 is a nickel plating layer, rolling is uniformly heated in a temperature range of 1100 ° C. or higher and 1200 ° C. or lower. When the assembly slab 20 for use is carried out from the heating furnace 1, the temperature of the surface layer on the side of the laminated material plate 12 rapidly drops to about 1000 ° C. Then, the absolute value of the difference between the average value of the deformation resistance of the base material plate 10 in the plate thickness direction and the average value of the deformation resistance of the mating material plate 12 in the plate thickness direction is the deformation resistance of the base material plate 10 in the plate thickness direction. It exceeds 10% of the average value of. Therefore, the surface layer on the laminated material plate 12 side (depth of 15 to 20 mm in the plate thickness direction from the surface) so that the absolute value of this difference is 10% or less of the average value of the deformation resistance in the plate thickness direction of the base material plate 10. It is preferable to raise the temperature (the region up to the position) by about 35 ° C to 75 ° C.

図2を参照して、表層加熱装置3は、L2が15m以上20m以下、L3が15m以上20m以下となるように配置することが好ましい。L2が15m以上であれば、先行材と後続材との干渉を防止することができ、20m以下であれば、搬送中の圧延用組立スラブ20の温度の低下を抑制することができるからである。また、L3が15m以上であれば、先行材と後続材との干渉を防止することができ、20m以下であれば、搬送中の圧延用組立スラブ20の温度の低下を抑制することができるからである。さらに、表層加熱装置3は、合せ材板12の表層を効率よく加熱する観点から、圧延用組立スラブ20の合せ材板12側の表面との距離が50cm以上150cm以下となるように配置することが好ましい。 With reference to FIG. 2, it is preferable that the surface heating device 3 is arranged so that L2 is 15 m or more and 20 m or less and L3 is 15 m or more and 20 m or less. This is because if L2 is 15 m or more, interference between the preceding material and the succeeding material can be prevented, and if it is 20 m or less, the temperature drop of the rolling assembly slab 20 during transportation can be suppressed. .. Further, if L3 is 15 m or more, interference between the preceding material and the succeeding material can be prevented, and if it is 20 m or less, the temperature drop of the rolling assembly slab 20 during transportation can be suppressed. Is. Further, the surface layer heating device 3 is arranged so that the distance from the surface of the assembly slab 20 for rolling on the laminated material plate 12 side is 50 cm or more and 150 cm or less from the viewpoint of efficiently heating the surface layer of the laminated material plate 12. Is preferable.

なお、表層加熱装置3は、合せ材板12の表層を加熱することができるものであれば特に限定されず、例えば還元バーナーやセラミックファイバーバーナーなどを好適に用いることができる。そして、合せ材板12の板厚方向の変形抵抗の平均値を母材板10の板厚方向の変形抵抗の平均値の0.9倍以上1.1倍以下とするのに必要な、圧延用組立スラブの合せ材板12側の表層の上昇温度に応じて、バーナーに供給するガス容量、バーナーの数、表層加熱装置3での通板速度や通板回数などを適宜設定すればよい。 The surface layer heating device 3 is not particularly limited as long as it can heat the surface layer of the laminated material plate 12, and for example, a reduction burner or a ceramic fiber burner can be preferably used. Then, rolling is required to make the average value of the deformation resistance of the laminated material plate 12 in the plate thickness direction 0.9 times or more and 1.1 times or less of the average value of the deformation resistance of the base material plate 10 in the plate thickness direction. The gas capacity to be supplied to the burner, the number of burners, the plate passing speed in the surface layer heating device 3, the number of plate passing times, and the like may be appropriately set according to the rising temperature of the surface layer on the laminated material plate 12 side of the assembly slab.

[第5工程:2パス目以降の熱間圧延]
図1,2を参照して、第5工程では、第2圧延スタンド4などを用いて、圧延用組立スラブ20を熱間圧延してクラッド鋼板100とする。第5工程では、仕上げ圧延温度や圧下率を以下の範囲で制御することが好ましい。
[Fifth step: hot rolling after the second pass]
With reference to FIGS. 1 and 2, in the fifth step, the rolling assembly slab 20 is hot-rolled to obtain a clad steel sheet 100 by using a second rolling stand 4 or the like. In the fifth step, it is preferable to control the finish rolling temperature and the rolling reduction rate within the following ranges.

