JP6861518B2 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP6861518B2
JP6861518B2 JP2017002276A JP2017002276A JP6861518B2 JP 6861518 B2 JP6861518 B2 JP 6861518B2 JP 2017002276 A JP2017002276 A JP 2017002276A JP 2017002276 A JP2017002276 A JP 2017002276A JP 6861518 B2 JP6861518 B2 JP 6861518B2
Authority
JP
Japan
Prior art keywords
combustion chamber
cylinder
intake
umbrella
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017002276A
Other languages
Japanese (ja)
Other versions
JP2018087562A (en
Inventor
久雄 魚住
久雄 魚住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to US15/730,015 priority Critical patent/US11022027B2/en
Priority to CN201711083949.2A priority patent/CN108071439B/en
Publication of JP2018087562A publication Critical patent/JP2018087562A/en
Application granted granted Critical
Publication of JP6861518B2 publication Critical patent/JP6861518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関に関し、詳細には燃焼室の構造に関する。 The present invention relates to an internal combustion engine, and more particularly to the structure of a combustion chamber.

内燃機関において、燃焼時における吸気(混合気)の高温化がノッキングの要因の一つとして知られている。吸気は、燃焼熱によって加熱された燃焼室壁面との対流熱伝達により加熱されるため、タンブル流の強化等によって吸気の流速が増加すると対流熱伝達が促進され、耐ノッキング性が低下することになる。 In an internal combustion engine, high temperature of intake air (air-fuel mixture) during combustion is known as one of the causes of knocking. Since the intake air is heated by convection heat transfer to the wall surface of the combustion chamber heated by the heat of combustion, if the flow velocity of the intake air increases due to the strengthening of the tumble flow, the convection heat transfer is promoted and the knocking resistance is lowered. Become.

吸気と燃焼室壁面との対流熱伝達を抑制するために、燃焼室壁面を鏡面にすることが考えられる。目的は異なるが、燃焼室壁面を鏡面化して、燃焼ガスから燃焼室壁面への輻射熱伝達を抑制し、冷却損失を低減した燃焼室構造が公知となっている(例えば、特許文献1及び2)。 In order to suppress convection heat transfer between the intake air and the wall surface of the combustion chamber, it is conceivable to make the wall surface of the combustion chamber a mirror surface. Although the purpose is different, a combustion chamber structure in which the wall surface of the combustion chamber is mirrored to suppress the transfer of radiant heat from the combustion gas to the wall surface of the combustion chamber and the cooling loss is reduced is known (for example, Patent Documents 1 and 2). ..

実開平1−173417号公報Jikkenhei 1-173417 特開平2−123255号公報Japanese Unexamined Patent Publication No. 2-123255

しかしながら、吸気は圧縮行程において圧縮されることによって燃焼室壁面よりも高温になる。そのため、燃焼室壁面を鏡面化して燃焼室内のガスと燃焼室壁面との熱伝達を抑制すると、吸気から燃焼室壁面への対流熱伝達が抑制され、吸気の温度が高くなり、耐ノッキング性が低下するという問題がある。 However, the intake air becomes hotter than the wall surface of the combustion chamber due to being compressed in the compression stroke. Therefore, if the wall surface of the combustion chamber is mirror-finished to suppress heat transfer between the gas in the combustion chamber and the wall surface of the combustion chamber, convection heat transfer from the intake air to the wall surface of the combustion chamber is suppressed, the temperature of the intake air becomes high, and knocking resistance is improved. There is a problem that it decreases.

本発明は、以上の背景を鑑み、内燃機関において、耐ノッキング性を向上させることを課題とする。 In view of the above background, it is an object of the present invention to improve knocking resistance in an internal combustion engine.

上記課題を解決するために、本発明の一態様は、シリンダを画定するシリンダ内周面、前記シリンダの端部を閉じるシリンダヘッド燃焼室面、前記シリンダヘッド燃焼室面に開口した吸気ポート及び排気ポートを閉じるバルブの表面、前記シリンダに受容されたピストンの冠面によって画定される燃焼室を備えた内燃機関であって、前記シリンダ内周面、前記シリンダヘッド燃焼室面、前記バルブの表面、及び前記ピストンの冠面の少なくとも1つは、算術平均粗さが0.3μm未満の鏡面に形成された部分と、算術平均粗さが0.3μm以上の粗面に形成された部分とを有することを特徴とする。 In order to solve the above problems, one aspect of the present invention includes a cylinder inner peripheral surface that defines a cylinder, a cylinder head combustion chamber surface that closes the end of the cylinder, an intake port and an exhaust that are opened in the cylinder head combustion chamber surface. An internal combustion engine having a combustion chamber defined by a surface of a valve that closes a port and a crown surface of a piston received by the cylinder, the inner peripheral surface of the cylinder, the cylinder head combustion chamber surface, and the surface of the valve. And at least one of the crown surfaces of the piston has a portion formed on a mirror surface having an arithmetic average roughness of less than 0.3 μm and a portion formed on a rough surface having an arithmetic average roughness of 0.3 μm or more. It is characterized by that.

この態様によれば、吸気行程においては、鏡面に形成された部分において吸気と、シリンダ内周面、シリンダヘッド燃焼室面、バルブの表面、及びピストン冠面を含むシリンダ壁面部材との対流熱伝達が抑制されて吸気の温度上昇が抑制される。一方、圧縮行程においては、粗面に形成された部分において吸気とシリンダ壁面部材との対流熱伝達が促進され、吸気が冷却される。これらの作用によって、吸気の温度上昇が抑制され、耐ノッキング性が向上する。 According to this aspect, in the intake stroke, convection heat transfer between the intake air and the cylinder wall surface member including the inner peripheral surface of the cylinder, the combustion chamber surface of the cylinder head, the surface of the valve, and the crown surface of the piston in the portion formed on the mirror surface. Is suppressed and the temperature rise of the intake air is suppressed. On the other hand, in the compression stroke, convection heat transfer between the intake air and the cylinder wall surface member is promoted in the portion formed on the rough surface, and the intake air is cooled. Due to these actions, the temperature rise of the intake air is suppressed and the knocking resistance is improved.

また、上記の態様において、前記バルブは、軸部と、前記軸部の一端に設けられた傘部とを有し、前記傘部は、燃焼室側を向く傘表面と、バルブシートに接触する環状のフェース面と、前記傘表面の外周縁と前記フェース面の外周縁との間の表面をなす傘周縁面とを有し、前記傘表面は前記鏡面に形成され、前記傘周縁面は前記粗面に形成されているとよい。 Further, in the above aspect, the valve has a shaft portion and an umbrella portion provided at one end of the shaft portion, and the umbrella portion comes into contact with an umbrella surface facing the combustion chamber side and a valve seat. It has an annular face surface and an umbrella peripheral surface forming a surface between the outer peripheral edge of the umbrella surface and the outer peripheral edge of the face surface, the umbrella surface is formed on the mirror surface, and the umbrella peripheral surface is the umbrella peripheral surface. It is preferable that it is formed on a rough surface.

この態様によれば、吸気行程において吸気と傘表面との対流熱伝達が抑制されて吸気の温度上昇が抑制され、圧縮行程において吸気と傘周縁面と対流熱伝達が促進されて吸気の冷却が行われる。 According to this aspect, the convection heat transfer between the intake air and the surface of the umbrella is suppressed in the intake stroke to suppress the temperature rise of the intake air, and the convection heat transfer between the intake air and the peripheral surface of the umbrella is promoted in the compression stroke to cool the intake air. Will be done.

