JP6862801B2 - Manufacturing method of power storage element and power storage element - Google Patents

Manufacturing method of power storage element and power storage element Download PDF

Info

Publication number
JP6862801B2
JP6862801B2 JP2016233517A JP2016233517A JP6862801B2 JP 6862801 B2 JP6862801 B2 JP 6862801B2 JP 2016233517 A JP2016233517 A JP 2016233517A JP 2016233517 A JP2016233517 A JP 2016233517A JP 6862801 B2 JP6862801 B2 JP 6862801B2
Authority
JP
Japan
Prior art keywords
current collector
hole
container
power storage
storage element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016233517A
Other languages
Japanese (ja)
Other versions
JP2018092744A (en
Inventor
寛人 渡辺
寛人 渡辺
洋喜 森永
洋喜 森永
訓良 胸永
胸永  訓良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2016233517A priority Critical patent/JP6862801B2/en
Publication of JP2018092744A publication Critical patent/JP2018092744A/en
Application granted granted Critical
Publication of JP6862801B2 publication Critical patent/JP6862801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、蓄電素子の製造方法及び蓄電素子に関する。 The present invention relates to a method for manufacturing a power storage element and a power storage element.

従来、容器の蓋体に対して、絶縁部材を挟むように集電体を配置した後に、電極端子を蓋体、絶縁部材及び集電体を貫通させてからかしめることによって、組み立てられる蓄電素子が知られている(例えば特許文献1参照)。集電体の一部(脚部)は、容器の内方に向けて延在しており、当該部分が容器内の電極体に接続されている。 Conventionally, a power storage element that is assembled by arranging a current collector so as to sandwich an insulating member with respect to the lid of the container, and then crimping the electrode terminal through the lid, the insulating member, and the current collector. Is known (see, for example, Patent Document 1). A part (leg) of the current collector extends inward of the container, and the part is connected to the electrode body in the container.

特開2014-150047号公報Japanese Unexamined Patent Publication No. 2014-150047

ところで、電極端子をかしめることにより、当該電極端子と集電体とを接合すると、そのかしめによって集電体が屈曲して、脚部が電極体に接近する場合がある(図9に示す正極集電体120a参照)。この接近は、集電体の脚部を、当該集電体とは極性の異なる極板に接触させて、短絡を生じさせるおそれがある。 By the way, when the electrode terminal is joined to the current collector by caulking the electrode terminal, the current collector may be bent by the caulking and the leg portion may approach the electrode body (positive electrode shown in FIG. 9). (See current collector 120a). This approach may cause the legs of the current collector to come into contact with a plate having a polarity different from that of the current collector, resulting in a short circuit.

このため、本発明は、容器にかしめられた集電体が電極体に接近することを抑制して、短絡の可能性を抑えることができる蓄電素子及びその製造方法を提供することである。 Therefore, the present invention provides a power storage element and a method for manufacturing the same, which can suppress the possibility of a short circuit by suppressing the current collector crimped in the container from approaching the electrode body.

上記目的を達成するために、本発明の一態様に係る蓄電素子の製造方法は、容器に設けられた第一貫通孔に対して、集電体に設けられた第二貫通孔を連通させた状態で、容器及び集電体を対向させて配置する配置工程と、第一貫通孔及び第二貫通孔内に電極端子を挿通してかしめて、かしめられた部分を集電体に接触させるかしめ工程と、を含む蓄電素子の製造方法であって、かしめ工程の前の状態では、集電体における第二貫通孔の周囲が全周にわたって連続して、その他の領域である第一領域よりも肉厚に形成されている。 In order to achieve the above object, in the method for manufacturing a power storage element according to one aspect of the present invention, the second through hole provided in the current collector is communicated with the first through hole provided in the container. In this state, the container and the current collector are arranged so as to face each other, and the electrode terminals are inserted into the first through hole and the second through hole and crimped so that the crimped portion is brought into contact with the current collector. It is a method of manufacturing a power storage element including a step, and in the state before the caulking step, the circumference of the second through hole in the current collector is continuous over the entire circumference and is more than the first region which is the other region. It is formed thick.

この構成によれば、かしめ前の状態では、集電体における容器に重なる部分のうち、第二貫通孔の周囲が全周にわたって連続して、その他の領域である第一領域よりも肉厚に形成されているので、かしめによる集電体の変形量を抑制することができる。したがって、かしめ後に集電体が電極体に接近してしまうことを抑えることができ、短絡の可能性を小さくすることができる。 According to this configuration, in the state before caulking, in the portion of the current collector that overlaps the container, the circumference of the second through hole is continuous over the entire circumference and is thicker than the first region, which is the other region. Since it is formed, the amount of deformation of the current collector due to caulking can be suppressed. Therefore, it is possible to prevent the current collector from approaching the electrode body after caulking, and it is possible to reduce the possibility of a short circuit.

また、第二貫通孔の周囲は、第一領域よりも容器の内方に向けて突出することで肉厚となっていてもよい。 Further, the circumference of the second through hole may be thickened by protruding toward the inside of the container from the first region.

この構成によれば、第一領域よりも容器の内方に向けて突出することで第二貫通孔の周囲が肉厚となっているので、集電体における容器の内方に向けた屈曲する変形、つまり、電極体に近づく変形を抑えることができる。 According to this configuration, since the circumference of the second through hole is thickened by protruding toward the inside of the container from the first region, the current collector bends toward the inside of the container. Deformation, that is, deformation approaching the electrode body can be suppressed.

また、容器と集電体との間には、絶縁部材が配置されており、絶縁部材は、電極端子が挿通される第三貫通孔を有し、かしめ前の状態では、絶縁部材における容器に重なる部分のうち、第三貫通孔の周囲が、その他の領域である第二領域よりも肉厚に形成されていてもよい。 Further, an insulating member is arranged between the container and the current collector, and the insulating member has a third through hole through which the electrode terminal is inserted. Of the overlapping portions, the periphery of the third through hole may be formed to be thicker than the second region, which is another region.

この構成によれば、絶縁部材が変形してしまうと、当該絶縁部材に重なる集電体も、絶縁部材の変形の影響を受けて、電極体に近づくように変形してしまう。しかし、かしめ前の状態では、絶縁部材における容器に重なる部分のうち、第三貫通孔の周囲が、その他の領域である第二領域よりも肉厚に形成されているので、かしめによる絶縁部材の変形量を抑制することができる。つまり、絶縁部材の変形を起因とした集電体の変形を抑えることができる。 According to this configuration, when the insulating member is deformed, the current collector overlapping the insulating member is also affected by the deformation of the insulating member and is deformed so as to approach the electrode body. However, in the state before caulking, the periphery of the third through hole in the portion of the insulating member that overlaps the container is formed to be thicker than the second region, which is the other region. The amount of deformation can be suppressed. That is, it is possible to suppress the deformation of the current collector due to the deformation of the insulating member.

また、第三貫通孔の周囲は、第二領域よりも容器の内方に向けて突出することで肉厚となっていてもよい。 Further, the circumference of the third through hole may be thickened by protruding toward the inside of the container from the second region.

この構成によれば、第二領域よりも容器の内方に向けて突出することで第三貫通孔の周囲が肉厚となっているので、絶縁部材における容器の内方に屈曲する変形、つまり、集電体を電極体に近づけようとする変形を抑えることができる。 According to this configuration, since the circumference of the third through hole is thickened by protruding toward the inside of the container from the second region, the deformation of the insulating member that bends inward of the container, that is, , Deformation that tries to bring the current collector closer to the electrode body can be suppressed.

また、かしめ工程の後の状態では、電極端子のかしめられた部分が、集電体における第一領域よりも肉厚な部分に埋まっていてもよい。 Further, in the state after the crimping step, the crimped portion of the electrode terminal may be buried in a portion thicker than the first region of the current collector.

この構成によれば、電極端子のかしめられた部分が集電体における肉厚な部分に埋まっているので、電極端子と集電体との接触面積を増やすことができ、導電性を高めることができる。 According to this configuration, since the crimped portion of the electrode terminal is buried in the thick portion of the current collector, the contact area between the electrode terminal and the current collector can be increased, and the conductivity can be enhanced. it can.

