JP6862246B2 - Dryness measuring device - Google Patents

Dryness measuring device Download PDF

Info

Publication number
JP6862246B2
JP6862246B2 JP2017068193A JP2017068193A JP6862246B2 JP 6862246 B2 JP6862246 B2 JP 6862246B2 JP 2017068193 A JP2017068193 A JP 2017068193A JP 2017068193 A JP2017068193 A JP 2017068193A JP 6862246 B2 JP6862246 B2 JP 6862246B2
Authority
JP
Japan
Prior art keywords
dryness
unit
microwave
measuring
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017068193A
Other languages
Japanese (ja)
Other versions
JP2018169340A (en
Inventor
真一郎 坂田
真一郎 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017068193A priority Critical patent/JP6862246B2/en
Publication of JP2018169340A publication Critical patent/JP2018169340A/en
Application granted granted Critical
Publication of JP6862246B2 publication Critical patent/JP6862246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明の実施形態は、乾き度測定装置に関する。 Embodiments of the present invention relates to a dryness of the measurement equipment.

従来、火力発電所や工場などでは蒸気を熱エネルギーとして用いられている。蒸気のエネルギー変換の効率性には蒸気の乾き度が影響することが知られている。蒸気には液相と気相が混在する状態があり、乾き度は蒸気中の液相と気相との割合を表している。乾き度は0〜1の範囲で表され、液相の割合が大きいと乾き度は0に近くなり、液相の割合が小さいと1に近くなる。 Conventionally, steam is used as heat energy in thermal power plants and factories. It is known that the dryness of steam affects the efficiency of steam energy conversion. The vapor has a state in which a liquid phase and a gas phase are mixed, and the degree of dryness represents the ratio of the liquid phase and the gas phase in the vapor. The degree of dryness is expressed in the range of 0 to 1. When the ratio of the liquid phase is large, the degree of dryness is close to 0, and when the ratio of the liquid phase is small, the degree of dryness is close to 1.

しかし、蒸気の乾き度については液相、気相いずれも水であるため、乾き度を精度よく測定することが困難であるという問題がある。 However, regarding the dryness of vapor, since both the liquid phase and the gas phase are water, there is a problem that it is difficult to accurately measure the dryness.

特開2012−122961号公報Japanese Unexamined Patent Publication No. 2012-122961

本発明が解決しようとする課題は、精度よく蒸気の乾き度を測定する、乾き度測定装置を提供する。 An object of the present invention is to provide the precision better measure the dryness of the steam, to provide a dryness measuring equipment.

上記課題を解決するため、実施形態の乾き度測定装置は、蒸気が流入する測定管の外側に設けられ、マイクロ波を照射するマイクロ波照射部と、前記マイクロ波照射部と対をなして前記測定管の外側に設けられ、前記マイクロ波照射部より照射されたマイクロ波を受信するマイクロ波受信部と、前記マイクロ波照射部から照射されるマイクロ波と前記マイクロ波受信部にて受信されるマイクロ波との位相差を測定する位相測定部と、前記測定管内の温度が入力される温度入力部と、前記測定管内の圧力値が入力される圧力入力部と、前記測定管内の渇き度が0のときの前記位相差と前記測定管内の渇き度が1のときの前記位相差との関係を温度別かつ圧力別に記憶したテーブル部と、前記位相測定部から出力される前記位相差と前記温度と前記圧力値とを用いて、前記蒸気の乾き度を算出する乾き度算出手段と、を具備している。 In order to solve the above problem, the dryness measuring device of the embodiment is provided on the outside of the measuring tube into which steam flows, and the microwave irradiating unit for irradiating the microwave and the microwave irradiating unit are paired with each other. It is provided on the outside of the measuring tube and is received by the microwave receiving unit that receives the microwave emitted from the microwave irradiation unit, the microwave emitted from the microwave irradiation unit, and the microwave receiving unit. A phase measuring unit that measures the phase difference with a microwave, a temperature input unit that inputs the temperature inside the measuring tube, a pressure input unit that inputs a pressure value in the measuring tube, and a thirst degree in the measuring tube. A table unit that stores the relationship between the phase difference when 0 and the phase difference when the degree of thirst in the measuring tube is 1, by temperature and by pressure, and the phase difference output from the phase measuring unit and the above. It is provided with a dryness calculating means for calculating the dryness of the steam by using the temperature and the pressure value.

第1の実施形態である乾き度測定装置の構成図。The block diagram of the dryness measuring apparatus which is 1st Embodiment. 水の比エンタルピーと温度との関係図。Diagram of the relationship between the specific enthalpy of water and temperature. マイクロ波照射部から照射されるマイクロ波とマイクロ波受信部にて受信されるマイクロ波との位相差の図。The figure of the phase difference between the microwave emitted from a microwave irradiation part and the microwave received by a microwave receiving part. 乾き度に対するマイクロ波の位相差の相関図。Correlation diagram of microwave phase difference with respect to dryness. 第2の実施形態である乾き度測定装置の構成図。The block diagram of the dryness measuring apparatus which is 2nd Embodiment. 記憶部に格納される位相差のテーブルの図。The figure of the phase difference table stored in the storage part. 水の温度と圧力に対応する状態図。Phase diagram corresponding to the temperature and pressure of water. マイクロ波の位相差の変化に対応する温度ごとの乾き度の相関図。Correlation diagram of dryness for each temperature corresponding to changes in microwave phase difference. 第3の実施形態である乾き度測定装置の構成図。The block diagram of the dryness measuring apparatus which is 3rd Embodiment. 第3の実施形態の変形例である乾き度測定装置の構成図。The block diagram of the dryness measuring apparatus which is a modification of 3rd Embodiment. 周波数変調をしたときのマイクロ波照射部から照射されるマイクロ波とマイクロ波受信部にて受信されるマイクロ波との位相差の図。The figure of the phase difference between the microwave emitted from the microwave irradiation part and the microwave received by a microwave receiving part at the time of frequency modulation. 乾き度測定装置の乾き度測定方法のフローチャートの図。The figure of the flowchart of the dryness measuring method of a dryness measuring apparatus. 乾き度測定装置の乾き度測定方法のフローチャートの図。The figure of the flowchart of the dryness measuring method of a dryness measuring apparatus.