また、上記の態様において、前記ピストンの冠面は、前記鏡面に形成された冠面中央部と、前記冠面中央部の外周に配置され、前記粗面に形成された冠面外周部とを有するとよい。 Further, in the above aspect, the crown surface of the piston includes a crown surface central portion formed on the mirror surface and a crown surface outer peripheral portion arranged on the outer periphery of the crown surface central portion and formed on the rough surface. It is good to have.

この態様によれば、吸気行程において吸気と冠面中央部との対流熱伝達が抑制されて吸気の温度上昇が抑制され、圧縮行程において吸気と冠面外周部と対流熱伝達が促進されて吸気の放熱が促進される。吸気は、吸気行程において冠面中央部の方が冠面外周部よりも流速が速いため、冠面中央部を鏡面にすることで冠面と吸気との対流熱伝達が効率良く抑制される。一方、吸気は、圧縮行程において冠面外周部の方が冠面中央部よりも流速が速いため、冠面外周部を粗面にすることで冠面と吸気との対流熱伝達が促進され、吸気が効率良く冷却される。 According to this aspect, the convection heat transfer between the intake air and the central portion of the crown surface is suppressed in the intake stroke to suppress the temperature rise of the intake air, and the convection heat transfer between the intake air and the outer peripheral portion of the crown surface is promoted in the compression stroke. Heat dissipation is promoted. Since the flow velocity of the intake air is faster in the central portion of the crown surface than in the outer peripheral portion of the crown surface in the intake stroke, convection heat transfer between the crown surface and the intake air is efficiently suppressed by making the central portion of the crown surface a mirror surface. On the other hand, since the flow velocity of the intake air is faster in the outer peripheral portion of the crown surface than in the central portion of the crown surface in the compression stroke, convection heat transfer between the crown surface and the intake air is promoted by making the outer peripheral portion of the crown surface rough. The intake air is cooled efficiently.

また、上記の態様において、前記冠面外周部は、前記燃焼室のスキッシュに対応する部分を含むとよい。 Further, in the above aspect, the outer peripheral portion of the crown surface may include a portion corresponding to the squish of the combustion chamber.

この態様によれば、圧縮行程において、スキッシュによって冠面外周部における吸気の流速が一層速くなるため、粗面に形成された冠面外周部と吸気との対流熱伝達が促進され、吸気が一層冷却される。 According to this aspect, in the compression stroke, the flow velocity of the intake air in the outer peripheral portion of the crown surface is further increased by the squish, so that the convection heat transfer between the outer peripheral portion of the crown surface formed on the rough surface and the intake air is promoted, and the intake air is further increased. It is cooled.

また、上記の態様において、前記ピストンの裏面の前記冠面外周部に対応した部分にオイルを噴射するオイルジェットを更に有するとよい。 Further, in the above aspect, it is preferable to further have an oil jet that injects oil into a portion of the back surface of the piston corresponding to the outer peripheral portion of the crown surface.

この態様によれば、オイルジェットによって冠面外周部が冷却されることによって、冠面外周部と対流熱伝達する吸気が一層冷却される。 According to this aspect, the outer peripheral portion of the crown surface is cooled by the oil jet, so that the intake air that transfers convection heat to the outer peripheral portion of the crown surface is further cooled.

また、上記の態様において、前記シリンダヘッド燃焼室面は、前記鏡面に形成された燃焼室面中央部と、前記燃焼室面中央部の外周に配置され、前記粗面に形成された燃焼室面外周部とを有するとよい。 Further, in the above aspect, the cylinder head combustion chamber surface is arranged on the outer periphery of the combustion chamber surface central portion formed on the mirror surface and the combustion chamber surface central portion, and is formed on the rough surface. It is preferable to have an outer peripheral portion.

この態様によれば、吸気行程において吸気と燃焼室面中央部との対流熱伝達が抑制されて吸気の温度上昇が抑制され、圧縮行程において吸気と燃焼室面外周部と対流熱伝達が促進されて吸気の放熱が促進される。吸気は、吸気行程において燃焼室面中央部の方が冠面外周部よりも流速が速いため、冠面中央部を鏡面にすることでシリンダヘッド燃焼室面と吸気との対流熱伝達が効率良く抑制される。一方、吸気は、圧縮行程において燃焼室面外周部の方が燃焼室面中央部よりも流速が速いため、燃焼室面外周部を粗面にすることでシリンダヘッド燃焼室面と吸気との対流熱伝達が促進され、吸気が効率良く冷却される。 According to this aspect, the convection heat transfer between the intake air and the central portion of the combustion chamber surface is suppressed in the intake stroke, the temperature rise of the intake air is suppressed, and the convection heat transfer between the intake air and the outer peripheral portion of the combustion chamber surface is promoted in the compression stroke. The heat dissipation of the intake air is promoted. In the intake stroke, the flow velocity of the central part of the combustion chamber surface is faster than that of the outer peripheral part of the crown surface. Therefore, by making the central part of the crown surface a mirror surface, convection heat transfer between the cylinder head combustion chamber surface and the intake air is efficient. It is suppressed. On the other hand, in the compression stroke, the flow velocity of the outer peripheral portion of the combustion chamber surface is faster than that of the central portion of the combustion chamber surface. Therefore, by making the outer peripheral portion of the combustion chamber surface rough, convection between the cylinder head combustion chamber surface and the intake air. Heat transfer is promoted and the intake air is cooled efficiently.

また、上記の態様において、前記燃焼室面外周部は、スキッシュ面を含むとよい。 Further, in the above aspect, the outer peripheral portion of the combustion chamber surface may include a squish surface.

この態様によれば、圧縮行程において、スキッシュによって燃焼室面外周部における吸気の流速が一層速くなるため、粗面に形成された冠面外周部と吸気との対流熱伝達が促進され、吸気が一層冷却される。 According to this aspect, in the compression stroke, the flow velocity of the intake air at the outer periphery of the combustion chamber surface is further increased by the squish, so that the convection heat transfer between the outer periphery of the crown surface formed on the rough surface and the intake air is promoted, and the intake air is generated. It is further cooled.

この態様によれば、前記燃焼室面外周部の周囲に設けられたウォータジャケットを更に有するとよい。 According to this aspect, it is preferable to further have a water jacket provided around the outer peripheral portion of the combustion chamber surface.

また、上記の態様において、ウォータジャケットによって燃焼室面外周部が冷却されることによって、燃焼室面外周部と対流熱伝達する吸気が一層冷却される。 Further, in the above embodiment, the water jacket cools the outer peripheral portion of the combustion chamber surface, so that the intake air that transfers convection heat to the outer peripheral portion of the combustion chamber surface is further cooled.

この態様によれば、ウォータジャケットによって燃焼室面外周部が冷却されることによって、燃焼室面外周部と対流熱伝達する吸気が一層冷却される。 According to this aspect, by cooling the outer peripheral portion of the combustion chamber surface by the water jacket, the intake air that transfers convection heat to the outer peripheral portion of the combustion chamber surface is further cooled.

また、上記の態様において、前記燃焼室面外周部は、バルブシートにおける前記シリンダヘッド燃焼室面の中心を基準とした径方向部分に接する部分を含むとよい。 Further, in the above aspect, the outer peripheral portion of the combustion chamber surface may include a portion of the valve seat that is in contact with the radial portion with reference to the center of the cylinder head combustion chamber surface.