圧延仕上げ温度は、500℃以上900℃以下とすることが好ましい。500℃以上であれば、クラッド鋼板100の接合性を十分に確保することができ、900℃以下であれば、母材板10の強度や靱性を確保することができるからである。 The rolling finish temperature is preferably 500 ° C. or higher and 900 ° C. or lower. This is because if the temperature is 500 ° C. or higher, the bondability of the clad steel sheet 100 can be sufficiently ensured, and if the temperature is 900 ° C. or lower, the strength and toughness of the base material plate 10 can be ensured.

圧下率は、クラッド鋼板100の接合性を向上させる観点から、全圧延パスの合計で70%以上とすることが好ましい。圧下率の上限は、特に限定されないが、製造コストの観点から全圧延パスの合計で95%以下とすることが好ましい。なお、本実施形態において、圧下率の合計がこの範囲であれば、圧延パスの回数は特に限定されるものではない。 The rolling reduction ratio is preferably 70% or more in total of all rolling passes from the viewpoint of improving the bondability of the clad steel sheet 100. The upper limit of the rolling reduction ratio is not particularly limited, but is preferably 95% or less in total of all rolling passes from the viewpoint of manufacturing cost. In the present embodiment, the number of rolling passes is not particularly limited as long as the total rolling ratio is within this range.

以上、本実施形態を例に、本発明のクラッド鋼板の製造方法およびクラッド鋼板の製造設備を説明したが、本発明はこれに限定されない。 The method for producing a clad steel sheet and the equipment for producing a clad steel sheet of the present invention have been described above by taking the present embodiment as an example, but the present invention is not limited thereto.

上記実施形態では、圧延用組立スラブの合せ材側の表層の加熱を、第1圧延スタンド2を用いた1パス目の熱間圧延の後であって、第2圧延スタンド4を用いた2パス目の熱間圧延の前に行う場合を説明した。しかし、第1圧延スタンド2を用いた1パス目の熱間圧延は、加熱炉1から搬出された圧延用組立スラブ20の合せ材板12側の表層を加熱した後に行ってもよい。この場合も本発明の作用効果を得ることができる。 In the above embodiment, the surface layer on the laminated material side of the assembly slab for rolling is heated after the first pass of hot rolling using the first rolling stand 2, and two passes using the second rolling stand 4. The case of performing before hot rolling of the eyes has been described. However, the hot rolling of the first pass using the first rolling stand 2 may be performed after heating the surface layer on the laminated material plate 12 side of the rolling assembly slab 20 carried out from the heating furnace 1. In this case as well, the effects of the present invention can be obtained.

また、本発明は、母材板の両側を合せ材板で挟んだ構造を有するクラッド鋼板にも適用することができる。この場合、熱間圧延時における反りの発生を抑制する観点から、表層加熱は両方の合せ材板に対して行うことが好ましい。 The present invention can also be applied to a clad steel plate having a structure in which both sides of a base material plate are sandwiched between laminated material plates. In this case, from the viewpoint of suppressing the occurrence of warpage during hot rolling, it is preferable to heat the surface layer on both laminated boards.

