JP6860439B2 - Discharge frequency meter and current measuring device - Google Patents

Discharge frequency meter and current measuring device Download PDF

Info

Publication number
JP6860439B2
JP6860439B2 JP2017138769A JP2017138769A JP6860439B2 JP 6860439 B2 JP6860439 B2 JP 6860439B2 JP 2017138769 A JP2017138769 A JP 2017138769A JP 2017138769 A JP2017138769 A JP 2017138769A JP 6860439 B2 JP6860439 B2 JP 6860439B2
Authority
JP
Japan
Prior art keywords
current
lightning
ammeter
arrester
discharge frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017138769A
Other languages
Japanese (ja)
Other versions
JP2019021496A (en
Inventor
尚人 針谷
尚人 針谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017138769A priority Critical patent/JP6860439B2/en
Publication of JP2019021496A publication Critical patent/JP2019021496A/en
Application granted granted Critical
Publication of JP6860439B2 publication Critical patent/JP6860439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Description

本発明の実施形態は、放電度数計および電流計測装置に関する。 Embodiments of the present invention relate to a discharge frequency meter and a current measuring device.

近年、落雷の発生頻度が多くなっていることから落雷の回数を精度よく検出したいという要望がある。 In recent years, the frequency of lightning strikes has increased, so there is a demand for accurate detection of the number of lightning strikes.

従来の落雷検知システムは、避雷器とこの避雷器に接続された放電度数計とを備えており、送電線などの線路に落雷すると、その落雷のエネルギーは、線路に接続された避雷器から地面に放出されると共に、避雷器から放電度数計に供給されて落雷の回数がカウントされる仕組みになっている。 A conventional lightning strike detection system is equipped with a lightning arrester and a discharge meter connected to the arrester. When a lightning strikes a line such as a transmission line, the energy of the lightning strike is released to the ground from the lightning arrester connected to the line. At the same time, it is supplied from a lightning arrester to a discharge meter to count the number of lightning strikes.

また、避雷器には、落雷発生時の大電流の他、通常の0.2〜0.3mA程度までの微少な漏れ電流が流れる。このため、放電度数計には、漏れ電流を計測するための電流計が設けられているものが多く、標準的な避雷器の電流測定レンジとしては例えば0〜2mA程度か0〜5mA程度の範囲とされる。 Further, in addition to a large current when a lightning strike occurs, a small leakage current of about 0.2 to 0.3 mA flows through the arrester. For this reason, many discharge frequency meters are provided with an ammeter for measuring leakage current, and the current measurement range of a standard lightning arrester is, for example, in the range of 0 to 2 mA or 0 to 5 mA. Will be done.

ところで、避雷器が接続されている線路にはノイズなどが突発的に発生し、漏れ電流以上の電流、例えば数10mA以上の電流が一時的に流れることがあり、このようなノイズについても放電度数計は落雷としてカウントすることがあり、これでは落雷の発生回数が正しく測れない。 By the way, noise or the like is suddenly generated on the line to which the lightning striker is connected, and a current exceeding the leakage current, for example, a current of several tens of mA or more may temporarily flow. May be counted as a lightning strike, which does not accurately measure the number of lightning strikes.

そこで、ユーザーからは、ノイズについても上記放電度数計で落雷として計数せずに、電流計の指針の振れで視認したいという要望がある。 Therefore, there is a request from the user that noise is not counted as a lightning strike by the discharge frequency meter, but is visually recognized by the deviation of the pointer of the ammeter.

しかしながら、漏れ電流を視認するための電流計で、ノイズなどの電流についても目視できる程度に測定レンジを広げる場合、限られた表示窓の範囲に0〜30mAまたは0〜50mA程度までの間で指針が振れるような目盛板を作る必要があるが、この場合、目盛りを等間隔にすると、漏れ電流のような微弱な電流の値は最小の1目盛りの範囲にも現れなくなり、微小な電流の変化を目視で確認することが不可能になる。 However, when the measurement range is widened to the extent that currents such as noise can be visually recognized with an ammeter for visually recognizing leakage current, a pointer is set between 0 to 30 mA or 0 to 50 mA within a limited display window range. It is necessary to make a scale plate that swings, but in this case, if the scales are evenly spaced, weak current values such as leakage current will not appear even in the range of the smallest 1 scale, and minute changes in current will occur. It becomes impossible to visually confirm.