また、本発明の一態様に係る蓄電素子は、第一貫通孔を有する容器と、第一貫通孔に連通する第二貫通孔を有し、容器に対向する集電体と、第一貫通孔及び第二貫通孔内に挿通されてかしめられた部分が集電体に接触した電極端子とを備え、集電体における電極端子の周囲は他の領域よりも肉厚な肉厚部であり、肉厚部はかしめられた部分の外周に沿って全周にわたって連続している。 Further, the power storage element according to one aspect of the present invention has a container having a first through hole, a current collector having a second through hole communicating with the first through hole and facing the container, and a first through hole. The portion inserted into the second through hole and crimped is provided with an electrode terminal in contact with the current collector, and the periphery of the electrode terminal in the current collector is a thick portion thicker than other regions. The thick portion is continuous over the entire circumference along the outer circumference of the crimped portion.

この構成によれば、集電体における電極端子の周囲が他の領域よりも肉厚な肉厚部であり、この肉厚部が電極端子の周囲に沿って連続しているので、かしめ前においては肉厚部はより広範囲に形成されている。つまり、かしめ前の状態では、集電体における第二貫通孔の周囲も肉厚部となるので、かしめによる集電体の変形量を抑制することができる。したがって、かしめ後に集電体が電極体に接近してしまうことを抑えることができ、短絡の可能性を小さくすることができる。 According to this configuration, the periphery of the electrode terminal in the current collector is a thick portion thicker than other regions, and this thick portion is continuous along the periphery of the electrode terminal, so that before caulking. The thick part is formed more extensively. That is, in the state before caulking, the periphery of the second through hole in the current collector is also a thick portion, so that the amount of deformation of the current collector due to caulking can be suppressed. Therefore, it is possible to prevent the current collector from approaching the electrode body after caulking, and it is possible to reduce the possibility of a short circuit.

また、肉厚部は他の領域よりも容器の内方に向けて突出することで肉厚となっていてもよい。 Further, the thick portion may be thickened by protruding toward the inside of the container rather than other regions.

この構成によれば、肉厚部が他の領域よりも容器の内方に向けて突出することで肉厚となっているので、かしめ前においては肉厚部はより肉厚な状態で容器の内方に向けて突出している。このようにかしめ前においても肉厚部が容器の内方に向けて突出していると、集電体における容器の内方に屈曲する変形、つまり、電極体に近づく変形を抑えることができる。 According to this configuration, the thick part is thickened by protruding toward the inside of the container rather than other regions. Therefore, before caulking, the thick part of the container is in a thicker state. It protrudes inward. If the thick portion protrudes inward of the container even before caulking in this way, it is possible to suppress deformation of the current collector that bends inward of the container, that is, deformation that approaches the electrode body.

本発明に係る蓄電素子によれば、容器にかしめられた集電体が電極体に接近することを抑制して、短絡の可能性を抑えることができる。 According to the power storage element according to the present invention, it is possible to suppress the current collector crimped in the container from approaching the electrode body and suppress the possibility of a short circuit.

実施の形態に係る蓄電素子の外観を示す斜視図である。It is a perspective view which shows the appearance of the power storage element which concerns on embodiment. 実施の形態に係る蓄電素子を、容器の蓋体と本体とを分離して示す斜視図である。It is a perspective view which shows the power storage element which concerns on embodiment separately from the lid body and the main body of a container. 実施の形態に係る正極側の固定構造を示す断面図である。It is sectional drawing which shows the fixed structure on the positive electrode side which concerns on embodiment. 図3に示す固定構造の分解断面図である。It is an exploded sectional view of the fixed structure shown in FIG. 実施の形態に係る下部絶縁部材を下方から見た平面図である。It is a top view which looked at the lower insulating member which concerns on embodiment. 実施の形態に係る正極集電体を下方から見た平面図である。It is a top view which looked at the positive electrode current collector which concerns on embodiment from below. 実施の形態に係る、かしめ後の正極集電体を下方から見た正面図である。It is a front view which looked at the positive electrode current collector after caulking which concerns on embodiment. 実施の形態に係る蓄電素子の製造方法の一工程を示す断面図である。It is sectional drawing which shows one step of the manufacturing method of the power storage element which concerns on embodiment. 比較例として、肉厚部を有さない正極集電体を用いた場合のかしめ後の状態を示す断面図である。As a comparative example, it is sectional drawing which shows the state after caulking when the positive electrode current collector which does not have a thick part is used. 変形例に係る、かしめ前の肉厚部を示す断面図である。It is sectional drawing which shows the thick part before caulking which concerns on the modification. 変形例に係る、かしめ後の肉厚部を示す断面図である。It is sectional drawing which shows the thick part after caulking which concerns on the modification. 他の変形例に係る固定構造の分解断面図である。It is an exploded sectional view of the fixed structure which concerns on other modification.

以下、図面を参照しながら、本発明の実施の形態に係る蓄電素子について説明する。なお、各図は、模式図であり、必ずしも厳密に図示したものではない。 Hereinafter, the power storage element according to the embodiment of the present invention will be described with reference to the drawings. It should be noted that each figure is a schematic view and is not necessarily a strict drawing.

また、以下で説明する実施の形態は、本発明の一具体例を示すものである。以下の実施の形態で示される形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程の順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Moreover, the embodiment described below shows a specific example of the present invention. The shapes, materials, components, arrangement positions and connection forms of the components, the order of manufacturing processes, and the like shown in the following embodiments are examples, and are not intended to limit the present invention. Further, among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept are described as arbitrary components.

まず、図1及び図2を用いて、実施の形態に係る蓄電素子10の全般的な説明を行う。なお、図1及び以降の図について、説明の便宜上、容器100の蓋体110側を上とし、容器100の本体111の底側を下として説明しているが、実際の使用態様における上下方向と、実施の形態に係る上下方向とが一致しない場合もある。 First, with reference to FIGS. 1 and 2, a general description of the power storage element 10 according to the embodiment will be given. For convenience of explanation, FIGS. 1 and the following drawings are described with the lid 110 side of the container 100 facing up and the bottom side of the main body 111 of the container 100 facing down. , The vertical direction according to the embodiment may not match.

図1は、実施の形態に係る蓄電素子10の外観を示す斜視図である。図2は、実施の形態に係る蓄電素子10の容器内に配置されている構成要素を示す斜視図である。具体的には、図2は、蓄電素子10を、容器100の蓋体110と本体111とを分離して示す斜視図である。 FIG. 1 is a perspective view showing the appearance of the power storage element 10 according to the embodiment. FIG. 2 is a perspective view showing the components arranged in the container of the power storage element 10 according to the embodiment. Specifically, FIG. 2 is a perspective view showing the power storage element 10 by separating the lid 110 and the main body 111 of the container 100.

蓄電素子10は、電気を充電し、また、電気を放電することのできる二次電池であり、より具体的には、リチウムイオン二次電池などの非水電解質二次電池である。例えば、蓄電素子10は、電気自動車(EV)、ハイブリッド電気自動車(HEV)、またはプラグインハイブリッド電気自動車(PHEV)に適用される。なお、蓄電素子10は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。また、蓄電素子10は、一次電池であってもよい。また、蓄電素子10の形状に関しては、角型に限定されることなく、例えば円筒型などの他の形状であってもよい。 The power storage element 10 is a secondary battery capable of charging electricity and discharging electricity, and more specifically, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. For example, the power storage element 10 is applied to an electric vehicle (EV), a hybrid electric vehicle (HEV), or a plug-in hybrid electric vehicle (PHEV). The power storage element 10 is not limited to the non-aqueous electrolyte secondary battery, and may be a secondary battery other than the non-aqueous electrolyte secondary battery, or may be a capacitor. Further, the power storage element 10 may be a primary battery. Further, the shape of the power storage element 10 is not limited to the square shape, and may be another shape such as a cylindrical shape.

図1に示すように、蓄電素子10は、容器100と、正極端子200と、負極端子300と、上部絶縁部材150及び310とを備えている。また、図2に示すように、容器100の内部には、正極集電体120と、負極集電体130と、電極体400とが収容されている。 As shown in FIG. 1, the power storage element 10 includes a container 100, a positive electrode terminal 200, a negative electrode terminal 300, and upper insulating members 150 and 310. Further, as shown in FIG. 2, the positive electrode current collector 120, the negative electrode current collector 130, and the electrode body 400 are housed inside the container 100.