以下、乾き度測定装置の実施形態を図面に基づき説明する。 Hereinafter, embodiments of the dryness measuring device will be described with reference to the drawings.

(第1の実施形態)
以下、第1の実施形態である乾き度測定装置について図面を用いて説明する。
(First Embodiment)
Hereinafter, the dryness measuring device according to the first embodiment will be described with reference to the drawings.

図1は第1の実施形態である乾き度測定装置1の構成図である。本実施形態の乾き度測定装置1は、蒸気が流入する測定管10の外側に設けられマイクロ波を照射するマイクロ波照射部20と、マイクロ波照射部20と対をなして測定管10の外側に設けられマイクロ波照射部20より照射されたマイクロ波を受信するマイクロ波受信部30と、乾き度演算部40とを有している。 FIG. 1 is a block diagram of the dryness measuring device 1 according to the first embodiment. The dryness measuring device 1 of the present embodiment is provided on the outside of the measuring tube 10 into which steam flows, and is paired with the microwave irradiation unit 20 for irradiating microwaves and the outside of the measuring tube 10. It has a microwave receiving unit 30 for receiving microwaves irradiated from the microwave irradiating unit 20 and a dryness calculation unit 40.

乾き度演算部40はマイクロ波照射部20から照射されるマイクロ波とマイクロ波受信部30にて受信されるマイクロ波との位相差を測定する位相測定部41と、位相測定部41の測定結果から蒸気の乾き度を算出する乾き度算出手段42と、記憶部43とを有している。即ち、本実施形態の乾き度測定装置1は蒸気にマイクロ波を照射し、マイクロ波の位相の変化に基づいて蒸気の乾き度を測定する。 The dryness calculation unit 40 is a phase measurement unit 41 that measures the phase difference between the microwave emitted from the microwave irradiation unit 20 and the microwave received by the microwave reception unit 30, and the measurement results of the phase measurement unit 41. It has a dryness calculating means 42 for calculating the dryness of steam from the microwave, and a storage unit 43. That is, the dryness measuring device 1 of the present embodiment irradiates the steam with microwaves and measures the dryness of the steam based on the change in the phase of the microwaves.

図2は水の比エンタルピー(単位質量あたりの熱エネルギー)と温度との関係を示した図である。横軸は比エンタルピーであり、縦軸は温度である。 FIG. 2 is a diagram showing the relationship between the specific enthalpy of water (heat energy per unit mass) and temperature. The horizontal axis is the specific enthalpy and the vertical axis is the temperature.

液相状態の水について比エンタルピーが増加すると水の温度が上昇し、沸点に達する。大気圧(1気圧)の環境下では沸点は100℃である。さらに水の比エンタルピーが増加すると液相と気相が混在した状態となる。この状態の蒸気の乾き度は以下の式(1)のようになる。 When the specific enthalpy of water in the liquid phase state increases, the temperature of the water rises and reaches the boiling point. The boiling point is 100 ° C. in an atmospheric pressure (1 atmospheric pressure) environment. Further, when the specific enthalpy of water increases, the liquid phase and the gas phase are mixed. The dryness of steam in this state is as shown in the following equation (1).

乾き度 = 気相の質量/(気相の質量+液相の質量) …式(1)
沸点に達したときの乾き度は液相から気相へと変化する境界のため、乾き度は0となり、比エンタルピーが増加すると液相から気相へ変化するため、乾き度は1に近づいていく。比エンタルピーをさらに増加させていくと蒸気は気相のみの状態となり、蒸気の温度は沸点よりも大きくなる。
Vapor quality = mass of gas phase / (mass of gas phase + mass of liquid phase) ... Equation (1)
When the boiling point is reached, the dryness changes from the liquid phase to the gas phase, so the dryness becomes 0, and when the specific enthalpy increases, the dryness changes from the liquid phase to the gas phase, so the dryness approaches 1. I will go. When the specific enthalpy is further increased, the steam becomes only in the gas phase, and the temperature of the steam becomes higher than the boiling point.

沸点については蒸気の圧力によって変化する。圧力が大気圧よりも大きい環境では、沸点は100℃よりも大きくなる。火力発電所や工場などに用いられる蒸気の圧力は大気圧よりも大きい。そのため、本実施形態の乾き度測定装置1は大気圧に限定されない。 The boiling point changes depending on the pressure of steam. In an environment where the pressure is greater than atmospheric pressure, the boiling point is greater than 100 ° C. The pressure of steam used in thermal power plants and factories is higher than atmospheric pressure. Therefore, the dryness measuring device 1 of the present embodiment is not limited to atmospheric pressure.

図3は測定管10に蒸気が流入しているときにマイクロ波照射部20から照射されるマイクロ波とマイクロ波受信部30にて受信されるマイクロ波との位相差を表したものである。図3(a)の波形は測定管10内の蒸気内を通過し、マイクロ波受信部30にて受信されたマイクロ波の波形である。図3(b)の波形はマイクロ波照射部20から照射されるマイクロ波の波形である。これらの波形の位相差をθとする。即ち、マイクロ波は測定管内の蒸気を通過することでθの位相差が発生したことになる。 FIG. 3 shows the phase difference between the microwave emitted from the microwave irradiation unit 20 and the microwave received by the microwave receiving unit 30 when steam is flowing into the measuring tube 10. The waveform of FIG. 3A is a waveform of a microwave that has passed through the steam in the measuring tube 10 and is received by the microwave receiving unit 30. The waveform of FIG. 3B is a waveform of a microwave emitted from the microwave irradiation unit 20. Let θ be the phase difference between these waveforms. That is, the microwave passes through the steam in the measuring tube, so that a phase difference of θ is generated.