特開平5−89938号公報Japanese Unexamined Patent Publication No. 5-89938 特開2010−15873号公報Japanese Unexamined Patent Publication No. 2010-15873

すなわち、従来の放電度数計は、電流表示機能があるものの標準的な避雷器の漏れ電流(0.2、0.3mA程度の微小な電流)と上限が30mAや50mAといった大きな電流を同時に測定するには目盛が粗くなり過ぎて微小な電流の値を正しく視認することができない。またワイドレンジな放電度数計を新たに設計する場合、計測回路を収容する容器の気密性などを考慮し計器全体を再設計する必要があり設計コストがかかるという問題もある。 That is, although the conventional discharge frequency meter has a current display function, it can simultaneously measure the leakage current of a standard lightning arrester (a minute current of about 0.2 or 0.3 mA) and a large current with an upper limit of 30 mA or 50 mA. The scale becomes too coarse and the minute current value cannot be visually recognized correctly. Further, when newly designing a wide-range discharge frequency meter, there is a problem that the entire instrument needs to be redesigned in consideration of the airtightness of the container accommodating the measurement circuit, which increases the design cost.

本発明が解決しようとする課題は、漏れ電流からその100倍程度の大きな電流迄を一つの指針の振れで視認することができるワイドレンジ表示で低コストな放電度数計および電流計測装置を提供することにある。 The problem to be solved by the present invention is to provide a wide-range display, low-cost discharge frequency meter and current measuring device capable of visually recognizing a leakage current to a current as large as about 100 times that of a leakage current with a single pointer deviation. There is.

実施形態の放電度数計は、避雷器から入力される雷撃電流および漏れ電流から落雷の回数を計数する放電度数計であり、避雷素子、非線形特性電流生成回路、駆動コイル、感度調整回路、電流計、目盛板を備える。避雷素子は避雷器からの雷撃電流を大地へ逃がす。非線形特性電流生成回路は漏れ電流の範囲を超える電流の閾値を境に電圧−電流特性が変化するよう構成される。駆動コイルは雷撃電流の一部をエネルギーとして落雷の回数を計数する。感度調整回路は駆動コイルの落雷計数のための感度を鈍化させる。電流計は非線形特性電流生成回路に接続されており、避雷器から駆動コイルおよび非線形特性電流生成回路を通じて入力される電流に応じて指針を振らせる。目盛板は電流計に設けられており、電流計の指針の振れに合わせて間隔を変えて目盛を付したものである。 The discharge frequency meter of the embodiment is a discharge frequency meter that counts the number of lightning strikes from the lightning strike current and the leakage current input from the lightning arrester, and is a lightning rod, a non-linear characteristic current generation circuit, a drive coil, a sensitivity adjustment circuit, an ammeter, and the like. Equipped with a scale plate. The lightning protection element releases the lightning current from the lightning arrester to the ground. The non-linear characteristic current generation circuit is configured so that the voltage-current characteristic changes with a threshold value of the current exceeding the range of the leakage current. The drive coil uses a part of the lightning current as energy to count the number of lightning strikes. The sensitivity adjustment circuit slows down the sensitivity of the drive coil for lightning strike counting. Ammeter is connected to the non-linear characteristic current generating circuit to shake the guidance in response to a current input through the drive coil and the non-linear characteristic current generation circuit from the arrester. The scale plate is provided on the ammeter and is provided with scales at different intervals according to the deviation of the pointer of the ammeter.