この態様によれば、圧縮行程において吸気の流速が速くなる部分が燃焼室面外周部に含まれ、粗面に形成されるため、吸気と燃焼室面外周部との対流熱伝達が促進される。 According to this aspect, a portion where the flow velocity of the intake air becomes high in the compression stroke is included in the outer peripheral portion of the combustion chamber surface and is formed on the rough surface, so that convection heat transfer between the intake air and the outer peripheral portion of the combustion chamber surface is promoted. ..

また、上記の態様において、前記シリンダ内周面は、周方向において前記排気ポートが位置する排気側に配置され、前記鏡面に形成された排気側部分と、周方向において前記吸気ポートが位置する吸気側に配置され、前記粗面に形成された吸気側部分と有するとよい。 Further, in the above aspect, the inner peripheral surface of the cylinder is arranged on the exhaust side where the exhaust port is located in the circumferential direction, and the exhaust side portion formed on the mirror surface and the intake air where the intake port is located in the circumferential direction. It is preferable to have an intake side portion arranged on the side and formed on the rough surface.

この態様によれば、吸気行程において吸気とシリンダの排気側部分との対流熱伝達が抑制されて吸気の温度上昇が抑制され、圧縮行程において吸気とシリンダの吸気側部分と対流熱伝達が促進されて吸気の放熱が促進される。吸気は、吸気行程においてシリンダの排気側部分の方が吸気側部分よりも流速が速くなるため、排気側部分を鏡面にすることでシリンダと吸気との対流熱伝達が効率良く抑制される。一方、吸気は、圧縮行程においてシリンダの吸気側部分の方が排気側部分よりも流速が速くなるため、吸気側部分を粗面にすることで吸気側部分との対流熱伝達が促進され、吸気が効率良く冷却される。 According to this aspect, the convection heat transfer between the intake air and the exhaust side portion of the cylinder is suppressed in the intake stroke to suppress the temperature rise of the intake air, and the convection heat transfer between the intake air and the intake side portion of the cylinder is promoted in the compression stroke. The heat dissipation of the intake air is promoted. In the intake stroke, the flow velocity of the exhaust side portion of the cylinder is faster than that of the intake side portion. Therefore, by making the exhaust side portion a mirror surface, convection heat transfer between the cylinder and the intake air is efficiently suppressed. On the other hand, in the intake stroke, the flow velocity of the intake side portion of the cylinder is faster than that of the exhaust side portion in the compression stroke. Therefore, by making the intake side portion a rough surface, convection heat transfer with the intake side portion is promoted, and the intake air is intake. Is cooled efficiently.

また、上記の態様において、前記吸気ポートは、クランク軸線方向に並んで2つ設けられ、前記排気側部分は、クランク軸線方向において2つの前記吸気ポートの外端間の距離以上かつ前記シリンダの内径以下の幅を有するとよい。 Further, in the above aspect, the two intake ports are provided side by side in the crank axis direction, and the exhaust side portion is equal to or larger than the distance between the outer ends of the two intake ports in the crank axis direction and the inner diameter of the cylinder. It should have the following width.

この態様によれば、吸気行程において2つの吸気ポートからシリンダに流入する吸気とシリンダの排気側部分との対流熱伝達が抑制され、吸気の温度上昇が抑制される。 According to this aspect, convection heat transfer between the intake air flowing into the cylinder from the two intake ports and the exhaust side portion of the cylinder is suppressed in the intake stroke, and the temperature rise of the intake air is suppressed.

以上の構成によれば、内燃機関において、耐ノッキング性が向上する。 According to the above configuration, the knocking resistance of the internal combustion engine is improved.

実施形態に係る内燃機関の吸気行程における断面図Sectional drawing in the intake stroke of the internal combustion engine which concerns on embodiment 実施形態に係る内燃機関の圧縮行程における断面図Sectional drawing in the compression stroke of the internal combustion engine which concerns on embodiment (A)バルブの側面図、(B)バルブの底面図(A) Side view of the valve, (B) Bottom view of the valve シリンダヘッド燃焼室面を示す底面図Bottom view showing the cylinder head combustion chamber surface (A)ピストンの側面図、(B)ピストンの平面図(A) Side view of the piston, (B) Plan view of the piston 図1のVI−VI断面図VI-VI sectional view of FIG.

以下、図面を参照して、本発明を自動車の内燃機関に適用した実施形態について説明する。 Hereinafter, embodiments in which the present invention is applied to an internal combustion engine of an automobile will be described with reference to the drawings.

(全体構成)
図1及び図2に示すように、自動車の内燃機関1は、シリンダブロック2と、シリンダブロック2の上部に結合されたシリンダヘッド3とを有する。シリンダブロック2の上部にはシリンダボア8が形成されている。シリンダボア8は、その上端がシリンダブロック2の上端面2Aに開口し、その下端がシリンダブロック2の下部に形成されたクランク室9に連通している。シリンダボア8の内側には、両端が開口した円筒形のシリンダスリーブ10が圧入され、結合されている。シリンダスリーブ10の内周面11(シリンダ内周面)は、円筒形のシリンダ12(気筒)を画定する。シリンダ12の軸線をシリンダ軸線Aとする。シリンダブロック2におけるシリンダボア8の周囲には、ブロック側ウォータジャケット7が形成されている。ブロック側ウォータジャケット7の上端は、シリンダブロック2の上端面2Aに開口している。
(overall structure)
As shown in FIGS. 1 and 2, the internal combustion engine 1 of an automobile has a cylinder block 2 and a cylinder head 3 coupled to an upper portion of the cylinder block 2. A cylinder bore 8 is formed on the upper part of the cylinder block 2. The upper end of the cylinder bore 8 opens to the upper end surface 2A of the cylinder block 2, and the lower end thereof communicates with the crank chamber 9 formed in the lower portion of the cylinder block 2. A cylindrical cylinder sleeve 10 having both ends open is press-fitted and coupled to the inside of the cylinder bore 8. The inner peripheral surface 11 (cylinder inner peripheral surface) of the cylinder sleeve 10 defines a cylindrical cylinder 12 (cylinder). Let the axis of the cylinder 12 be the cylinder axis A. A block-side water jacket 7 is formed around the cylinder bore 8 in the cylinder block 2. The upper end of the block-side water jacket 7 is open to the upper end surface 2A of the cylinder block 2.

クランク室9には、クランクシャフト(不図示)が配置されている。クランクシャフトは、シリンダブロック2の下部に結合されるベアリングキャップによって形成される軸受に回転可能に支持されている。クランクシャフトは、コンロッド18を介して、シリンダ12に往復動可能に受容されたピストン20に結合されている。シリンダブロック2の下部は、オイルパン(不図示)によって閉じられている。 A crankshaft (not shown) is arranged in the crank chamber 9. The crankshaft is rotatably supported by a bearing formed by a bearing cap coupled to the bottom of the cylinder block 2. The crankshaft is coupled via a connecting rod 18 to a piston 20 that is reciprocally received by the cylinder 12. The lower part of the cylinder block 2 is closed by an oil pan (not shown).

ピストン20は、上方(シリンダヘッド3側)に設けられた円板状のクラウン部21と、クラウン部21から下方(クランクシャフト側)に延びた一対のスカート部22及び一対の軸受壁部23とを有する。一対のスカート部22及び一対の軸受壁部23は、周方向において交互に配置され、互いに接続している。クラウン部21の上面をピストン冠面24という。 The piston 20 includes a disc-shaped crown portion 21 provided above (cylinder head 3 side), a pair of skirt portions 22 extending downward (crankshaft side) from the crown portion 21, and a pair of bearing wall portions 23. Has. The pair of skirt portions 22 and the pair of bearing wall portions 23 are alternately arranged in the circumferential direction and are connected to each other. The upper surface of the crown portion 21 is referred to as a piston crown surface 24.