なお、蓄電素子10は、上記の構成要素の他、正極集電体120及び負極集電体130の側方に配置されるスペーサ、容器100内の圧力が上昇したときに当該圧力を開放するためのガス排出弁、または、電極体400等を包み込む絶縁フィルムなどを備えてもよい。また、蓄電素子10の容器100の内部には電解液(非水電解質)などが封入されているが、図示は省略する。なお、容器100に封入される電解液としては、蓄電素子10の性能を損なうものでなければその種類に特に制限はなく、様々なものを選択することができる。 In addition to the above components, the power storage element 10 is a spacer arranged on the side of the positive electrode current collector 120 and the negative electrode current collector 130, in order to release the pressure when the pressure in the container 100 rises. The gas discharge valve of the above, an insulating film for wrapping the electrode body 400 and the like may be provided. Further, although an electrolytic solution (non-aqueous electrolyte) or the like is sealed inside the container 100 of the power storage element 10, the illustration is omitted. The type of electrolytic solution sealed in the container 100 is not particularly limited as long as it does not impair the performance of the power storage element 10, and various types can be selected.

容器100は、矩形筒状で底を備える本体111と、本体111の開口を閉塞する板状部材である蓋体110とで構成されている。また、容器100は、電極体400等を内部に収容後、蓋体110と本体111とが溶接等されることにより、内部を密封する構造を有している。なお、蓋体110及び本体111の材質は、特に限定されないが、例えばステンレス鋼、アルミニウム、またはアルミニウム合金など溶接可能な金属であるのが好ましい。 The container 100 is composed of a main body 111 having a rectangular tubular shape and a bottom, and a lid 110 which is a plate-shaped member that closes the opening of the main body 111. Further, the container 100 has a structure in which the inside of the container 100 is sealed by accommodating the electrode body 400 or the like inside and then welding the lid body 110 and the main body 111 or the like. The material of the lid 110 and the main body 111 is not particularly limited, but is preferably a weldable metal such as stainless steel, aluminum, or an aluminum alloy.

電極体400は、正極と負極とセパレータとを備え、電気を蓄えることができる蓄電要素(発電要素)である。正極は、アルミニウムやアルミニウム合金などからなる長尺帯状の金属箔である正極基材箔上に正極活物質層が形成されたものである。また、負極は、銅、銅合金、アルミニウムまたはアルミニウム合金などからなる長尺帯状の金属箔である負極基材箔上に負極活物質層が形成されたものである。また、セパレータは、樹脂からなる微多孔性のシートである。 The electrode body 400 includes a positive electrode, a negative electrode, and a separator, and is a power storage element (power generation element) capable of storing electricity. The positive electrode is a positive electrode active material layer formed on a positive electrode base material foil, which is a long strip-shaped metal foil made of aluminum, an aluminum alloy, or the like. Further, the negative electrode is a negative electrode active material layer formed on a negative electrode base material foil which is a long strip-shaped metal foil made of copper, a copper alloy, aluminum, an aluminum alloy, or the like. The separator is a microporous sheet made of resin.

ここで、正極活物質層に用いられる正極活物質、または負極活物質層に用いられる負極活物質としては、リチウムイオンを吸蔵放出可能な正極活物質または負極活物質であれば、適宜公知の材料を使用できる。 Here, the positive electrode active material used for the positive electrode active material layer or the negative electrode active material used for the negative electrode active material layer is a known material as long as it is a positive electrode active material or a negative electrode active material capable of storing and releasing lithium ions. Can be used.

そして、電極体400は、負極と正極との間にセパレータが挟み込まれるように層状に配置されたものが巻き回されて形成され、正極集電体120及び負極集電体130と電気的に接続されている。なお、図2では、電極体400として断面が長円形状のものを示したが、円形状または楕円形状でもよい。 Then, the electrode body 400 is formed by winding what is arranged in a layer so that the separator is sandwiched between the negative electrode and the positive electrode, and is electrically connected to the positive electrode current collector 120 and the negative electrode current collector 130. Has been done. Although FIG. 2 shows an electrode body 400 having an oval cross section, it may have a circular shape or an elliptical shape.

正極端子200は、正極集電体120を介して電極体400の正極と電気的に接続された電極端子である。負極端子300は、負極集電体130を介して電極体400の負極と電気的に接続された電極端子である。つまり、正極端子200及び負極端子300は、電極体400に蓄えられている電気を蓄電素子10の外部空間に導出し、また、電極体400に電気を蓄えるために蓄電素子10の内部空間に電気を導入するための導電性を持つ金属等の電極端子である。また、正極端子200及び負極端子300は、電極体400の上方に配置された蓋体110に、上部絶縁部材150及び310を介して取り付けられている。 The positive electrode terminal 200 is an electrode terminal electrically connected to the positive electrode of the electrode body 400 via the positive electrode current collector 120. The negative electrode terminal 300 is an electrode terminal electrically connected to the negative electrode of the electrode body 400 via the negative electrode current collector 130. That is, the positive electrode terminal 200 and the negative electrode terminal 300 lead the electricity stored in the electrode body 400 to the external space of the power storage element 10, and the electricity is stored in the internal space of the power storage element 10 in order to store electricity in the electrode body 400. It is an electrode terminal made of a conductive metal or the like for introducing the above. Further, the positive electrode terminal 200 and the negative electrode terminal 300 are attached to the lid 110 arranged above the electrode body 400 via the upper insulating members 150 and 310.

正極集電体120は、電極体400の正極と容器100の本体111の壁面との間に配置され、正極端子200と電極体400の正極とに電気的に接続される導電性と剛性とを備えた部材である。 The positive electrode current collector 120 is arranged between the positive electrode of the electrode body 400 and the wall surface of the main body 111 of the container 100, and has conductivity and rigidity that are electrically connected to the positive electrode terminal 200 and the positive electrode of the electrode body 400. It is a provided member.

負極集電体130は、電極体400の負極と容器100の本体111の壁面との間に配置され、負極端子300と電極体400の負極とに電気的に接続される導電性と剛性とを備えた部材である。 The negative electrode current collector 130 is arranged between the negative electrode body 400 and the wall surface of the main body 111 of the container 100, and has conductivity and rigidity that are electrically connected to the negative electrode terminal 300 and the negative electrode body 400. It is a provided member.

具体的には、正極集電体120及び負極集電体130は、蓋体110に固定されている。また、正極集電体120は、電極体400の正極側端部に接合され、負極集電体130は、電極体400の負極側端部に接合されている。電極体400は、容器100の内部において、正極集電体120及び負極集電体130により、蓋体110から吊り下げられた状態で保持される。 Specifically, the positive electrode current collector 120 and the negative electrode current collector 130 are fixed to the lid 110. Further, the positive electrode current collector 120 is bonded to the positive electrode side end portion of the electrode body 400, and the negative electrode current collector 130 is bonded to the negative electrode side end portion of the electrode body 400. The electrode body 400 is held inside the container 100 in a state of being suspended from the lid body 110 by the positive electrode current collector 120 and the negative electrode current collector 130.

次に、正極端子200が上部絶縁部材150を介して正極集電体120とともに蓋体110に固定される固定構造について説明する。なお、この固定構造は、負極端子300が上部絶縁部材310を介して負極集電体130とともに蓋体110に固定される固定構造とほぼ同等であるので、負極側の説明は省略する。 Next, a fixed structure in which the positive electrode terminal 200 is fixed to the lid 110 together with the positive electrode current collector 120 via the upper insulating member 150 will be described. Since this fixed structure is substantially the same as the fixed structure in which the negative electrode terminal 300 is fixed to the lid 110 together with the negative electrode current collector 130 via the upper insulating member 310, the description on the negative electrode side will be omitted.

図3は、実施の形態に係る正極側の固定構造を示す断面図である。また、図4は、図3に示す固定構造の分解断面図である。 FIG. 3 is a cross-sectional view showing a fixed structure on the positive electrode side according to the embodiment. Further, FIG. 4 is an exploded cross-sectional view of the fixed structure shown in FIG.

図3に示すように、正極端子200が上部絶縁部材150を介して蓋体110に取り付けられるとともに、正極集電体120が下部絶縁部材170及び上部絶縁部材150を介して蓋体110に取り付けられることで、これらが一体的に固定されている。 As shown in FIG. 3, the positive electrode terminal 200 is attached to the lid 110 via the upper insulating member 150, and the positive electrode current collector 120 is attached to the lid 110 via the lower insulating member 170 and the upper insulating member 150. By doing so, these are integrally fixed.