乾き度演算部40の位相測定部41は図3(a)の波形および(b)の波形から、位相差θを測定する。 The phase measuring unit 41 of the dryness calculation unit 40 measures the phase difference θ from the waveform of FIG. 3A and the waveform of FIG. 3B.

図4は蒸気の乾き度に対するマイクロ波の位相差の相関図である。乾き度0のときの位相差をθとし、乾き度1のときの位相差をθとする。乾き度が0に近づくと蒸気は液相を多く含むため、マイクロ波の伝搬速度は遅くなり、位相差θは大きくなる。乾き度が1に近づくと蒸気は気相を多く含むため、マイクロ波の伝搬速度は速くなり、位相差θは小さくなる。 FIG. 4 is a correlation diagram of the phase difference of microwaves with respect to the dryness of steam. Let θ 0 be the phase difference when the dryness is 0, and θ 1 be the phase difference when the dryness is 1. When the dryness approaches 0, the vapor contains a large amount of liquid phase, so that the propagation speed of microwaves becomes slow and the phase difference θ becomes large. When the dryness approaches 1, the vapor contains a large amount of gas phase, so that the propagation velocity of microwaves becomes faster and the phase difference θ becomes smaller.

本実施形態の乾き度測定装置1は乾き度0のときの位相差θと乾き度1のときの位相差θとを予め測定し、乾き度演算部40の記憶部43に記憶している。 The dryness measuring device 1 of the present embodiment measures in advance the phase difference θ 0 when the dryness is 0 and the phase difference θ 1 when the dryness is 1, and stores them in the storage unit 43 of the dryness calculation unit 40. There is.

乾き度演算部40の乾き度算出手段42は位相測定部41により測定された位相差θと、記憶部43に記憶されている乾き度と位相差の相関図とに基づいて乾き度を算出する。乾き度の算出は一例として位相差θと位相差をθとを線形補完して当該位相差θの乾き度を算出する。 The dryness calculating means 42 of the dryness calculation unit 40 calculates the dryness based on the phase difference θ measured by the phase measuring unit 41 and the correlation diagram of the dryness and the phase difference stored in the storage unit 43. .. As an example, the dryness of the phase difference θ is calculated by linearly interpolating the phase difference θ 0 and the phase difference θ 1.

以上により、本実施形態の乾き度測定装置1はマイクロ波を用いた位相差θの測定により、精度よく蒸気の乾き度を測定することができる。 As described above, the dryness measuring device 1 of the present embodiment can accurately measure the dryness of steam by measuring the phase difference θ using microwaves.

(第2の実施形態)
以下、第2の実施形態である乾き度測定装置について図5を用いて説明する。
(Second Embodiment)
Hereinafter, the dryness measuring device according to the second embodiment will be described with reference to FIG.

本実施形態の乾き度測定装置2は図5に示すように第1の実施形態にさらに温度測定部50を設け、測定管10内の蒸気の温度を測定し、温度変化による乾き度の変化について考慮した測定装置である。 As shown in FIG. 5, the dryness measuring device 2 of the present embodiment further provides a temperature measuring unit 50 in the first embodiment, measures the temperature of the steam in the measuring tube 10, and changes the dryness due to the temperature change. It is a measuring device that takes into consideration.

本実施形態の乾き度測定装置3は予めサンプルとして複数の温度における乾き度0と1のときの位相差θ、θをそれぞれ求め、乾き度演算部40の記憶部43にテーブルを作成し、記憶する。図6は記憶部43に格納される位相差θ、θのテーブルの図である。図6では例えば、温度を100、200、300...℃と変化させ、このときの位相差θ、θをそれぞれ記憶している。ただし、温度のサンプルは図6の温度に限定はされない。 The dryness measuring device 3 of the present embodiment obtains the phase differences θ 0 and θ 1 when the dryness 0 and 1 at a plurality of temperatures are obtained in advance as a sample, and creates a table in the storage unit 43 of the dryness calculation unit 40. ,Remember. FIG. 6 is a diagram of a table of phase differences θ 0 and θ 1 stored in the storage unit 43. In FIG. 6, for example, the temperatures are set to 100, 200, 300. .. .. The temperature is changed to ° C., and the phase differences θ 0 and θ 1 at this time are stored, respectively. However, the temperature sample is not limited to the temperature shown in FIG.

また、本実施形態の乾き度測定装置3は圧力を変化させて複数のテーブルを有している。図6では圧力が5MPa、10MPa、15MPaのときの各温度の位相差θ、θをそれぞれ格納している。ただし、圧力テーブルのサンプルは図6の圧力に限定はされない。 Further, the dryness measuring device 3 of the present embodiment has a plurality of tables by changing the pressure. In FIG. 6, the phase differences θ 0 and θ 1 of the respective temperatures when the pressures are 5 MPa, 10 MPa, and 15 MPa are stored, respectively. However, the pressure table sample is not limited to the pressure shown in FIG.

測定管10内の蒸気が図7のA0(9MPa、380℃)の状態から温度が低下し、A1(9MPa、340℃)の状態になったとする。この場合、蒸気は気相のみであるため、乾き度は1である。 It is assumed that the temperature of the steam in the measuring tube 10 drops from the state of A0 (9 MPa, 380 ° C.) in FIG. 7 to the state of A1 (9 MPa, 340 ° C.). In this case, the vapor quality is 1 because the vapor is only in the gas phase.