各発明例および比較例について、C:0.04質量%、Si:0.3質量%、Mn:1.3質量%、P:0.005質量%、S:0.0004質量%の成分組成を有し、残部がFeおよび不可避的不純物である板厚:220mmの母材板を用意した。また、Ni:59.2質量%、C:0.03質量%、Cr:21.8質量%、Mo:8.9質量%、Fe:5.0質量%、Nb:4.0質量%、Co:1.0質量%の成分組成を有し、残部が不可避的不純物である板厚:30mmの合せ材板を用意した。これらの母材板および合せ材板を用いて、表2に示す製造条件でクラッド鋼板を作製した。合せ材板の表面上にめっき層を形成した発明例1〜5および比較例2では、公知のワット浴を用いてめっき処理を行った。ここで、発明例2〜5では、図2に示す製造設備を用いて、L1は30m、L2は15m、L3は15mとし、表層加熱装置としての還元バーナーのガス噴射口と圧延用組立スラブの合せ材板側の表面との距離を100cmとした。発明例1では、第1圧延スタンドを備えない以外は、発明例2〜5と同様の製造設備を用いた。一方、比較例1,2では、第1圧延スタンドおよび表層加熱装置を備えない以外は、図2に示す製造設備と同様の製造設備を用いた。比較例3では、第1圧延スタンドを備えない以外は、図2に示す製造設備と同様の製造設備を用いた。なお、表1における「変形抵抗比」とは、発明例1〜5および比較例3については、表層加熱装置から搬出された直後の圧延用組立スラブにおける母材板の板厚方向の変形抵抗の平均値に対する合せ材板の板厚方向の変形抵抗の平均値の比率を意味する。一方、比較例1,2については、「変形抵抗比」とは、第2圧延スタンドからL3(=15m)の位置での圧延用組立スラブにおける母材板の板厚方向の変形抵抗の平均値に対する合せ材板の板厚方向の変形抵抗の平均値の比率を意味する。 For each of the invention examples and comparative examples, the component composition of C: 0.04% by mass, Si: 0.3% by mass, Mn: 1.3% by mass, P: 0.005% by mass, S: 0.0004% by mass. A base material plate having a plate thickness of 220 mm, the balance of which is Fe and unavoidable impurities, was prepared. Further, Ni: 59.2% by mass, C: 0.03% by mass, Cr: 21.8% by mass, Mo: 8.9% by mass, Fe: 5.0% by mass, Nb: 4.0% by mass, A laminated material plate having a component composition of Co: 1.0% by mass and a plate thickness of 30 mm in which the balance is an unavoidable impurity was prepared. Using these base material plates and laminated material plates, clad steel sheets were produced under the production conditions shown in Table 2. In Invention Examples 1 to 5 and Comparative Example 2 in which the plating layer was formed on the surface of the laminated material plate, the plating treatment was performed using a known watt bath. Here, in Invention Examples 2 to 5, using the manufacturing equipment shown in FIG. 2, L1 is 30 m, L2 is 15 m, and L3 is 15 m. The distance from the surface on the laminated material plate side was set to 100 cm. In Invention Example 1, the same manufacturing equipment as in Invention Examples 2 to 5 was used except that the first rolling stand was not provided. On the other hand, in Comparative Examples 1 and 2, the same manufacturing equipment as that shown in FIG. 2 was used except that the first rolling stand and the surface heating device were not provided. In Comparative Example 3, the same manufacturing equipment as that shown in FIG. 2 was used except that the first rolling stand was not provided. The "deformation resistance ratio" in Table 1 refers to the deformation resistance in the plate thickness direction of the base metal plate in the assembly slab for rolling immediately after being carried out from the surface heating device in Invention Examples 1 to 5 and Comparative Example 3. It means the ratio of the average value of the deformation resistance of the laminated material plate in the plate thickness direction to the average value. On the other hand, in Comparative Examples 1 and 2, the "deformation resistance ratio" is the average value of the deformation resistance in the plate thickness direction of the base metal plate in the assembly slab for rolling at the position L3 (= 15 m) from the second rolling stand. It means the ratio of the average value of the deformation resistance in the thickness direction of the laminated material plate to.

Figure 0006863332
Figure 0006863332

(評価方法)
各発明例および比較例について、以下の方法により接合性と反りを評価した。
(Evaluation method)
For each invention example and comparative example, the bondability and warpage were evaluated by the following methods.

<接合性>
各発明例および比較例について、上述したクラッド鋼板の製造を210回行って得た500枚のクラッド鋼板に対して、接合面における剥離を目視観察により調査し、剥離の発生率を求めた。評価結果を表2に示す。なお、剥離の発生率が1.0%以下であれば、接合性が高いと評価することができる。また、これらのクラッド鋼板に対して、JIS G0601:2012に規定のせん断強さ試験を行うことにより、最大せん断強度の平均値を求めた。すなわち、各発明例および比較例において、各クラッド鋼板の尾端から接合面を含むように3mm×7mm×5mmの試験片を採取した。そして、この試験片において、合せ材板を母材板から接合面と平行になるように剥離し、その時に要した最大せん断強度を測定し、その平均値を求めた。評価結果を表2に示す。なお、表2では、各発明例および比較例における最大せん断強度の平均値を比較例1における最大せん断強度の平均値で規格化した。
<Joinability>
For each of the invention examples and the comparative examples, the peeling on the joint surface of 500 clad steel sheets obtained by manufacturing the above-mentioned clad steel sheet 210 times was visually investigated, and the occurrence rate of the peeling was determined. The evaluation results are shown in Table 2. If the peeling rate is 1.0% or less, it can be evaluated that the bondability is high. Further, the average value of the maximum shear strength was obtained by performing a shear strength test specified in JIS G0601: 2012 on these clad steel sheets. That is, in each invention example and comparative example, a test piece having a size of 3 mm × 7 mm × 5 mm was collected from the tail end of each clad steel sheet so as to include the joint surface. Then, in this test piece, the laminated material plate was peeled off from the base material plate so as to be parallel to the joint surface, the maximum shear strength required at that time was measured, and the average value was obtained. The evaluation results are shown in Table 2. In Table 2, the average value of the maximum shear strength in each of the invention examples and the comparative example was standardized by the average value of the maximum shear strength in the comparative example 1.