まず、各部材の具体的な構成について説明する。 First, a specific configuration of each member will be described.

図3及び図4に示すように、蓋体110には、正極端子200の一部を収容した状態の上部絶縁部材150が挿入される貫通孔112(第一貫通孔)が形成されている。 As shown in FIGS. 3 and 4, the lid 110 is formed with a through hole 112 (first through hole) into which the upper insulating member 150 in a state of accommodating a part of the positive electrode terminal 200 is inserted.

正極端子200は、バスバー接続部210と、軸部220とを一体的に備えている。バスバー接続部210は、蓄電素子10の電極端子間を繋ぐバスバー(図示省略)が接続される部位であり、上面が平面に形成されている。 The positive electrode terminal 200 integrally includes a bus bar connecting portion 210 and a shaft portion 220. The bus bar connecting portion 210 is a portion to which a bus bar (not shown) connecting the electrode terminals of the power storage element 10 is connected, and the upper surface thereof is formed to be flat.

軸部220は、バスバー接続部210の下面から下方に延び出た部位である。軸部220は組み立て前においては、図4に示すように円筒状であるが、組み立て後においては、図3に示すように軸部220の先端部230がかしめられて、外方に広がった形状となっている。つまり、軸部220の先端部230は、かしめられた部分である。具体的には、軸部220の先端部230は、かしめ後において下方から見ると円環状で正極集電体120に密着している。この先端部230とバスバー接続部210とが、正極集電体120と、上部絶縁部材150と、下部絶縁部材170と、蓋体110とを上下方向で挟んで締め付けている。 The shaft portion 220 is a portion extending downward from the lower surface of the bus bar connecting portion 210. Before assembly, the shaft portion 220 has a cylindrical shape as shown in FIG. 4, but after assembly, the tip portion 230 of the shaft portion 220 is crimped and spreads outward as shown in FIG. It has become. That is, the tip portion 230 of the shaft portion 220 is a crimped portion. Specifically, the tip portion 230 of the shaft portion 220 is annular and is in close contact with the positive electrode current collector 120 when viewed from below after caulking. The tip portion 230 and the bus bar connecting portion 210 fasten the positive electrode current collector 120, the upper insulating member 150, the lower insulating member 170, and the lid 110 in the vertical direction.

上部絶縁部材150は、正極端子200と蓋体110との間に少なくともその一部が配置されるガスケットである。具体的には、上部絶縁部材150は、天板部153と、円筒部152とを一体的に備えている。天板部153は、蓋体110上に載置されて、正極端子200のバスバー接続部210を支持する部位である。円筒部152は、天板部153の下面から下方に向けて円筒状に突出している。円筒部152の貫通孔154は、天板部153も貫通しており、正極集電体120の貫通孔123と平面視で同形である。この貫通孔154は、正極集電体120の貫通孔123に連続するように配置されており、これらの貫通孔154及び123に対して正極端子200の軸部220が挿入される。また、円筒部152の外径は、下部絶縁部材170の貫通孔172及び蓋体110の貫通孔112に挿入可能な大きさで形成されている。 The upper insulating member 150 is a gasket in which at least a part thereof is arranged between the positive electrode terminal 200 and the lid 110. Specifically, the upper insulating member 150 integrally includes a top plate portion 153 and a cylindrical portion 152. The top plate portion 153 is a portion that is placed on the lid body 110 and supports the bus bar connecting portion 210 of the positive electrode terminal 200. The cylindrical portion 152 projects downward from the lower surface of the top plate portion 153 in a cylindrical shape. The through hole 154 of the cylindrical portion 152 also penetrates the top plate portion 153, and has the same shape as the through hole 123 of the positive electrode current collector 120 in a plan view. The through holes 154 are arranged so as to be continuous with the through holes 123 of the positive electrode current collector 120, and the shaft portion 220 of the positive electrode terminal 200 is inserted into these through holes 154 and 123. The outer diameter of the cylindrical portion 152 is formed to be large enough to be inserted into the through hole 172 of the lower insulating member 170 and the through hole 112 of the lid 110.

上部絶縁部材150は、蓋体110よりも剛性が低く、かつ、絶縁性の部材で形成されているのがよい。上部絶縁部材150は、例えば、ポリフェニレンサルファイド(PPS)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリブチレンテレフタレート(PBT)、ポリテトラフルオロエチレン(PFA)、ポリエーテルエーテルケトン(PEEK)などの樹脂で形成されている。 The upper insulating member 150 is preferably made of an insulating member having a lower rigidity than the lid 110. The upper insulating member 150 is made of a resin such as polyphenylene sulfide (PPS), polypropylene (PP), polyethylene (PE), polybutylene terephthalate (PBT), polytetrafluoroethylene (PFA), or polyetheretherketone (PEEK). It is formed.

下部絶縁部材170は、正極集電体120と蓋体110との間に少なくともその一部が配置されるガスケットである。下部絶縁部材170は、略平板状に形成されており、その一端部に蓋体110の貫通孔112と平面視で同形の貫通孔172(第三貫通孔)が形成されている。この貫通孔172は、図3に示すように組み立て後においては、蓋体110の貫通孔112に連続するように配置されている。これらの貫通孔172及び112に対して上部絶縁部材150の円筒部152が挿入される。 The lower insulating member 170 is a gasket in which at least a part thereof is arranged between the positive electrode current collector 120 and the lid 110. The lower insulating member 170 is formed in a substantially flat plate shape, and a through hole 172 (third through hole) having the same shape as the through hole 112 of the lid 110 in a plan view is formed at one end thereof. As shown in FIG. 3, the through hole 172 is arranged so as to be continuous with the through hole 112 of the lid 110 after assembly. The cylindrical portion 152 of the upper insulating member 150 is inserted into these through holes 172 and 112.

図5は、実施の形態に係る下部絶縁部材170を下方から見た平面図である。 FIG. 5 is a plan view of the lower insulating member 170 according to the embodiment as viewed from below.

図4及び図5に示すようにかしめ前の状態では、下部絶縁部材170における蓋体110に重なる部分のうち、貫通孔172の周囲が、その他の領域173(第二領域)よりも肉厚な肉厚部174となっている。具体的には、その他の領域173は、全体として均等な肉厚に形成されており、肉厚部174は、その他の領域173よりも容器100の内方に向けて突出している。肉厚部174は、貫通孔172の全周にわたって連続した円環状に形成されている。そして、肉厚部174の突出量t1は、その他の領域173の厚みt2の30%程度である。この肉厚部174は、かしめ後においては、図3に示すように正極集電体120と蓋体110によって圧縮されている。 As shown in FIGS. 4 and 5, in the state before caulking, the periphery of the through hole 172 of the portion of the lower insulating member 170 overlapping the lid 110 is thicker than the other region 173 (second region). The wall thickness is 174. Specifically, the other region 173 is formed to have a uniform wall thickness as a whole, and the wall thickness portion 174 protrudes inward of the container 100 from the other region 173. The thick portion 174 is formed in a continuous annular shape over the entire circumference of the through hole 172. The protruding amount t1 of the thick portion 174 is about 30% of the thickness t2 of the other region 173. After caulking, the thick portion 174 is compressed by the positive electrode current collector 120 and the lid 110 as shown in FIG.

下部絶縁部材170は、蓋体110よりも剛性が低く、かつ、絶縁性の部材で形成されているのがよい。下部絶縁部材170は、例えば、PPS、PP、PE、PBT、PFA、PEEKなどの樹脂で形成されている。 The lower insulating member 170 is preferably made of an insulating member having a lower rigidity than the lid 110. The lower insulating member 170 is made of, for example, a resin such as PPS, PP, PE, PBT, PFA, or PEEK.

図6は、実施の形態に係る正極集電体120を下方から見た平面図である。 FIG. 6 is a plan view of the positive electrode current collector 120 according to the embodiment as viewed from below.

図3、図4及び図6に示すように、正極集電体120は、集電体本体部121と、脚部122とを一体的に有している。 As shown in FIGS. 3, 4 and 6, the positive electrode current collector 120 integrally includes a current collector main body 121 and legs 122.