温度が更に低下しA2(9MPa、300℃)の状態になったとする。この場合は図7の水の状態遷移の曲線上にあり、蒸気中に液相と気相が混在する状態である。本実施形態の乾き度測定装置3は記憶部43から9MPaにもっとも近い10MPaの圧力テーブルを選択する。その後、A2の位相差θを10MPaの位相差θ、θを用いて線形補完して乾き度を測定する。なお、テーブルの値の選択方法については近似する圧力テーブル1つに限定されない。例えば、9MPaの場合、5MPaと10MPaとの圧力テーブルを選択し、各圧力テーブルの位相差θ、θに基づいて導出しても良い。 It is assumed that the temperature is further lowered to the state of A2 (9 MPa, 300 ° C.). In this case, it is on the curve of the state transition of water in FIG. 7, and the liquid phase and the gas phase are mixed in the vapor. The dryness measuring device 3 of the present embodiment selects a pressure table of 10 MPa closest to 9 MPa from the storage unit 43. After that, the phase difference θ of A2 is linearly interpolated using the phase differences θ 0 and θ 1 of 10 MPa, and the dryness is measured. The method of selecting the values in the table is not limited to one approximate pressure table. For example, in the case of 9 MPa, pressure tables of 5 MPa and 10 MPa may be selected and derived based on the phase differences θ 0 and θ 1 of each pressure table.

蒸気の温度が更に低下し260℃となったとする。圧力が9MPaのままであれば、A3(9MPa、260℃)の状態であり、液相のみの状態となり、乾き度は0である。しかし、圧力が低下した場合は、260℃の場合でも液相と気相が混在するA4(5MPa、260℃)の状態がある。A4は図7の水の状態遷移の曲線上にある。 It is assumed that the temperature of the steam further decreases to 260 ° C. If the pressure remains at 9 MPa, it is in the state of A3 (9 MPa, 260 ° C.), only in the liquid phase, and the dryness is 0. However, when the pressure drops, there is a state of A4 (5 MPa, 260 ° C.) in which the liquid phase and the gas phase coexist even at 260 ° C. A4 is on the curve of the state transition of water in FIG.

A4の場合、圧力を測定して5MPaの状態であることを外部より本実施形態の乾き度測定装置3に入力する。その後、乾き度演算部40の乾き度算出手段42は位相測定部41により測定された位相差θと、記憶部43に記憶されている5MPaの圧力テーブルから位相差θ、θに基づいて線形補完により乾き度を算出する。 In the case of A4, the pressure is measured and the state of 5 MPa is input from the outside to the dryness measuring device 3 of the present embodiment. After that, the dryness calculating means 42 of the dryness calculation unit 40 is based on the phase difference θ measured by the phase measuring unit 41 and the phase differences θ 0 and θ 1 from the pressure table of 5 MPa stored in the storage unit 43. The dryness is calculated by linear complementation.

上述の例では蒸気の温度が低下し、かつ圧力が低下した場合について説明しているが、蒸気の温度が上昇した場合、圧力が上昇した場合も同様である。 In the above example, the case where the temperature of the steam decreases and the pressure decreases is described, but the same applies when the temperature of the steam increases and the pressure increases.

図7より乾き度0のときの水の誘電率は温度変化に伴い大きく変化する。図7において、温度T2における水の誘電率をε2とする。 From FIG. 7, the dielectric constant of water when the dryness is 0 changes greatly with a temperature change. In FIG. 7, the dielectric constant of water at the temperature T2 is ε2.

図8はマイクロ波の位相差の変化に対応する温度T1、T2ごとの乾き度の相関図である。乾き度0のときの温度T1とT2との位相差は誘電率ε1、ε2を用いて、α(ε2/ε1)となる。αは定数である。 FIG. 8 is a correlation diagram of the dryness of each of the temperatures T1 and T2 corresponding to the change in the phase difference of the microwave. The phase difference between the temperatures T1 and T2 when the dryness is 0 is α (ε2 / ε1) using the dielectric constants ε1 and ε2. α is a constant.

測定対象の水について、位相差がθX1であり、温度がT1であるとすると、乾き度はX1となる。位相差がθX1の状態からθX3の状態に変化したとする。温度が一定であったとすると、図8より位相差がθX3のときの乾き度はX2となる。 Assuming that the phase difference of the water to be measured is θ X1 and the temperature is T1, the dryness is X1. It is assumed that the phase difference changes from the state of θ X1 to the state of θ X3. Assuming that the temperature is constant, the dryness is X2 when the phase difference is θ X3 as shown in FIG.

本実施形態の乾き度測定装置3は温度変化を考慮して、乾き度の変動を測定することができる。水の位相差がθX1の状態からθX3の状態に変化したとき、水の温度がT2℃に変化したとする。この場合、位相差がθX3に変化した場合の乾き度は図8よりX3となる。即ち本実施形態の乾き度測定装置3は温度変化を考慮することで、水の位相差がθX1の状態からθX3の状態に変化したとき、乾き度はX1からX3に変化したことを測定する。 The dryness measuring device 3 of the present embodiment can measure the fluctuation of the dryness in consideration of the temperature change. It is assumed that the temperature of water changes to T2 ° C. when the phase difference of water changes from the state of θ X1 to the state of θ X3. In this case, the dryness when the phase difference changes to θ X3 is X3 from FIG. That is, the dryness measuring device 3 of the present embodiment measures that the dryness changes from X1 to X3 when the phase difference of water changes from the state of θ X1 to the state of θ X3 by considering the temperature change. To do.

火力発電所のボイラー内の蒸気について乾き度を測定する場合、図7より500℃以上では水の誘電率はほとんど変化しないため、誘電率を一定値として近似しても良い。この場合、臨界点(22.1MPa、374℃)近傍における乾き度0のときの位相差θと乾き度1のときの位相差θとを予め測定し、記憶部43に格納する。その後、ボイラー内の水について位相差θを測定し、予め測定した位相差θ、θの線形補完より乾き度を算出する。 When measuring the dryness of steam in a boiler of a thermal power plant, since the permittivity of water hardly changes at 500 ° C. or higher as shown in FIG. 7, the permittivity may be approximated as a constant value. In this case, the phase difference θ 0 when the dryness is 0 and the phase difference θ 1 when the dryness is 1 in the vicinity of the critical point (22.1 MPa, 374 ° C.) are measured in advance and stored in the storage unit 43. After that, the phase difference θ is measured for the water in the boiler, and the dryness is calculated from the linear interpolation of the phase differences θ 0 and θ 1 measured in advance.