シリンダブロック2のクランク室9を画定する壁部には、クラウン部21の裏面に向けてオイルを噴射するオイルジェット28が設けられている。オイルジェット28には、オイルパンに貯留されたオイルが図示しないオイルポンプを介して供給される。 An oil jet 28 that injects oil toward the back surface of the crown portion 21 is provided on the wall portion that defines the crank chamber 9 of the cylinder block 2. The oil stored in the oil pan is supplied to the oil jet 28 via an oil pump (not shown).

シリンダヘッド3の下端面3Aは、シリンダブロック2の上端面2Aに結合され、シリンダ12に対応する位置にシリンダ12の上端部を閉じるシリンダヘッド燃焼室面30を有する。シリンダヘッド燃焼室面30は、シリンダ12の外周部に対応した部分にスキッシュ面31と、シリンダ12の中央部に対応し、上方に向けて凹んだ燃焼室凹面32とを有する。スキッシュ面31は、シリンダヘッド3の下端面3Aと同一平面に形成され、シリンダ12と対向する位置に配置されている。燃焼室凹面32には、2つの吸気ポート35の端部と、2つの排気ポート36の端部とが開口している。2つの吸気ポート35は燃焼室凹面32からシリンダヘッド3の一側の側面に延び、2つの排気ポート36は燃焼室凹面32からシリンダヘッド3の他側の側面に延びている。シリンダヘッド3の吸気ポート35が配置された側を吸気側、排気ポート36が配置された側を排気側とする。 The lower end surface 3A of the cylinder head 3 has a cylinder head combustion chamber surface 30 that is coupled to the upper end surface 2A of the cylinder block 2 and closes the upper end portion of the cylinder 12 at a position corresponding to the cylinder 12. The cylinder head combustion chamber surface 30 has a squish surface 31 at a portion corresponding to the outer peripheral portion of the cylinder 12, and a combustion chamber concave surface 32 corresponding to the central portion of the cylinder 12 and recessed upward. The squish surface 31 is formed on the same plane as the lower end surface 3A of the cylinder head 3 and is arranged at a position facing the cylinder 12. The concave surface 32 of the combustion chamber is open to the ends of the two intake ports 35 and the ends of the two exhaust ports 36. The two intake ports 35 extend from the concave surface 32 of the combustion chamber to one side surface of the cylinder head 3, and the two exhaust ports 36 extend from the concave surface 32 of the combustion chamber to the other side surface of the cylinder head 3. The side of the cylinder head 3 where the intake port 35 is arranged is the intake side, and the side where the exhaust port 36 is arranged is the exhaust side.

シリンダヘッド3には、シリンダヘッド燃焼室面30の周囲にヘッド側ウォータジャケット37が形成されている。ヘッド側ウォータジャケット37の一部はシリンダヘッド3の下端面3Aに開口し、ブロック側ウォータジャケット7と接続している。ヘッド側ウォータジャケット37の一部は、燃焼室面外周部52の周囲に配置されている。 The cylinder head 3 is formed with a head-side water jacket 37 around the cylinder head combustion chamber surface 30. A part of the head-side water jacket 37 opens to the lower end surface 3A of the cylinder head 3 and is connected to the block-side water jacket 7. A part of the head-side water jacket 37 is arranged around the outer peripheral portion 52 of the combustion chamber surface.

各吸気ポート35及び各排気ポート36の燃焼室凹面32との境界部には、環状のバルブシート38が設けられている。各吸気ポート35には、バルブシート38に対して着座、離座することによって吸気ポート35を開閉する吸気バルブ40が設けられている。各排気ポート36には、バルブシート38に対して着座、離座することによって排気ポート36を開閉する排気バルブ41が設けられている。吸気バルブ40及び排気バルブ41は、図示しない動弁機構によって駆動され、クランクシャフトの回転位置に応じて所定のタイミングで開閉する。 An annular valve seat 38 is provided at the boundary between each intake port 35 and each exhaust port 36 with the concave surface 32 of the combustion chamber. Each intake port 35 is provided with an intake valve 40 that opens and closes the intake port 35 by seating and leaving the valve seat 38. Each exhaust port 36 is provided with an exhaust valve 41 that opens and closes the exhaust port 36 by sitting on and off the valve seat 38. The intake valve 40 and the exhaust valve 41 are driven by a valve operating mechanism (not shown) and open and close at a predetermined timing according to the rotation position of the crankshaft.

シリンダスリーブ10の内周面11、シリンダヘッド燃焼室面30、ピストン20の冠面、及び各バルブ40、41の表面によって燃焼室44が画定される。吸気ポート35は、吸気ポート35を通過して燃焼室44に流入する吸気が燃焼室44においてタンブル流を形成するように、向き及び形状が設定されている。 The combustion chamber 44 is defined by the inner peripheral surface 11 of the cylinder sleeve 10, the cylinder head combustion chamber surface 30, the crown surface of the piston 20, and the surfaces of the valves 40 and 41. The direction and shape of the intake port 35 are set so that the intake air that has passed through the intake port 35 and flows into the combustion chamber 44 forms a tumble flow in the combustion chamber 44.

燃料を噴射するインジェクタ(不図示)は、吸気ポート35又は燃焼室凹面32のいずれかに設けられるとよい。 An injector (not shown) for injecting fuel may be provided on either the intake port 35 or the concave surface 32 of the combustion chamber.

(吸気バルブ及び排気バルブ)
図3(A)及び(B)に示すように、吸気バルブ40及び排気バルブ41(以下、単にバルブ40、41という)は、軸部46と、軸部46の一端に略同軸に設けられた傘部47とを有するポペットバルブである。バルブ40、41は、軸部46においてシリンダヘッド3に設けられた円筒状のバルブガイド48に軸方向に摺動可能に支持されている。傘部47は、所定の厚みを有する円板状に形成され、その外径が軸部46の外径よりも大きく形成されている。傘部47の燃焼室44側を向く面を傘表面47A、吸気ポート35又は排気ポート36側を向く面を傘裏面47Bとする。傘裏面47Bは、略円錐面に形成され、その外周部にバルブシート38に接触可能なフェース面47Cを有する。フェース面47Cは、軸部46を中心として環状に形成されている。傘部47の外周縁の表面は、傘表面47Aと傘裏面47Bとを曲面で滑らかに繋ぐ傘周縁面47Dとなっている。傘周縁面47Dは、傘表面47Aの外周縁とフェース面47Cの外周縁との間の表面をなす。傘周縁面47Dは、バルブシート38及び燃焼室凹面32と隙間を介して配置される。
(Intake valve and exhaust valve)
As shown in FIGS. 3A and 3B, the intake valve 40 and the exhaust valve 41 (hereinafter, simply referred to as valves 40 and 41) are provided substantially coaxially with the shaft portion 46 at one end of the shaft portion 46. It is a poppet valve having an umbrella portion 47. The valves 40 and 41 are slidably supported in the axial direction by a cylindrical valve guide 48 provided on the cylinder head 3 at the shaft portion 46. The umbrella portion 47 is formed in a disk shape having a predetermined thickness, and its outer diameter is formed to be larger than the outer diameter of the shaft portion 46. The surface of the umbrella portion 47 facing the combustion chamber 44 side is the umbrella surface 47A, and the surface of the umbrella portion 47 facing the combustion chamber 44 side is the umbrella back surface 47B. The back surface 47B of the umbrella is formed on a substantially conical surface, and has a face surface 47C on the outer peripheral portion thereof that can come into contact with the valve seat 38. The face surface 47C is formed in an annular shape with the shaft portion 46 as the center. The surface of the outer peripheral edge of the umbrella portion 47 is an umbrella peripheral edge surface 47D that smoothly connects the umbrella surface 47A and the umbrella back surface 47B with a curved surface. The umbrella peripheral surface 47D forms a surface between the outer peripheral edge of the umbrella surface 47A and the outer peripheral edge of the face surface 47C. The umbrella peripheral surface 47D is arranged with the valve seat 38 and the concave surface 32 of the combustion chamber via a gap.