集電体本体部121は、正極端子200が接続される部位である。具体的には、集電体本体部121は、略平板状に形成されており、正極端子200の軸部220が挿入される貫通孔123(第二貫通孔)を有している。図4及び図6に示すようにかしめ前の状態では、集電体本体部121における貫通孔123の周囲は、その他の領域124(第一領域)よりも肉厚な肉厚部125となっている。具体的には、その他の領域124は、全体として均等な肉厚に形成されており、肉厚部125は、その他の領域124よりも容器100の内方に向けて突出している。肉厚部125は、貫通孔172の全周にわたって連続した円環状に形成されている。そして、肉厚部125の突出量t3は、その他の領域124の厚みt4の30%程度である。 The current collector main body 121 is a portion to which the positive electrode terminal 200 is connected. Specifically, the current collector main body 121 is formed in a substantially flat plate shape, and has a through hole 123 (second through hole) into which the shaft portion 220 of the positive electrode terminal 200 is inserted. As shown in FIGS. 4 and 6, in the state before caulking, the periphery of the through hole 123 in the current collector main body 121 becomes a thick portion 125 thicker than the other region 124 (first region). There is. Specifically, the other region 124 is formed to have a uniform wall thickness as a whole, and the wall thickness portion 125 protrudes inward of the container 100 from the other region 124. The thick portion 125 is formed in a continuous annular shape over the entire circumference of the through hole 172. The protruding amount t3 of the thick portion 125 is about 30% of the thickness t4 of the other region 124.

図7は、実施の形態に係る、かしめ後の正極集電体120を下方から見た正面図である。 FIG. 7 is a front view of the positive electrode current collector 120 after caulking according to the embodiment as viewed from below.

図3に示すように、肉厚部125の一部は、かしめ後においては正極端子200の先端部230と、蓋体110によって圧縮される。このとき、図3及び図7に示すように肉厚部125のその他の一部は、先端部230の外周に沿って盛り上がり、かしめ後においても他の領域124よりも肉厚な部分となっている。具体的には、肉厚部125のその他の一部は、正極端子200の先端部230の外周に沿って全周にわたって連続した円環状に形成されている。 As shown in FIG. 3, a part of the thick portion 125 is compressed by the tip portion 230 of the positive electrode terminal 200 and the lid 110 after caulking. At this time, as shown in FIGS. 3 and 7, the other part of the thick portion 125 rises along the outer circumference of the tip portion 230, and even after caulking, it becomes a thick portion than the other region 124. There is. Specifically, the other part of the thick portion 125 is formed in a continuous annular shape along the outer circumference of the tip portion 230 of the positive electrode terminal 200.

脚部122は、電極体400の正極に電気的に接続される長尺状の2本の脚である。脚部122は、集電体本体部121の貫通孔123よりも外方(容器100内において短側面側)に配置されている。脚部122は、電極体400の正極を挟持した状態で当該正極に固定されている(図2参照)。 The leg portion 122 is two long legs electrically connected to the positive electrode body 400. The leg portion 122 is arranged outside the through hole 123 of the current collector main body portion 121 (on the short side surface side in the container 100). The leg portion 122 is fixed to the positive electrode body 400 with the positive electrode body sandwiched therein (see FIG. 2).

次に、蓄電素子10の製造方法について説明する。 Next, a method of manufacturing the power storage element 10 will be described.

図8は、実施の形態に係る蓄電素子10の製造方法の一工程を示す断面図である。具体的には、図8は図3に対応する図である。 FIG. 8 is a cross-sectional view showing one step of the method for manufacturing the power storage element 10 according to the embodiment. Specifically, FIG. 8 is a diagram corresponding to FIG.

まず、図8に示すように、配置工程では、蓋体110の貫通孔112に対して、正極集電体120の貫通孔123を連通させた状態で、蓋体110及び正極集電体120を対向させて配置する。具体的には、蓋体110の貫通孔112に対して、上部絶縁部材150の円筒部152を挿入する。次いで、上部絶縁部材150の貫通孔154内に、正極端子200の軸部220を挿入する。その後、下部絶縁部材170の貫通孔172に、上部絶縁部材150の円筒部152を挿入してから、正極集電体120の貫通孔123に、正極端子200の軸部220を挿入する。かしめ前の状態では、下部絶縁部材170の肉厚部174と、正極集電体120の肉厚部125とは、圧縮されておらず、容器100の内方に向けて突出している。 First, as shown in FIG. 8, in the arrangement step, the lid 110 and the positive electrode current collector 120 are placed in a state where the through hole 123 of the positive electrode current collector 120 is communicated with the through hole 112 of the lid 110. Place them facing each other. Specifically, the cylindrical portion 152 of the upper insulating member 150 is inserted into the through hole 112 of the lid body 110. Next, the shaft portion 220 of the positive electrode terminal 200 is inserted into the through hole 154 of the upper insulating member 150. After that, the cylindrical portion 152 of the upper insulating member 150 is inserted into the through hole 172 of the lower insulating member 170, and then the shaft portion 220 of the positive electrode terminal 200 is inserted into the through hole 123 of the positive electrode current collector 120. In the state before caulking, the thick portion 174 of the lower insulating member 170 and the thick portion 125 of the positive electrode current collector 120 are not compressed and protrude toward the inside of the container 100.

次に、かしめ工程では、図3に示すように、蓋体110の貫通孔112及び正極集電体120の貫通孔123内に挿通された正極端子200の軸部220をかしめて、かしめられた部分(軸部220の先端部230)を正極集電体120に接触させる。具体的には、正極端子200の軸部220をかしめると、軸部220の先端部230が外方に広がるように押圧されて、全周にわたって集電体本体部121の表面に密着する。これにより、軸部220の先端部230と、集電体本体部121との密着性が高められる。また、このかしめによって、軸部220の先端部230と、バスバー接続部210とが、正極集電体120の集電体本体部121と、上部絶縁部材150と、下部絶縁部材170と、蓋体110とを締め付ける。これにより、蓋体110と、バスバー接続部210との間隔が狭まって、肉厚部125及び174がそれぞれ圧縮され、図3に示す状態となる。このとき、正極端子200の先端部230は、正極集電体120の肉厚部125に埋まった状態となる。 Next, in the caulking step, as shown in FIG. 3, the shaft portion 220 of the positive electrode terminal 200 inserted into the through hole 112 of the lid 110 and the through hole 123 of the positive electrode current collector 120 was crimped. The portion (the tip 230 of the shaft 220) is brought into contact with the positive electrode current collector 120. Specifically, when the shaft portion 220 of the positive electrode terminal 200 is crimped, the tip portion 230 of the shaft portion 220 is pressed so as to spread outward, and is brought into close contact with the surface of the current collector main body portion 121 over the entire circumference. As a result, the adhesion between the tip 230 of the shaft 220 and the current collector main body 121 is enhanced. Further, by this caulking, the tip portion 230 of the shaft portion 220 and the bus bar connecting portion 210 are formed by the current collector main body 121 of the positive electrode current collector 120, the upper insulating member 150, the lower insulating member 170, and the lid. Tighten with 110. As a result, the distance between the lid 110 and the bus bar connecting portion 210 is narrowed, and the thick portions 125 and 174 are compressed, respectively, and the state shown in FIG. 3 is obtained. At this time, the tip 230 of the positive electrode terminal 200 is buried in the thick portion 125 of the positive electrode current collector 120.

同様の工程で、蓋体110の負極側にも、上部絶縁部材310、下部絶縁部材(図示省略)、負極集電体130及び負極端子300を取り付ける。 In the same process, the upper insulating member 310, the lower insulating member (not shown), the negative electrode current collector 130, and the negative electrode terminal 300 are also attached to the negative electrode side of the lid 110.

次いで、正極集電体120に電極体400の正極を取り付けるとともに、負極集電体130に電極体400の負極を取り付ける。 Next, the positive electrode of the electrode body 400 is attached to the positive electrode current collector 120, and the negative electrode of the electrode body 400 is attached to the negative electrode current collector 130.