以上により、本実施形態の乾き度測定装置3は温度変化を考慮し、マイクロ波を用いた位相差θの測定により、精度よく蒸気の乾き度を測定することができる。 As described above, the dryness measuring device 3 of the present embodiment can accurately measure the dryness of steam by measuring the phase difference θ using microwaves in consideration of the temperature change.

(第3の実施形態)
第3の実施形態である乾き度測定装置および第3の実施形態を用いた乾き度測定方法は、第1の実施形態乃至第2の実施形態の乾き度測定装置の測定管10の外側に複数対のマイクロ波照射部20およびマイクロ波受信部30が設けられた測定装置である。
(Third Embodiment)
A plurality of dryness measuring devices according to the third embodiment and a dryness measuring method using the third embodiment are provided outside the measuring tube 10 of the dryness measuring device of the first to second embodiments. It is a measuring device provided with a pair of microwave irradiation unit 20 and microwave reception unit 30.

図9は本実施形態の乾き度測定装置3(3A)の図である。図9は第1の実施形態の乾き度測定装置1の測定管10に、測定管の軸方向(図9の破線方向)に向かって、2つのマイクロ波照射部20(20a、20b)が配置され、マイクロ波照射部20a、20bそれぞれと対をなして2つのマイクロ波受信部30(30a)、30(30b)が配置されている。 FIG. 9 is a diagram of the dryness measuring device 3 (3A) of the present embodiment. In FIG. 9, two microwave irradiation units 20 (20a, 20b) are arranged in the measuring tube 10 of the dryness measuring device 1 of the first embodiment in the axial direction of the measuring tube (broken line direction in FIG. 9). The two microwave receiving units 30 (30a) and 30 (30b) are arranged in pairs with the microwave irradiation units 20a and 20b, respectively.

マイクロ波照射部20aより照射されたマイクロ波は測定管10内を伝搬し、マイクロ波受信部30aに受信される。また、マイクロ波照射部20bより照射されたマイクロ波は測定管10内を伝搬し、マイクロ波受信部30bに受信される。即ち、図9の乾き度測定装置3Aは2対の乾き度測定手段を有している。 The microwave emitted from the microwave irradiation unit 20a propagates in the measuring tube 10 and is received by the microwave reception unit 30a. Further, the microwave irradiated from the microwave irradiation unit 20b propagates in the measuring tube 10 and is received by the microwave receiving unit 30b. That is, the dryness measuring device 3A of FIG. 9 has two pairs of dryness measuring means.

以下、2対の乾き度測定手段を有した乾き度測定装置3Aについて詳述する。ただし、本実施形態において、乾き度測定手段は2対に限定されない。乾き度測定装置3Aは3対以上の乾き度測定手段を有していても良い。 Hereinafter, the dryness measuring device 3A having two pairs of dryness measuring means will be described in detail. However, in the present embodiment, the dryness measuring means is not limited to two pairs. The dryness measuring device 3A may have three or more pairs of dryness measuring means.

乾き度演算部40の位相測定部41は、マイクロ波照射部20aから照射されるマイクロ波とマイクロ波受信部30aにて受信されるマイクロ波との位相差θ(θa)と、マイクロ波照射部20bから照射されるマイクロ波とマイクロ波受信部30bにて受信されるマイクロ波との位相差θ(θb)とを測定する。 The phase measurement unit 41 of the dryness calculation unit 40 has a phase difference θ (θa) between the microwave emitted from the microwave irradiation unit 20a and the microwave received by the microwave reception unit 30a, and the microwave irradiation unit. The phase difference θ (θb) between the microwave emitted from 20b and the microwave received by the microwave receiving unit 30b is measured.

乾き度演算部40の乾き度算出手段42はそれぞれの乾き度測定手段から測定された位相差θaとθbとに基づいて測定管10内の乾き度を算出する。位相差θに基づいた、乾き度の算出方法は第1の実施形態の乾き度測定装置1と同様である。 The dryness calculation means 42 of the dryness calculation unit 40 calculates the dryness in the measuring tube 10 based on the phase differences θa and θb measured from the respective dryness measuring means. The method of calculating the dryness based on the phase difference θ is the same as that of the dryness measuring device 1 of the first embodiment.

乾き度算出手段42はそれぞれの位相差θa、θbそれぞれについて乾き度を算出した後、当該乾き度を平均する。ただし、位相差θaとθbとを平均し、平均の位相差を用いて乾き度を計算しても良い。 The dryness calculating means 42 calculates the dryness for each of the phase differences θa and θb, and then averages the dryness. However, the dryness may be calculated by averaging the phase differences θa and θb and using the average phase difference.

(第3の実施形態の変形例)
図10は本実施形態の乾き度測定装置3(3B)の図である。図10は第1の実施形態の乾き度測定装置1の測定管10に、円周方向に向かって、マイクロ波照射部20(20a、20c)が配置され、マイクロ波照射部20a、20cそれぞれと対をなして対向するマイクロ波受信部30(30a)、30(30c)が配置されている。
(Modified example of the third embodiment)
FIG. 10 is a diagram of the dryness measuring device 3 (3B) of the present embodiment. In FIG. 10, microwave irradiation units 20 (20a, 20c) are arranged in the measurement tube 10 of the dryness measuring device 1 of the first embodiment in the circumferential direction, and the microwave irradiation units 20a and 20c are respectively arranged. Microwave receiving units 30 (30a) and 30 (30c) facing each other in pairs are arranged.