<反り>
各発明例および比較例について、上述したクラッド鋼板の製造を100回行い、熱間圧延中に生じた通板不良の発生率を求めることにより、反りを評価した。評価結果を表2に示す。なお、通板不良の発生率が1.0%以下であれば、歩留りが低下することはない。
<Warp>
For each of the invention examples and the comparative examples, the above-mentioned clad steel sheet was manufactured 100 times, and the warpage was evaluated by determining the occurrence rate of plate passing defects that occurred during hot rolling. The evaluation results are shown in Table 2. If the incidence of poor boarding is 1.0% or less, the yield will not decrease.

(評価結果の説明)
表1に示すように、比較例1では、めっき処理と表層加熱を行わなかったので、剥離の発生率と通板不良の発生率が高く、接合性を高めることも反りを抑制することもできなかった。比較例2では、めっき処理を行ったので、比較例1よりも最大せん断強度の平均値が高くなり、剥離の発生率を抑制することができたものの、十分な接合性を得ることはできなかった。また、表層加熱を行わなかったので、比較例1と比べて通板不良の発生率をほとんど抑制することができなかった。比較例3では、表層加熱を行ったが、比較例1と比べて通板不良の発生率をほとんど抑制することができなかった。
(Explanation of evaluation results)
As shown in Table 1, in Comparative Example 1, since the plating treatment and the surface layer heating were not performed, the occurrence rate of peeling and the occurrence rate of plate failure were high, and the bondability could be improved and the warpage could be suppressed. There wasn't. In Comparative Example 2, since the plating treatment was performed, the average value of the maximum shear strength was higher than that in Comparative Example 1, and although the occurrence rate of peeling could be suppressed, sufficient bondability could not be obtained. It was. In addition, since the surface layer was not heated, the incidence of plate failure could hardly be suppressed as compared with Comparative Example 1. In Comparative Example 3, the surface layer was heated, but the incidence of plate failure could hardly be suppressed as compared with Comparative Example 1.

これに対して、発明例1〜5では、めっき処理に加えて表層加熱を行ったので、通板不良の発生率を抑制することができた。さらに驚くべきことに、発明例1〜5では、めっき処理のみを行った比較例2に比べて、最大せん断強度の平均値も向上しており、剥離の発生率を抑制することができた。すなわち、めっき処理と表層加熱を組み合わせることによって、反りを抑制することができるだけではなく、接合性も高めることができることがわかった。これは、表層加熱によって、合せ材板中のCr,Niや母材板中のFeが接合面において拡散したことに起因すると考えられる。また、発明例1,2,4では、変形抵抗比が0.9以上1.1以下となるように表層加熱を行ったので、通板不良の発生率が0.0%になり、反りの発生をさらに抑制することができた。加えて、最大せん断強度の平均値もさらに向上し、剥離の発生率が0.0%になり、接合性もさらに高めることができた。 On the other hand, in Invention Examples 1 to 5, since the surface layer was heated in addition to the plating treatment, the occurrence rate of plate passing defects could be suppressed. Even more surprisingly, in Invention Examples 1 to 5, the average value of the maximum shear strength was also improved as compared with Comparative Example 2 in which only the plating treatment was performed, and the occurrence rate of peeling could be suppressed. That is, it was found that by combining the plating treatment and the surface layer heating, not only the warp can be suppressed but also the bondability can be improved. It is considered that this is because Cr and Ni in the laminated material plate and Fe in the base material plate are diffused at the joint surface by the surface layer heating. Further, in Invention Examples 1, 2 and 4, since the surface layer was heated so that the deformation resistance ratio was 0.9 or more and 1.1 or less, the occurrence rate of plate failure was 0.0%, and the warpage The outbreak could be further suppressed. In addition, the average value of the maximum shear strength was further improved, the occurrence rate of peeling was 0.0%, and the bondability was further improved.