傘表面47Aは、鏡面に形成された鏡面部Mとなっている。ここで、鏡面とは、算術平均粗さ(Ra)が0.3μm未満の表面と定義する。なお、鏡面は、算術平均粗さ(Ra)が0.1μm未満の表面であってもよい。一方、傘周縁面47Dは、粗面に形成された粗面部Rとなっている。ここで、粗面とは、算術平均粗さ(Ra)が0.3μm以上である表面と定義する。すなわち、粗面は、鏡面よりも表面粗さ(算術平均粗さ)が大きい面である。表面の鏡面化及び粗面化は、公知の加工技術によって行うことができ、例えばショットブラストによって行うとよい。 The umbrella surface 47A is a mirror surface portion M formed on a mirror surface. Here, the mirror surface is defined as a surface having an arithmetic mean roughness (Ra) of less than 0.3 μm. The mirror surface may be a surface having an arithmetic mean roughness (Ra) of less than 0.1 μm. On the other hand, the umbrella peripheral surface 47D is a rough surface portion R formed on the rough surface. Here, the rough surface is defined as a surface having an arithmetic mean roughness (Ra) of 0.3 μm or more. That is, the rough surface is a surface having a larger surface roughness (arithmetic mean roughness) than the mirror surface. The surface can be mirrored and roughened by a known processing technique, for example, by shot blasting.

(シリンダヘッド燃焼室面)
図4に示すように、シリンダヘッド燃焼室面30は、燃焼室凹面32の中央部を含む燃焼室面中央部51と、燃焼室面中央部51の外周側に配置された燃焼室凹面32の周縁部とスキッシュ面31とを含む燃焼室面外周部52とを有する。スキッシュ面31は、平面視において円形をなすシリンダヘッド燃焼室面30の吸気側部分及び排気側部分において他の部分よりも径方向内方に張り出している。本実施形態では、吸気側のスキッシュ面31は排気側のスキッシュ面31よりも径方向内方への張り出し量が大きく設定されている。燃焼室面外周部52に含まれる燃焼室凹面32は、バルブシート38におけるシリンダヘッド燃焼室面30の中心を基準とした径方向部分に接する部分を含む。燃焼室面中央部51は鏡面に形成された鏡面部Mをなし、燃焼室面外周部52は粗面に形成された粗面部Rをなす。
(Cylinder head combustion chamber surface)
As shown in FIG. 4, the cylinder head combustion chamber surface 30 is a combustion chamber surface central portion 51 including the central portion of the combustion chamber concave surface 32, and a combustion chamber concave surface 32 arranged on the outer peripheral side of the combustion chamber surface central portion 51. It has a combustion chamber surface outer peripheral portion 52 including a peripheral edge portion and a squish surface 31. The squish surface 31 projects radially inward from the other portions on the intake side portion and the exhaust side portion of the cylinder head combustion chamber surface 30 which is circular in a plan view. In the present embodiment, the squish surface 31 on the intake side is set to have a larger amount of protrusion inward in the radial direction than the squish surface 31 on the exhaust side. The combustion chamber concave surface 32 included in the combustion chamber surface outer peripheral portion 52 includes a portion of the valve seat 38 that contacts the radial portion with reference to the center of the cylinder head combustion chamber surface 30. The central portion 51 of the combustion chamber surface forms a mirror surface portion M formed on a mirror surface, and the outer peripheral portion 52 of the combustion chamber surface forms a rough surface portion R formed on a rough surface.

(ピストン)
図5(B)に示すように、ピストン冠面24は、中央に位置する冠面中央部55と、冠面中央部55の外周に配置された環状の冠面外周部56とを有する。冠面外周部56は、スキッシュ面31と対向する部分を含む。冠面外周部56は、吸気側のスキッシュ面31に対向した部分及び排気側のスキッシュ面31に対向した部分を有する。冠面中央部55は鏡面に形成された鏡面部Mをなし、冠面外周部56は粗面に形成された粗面部Rをなす。
(piston)
As shown in FIG. 5B, the piston crown surface 24 has a crown surface central portion 55 located at the center and an annular crown surface outer peripheral portion 56 arranged on the outer periphery of the crown surface central portion 55. The crown surface outer peripheral portion 56 includes a portion facing the squish surface 31. The outer peripheral portion 56 of the crown surface has a portion facing the squish surface 31 on the intake side and a portion facing the squish surface 31 on the exhaust side. The central portion 55 of the crown surface forms a mirror surface portion M formed on a mirror surface, and the outer peripheral portion 56 of the crown surface forms a rough surface portion R formed on a rough surface.

(シリンダスリーブ)
図6に示すように、シリンダスリーブ10の内周面11は、排気側部分が鏡面に形成された鏡面部Mをなし、吸気側部分が粗面に形成された粗面部Rをなす。シリンダスリーブ10の鏡面部Mは、クランク軸線方向において2つの吸気ポート35の外端間の距離以上かつシリンダ12の内径以下の幅を有する。本実施形態では、シリンダスリーブ10の鏡面部Mのクランク軸線方向における幅は、2つの吸気ポート35の外端間の距離と等しく設定されている。シリンダスリーブ10の粗面部Rは、シリンダスリーブ10の鏡面部Mを除く全ての部分を含むとよい。粗面部Rは、シリンダスリーブ10の内周面11を吸気側と排気側に二等分したときに、排気側に延出してもよい。
(Cylinder sleeve)
As shown in FIG. 6, the inner peripheral surface 11 of the cylinder sleeve 10 forms a mirror surface portion M whose exhaust side portion is formed on a mirror surface, and a rough surface portion R whose intake side portion is formed on a rough surface. The mirror surface portion M of the cylinder sleeve 10 has a width equal to or greater than the distance between the outer ends of the two intake ports 35 and equal to or less than the inner diameter of the cylinder 12 in the crank axis direction. In the present embodiment, the width of the mirror surface portion M of the cylinder sleeve 10 in the crank axis direction is set to be equal to the distance between the outer ends of the two intake ports 35. The rough surface portion R of the cylinder sleeve 10 may include all portions except the mirror surface portion M of the cylinder sleeve 10. The rough surface portion R may extend to the exhaust side when the inner peripheral surface 11 of the cylinder sleeve 10 is bisected on the intake side and the exhaust side.