マイクロ波照射部20aより照射されたマイクロ波は測定管10内を伝搬し、マイクロ波受信部30aに受信される。また、マイクロ波照射部20cより照射されたマイクロ波は測定管10内を伝搬し、マイクロ波受信部30cに受信される。即ち、図10の乾き度測定装置3Bは2対の乾き度測定手段を有している。ただし、本実施形態において、乾き度測定手段は2対に限定されない。乾き度測定装置3Bは3対以上の乾き度測定手段を有していても良い。 The microwave emitted from the microwave irradiation unit 20a propagates in the measuring tube 10 and is received by the microwave reception unit 30a. Further, the microwave irradiated from the microwave irradiation unit 20c propagates in the measuring tube 10 and is received by the microwave receiving unit 30c. That is, the dryness measuring device 3B of FIG. 10 has two pairs of dryness measuring means. However, in the present embodiment, the dryness measuring means is not limited to two pairs. The dryness measuring device 3B may have three or more pairs of dryness measuring means.

乾き度の算出方法は第3の実施形態の乾き度測定装置3Aと同様である。 The method for calculating the dryness is the same as that of the dryness measuring device 3A of the third embodiment.

第3の実施形態の乾き度測定装置3(3A)と、その変形例である乾き度測定装置3(3B)について、第1の乾き度測定装置1のマイクロ波照射部20およびマイクロ波受信部30が複数対配置されたものとして説明したが、第2の実施形態の乾き度測定装置2のように測定管10に温度測定部50を設けたものに複数対のマイクロ波照射部20およびマイクロ波受信部30を配置しても良い。 Regarding the dryness measuring device 3 (3A) of the third embodiment and the dryness measuring device 3 (3B) which is a modification thereof, the microwave irradiation unit 20 and the microwave receiving unit of the first dryness measuring device 1 Although a plurality of pairs of 30s have been described, a plurality of pairs of microwave irradiation units 20 and microwaves are provided in a measuring tube 10 provided with a temperature measuring unit 50 as in the dryness measuring device 2 of the second embodiment. The wave receiving unit 30 may be arranged.

以上により、本実施形態の乾き度測定装置3はマイクロ波を用いた位相差θの測定を複数のマイクロ波照射部20およびマイクロ波受信部30を用いることにより、精度よく蒸気の乾き度を測定することができる。 Based on the above, the dryness measuring device 3 of the present embodiment accurately measures the dryness of steam by using a plurality of microwave irradiation units 20 and microwave receiving units 30 for measuring the phase difference θ using microwaves. can do.

(第4の実施形態)
第4の実施形態である乾き度測定装置は、第1の実施形態乃至第3の実施形態の乾き度測定装置のマイクロ波照射部20が周波数を変調して乾き度を測定する測定装置である。
(Fourth Embodiment)
The dryness measuring device according to the fourth embodiment is a measuring device in which the microwave irradiation unit 20 of the dryness measuring device of the first to third embodiments modulates the frequency to measure the dryness. ..

図11は蒸気に照射するマイクロ波の周波数を変調したときのマイクロ波照射部20から照射されるマイクロ波とマイクロ波受信部30にて受信されるマイクロ波との位相差を表したものである。図11(a1)の波形と(b1)の波形とは図3の(a)(b)の波形と同様である。このときマイクロ波照射部20から照射されるマイクロ波の波形をb1、周波数をf1とし、位相差をθf1とする。 FIG. 11 shows the phase difference between the microwave emitted from the microwave irradiation unit 20 and the microwave received by the microwave receiving unit 30 when the frequency of the microwave irradiated to the steam is modulated. .. The waveform of FIG. 11A and the waveform of FIG. 11B1 are the same as the waveforms of FIGS. 3A and 3B. At this time, the waveform of the microwave emitted from the microwave irradiation unit 20 is b1, the frequency is f1, and the phase difference is θ f1 .

本実施形態の乾き度測定装置4はマイクロ波照射部20から照射する周波数をf1からf2に変調する。周波数がf2のときの波形をb2とする。周波数がf2のときのマイクロ波照射部20の波形が(b2)であり、測定管10を伝搬しマイクロ波受信部30にて受信したときの波形が(a2)である。周波数f2における位相差をθf2とする。 The dryness measuring device 4 of the present embodiment modulates the frequency irradiated from the microwave irradiation unit 20 from f1 to f2. Let b2 be the waveform when the frequency is f2. The waveform of the microwave irradiation unit 20 when the frequency is f2 is (b2), and the waveform when propagating through the measuring tube 10 and being received by the microwave receiving unit 30 is (a2). Let θ f2 be the phase difference at the frequency f2.

乾き度演算部40の乾き度算出手段42はそれぞれの乾き度測定手段から測定された位相差θf1とθf2とに基づいて測定管10内の乾き度を算出する。位相差θに基づいた、乾き度の算出方法は第1の実施形態の乾き度測定装置1と同様である。 The dryness calculation means 42 of the dryness calculation unit 40 calculates the dryness in the measuring tube 10 based on the phase differences θ f1 and θ f2 measured from the respective dryness measuring means. The method of calculating the dryness based on the phase difference θ is the same as that of the dryness measuring device 1 of the first embodiment.

乾き度算出手段42はそれぞれの位相差θf1、θf2それぞれについて乾き度を算出した後、当該乾き度を平均する。ただし、位相差θf1とθf2とを平均し、平均の位相差を用いて乾き度を計算しても良い。 The dryness calculating means 42 calculates the dryness for each of the phase differences θ f1 and θ f2 , and then averages the dryness. However, the degree of dryness may be calculated by averaging the phase differences θ f1 and θ f2 and using the average phase difference.

第3の実施形態の乾き度測定装置3A、3Bのように複数の対をなす乾き度測定手段を有している場合は対ごとに周波数変調をしても良い。 When a plurality of pairs of dryness measuring means are provided as in the dryness measuring devices 3A and 3B of the third embodiment, frequency modulation may be performed for each pair.

以上により、本実施形態の乾き度測定装置4はマイクロ波を用いた位相差θの測定を周波数変調により位相差を複数測定し、精度よく蒸気の乾き度を測定することができる。 As described above, the dryness measuring device 4 of the present embodiment can measure a plurality of phase differences by frequency modulation in the measurement of the phase difference θ using microwaves, and can accurately measure the dryness of steam.