本発明によれば、高い接合性を有するクラッド鋼板を、熱間圧延時における反りの発生を抑制して製造することができる。 According to the present invention, a clad steel sheet having high bondability can be manufactured while suppressing the occurrence of warpage during hot rolling.

1 加熱炉
2 第1圧延スタンド
3 表層加熱装置
4 第2圧延スタンド
10 母材板
12 合せ材板
14 めっき層
20 圧延用組立スラブ
100 クラッド鋼板
1 Heating furnace 2 1st rolling stand 3 Surface heating device 4 2nd rolling stand 10 Base plate 12 Laminated plate 14 Plating layer 20 Assembly slab for rolling 100 Clad steel plate

Claims (3)

炭素鋼からなる母材板と、ニッケル基合金からなる合せ材板とが圧着されてなるクラッド鋼板の製造方法において、
前記合せ材板の表面にめっき処理を施して、前記表面上にニッケルめっき層を形成する第1工程と、
前記第1工程の後に、前記ニッケルめっき層を介して、前記母材板と前記合せ材板とを重ね合わせて、圧延用組立スラブを作製する第2工程と、
前記第2工程の後に、前記圧延用組立スラブを加熱炉内で1100℃以上1200℃以下の温度範囲に加熱する第3工程と、
前記第3工程の後に、前記加熱炉から搬出された前記圧延用組立スラブに熱間圧延を行うことなく、又は、前記圧延用組立スラブに対して、圧下率が5%以下の熱間圧延を1回行った後に、前記圧延用組立スラブの合せ材板側の表層を35℃〜75℃上昇させるように加熱する第4工程と、
前記第4工程の後に、前記圧延用組立スラブを熱間圧延してクラッド鋼板とする第5工程と、
を有することを特徴とするクラッド鋼板の製造方法。
In a method for manufacturing a clad steel sheet in which a base material plate made of carbon steel and a laminated material plate made of a nickel-based alloy are crimped together.
The first step of forming a nickel plating layer on the surface by plating the surface of the laminated material plate, and
After the first step, a second step of superimposing the base material plate and the laminated material plate via the nickel plating layer to prepare an assembly slab for rolling,
After the second step, the third step of heating the rolling assembly slab to a temperature range of 1100 ° C. or higher and 1200 ° C. or lower in a heating furnace, and
After the third step, hot rolling is performed on the rolling assembly slab carried out from the heating furnace without hot rolling or on the rolling assembly slab having a rolling reduction ratio of 5% or less. After performing once, the fourth step of heating the surface layer of the assembly slab for rolling on the laminated material plate side so as to raise the temperature by 35 ° C. to 75 ° C.
After the fourth step, a fifth step of hot rolling the rolling assembly slab into a clad steel sheet, and
A method for producing a clad steel sheet, which comprises.
前記第4工程では、前記合せ材板の板厚方向の変形抵抗の平均値が前記母材板の板厚方向の変形抵抗の平均値の0.9倍以上1.1倍以下となるように、前記合せ材板の表層を加熱する、請求項1に記載のクラッド鋼板の製造方法。 In the fourth step, the average value of the deformation resistance of the laminated material plate in the plate thickness direction is 0.9 times or more and 1.1 times or less of the average value of the deformation resistance of the base material plate in the plate thickness direction. The method for producing a clad steel sheet according to claim 1, wherein the surface layer of the laminated material plate is heated. ニッケルめっき層を介して、炭素鋼からなる母材板と、ニッケル基合金からなる合せ材板とを重ね合わせて作製された圧延用組立スラブを1100℃以上1200℃以下の温度範囲に加熱する加熱炉と、
前記加熱炉の下流に配置され、前記圧延用組立スラブの合せ材板側の表層を35℃〜75℃上昇させるように加熱する表層加熱装置と、
前記表層加熱装置の下流に配置され、前記圧延用組立スラブを熱間圧延してクラッド鋼板とする熱間圧延機と、
を備え
前記加熱炉と前記表層加熱装置との間には、さらなる熱間圧延機が存在しないか、又は、前記圧延用組立スラブに対して、圧下率が5%以下の熱間圧延を行う1つの熱間圧延機を備えることを特徴とするクラッド鋼板の製造設備。
Heating that heats an assembly slab for rolling produced by superimposing a base material plate made of carbon steel and a laminated material plate made of a nickel-based alloy via a nickel plating layer in a temperature range of 1100 ° C. or higher and 1200 ° C. or lower. Furnace and
A surface layer heating device arranged downstream of the heating furnace and heating the surface layer on the laminated material plate side of the rolling assembly slab so as to raise the temperature by 35 ° C. to 75 ° C.
A hot rolling mill located downstream of the surface heating device and hot rolling the rolling assembly slab into a clad steel sheet.
Equipped with a,
There is no additional hot rolling mill between the heating furnace and the surface heating device, or one heat for hot rolling with a rolling reduction ratio of 5% or less with respect to the rolling assembly slab. manufacturing facility clad plate, wherein Rukoto provided between the rolling mill.
JP2018087451A 2018-04-27 2018-04-27 Clad steel sheet manufacturing method and clad steel sheet manufacturing equipment Active JP6863332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018087451A JP6863332B2 (en) 2018-04-27 2018-04-27 Clad steel sheet manufacturing method and clad steel sheet manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018087451A JP6863332B2 (en) 2018-04-27 2018-04-27 Clad steel sheet manufacturing method and clad steel sheet manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2019188463A JP2019188463A (en) 2019-10-31
JP6863332B2 true JP6863332B2 (en) 2021-04-21