その後、図2に示す状態から、電極体400を容器100の本体111に収容して、本体111に蓋体110を溶接して、容器100を組み立てる。次いで、図示しない注液口から電解液を注液した後、注液栓を蓋体110に溶接して注液口を塞ぐことで、図1に示す蓄電素子10が製造される。 Then, from the state shown in FIG. 2, the electrode body 400 is housed in the main body 111 of the container 100, and the lid 110 is welded to the main body 111 to assemble the container 100. Next, the electrolytic solution is injected from a liquid injection port (not shown), and then the liquid injection plug is welded to the lid 110 to close the liquid injection port, whereby the power storage element 10 shown in FIG. 1 is manufactured.

図9は、比較例として、肉厚部125を有さない正極集電体120aを用いた場合のかしめ後の状態を示す断面図である。具体的には、図9は図3に対応する図である。図9に示すように、正極集電体120aの集電体本体部121aは、肉厚部125がないために全体として均一な厚みに形成されている。このため、正極端子200の軸部220がかしめられると、その圧縮力によって集電体本体部121aが屈曲する。この屈曲により、脚部122aが電極体400に接近してしまう。この接近を考慮して、予め電極体400を小さく形成しておくことも考えられるが、蓄電容量が減少してしまい好ましくない。一方、集電体本体部121aの強度を高めるべく、全体として肉厚に形成することも検討されるが、肉厚にするだけ正極集電体120aに用いられる材料も多くなる。さらに、容器100内の容量を圧迫することになり、電解液の充填量が減少してしまう。 FIG. 9 is a cross-sectional view showing a state after caulking when a positive electrode current collector 120a having no wall thickness portion 125 is used as a comparative example. Specifically, FIG. 9 is a diagram corresponding to FIG. As shown in FIG. 9, the current collector main body portion 121a of the positive electrode current collector 120a is formed to have a uniform thickness as a whole because there is no wall-thick portion 125. Therefore, when the shaft portion 220 of the positive electrode terminal 200 is crimped, the current collector main body portion 121a is bent by the compressive force. Due to this bending, the leg portion 122a approaches the electrode body 400. In consideration of this approach, it is conceivable to make the electrode body 400 small in advance, but this is not preferable because the storage capacity is reduced. On the other hand, in order to increase the strength of the current collector main body 121a, it is considered to form the current collector main body portion 121a to be thick as a whole, but the material used for the positive electrode current collector 120a increases as the wall thickness increases. Further, the capacity in the container 100 is compressed, and the filling amount of the electrolytic solution is reduced.

しかしながら、実施の形態によれば、かしめ前の状態では、正極集電体120における容器100に重なる部分のうち、貫通孔123の周囲が全周にわたって連続して、その他の領域124(第一領域)よりも肉厚に形成されている。これにより、正極集電体120が全体として大型になることを抑えつつも、かしめによる正極集電体120の変形量を抑制することができる。したがって、かしめ後に集電体が電極体に接近してしまうことを抑えることができ、短絡の可能性を小さくすることができる。 However, according to the embodiment, in the state before caulking, in the portion of the positive electrode current collector 120 that overlaps the container 100, the periphery of the through hole 123 is continuous over the entire circumference, and the other region 124 (first region). ) Is formed thicker than. As a result, it is possible to suppress the amount of deformation of the positive electrode current collector 120 due to caulking while suppressing the size of the positive electrode current collector 120 as a whole. Therefore, it is possible to prevent the current collector from approaching the electrode body after caulking, and it is possible to reduce the possibility of a short circuit.

さらに、肉厚部125は、貫通孔123の全周にわたって連続しているので、かしめにより作用する圧縮力を均等に肉厚部125で受けることができ、かしめを起因とした屈曲を確実に抑制することができる。 Further, since the thick portion 125 is continuous over the entire circumference of the through hole 123, the compressive force acting by caulking can be evenly received by the thick portion 125, and bending due to caulking is reliably suppressed. can do.

また、肉厚部125は、その他の領域124よりも容器100の内方に向けて突出しているので、正極集電体120における容器100の内方に向けた屈曲する変形、つまり、電極体400に近づく変形を抑えることができる。 Further, since the thick portion 125 protrudes inward of the container 100 from the other regions 124, the positive electrode current collector 120 bends inward of the container 100, that is, the electrode body 400. Deformation approaching to can be suppressed.

また、図9では、肉厚部174を有さない下部絶縁部材170aが用いられている。このとき、かしめによって下部絶縁部材170aも変形する場合がある。下部絶縁部材170aが変形してしまうと、当該下部絶縁部材170aに重なる正極集電体120aも、下部絶縁部材170の変形の影響を受けて、電極体400に近づくように変形してしまう。 Further, in FIG. 9, a lower insulating member 170a having no wall thickness portion 174 is used. At this time, the lower insulating member 170a may also be deformed by caulking. When the lower insulating member 170a is deformed, the positive electrode current collector 120a overlapping the lower insulating member 170a is also affected by the deformation of the lower insulating member 170 and is deformed so as to approach the electrode body 400.

しかし、実施の形態によれば、かしめ前の状態では、下部絶縁部材170における容器100に重なる部分のうち、貫通孔172の周囲が、その他の領域173(第二領域)よりも肉厚な肉厚部174であるので、かしめによる下部絶縁部材170の変形量を抑制することができる。つまり、下部絶縁部材170の変形を起因とした正極集電体120の変形を抑えることができる。 However, according to the embodiment, in the state before caulking, in the portion of the lower insulating member 170 that overlaps with the container 100, the circumference of the through hole 172 is thicker than the other region 173 (second region). Since the thick portion is 174, the amount of deformation of the lower insulating member 170 due to caulking can be suppressed. That is, the deformation of the positive electrode current collector 120 due to the deformation of the lower insulating member 170 can be suppressed.

また、肉厚部174が容器100の内方に向けて突出しているので、下部絶縁部材170における容器100の内方に屈曲する変形、つまり、集電体を電極体に近づけようとする変形を抑えることができる。 Further, since the thick portion 174 protrudes inward of the container 100, the deformation of the lower insulating member 170 that bends inward of the container 100, that is, the deformation that tries to bring the current collector closer to the electrode body. It can be suppressed.

また、正極端子200のかしめられた部分(先端部230)が正極集電体120の肉厚部125に埋まっているので、正極端子200と正極集電体120との接触面積を増やすことができ、導電性を高めることができる。 Further, since the crimped portion (tip portion 230) of the positive electrode terminal 200 is embedded in the thick portion 125 of the positive electrode current collector 120, the contact area between the positive electrode terminal 200 and the positive electrode current collector 120 can be increased. , Conductivity can be increased.

(他の実施の形態)
以上、本発明に係る蓄電素子について、実施の形態に基づいて説明した。しかしながら、本発明は、上記実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を上記実施の形態に施したものも、あるいは、上記説明された複数の構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
(Other embodiments)
The power storage element according to the present invention has been described above based on the embodiment. However, the present invention is not limited to the above embodiment. As long as the gist of the present invention is not deviated, various modifications that can be conceived by those skilled in the art are applied to the above-described embodiment, or a form constructed by combining the plurality of components described above is also within the scope of the present invention. include.

例えば、上記実施の形態では、上記実施の形態では、蓄電素子10は、1つの電極体400を備えていることとしたが、複数の電極体を備えている構成でもかまわない。 For example, in the above-described embodiment, in the above-described embodiment, the power storage element 10 is provided with one electrode body 400, but a configuration including a plurality of electrode bodies may be used.

また、上記実施の形態では、バスバー接続部210と軸部220とが一体成形された正極端子200を例示したが、バスバー接続部と軸部とが別体であって、組み付け後に一体化される正極端子であってもよい。 Further, in the above embodiment, the positive electrode terminal 200 in which the bus bar connection portion 210 and the shaft portion 220 are integrally molded is illustrated, but the bus bar connection portion and the shaft portion are separate bodies and are integrated after assembly. It may be a positive electrode terminal.

また、上記実施の形態では、軸部220が中空に形成されている場合を例示して説明したが、軸部は中実であってもよい。 Further, in the above embodiment, the case where the shaft portion 220 is formed in a hollow shape has been described as an example, but the shaft portion may be solid.