以上のように構成した内燃機関1の作用及び効果について説明する。内燃機関1では、吸気行程において吸気バルブ40が開くと共にピストン20が下降し、吸気が吸気ポート35から燃焼室44に流入する。ここでの吸気は、空気のみであってもよく、燃料を含む混合気であってもよい。吸気は、吸気ポート35のバルブシート38と吸気バルブ40との隙間から吸気バルブ40を中心とした径方向に流れて、燃焼室44内に流入する。このとき、吸気の主な流れは、吸気バルブ40の傘部47の排気側から燃焼室44に流入し、燃焼室凹面32、排気バルブ41の傘表面47A、シリンダスリーブ10の内周面11の排気側部分を順に通過するように排気側かつ下方に流れ、その後、ピストン20の冠面中央部55、シリンダスリーブ10の内周面11の吸気側部分、燃焼室凹面32、吸気バルブ40の傘表面47Aを順に通過するように吸気側かつ上方に流れてタンブル流を形成する。このとき、吸気は、吸気ポート35から燃焼室44に流入したときが最も流速が速いため、燃焼室凹面32、排気バルブ41の傘表面47A、シリンダスリーブ10の内周面11の排気側部分、ピストン20の冠面中央部55における流速が他の部分における流速よりも速くなる。 The operation and effect of the internal combustion engine 1 configured as described above will be described. In the internal combustion engine 1, the intake valve 40 is opened and the piston 20 is lowered in the intake stroke, and the intake air flows into the combustion chamber 44 from the intake port 35. The intake air here may be only air or an air-fuel mixture containing fuel. The intake air flows from the gap between the valve seat 38 of the intake port 35 and the intake valve 40 in the radial direction centered on the intake valve 40, and flows into the combustion chamber 44. At this time, the main flow of intake air flows into the combustion chamber 44 from the exhaust side of the umbrella portion 47 of the intake valve 40, and the concave surface 32 of the combustion chamber, the umbrella surface 47A of the exhaust valve 41, and the inner peripheral surface 11 of the cylinder sleeve 10. It flows downward and on the exhaust side so as to pass through the exhaust side portions in order, and then the central portion 55 of the crown surface of the piston 20, the intake side portion of the inner peripheral surface 11 of the cylinder sleeve 10, the concave surface 32 of the combustion chamber, and the umbrella of the intake valve 40. It flows on the intake side and upward so as to pass through the surface 47A in order to form a tumble flow. At this time, since the flow velocity of the intake air is the fastest when it flows into the combustion chamber 44 from the intake port 35, the concave surface 32 of the combustion chamber, the umbrella surface 47A of the exhaust valve 41, and the exhaust side portion of the inner peripheral surface 11 of the cylinder sleeve 10. The flow velocity at the central portion 55 of the crown surface of the piston 20 becomes faster than the flow velocity at the other portions.

圧縮行程においては、ピストン20の上昇に伴ってピストン20の冠面外周部56とスキッシュ面31を含む燃焼室面外周部52との間で圧縮された吸気が燃焼室44の中央に流れる。そのため、圧縮行程では、吸気はピストン20の冠面外周部56、スキッシュ面31を含む燃焼室面外周部52において他の部分よりも流速が速くなる。また、圧縮行程では、圧縮された吸気がバルブ40、41の傘周縁面47Dとバルブシート38及び燃焼室凹面32との間に形成される隙間に流入するため、傘周縁面47Dにおいて吸気の流速が他の部分よりも速くなる。 In the compression stroke, as the piston 20 rises, the intake air compressed between the outer peripheral portion 56 of the crown surface of the piston 20 and the outer peripheral portion 52 of the combustion chamber surface including the squish surface 31 flows to the center of the combustion chamber 44. Therefore, in the compression stroke, the flow velocity of the intake air becomes faster in the outer peripheral portion 56 of the crown surface of the piston 20 and the outer peripheral portion 52 of the combustion chamber surface including the squish surface 31 than in other portions. Further, in the compression stroke, the compressed intake air flows into the gap formed between the umbrella peripheral surface 47D of the valves 40 and 41 and the valve seat 38 and the concave surface 32 of the combustion chamber. Is faster than the other parts.

内燃機関1では、吸気行程において他の部分よりも吸気の流速が速くなる燃焼室凹面32、バルブ40、41の傘表面47A、シリンダスリーブ10の排気側部分、及びピストン20の冠面中央部55が鏡面部Mとなっているため、吸気と燃焼室凹面32、バルブ40、41の傘表面47A、シリンダスリーブ10の排気側部分、及びピストン20の冠面中央部55との対流熱伝達が抑制され、吸気の温度上昇が抑制される。吸気行程においては、吸気よりも燃焼室44を画定する構造体の温度が高いため、吸気の温度上昇を抑制するためには、対流熱伝達が抑制されることが好ましい。対流熱伝達は、流速が速いほど温度境界層が乱れて薄くなるため、熱伝達率が増加する。そのため、吸気の流速が速い部分において、吸気は燃焼室44を画定する構造体からの受熱量が多くなる。本実施形態では、吸気行程において他の部分よりも吸気の流速が速くなる燃焼室凹面32、バルブ40、41の傘表面47A、シリンダスリーブ10の排気側部分、及びピストン20の冠面中央部55が鏡面部Mをなすため、温度境界層の乱れが抑制され、この部分での熱伝達率が低下する。これにより、吸気は、燃焼室44を画定する構造体からの受熱量が低下し、温度上昇が抑制される。 In the internal combustion engine 1, the concave surface 32 of the combustion chamber where the flow rate of intake air becomes faster than the other parts in the intake stroke, the umbrella surface 47A of the valves 40 and 41, the exhaust side portion of the cylinder sleeve 10, and the central portion 55 of the crown surface of the piston 20. Is a mirror surface portion M, so that convection heat transfer between the intake and the concave surface 32 of the combustion chamber, the umbrella surface 47A of the valves 40 and 41, the exhaust side portion of the cylinder sleeve 10, and the central portion 55 of the crown surface of the piston 20 is suppressed. The temperature rise of the intake air is suppressed. In the intake stroke, since the temperature of the structure defining the combustion chamber 44 is higher than that of the intake air, it is preferable that the convection heat transfer is suppressed in order to suppress the temperature rise of the intake air. As for convection heat transfer, the faster the flow velocity, the more disturbed and thin the temperature boundary layer is, so that the heat transfer coefficient increases. Therefore, in the portion where the flow velocity of the intake air is high, the intake air receives a large amount of heat from the structure defining the combustion chamber 44. In the present embodiment, the concave surface 32 of the combustion chamber, the umbrella surface 47A of the valves 40 and 41, the exhaust side portion of the cylinder sleeve 10, and the central portion 55 of the crown surface of the piston 20 in which the flow velocity of the intake air becomes faster than the other portions in the intake stroke. Since the mirror surface portion M is formed, the disturbance of the temperature boundary layer is suppressed, and the heat transfer coefficient in this portion is lowered. As a result, the amount of heat received from the structure defining the combustion chamber 44 of the intake air is reduced, and the temperature rise is suppressed.