(乾き度測定方法)
図12は上述の実施形態である乾き度測定装置の乾き度測定方法のフローチャートの図である。以下の乾き度測定方法では第2の実施形態である、乾き度測定装置2を用いて詳述するが、他の乾き度測定装置についても同様の乾き度測定方法である。
(Dryness measurement method)
FIG. 12 is a flowchart of a method for measuring the dryness of the dryness measuring device according to the above-described embodiment. The following dryness measuring method will be described in detail using the dryness measuring device 2 which is the second embodiment, but the same dryness measuring method is used for other dryness measuring devices.

測定管10の内部に乾き度を測定する蒸気がある場合、マイクロ波照射部20からマイクロ波受信部30へマイクロ波を照射する(ステップS100)。マイクロ波受信部30はマイクロ波を受信し(ステップS101)、波形情報を乾き度演算部40に伝送する。乾き度演算部40内の位相測定部41は図3のようにマイクロ波照射部20から照射されるマイクロ波の波形(b)とマイクロ波受信部30にて受信されたマイクロ波の波形(a)とから位相差θを測定する(ステップS102)。 When there is steam for measuring the dryness inside the measuring tube 10, the microwave irradiating unit 20 irradiates the microwave receiving unit 30 with microwaves (step S100). The microwave receiving unit 30 receives the microwave (step S101) and transmits the waveform information to the dryness calculation unit 40. As shown in FIG. 3, the phase measuring unit 41 in the dryness calculation unit 40 has a microwave waveform (b) emitted from the microwave irradiation unit 20 and a microwave waveform (a) received by the microwave receiving unit 30. ) And the phase difference θ is measured (step S102).

次に温度測定部50によって測定管10内の温度を測定し(ステップS103)乾き度演算部40に伝送する。その後、乾き度演算部40内の乾き度算出手段42は記憶部43から予め記憶しておいた測定した温度に対応する位相差θ、θのときの乾き度を読み出し、これら乾き度に基づいて蒸気の乾き度を算出する(ステップS104)。 Next, the temperature inside the measuring tube 10 is measured by the temperature measuring unit 50 (step S103) and transmitted to the dryness calculation unit 40. After that, the dryness calculation means 42 in the dryness calculation unit 40 reads out the dryness when the phase difference θ 0 and θ 1 corresponding to the measured temperature stored in advance from the storage unit 43, and uses these dryness as the dryness. The dryness of the steam is calculated based on this (step S104).

なお、乾き度測定方法は図13のように温度を測定し(ステップS103)、その後にマイクロ波照射部20からマイクロ波受信部30へマイクロ波を照射し(ステップS100)、マイクロ波受信部30がマイクロ波を受信し(ステップS101)、位相差θを測定(ステップS102)するようにしても良い。 In the dryness measuring method, the temperature is measured as shown in FIG. 13 (step S103), and then the microwave irradiation unit 20 irradiates the microwave receiving unit 30 with microwaves (step S100), and the microwave receiving unit 30 Receives microwaves (step S101) and measures the phase difference θ (step S102).

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、そのほかの様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and the equivalent scope thereof.

10‥‥測定管、
20‥‥マイクロ波照射部、
30‥‥マイクロ波受信部、
40‥‥乾き度演算部、
41‥‥位相測定部、
42‥‥乾き度算出手段、
43‥‥記憶部、
50‥‥温度測定部。
10 ... Measuring tube,
20 ... Microwave irradiation unit,
30 ... Microwave receiver,
40 ... Dryness calculation unit,
41 ... Phase measurement unit,
42 ... Dryness calculation means,
43 ‥‥‥ Memory part,
50 ... Temperature measuring unit.

Claims (7)

蒸気が流入する測定管の外側に設けられ、マイクロ波を照射するマイクロ波照射部と、
前記マイクロ波照射部と対をなして前記測定管の外側に設けられ、前記マイクロ波照射部より照射されたマイクロ波を受信するマイクロ波受信部と、
前記マイクロ波照射部から照射されるマイクロ波と前記マイクロ波受信部にて受信されるマイクロ波との位相差を測定する位相測定部と、
前記測定管内の温度が入力される温度入力部と、
前記測定管内の圧力値が入力される圧力入力部と、
前記測定管内の渇き度が0のときの前記位相差と前記測定管内の渇き度が1のときの前記位相差との関係を温度別かつ圧力別に記憶したテーブル部と、
前記位相測定部から出力される前記位相差と前記温度と前記圧力値とを用いて、前記蒸気の乾き度を算出する乾き度算出手段と、
を具備した乾き度測定装置。
A microwave irradiation unit that is provided on the outside of the measuring tube into which steam flows and irradiates microwaves,
A microwave receiving unit that is provided on the outside of the measuring tube in pairs with the microwave irradiation unit and receives microwaves irradiated from the microwave irradiation unit.
A phase measuring unit that measures the phase difference between the microwave emitted from the microwave irradiation unit and the microwave received by the microwave receiving unit, and a phase measuring unit.
A temperature input unit into which the temperature inside the measuring tube is input, and
A pressure input unit into which the pressure value in the measuring tube is input, and
A table unit that stores the relationship between the phase difference when the thirst degree in the measuring tube is 0 and the phase difference when the thirst degree in the measuring tube is 1 by temperature and pressure.
A dryness calculating means for calculating the dryness of the steam using the phase difference, the temperature, and the pressure value output from the phase measuring unit.
A dryness measuring device equipped with.
前記測定管内の前記蒸気の温度を測定する温度測定部をさらに備え、
前記温度入力部には前記温度測定部の測定結果が入力される
請求項1に記載の乾き度測定装置。
A temperature measuring unit for measuring the temperature of the steam in the measuring tube is further provided.
The measurement result of the temperature measuring unit is input to the temperature input unit .
The dryness measuring device according to claim 1.
前記マイクロ波照射部と前記マイクロ波受信部とは、複数の対をなして前記測定管の外側に設けられている、請求項1または請求項2に記載の乾き度測定装置。 The dryness measuring device according to claim 1 or 2, wherein the microwave irradiation unit and the microwave receiving unit are provided in a plurality of pairs on the outside of the measuring tube. 前記位相測定部は複数の対をなす前記マイクロ波照射部と前記マイクロ波受信部ごとに複数の位相差を測定し、
前記乾き度算出手段は前記複数の位相差の平均値に基づいて前記蒸気の乾き度を算出する、請求項3に記載の乾き度測定装置。
The phase measuring unit measures a plurality of phase differences for each of the microwave irradiating unit and the microwave receiving unit forming a plurality of pairs.
The dryness measuring device according to claim 3, wherein the dryness calculating means calculates the dryness of the steam based on the average value of the plurality of phase differences.
前記複数対の前記マイクロ波照射部と前記マイクロ波受信部とは、前記測定管の軸方向に並んで設けられている、請求項3または請求項4に記載の乾き度測定装置。 The dryness measuring device according to claim 3 or 4, wherein the plurality of pairs of the microwave irradiation unit and the microwave receiving unit are provided side by side in the axial direction of the measuring tube. 前記複数対の前記マイクロ波照射部と前記マイクロ波受信部とは、前記測定管の円周方向に並んで設けられている、請求項3または請求項4に記載の乾き度測定装置。 The dryness measuring device according to claim 3 or 4, wherein the plurality of pairs of the microwave irradiation unit and the microwave receiving unit are provided side by side in the circumferential direction of the measuring tube. 前記マイクロ波照射部は照射するマイクロ波の周波数を変調して連続波とする、請求項1乃至請求項6のいずれか1項に記載の乾き度測定装置。 The dryness measuring device according to any one of claims 1 to 6, wherein the microwave irradiation unit modulates the frequency of the microwave to be irradiated into a continuous wave.
JP2017068193A 2017-03-30 2017-03-30 Dryness measuring device Active JP6862246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017068193A JP6862246B2 (en) 2017-03-30 2017-03-30 Dryness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017068193A JP6862246B2 (en) 2017-03-30 2017-03-30 Dryness measuring device