また、蓄電素子10が備える電極体は巻回型である必要はない。蓄電素子10は、例えば平板状極板を積層した積層型の電極体を備えてもよい。また、蓄電素子10は、例えば、長尺帯状の極板を山折りと谷折りとの繰り返しによって蛇腹状に積層した構造を有する電極体を備えてもよい。 Further, the electrode body included in the power storage element 10 does not have to be of a winding type. The power storage element 10 may include, for example, a laminated electrode body in which flat plate-shaped electrode plates are laminated. Further, the power storage element 10 may include, for example, an electrode body having a structure in which long strip-shaped electrode plates are laminated in a bellows shape by repeating mountain folds and valley folds.

また、上記実施の形態では、肉厚部125及び174が容器100の内方に向けて突出している場合を例示して説明した。しかし、肉厚部125及び174は容器100の外方に向けて突出していてもよい。 Further, in the above-described embodiment, the case where the thick portions 125 and 174 project inward of the container 100 has been illustrated and described. However, the thick portions 125 and 174 may protrude toward the outside of the container 100.

また、上記実施の形態では、肉厚部125及び174が平面視円環状である場合を例示して説明したが、肉厚部125及び174の平面視形状は如何様でもよく、その他の平面視形状としては例えば多角形状、楕円状などが挙げられる。また、肉厚部125及び174は、その他の領域よりも肉厚であれば突出していなくてもよい。 Further, in the above embodiment, the case where the thick portions 125 and 174 are annular in a plan view has been described as an example, but the plan view shapes of the thick portions 125 and 174 may be any shape, and other plan views may be used. Examples of the shape include a polygonal shape and an elliptical shape. Further, the thick portions 125 and 174 do not have to protrude as long as they are thicker than the other regions.

突出していない肉厚部125b及び174bについて具体的に説明する。 The thick portions 125b and 174b that do not protrude will be specifically described.

図10は、変形例に係る、かしめ前の肉厚部125b及び174bを示す断面図である。具体的には、図10は図4に対応する図である。図11は、変形例に係る、かしめ後の肉厚部125b及び174bを示す断面図である。具体的には、図11は図3に対応する図である。なお、以下の説明において、上記実施の形態と同一の部分には同一の符号を付してその説明を省略する場合がある。 FIG. 10 is a cross-sectional view showing the thick portions 125b and 174b before caulking according to the modified example. Specifically, FIG. 10 is a diagram corresponding to FIG. FIG. 11 is a cross-sectional view showing the thickened portions 125b and 174b after caulking according to the modified example. Specifically, FIG. 11 is a diagram corresponding to FIG. In the following description, the same parts as those in the above embodiment may be designated by the same reference numerals and the description thereof may be omitted.

図10に示すように、変形例に係る正極集電体120bは、貫通孔123bの周囲が最も肉厚となるように、集電体本体部121bの下面が形成されている。具体的には、集電体本体部121の下面は、貫通孔123bを中心としたテーパー面または当該下面の両端部から貫通孔123bの下端部に向けて傾斜した平面状の傾斜面となっている。そして、この場合においても、貫通孔123bの周囲が、その他の領域よりも肉厚な肉厚部125bとなる。 As shown in FIG. 10, in the positive electrode current collector 120b according to the modified example, the lower surface of the current collector main body 121b is formed so that the circumference of the through hole 123b is the thickest. Specifically, the lower surface of the current collector main body 121 is a tapered surface centered on the through hole 123b or a flat inclined surface inclined from both ends of the lower surface toward the lower end of the through hole 123b. There is. Also in this case, the periphery of the through hole 123b is a thick portion 125b that is thicker than the other regions.

下部絶縁部材170bは、貫通孔172bの周囲が最も肉厚となるように、下部絶縁部材170bの下面が形成されている。具体的には、下部絶縁部材170bの下面は、貫通孔172bを中心としたテーパー面または当該下面の両端部から貫通孔123bの下端部に向けて傾斜した平面状の傾斜面となっている。そして、この場合においても、貫通孔172bの周囲が、その他の領域よりも肉厚な肉厚部174bとなる。 The lower surface of the lower insulating member 170b is formed so that the circumference of the through hole 172b is the thickest. Specifically, the lower surface of the lower insulating member 170b is a tapered surface centered on the through hole 172b or a flat inclined surface inclined from both ends of the lower surface toward the lower end of the through hole 123b. In this case as well, the periphery of the through hole 172b becomes a thick portion 174b that is thicker than the other regions.

そして、図11に示すように、かしめ後においては、下部絶縁部材170bの肉厚部174bが圧縮されるとともに、正極集電体120bの肉厚部125bがそれぞれ圧縮される。このとき、正極端子200の先端部230は、正極集電体120bの肉厚部125bに埋まった状態となる。 Then, as shown in FIG. 11, after caulking, the thick portion 174b of the lower insulating member 170b is compressed, and the thick portion 125b of the positive electrode current collector 120b is compressed. At this time, the tip 230 of the positive electrode terminal 200 is buried in the thick portion 125b of the positive electrode current collector 120b.

また、図12は、他の変形例に係る固定構造の分解断面図である。この図12に示すように、正極集電体120のみが肉厚部125を有して、下部絶縁部材170cが肉厚部を有さない構成であってもよい。 Further, FIG. 12 is an exploded sectional view of a fixed structure according to another modified example. As shown in FIG. 12, only the positive electrode current collector 120 may have a wall thickness portion 125, and the lower insulating member 170c may not have a wall thickness portion.

また、上記実施の形態では、正極側を例示して、本発明の特徴となる部分の具体的な構成について説明したが、負極側においても同様の構成が適用されていることはもちろんである。なお、本発明の趣旨を逸脱しない範囲であれば、正極側と負極側とが異なる構成であってもよい。 Further, in the above-described embodiment, the specific configuration of the characteristic portion of the present invention has been described by exemplifying the positive electrode side, but it goes without saying that the same configuration is applied to the negative electrode side as well. The positive electrode side and the negative electrode side may have different configurations as long as they do not deviate from the gist of the present invention.

また、上記実施の形態に記載された構成を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。 Further, a mode constructed by arbitrarily combining the configurations described in the above-described embodiment is also included in the scope of the present invention.

本発明は、リチウムイオン二次電池などの蓄電素子等に適用できる。 The present invention can be applied to a power storage element such as a lithium ion secondary battery.

10 蓄電素子
100 容器
110 蓋体
111 本体
112 貫通孔(第一貫通孔)
120、120a、120b 正極集電体(集電体)
121、121a、121b 集電体本体部
122、122a 脚部
123、123b 貫通孔(第二貫通孔)
124 その他の領域(第一領域)
125、125b 肉厚部
130 負極集電体
150 上部絶縁部材
152 円筒部
153 天板部
154 貫通孔
170、170a、170b 下部絶縁部材(絶縁部材)
172、172b 貫通孔(第三貫通孔)
173 その他の領域(第二領域)
174、174b 肉厚部
200 正極端子(電極端子)
210 バスバー接続部
220 軸部
230 先端部(かしめられた部分)
300 負極端子
310 上部絶縁部材
400 電極体
10 Power storage element 100 Container 110 Lid 111 Main body 112 Through hole (first through hole)
120, 120a, 120b Positive electrode current collector (current collector)
121, 121a, 121b Current collector body 122, 122a Leg 123, 123b Through hole (second through hole)
124 Other areas (first area)
125, 125b Thick part 130 Negative electrode current collector 150 Upper insulating member 152 Cylindrical part 153 Top plate part 154 Through hole 170, 170a, 170b Lower insulating member (insulating member)
172, 172b through hole (third through hole)
173 Other areas (second area)
174, 174b Thick part 200 Positive electrode terminal (electrode terminal)
210 Bus bar connection 220 Shaft 230 Tip (caulked part)
300 Negative electrode terminal 310 Upper insulating member 400 Electrode body

Claims (7)