一方、圧縮行程においては、圧縮された吸気は燃焼室44を画定する構造体よりも温度が高くなるため、吸気と燃焼室44を画定する構造体との間での熱交換を促進することが吸気の冷却のために好ましい。本実施形態では、圧縮行程において他の部分よりも吸気の流速が速くなる、ピストン20の冠面外周部56、スキッシュ面31を含む燃焼室面外周部52、及びバルブ40、41の傘周縁面47Dが粗面部Rをなすため、温度境界層の乱れが促進され、これらの部分での熱伝達率が増加する。また、ピストン20の冠面外周部56、スキッシュ面31を含む燃焼室面外周部52、及びバルブ40、41の傘周縁面47Dは、粗面部Rをなすため、表面積が大きくなり、これらの部分での熱伝達量が増加する。これにより、吸気は、燃焼室44を画定する構造体への放熱量が増加し、温度上昇が抑制される。また、シリンダスリーブ10の内周面11は吸気側部分を含む排気側部分以外の領域が粗面部Rをなすため、吸気からシリンダスリーブ10へ放熱が促進される。 On the other hand, in the compression stroke, the compressed intake air has a higher temperature than the structure defining the combustion chamber 44, so that heat exchange between the intake air and the structure defining the combustion chamber 44 can be promoted. Preferred for cooling the intake air. In the present embodiment, the flow velocity of the intake air becomes faster than the other parts in the compression stroke, the outer peripheral portion 56 of the crown surface of the piston 20, the outer peripheral portion 52 of the combustion chamber surface including the squish surface 31, and the outer peripheral surface of the umbrella of the valves 40 and 41. Since 47D forms the rough surface portion R, the turbulence of the temperature boundary layer is promoted, and the heat transfer coefficient in these portions is increased. Further, the outer peripheral portion 56 of the crown surface of the piston 20, the outer peripheral portion 52 of the combustion chamber surface including the squish surface 31, and the outer peripheral surface 47D of the umbrella peripheral surface of the valves 40 and 41 form a rough surface portion R, so that the surface area becomes large, and these portions. Increases the amount of heat transfer in. As a result, the amount of heat radiated from the intake air to the structure defining the combustion chamber 44 increases, and the temperature rise is suppressed. Further, since the inner peripheral surface 11 of the cylinder sleeve 10 has a rough surface portion R in a region other than the exhaust side portion including the intake side portion, heat dissipation from the intake air to the cylinder sleeve 10 is promoted.

シリンダヘッド燃焼室面30において、スキッシュ面31を含む燃焼室面外周部52を鏡面に形成し、燃焼室面中央部51を粗面に形成した場合、燃焼室面外周部52及び燃焼室面中央部51を全て粗面に形成した場合に比べて、ノッキングが生じない範囲において点火時期をMBT側に進角可能であることが確認された。シリンダスリーブ10の内周面11において、排気側部分を鏡面に形成し、吸気側部分を含む他の部分を粗面に形成した場合、吸気側部分及び排気側部分を含む全ての領域を粗面に形成した場合に比べて、ノッキングが生じない範囲において点火時期をMBT側に進角可能であることが確認された。ピストン20の冠面において、冠面中央部55を鏡面に形成し、冠面外周部56を粗面に形成した場合、冠面中央部55及び冠面外周部56を粗面に形成した場合に比べて、ノッキングが生じない範囲において点火時期をMBT側に進角可能であることが確認された。バルブ40、41において、傘表面47Aを鏡面に形成し、傘周縁面47Dを粗面に形成した場合、傘表面47A及び傘周縁面47Dを粗面に形成した場合に比べて、ノッキングが生じない範囲において点火時期をMBT側に1.0degに進角可能であることが確認された。上記の実験結果は、いずれもエンジン回転数が2500rpm、全負荷の条件で得られた。 When the outer peripheral portion 52 of the combustion chamber surface including the squish surface 31 is formed as a mirror surface and the central portion 51 of the combustion chamber surface is formed as a rough surface on the cylinder head combustion chamber surface 30, the outer peripheral portion 52 of the combustion chamber surface and the center of the combustion chamber surface are formed. It was confirmed that the ignition timing can be advanced to the MBT side within a range where knocking does not occur, as compared with the case where all the portions 51 are formed on a rough surface. When the exhaust side portion is formed as a mirror surface and the other portion including the intake side portion is formed as a rough surface on the inner peripheral surface 11 of the cylinder sleeve 10, the entire region including the intake side portion and the exhaust side portion is roughened. It was confirmed that the ignition timing can be advanced to the MBT side within a range in which knocking does not occur, as compared with the case of forming the above. In the crown surface of the piston 20, when the crown surface central portion 55 is formed as a mirror surface and the crown surface outer peripheral portion 56 is formed as a rough surface, or when the crown surface central portion 55 and the crown surface outer peripheral portion 56 are formed as a rough surface. In comparison, it was confirmed that the ignition timing can be advanced to the MBT side within a range where knocking does not occur. In the valves 40 and 41, when the umbrella surface 47A is formed as a mirror surface and the umbrella peripheral surface 47D is formed as a rough surface, knocking does not occur as compared with the case where the umbrella surface 47A and the umbrella peripheral surface 47D are formed as a rough surface. It was confirmed that the ignition timing can be advanced to 1.0 deg toward the MBT side in the range. The above experimental results were all obtained under the conditions of an engine speed of 2500 rpm and a full load.

以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。上記の実施形態では、シリンダスリーブ10の内周面11がシリンダ12の内周面を画定する構成としたが、シリンダスリーブ10を省略して、シリンダボア8の内周面がシリンダ12の内周面を画定する構成としてもよい。 Although the description of the specific embodiment is completed above, the present invention can be widely modified without being limited to the above embodiment. In the above embodiment, the inner peripheral surface 11 of the cylinder sleeve 10 defines the inner peripheral surface of the cylinder 12, but the inner peripheral surface of the cylinder bore 8 is the inner peripheral surface of the cylinder 12 by omitting the cylinder sleeve 10. May be configured to define.

シリンダスリーブ10の内周面11の粗面部Rは、シリンダ軸線Aに沿った方向において内周面11の全領域に設ける必要はなく、シリンダヘッド3側だけに設けてもよい。例えば、粗面部Rは、内周面11のシリンダヘッド3側からピストン20のストロークにおける1/2以下の範囲、或いは1/4以下の範囲のみに設け、他の部分を全て鏡面部Mにしてもよい。 The rough surface portion R of the inner peripheral surface 11 of the cylinder sleeve 10 does not have to be provided in the entire area of the inner peripheral surface 11 in the direction along the cylinder axis A, and may be provided only on the cylinder head 3 side. For example, the rough surface portion R is provided only in a range of 1/2 or less or 1/4 or less of the stroke of the piston 20 from the cylinder head 3 side of the inner peripheral surface 11, and all other portions are mirror surface portions M. May be good.

1 :内燃機関
2 :シリンダブロック
3 :シリンダヘッド
10 :シリンダスリーブ
11 :内周面
12 :シリンダ
20 :ピストン
24 :ピストン冠面
30 :シリンダヘッド燃焼室面
31 :スキッシュ面
32 :燃焼室凹面
35 :吸気ポート
36 :排気ポート
37 :ヘッド側ウォータジャケット
38 :バルブシート
40 :吸気バルブ
41 :排気バルブ
44 :燃焼室
47A :傘表面
47B :傘裏面
47C :フェース面
47D :傘周縁面
51 :燃焼室面中央部
52 :燃焼室面外周部
55 :冠面中央部
56 :冠面外周部
M :鏡面部
R :粗面部
1: Internal combustion engine 2: Cylinder block 3: Cylinder head 10: Cylinder sleeve 11: Inner peripheral surface 12: Cylinder 20: Piston 24: Piston crown surface 30: Cylinder head combustion chamber surface 31: Squish surface 32: Combustion chamber concave surface 35: Intake port 36: Exhaust port 37: Head side water jacket 38: Valve seat 40: Intake valve 41: Exhaust valve 44: Combustion chamber 47A: Umbrella surface 47B: Umbrella back surface 47C: Face surface 47D: Umbrella peripheral surface 51: Combustion chamber surface Central portion 52: Combustion chamber surface outer peripheral portion 55: Crown surface central portion 56: Crown surface outer peripheral portion M: Mirror surface portion R: Rough surface portion