Publications (2)

Publication Number Publication Date
JP2018169340A JP2018169340A (en) 2018-11-01
JP6862246B2 true JP6862246B2 (en) 2021-04-21

Family

ID=64017852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017068193A Active JP6862246B2 (en) 2017-03-30 2017-03-30 Dryness measuring device

Country Status (1)

Country Link
JP (1) JP6862246B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4423623A (en) * 1981-08-24 1984-01-03 Rockwell International Corporation Microwave meter for fluid mixtures
US5333493A (en) * 1989-08-15 1994-08-02 Commonwealth Scientific And Industrial Research Organisation Moisture content by microwave phase shift and mass/area
WO2007009097A1 (en) * 2005-07-13 2007-01-18 Cidra Corporation Method and apparatus for measuring parameters of a fluid flow using an array of sensors
CN102393385B (en) * 2011-11-04 2014-05-28 苏州大学 Wet steam dryness measuring method
CN102661933B (en) * 2012-05-17 2014-11-05 苏州大学 Wet steam dryness measuring device and measuring method based on surface plasma resonance
US9909910B2 (en) * 2012-10-23 2018-03-06 Cidra Corporate Services Inc. Tomographic and sonar-based processing using electrical probing of a flowing fluid to determine flow rate
CN103940851B (en) * 2014-04-04 2016-04-27 西安交通大学 Based on flowing wet steam Moisture measuring probe and the measuring method thereof of microwave heating
EP2985597B1 (en) * 2014-08-14 2021-08-25 General Electric Technology GmbH Steam wetness measurement device
JP6379007B2 (en) * 2014-10-23 2018-08-22 アズビル株式会社 Piping and dryness measuring device
CN105716548B (en) * 2016-04-29 2018-05-18 华北电力大学(保定) The system and method that microwave perturbation method measures humidity sensor inner wall water film thickness

Also Published As

Publication number Publication date
JP2018169340A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP3784823B1 (en) Distance measuring device, distance measuring method, and distance measuring program
JP4775173B2 (en) Fiber optic temperature sensor
US2970258A (en) Apparatus for measuring envelope delay
CN105229431A (en) The level gauging that the distance with improvement is determined
US2427094A (en) Super-high-frequency wattmeter
Rocha et al. Evidence of nanostructuration from the heat capacities of the 1, 3-dialkylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquid series
US20190381455A1 (en) Catalyst heating device and heating device
JP4605157B2 (en) Waveform generation method, radar apparatus, and oscillation apparatus for radar apparatus
CN103913633A (en) High-spectrum-resolution phase spectrum measuring device and method based on multi-frequency sinusoidal signals
JP6862246B2 (en) Dryness measuring device
US20170227585A1 (en) Harmonic distortion separation method, nonlinear character determination method and apparatus and system
CN105388463A (en) Reception signal processing device, radar, and object detection method
JP5952168B2 (en) Liquid level measuring device
JP2015175717A (en) Frequency measuring device, frequency measuring method, and program
JP6350242B2 (en) Radar device and radar output adjustment system
JP5207210B2 (en) Thermal flow meter
RU2576552C1 (en) Method and device for measuring physical parameters of material
KR101905434B1 (en) Apparatus for measuring passive intermodulation distortion signal and method for using the same
JP6300198B2 (en) Carrier leak correction device and carrier leak correction method
JP2007017293A (en) Stationary wave range finder
WO2016043629A1 (en) Method and device for measuring the physical parameters of a material
JP2014185952A (en) Interpolation selection method and interpolation selection device
JP2016057272A (en) Filter device and target detection device
JP6337751B2 (en) Radar signal analysis device, radar device, radar signal analysis method and program
JP2023135349A (en) Measuring method and measuring apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170921

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170921

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180831

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210331

R150 Certificate of patent or registration of utility model

Ref document number: 6862246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150