容器に設けられた第一貫通孔に対して、集電体に設けられた第二貫通孔を連通させた状態で、前記容器及び前記集電体を対向させて配置する配置工程と、
前記第一貫通孔及び前記第二貫通孔内に電極端子を挿通してかしめて、かしめられた部分を前記集電体に接触させるかしめ工程と、を含む蓄電素子の製造方法であって、
前記容器と前記集電体との間には、絶縁部材が配置されており、
前記絶縁部材は、前記電極端子が挿通される第三貫通孔を有し、
前記かしめ工程の前の状態では、前記集電体における前記第二貫通孔の周囲が全周にわたって連続して、その他の領域である第一領域よりも肉厚に形成されているとともに、前記絶縁部材における前記容器に重なる部分のうち、前記第三貫通孔の周囲が、その他の領域である第二領域よりも肉厚に形成されている
蓄電素子の製造方法。
An arrangement step of arranging the container and the current collector so as to face each other with the second through hole provided in the current collector communicating with the first through hole provided in the container.
A method for manufacturing a power storage element, comprising a step of inserting an electrode terminal into the first through hole and the second through hole and caulking the crimped portion into contact with the current collector.
An insulating member is arranged between the container and the current collector.
The insulating member has a third through hole through which the electrode terminal is inserted.
In the state before the caulking step, the periphery of the second through hole in the current collector is continuously formed over the entire circumference to be thicker than the first region, which is another region , and the insulation is formed. A method for manufacturing a power storage element in which the periphery of the third through hole is formed to be thicker than the second region, which is another region, among the portions of the member that overlap the container.
前記第二貫通孔の周囲は、前記第一領域よりも前記容器の内方に向けて突出することで肉厚となっている
請求項1に記載の蓄電素子の製造方法。
The method for manufacturing a power storage element according to claim 1, wherein the periphery of the second through hole is thickened by protruding toward the inside of the container from the first region.
前記第三貫通孔の周囲は、前記第二領域よりも前記容器の内方に向けて突出することで肉厚となっている
請求項1または2に記載の蓄電素子の製造方法。
The method for manufacturing a power storage element according to claim 1 or 2 , wherein the periphery of the third through hole is thickened by protruding toward the inside of the container from the second region.
容器に設けられた第一貫通孔に対して、集電体に設けられた第二貫通孔を連通させた状態で、前記容器及び前記集電体を対向させて配置する配置工程と、
前記第一貫通孔及び前記第二貫通孔内に電極端子を挿通してかしめて、かしめられた部分を前記集電体に接触させるかしめ工程と、を含む蓄電素子の製造方法であって、
前記かしめ工程の前の状態では、前記集電体における前記第二貫通孔の周囲が全周にわたって連続して、その他の領域である第一領域よりも肉厚に形成されていて、
前記かしめ工程の後の状態では、前記電極端子の前記かしめられた部分が、前記集電体における前記第一領域よりも肉厚な部分に埋まっている
電素子の製造方法。
An arrangement step of arranging the container and the current collector so as to face each other with the second through hole provided in the current collector communicating with the first through hole provided in the container.
A method for manufacturing a power storage element, comprising a step of inserting an electrode terminal into the first through hole and the second through hole and caulking the crimped portion into contact with the current collector.
In the state before the caulking step, the periphery of the second through hole in the current collector is continuously formed over the entire circumference and is formed to be thicker than the first region which is another region.
In the state after the caulking step, the crimped portion of the electrode terminal is buried in a portion thicker than the first region of the current collector.
Manufacturing method of a charge reservoir element.
第一貫通孔を有する容器と、
前記第一貫通孔に連通する第二貫通孔を有し、前記容器に対向する集電体と、
前記第一貫通孔及び前記第二貫通孔内に挿通されてかしめられた部分が前記集電体に接触した電極端子と
前記容器と前記集電体との間に配置され、前記電極端子が挿通される第三貫通孔を有する絶縁部材とを備え、
前記集電体における前記電極端子の周囲は他の領域よりも肉厚な肉厚部であり、
前記肉厚部は前記かしめられた部分の外周に沿って全周にわたって連続しており、
前記電極端子における前記かしめられた部分がかしめられる前の状態では、前記絶縁部材における前記容器に重なる部分のうち、前記第三貫通孔の周囲が、その他の領域である第二領域よりも肉厚に形成されている
蓄電素子。
A container with a first through hole and
A current collector having a second through hole communicating with the first through hole and facing the container,
An electrode terminal in which the first through hole and the portion inserted and crimped into the second through hole come into contact with the current collector .
An insulating member arranged between the container and the current collector and having a third through hole through which the electrode terminal is inserted is provided.
The periphery of the electrode terminal in the current collector is a thick portion thicker than other regions.
The thick portion is continuous over the entire circumference along the outer circumference of the crimped portion .
In the state before the crimped portion of the electrode terminal is crimped, the circumference of the third through hole in the portion of the insulating member overlapping the container is thicker than the second region which is another region. A power storage element formed in.
第一貫通孔を有する容器と、 A container with a first through hole and
前記第一貫通孔に連通する第二貫通孔を有し、前記容器に対向する集電体と、 A current collector having a second through hole communicating with the first through hole and facing the container,
前記第一貫通孔及び前記第二貫通孔内に挿通されてかしめられた部分が前記集電体に接触した電極端子とを備え、 The first through hole and the portion inserted and crimped in the second through hole are provided with an electrode terminal in contact with the current collector.
前記集電体における前記電極端子の周囲は他の領域よりも肉厚な肉厚部であり、 The periphery of the electrode terminal in the current collector is a thick portion thicker than other regions.
前記肉厚部は前記かしめられた部分の外周に沿って全周にわたって連続し、 The thick portion is continuous over the entire circumference along the outer circumference of the crimped portion.
前記電極端子の前記かしめられた部分は、前記肉厚部に埋まっている The crimped portion of the electrode terminal is embedded in the thick portion.
蓄電素子。 Power storage element.
前記肉厚部は前記他の領域よりも前記容器の内方に向けて突出することで肉厚となっている
請求項5または6に記載の蓄電素子。
The power storage element according to claim 5 or 6, wherein the thick portion is thickened by protruding toward the inside of the container from the other region.
JP2016233517A 2016-11-30 2016-11-30 Manufacturing method of power storage element and power storage element Active JP6862801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016233517A JP6862801B2 (en) 2016-11-30 2016-11-30 Manufacturing method of power storage element and power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016233517A JP6862801B2 (en) 2016-11-30 2016-11-30 Manufacturing method of power storage element and power storage element

Publications (2)

Publication Number Publication Date
JP2018092744A JP2018092744A (en) 2018-06-14
JP6862801B2 true JP6862801B2 (en) 2021-04-21

Family

ID=62565678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016233517A Active JP6862801B2 (en) 2016-11-30 2016-11-30 Manufacturing method of power storage element and power storage element

Country Status (1)

Country Link
JP (1) JP6862801B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4124756B2 (en) * 2003-10-03 2008-07-23 日立マクセル株式会社 Sealed battery
JP5445771B2 (en) * 2010-03-29 2014-03-19 株式会社Gsユアサ battery
JP5588712B2 (en) * 2010-03-31 2014-09-10 株式会社リチウムエナジージャパン battery
JP2013161719A (en) * 2012-02-07 2013-08-19 Gs Yuasa Corp Battery
JP5870940B2 (en) * 2013-01-22 2016-03-01 トヨタ自動車株式会社 Secondary battery and external terminals of secondary battery

Also Published As

Publication number Publication date
JP2018092744A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
CN104300171B (en) Rechargeable battery
CN107026248B (en) Power storage element, power storage device, and method for manufacturing power storage element
US10256457B2 (en) Secondary battery
CN104882626B (en) Secondary battery
JP6743417B2 (en) Storage element
US20200395579A1 (en) Energy storage device
US10833299B2 (en) Sealing member, energy storage device and method of manufacturing energy storage device
US10790485B2 (en) Energy storage device and method of manufacturing energy storage device
JP7009884B2 (en) Power storage element
JP6907509B2 (en) Manufacturing method of power storage element, conductive member and power storage element
JP6146536B2 (en) Power storage device
JP7035419B2 (en) Power storage element
JP6972834B2 (en) Power storage element
JP2020149952A (en) Power storage element
JP2020136244A (en) Power storage element
JP6862801B2 (en) Manufacturing method of power storage element and power storage element
JP7459025B2 (en) Battery and electrode holder
US11251509B2 (en) Energy storage device
US20150287973A1 (en) Rechargeable battery
JP2017212044A (en) Power storage element, and manufacturing method of power storage element
CN108604650B (en) Method for manufacturing electricity storage element, and electricity storage element
JP2020155283A (en) Power storage element and power storage device
JP6578974B2 (en) Electricity storage element
JP2018147829A (en) Power storage element and manufacturing method of the same
US10374208B2 (en) Rechargeable battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R150 Certificate of patent or registration of utility model

Ref document number: 6862801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150