Family

ID=68388230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018087451A Active JP6863332B2 (en) 2018-04-27 2018-04-27 Clad steel sheet manufacturing method and clad steel sheet manufacturing equipment

Country Status (1)

Country Link
JP (1) JP6863332B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219147A (en) * 1975-08-07 1977-02-14 Nippon Steel Corp Method of manufacture of metallclad material
JPS60187487A (en) * 1984-03-07 1985-09-24 Toshiba Corp Production of composite material
JPS629788A (en) * 1985-07-05 1987-01-17 Sumitomo Metal Ind Ltd Production for titanium clad steel by rolling
JPS6245403A (en) * 1985-08-26 1987-02-27 Sumitomo Metal Ind Ltd Method for preventing camber of rolling material
JPS62118907A (en) * 1985-11-18 1987-05-30 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for rolling clad plate
JPS62179878A (en) * 1986-02-03 1987-08-07 Sumitomo Metal Ind Ltd Production of ni alloy clad steel sheet having no surface flaw

Also Published As

Publication number Publication date
JP2019188463A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6687177B1 (en) Method for producing Al-based plated stainless steel sheet and ferritic stainless steel sheet
JP2012179656A (en) Clad alloy substrate and method for making the same
WO2022123812A1 (en) Method for manufacturing austenitic stainless steel strip
CN110306137A (en) A kind of preparation method of stratiform copper chromium zirconium-fine copper composite board
JP5859175B2 (en) Welding material for overlaying, straightening roll, guide roll, transport roll and anvil
JP6863332B2 (en) Clad steel sheet manufacturing method and clad steel sheet manufacturing equipment
CN112496037B (en) Nickel-based alloy plate rolling method
WO2021199116A1 (en) Aluminum alloy brazing sheet, and method for manufacturing same
JP6791458B1 (en) Ferritic stainless steel sheet and its manufacturing method, and stainless steel sheet with Al vapor deposition layer
SE449061B (en) PROCEDURE FOR MANUFACTURING PLATED STEEL PLATE
JP2016211053A (en) Copper alloy excellent in heat resistance
JP6954508B1 (en) Stainless steel sheet with Al coating layer
JP2018204115A (en) Copper alloy having excellent heat resistance
WO2022091766A1 (en) Composite material
JP7445116B2 (en) thick steel plate
JP5354202B2 (en) Titanium clad steel blade and manufacturing method thereof
WO2022004100A1 (en) STAINLESS STEEL SHEET WITH Al COATING LAYER
WO2020255563A1 (en) Aluminum-based plated stainless steel sheet, and method for manufacturing ferritic stainless steel sheet
JP4615120B2 (en) Ni-based alloy having uniform structure and method for producing the same
JP2011214065A (en) Method for manufacturing silicon steel sheet
JP2649590B2 (en) Manufacturing method of Fe-Al alloy thin plate
JP6478822B2 (en) Extra-thick stainless steel sheet and method for producing the same
CN113165337A (en) Method for manufacturing composite material based on vanadium alloy and steel
JPH05169283A (en) Manufacture of clad steel sheet
JPH06142950A (en) Production of highly corrosion resistant ni-base alloy clad steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R150 Certificate of patent or registration of utility model

Ref document number: 6863332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250