Claims (3)

シリンダを画定するシリンダ内周面、前記シリンダの端部を閉じるシリンダヘッド燃焼室面、前記シリンダヘッド燃焼室面に開口した吸気ポート及び排気ポートを閉じるバルブの表面、前記シリンダに受容されたピストンの冠面によって画定される燃焼室を備えた内燃機関であって、
前記バルブは、軸部と、前記軸部の一端に設けられた傘部とを有し、
前記傘部は、燃焼室側を向く傘表面と、バルブシートに接触する環状のフェース面と、
前記傘表面の外周縁と前記フェース面の外周縁との間の表面をなす傘周縁面とを有し、
前記傘表面は算術平均粗さが0.3μm未満の鏡面に形成され、前記傘周縁面は算術平均粗さが0.3μm以上の粗面に形成されていることを特徴とする内燃機関。
The inner peripheral surface of the cylinder that defines the cylinder, the surface of the combustion chamber of the cylinder head that closes the end of the cylinder, the surface of the valve that closes the intake port and the exhaust port opened in the surface of the combustion chamber of the cylinder head, and the surface of the piston received by the cylinder. An internal combustion engine with a combustion chamber defined by a crown.
The valve has a shaft portion and an umbrella portion provided at one end of the shaft portion.
The umbrella portion includes an umbrella surface facing the combustion chamber side, an annular face surface in contact with the valve seat, and an annular face surface.
It has an umbrella peripheral surface forming a surface between the outer peripheral edge of the umbrella surface and the outer peripheral edge of the face surface.
An internal combustion engine characterized in that the surface of the umbrella is formed on a mirror surface having an arithmetic average roughness of less than 0.3 μm, and the peripheral surface of the umbrella is formed on a rough surface having an arithmetic average roughness of 0.3 μm or more.
シリンダを画定するシリンダ内周面、前記シリンダの端部を閉じるシリンダヘッド燃焼室面、前記シリンダヘッド燃焼室面に開口した吸気ポート及び排気ポートを閉じるバルブの表面、前記シリンダに受容されたピストンの冠面によって画定される燃焼室を備えた内燃機関であって、
前記シリンダ内周面は、周方向において前記排気ポートが位置する排気側に配置され、
算術平均粗さが0.3μm未満の鏡面に形成された排気側部分と、周方向において前記吸気ポートが位置する吸気側に配置され、算術平均粗さが0.3μm以上の粗面に形成された吸気側部分と有することを特徴とする内燃機関。
The inner peripheral surface of the cylinder that defines the cylinder, the surface of the combustion chamber of the cylinder head that closes the end of the cylinder, the surface of the valve that closes the intake port and the exhaust port opened in the surface of the combustion chamber of the cylinder head, and the surface of the piston received by the cylinder. An internal combustion engine with a combustion chamber defined by a crown.
The inner peripheral surface of the cylinder is arranged on the exhaust side where the exhaust port is located in the circumferential direction.
It is arranged on the exhaust side portion formed on a mirror surface having an arithmetic mean roughness of less than 0.3 μm and on the intake side where the intake port is located in the circumferential direction, and is formed on a rough surface having an arithmetic mean roughness of 0.3 μm or more. inner combustion engine it characterized as having an intake-side moiety.
前記吸気ポートは、クランク軸線方向に並んで2つ設けられ、
前記排気側部分は、クランク軸線方向において2つの前記吸気ポートの外端間の距離以上かつ前記シリンダの内径以下の幅を有することを特徴とする請求項2に記載の内燃機関。
Two intake ports are provided side by side in the crank axis direction.
The internal combustion engine according to claim 2 , wherein the exhaust side portion has a width equal to or greater than the distance between the outer ends of the two intake ports and equal to or less than the inner diameter of the cylinder in the direction of the crank axis.
JP2017002276A 2016-11-18 2017-01-11 Internal combustion engine Active JP6861518B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/730,015 US11022027B2 (en) 2016-11-18 2017-10-11 Internal combustion engine with reduced engine knocking
CN201711083949.2A CN108071439B (en) 2016-11-18 2017-11-07 Internal combustion engine with reduced engine knock

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016225204 2016-11-18
JP2016225204 2016-11-18

Publications (2)

Publication Number Publication Date
JP2018087562A JP2018087562A (en) 2018-06-07
JP6861518B2 true JP6861518B2 (en) 2021-04-21

Family

ID=62493926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017002276A Active JP6861518B2 (en) 2016-11-18 2017-01-11 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP6861518B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7063246B2 (en) * 2018-11-15 2022-05-09 トヨタ自動車株式会社 Internal combustion engine
JP6977201B1 (en) * 2020-07-29 2021-12-08 フジオーゼックス株式会社 Engine valve and its manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134819U (en) * 1984-02-20 1985-09-07 トヨタ自動車株式会社 Combustion chamber of internal combustion engine
JPS61110836U (en) * 1984-12-25 1986-07-14
JPH01125821U (en) * 1988-02-23 1989-08-28
JP3039222B2 (en) * 1993-09-21 2000-05-08 日産自動車株式会社 Honing method of cylinder block bore
JP2002364455A (en) * 2001-06-11 2002-12-18 Nissan Motor Co Ltd Cylinder block, its forming method and device
JP2010203334A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Piston for internal combustion engine
JP5673160B2 (en) * 2011-02-02 2015-02-18 トヨタ自動車株式会社 Internal combustion engine and manufacturing method thereof
JP6136160B2 (en) * 2012-09-21 2017-05-31 スズキ株式会社 Cylinder bore inner surface processing method and cylinder structure
JP6232954B2 (en) * 2013-11-12 2017-11-22 トヨタ自動車株式会社 Internal combustion engine

Also Published As

Publication number Publication date
JP2018087562A (en) 2018-06-07

Similar Documents

Publication Publication Date Title
JP6861518B2 (en) Internal combustion engine
JP4702103B2 (en) Engine intake control method and intake control device
JP2019190286A (en) Cylinder head for internal combustion engine
CN108071439B (en) Internal combustion engine with reduced engine knock
JP2014084790A (en) Piston of cylinder direct injection type internal combustion engine
US7216612B2 (en) Internal combustion engine having cylinder formed with water jacket and vehicle provided with the same
US6557519B1 (en) Reciprocating machine with two sub-chambers
US1733696A (en) Valve for internal-combustion engines
JP6044616B2 (en) Engine structure
JP4344647B2 (en) Cooling structure of open deck cylinder block
JP6344456B2 (en) Engine combustion chamber structure
JP2002276460A (en) Cylinder head
CN112855378B (en) Multi-cylinder internal combustion engine
JP7440493B2 (en) rotary valve internal combustion engine
JP7135758B2 (en) spark ignition internal combustion engine
JP2019108804A (en) Cylinder block
JP2022146712A (en) Monoblock-type engine
JP6754315B2 (en) engine
JP2018025110A (en) Internal combustion engine
JP2007162596A (en) Cylinder block and internal combustion engine
JP4209980B2 (en) Thermal expansion absorption device for piston of internal combustion engine
JP2024047114A (en) Engine cylinder structure
JP2015206316A (en) Valve guide structure of internal combustion engine
JP5565438B2 (en) Piston for internal combustion engine
JPH06229315A (en) Piston device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210330

R150 Certificate of patent or registration of utility model

Ref document number: 6861518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150