実施形態の落雷検知システムの概要構成を示す図である。It is a figure which shows the outline structure of the lightning strike detection system of embodiment. 落雷検知システムにおける放電度数計の側面図である。It is a side view of the discharge frequency meter in a lightning strike detection system. 放電度数計の表示パネルを示す図である。It is a figure which shows the display panel of the discharge frequency meter. 放電度数計の回路構成の第1実施形態を示す図である。It is a figure which shows the 1st Embodiment of the circuit structure of the discharge frequency meter. 一般的な電流計の電圧−電流特性を示す図である。It is a figure which shows the voltage-current characteristic of a general ammeter. 実施形態の放電度数計の電圧−電流特性のイメージ図である。It is an image diagram of the voltage-current characteristic of the discharge frequency meter of an embodiment. シミュレーションした電圧−電流特性を示す図である。It is a figure which shows the simulated voltage-current characteristic. 放電度数計の他の回路構成例(第2実施形態)を示す図である。It is a figure which shows the other circuit configuration example (second embodiment) of the discharge frequency meter. 放電度数計の他の回路構成例(第3実施形態)を示す図である。It is a figure which shows the other circuit configuration example (third embodiment) of the discharge frequency meter.

以下、図面を参照して、実施形態を詳細に説明する。 Hereinafter, embodiments will be described in detail with reference to the drawings.

(第1実施形態)
図1は第1実施形態の落雷検知システムを示す図である。
図1に示すように、第1実施形態の落雷検知システムは、交流送電を行う電線などの送配電系統(線路)に接続された避雷器1とこの避雷器1に接続された放電度数計2とを備える。避雷器1は線路端子3、接地端子4を有する。線路端子3は送配電系統に接続されている。接地端子4は地面(大地)に接地されている。
(First Embodiment)
FIG. 1 is a diagram showing a lightning strike detection system according to the first embodiment.
As shown in FIG. 1, the lightning strike detection system of the first embodiment includes a lightning arrester 1 connected to a power transmission / distribution system (line) such as an electric wire for AC power transmission and a discharge rate meter 2 connected to the lightning arrester 1. Be prepared. The lightning arrester 1 has a line terminal 3 and a ground terminal 4. The line terminal 3 is connected to the power transmission / distribution system. The ground terminal 4 is grounded to the ground (ground).

避雷器1は、酸化亜鉛を主成分とする避雷素子を碍管などの絶縁容器に格納したものである。避雷器1は、通常は絶縁体であり、落雷などの高電圧(異常電圧)が印加されたときに導体となり、異常電圧を大地に放電させる。 The lightning arrester 1 contains a lightning rod containing zinc oxide as a main component in an insulating container such as a porcelain tube. The lightning arrester 1 is usually an insulator, becomes a conductor when a high voltage (abnormal voltage) such as a lightning strike is applied, and discharges the abnormal voltage to the ground.

放電度数計2は、避雷器1の接地端子4に接続および固定された中継端子5と、地面に接地された接地端子6とを有する。中継端子5は避雷器1を通じた電流(漏れ電流および雷撃電流の一部など)を放電度数計2に流す。接地端子6は放電度数計2を通じた電流を地面(大地)に流す。 The discharge frequency meter 2 has a relay terminal 5 connected and fixed to the ground terminal 4 of the lightning arrester 1, and a ground terminal 6 grounded on the ground. The relay terminal 5 causes a current (a part of a leakage current and a lightning strike current, etc.) through the lightning arrester 1 to flow through the discharge frequency meter 2. The ground terminal 6 allows the current through the discharge frequency meter 2 to flow to the ground (ground).

図2に示すように、放電度数計2の正面部には、カウンタ7、電流計8などを備えた表示パネル9が設けられている。電流計8は例えば可動コイル型などであり、永久磁石、コイルなどの内部回路(図示せず)と、目盛板10および指針11を有する。指針11は電流が流れたコイルの動きに応じて支点を中心に弧を描くように動作する。 As shown in FIG. 2, a display panel 9 provided with a counter 7, an ammeter 8 and the like is provided on the front portion of the discharge frequency meter 2. The ammeter 8 is, for example, a movable coil type, and has an internal circuit (not shown) such as a permanent magnet and a coil, a scale plate 10, and a pointer 11. The pointer 11 operates so as to draw an arc around the fulcrum according to the movement of the coil through which the current flows.

このように電流計8は避雷器1から入力される雷撃以外の電流(漏れ電流、ノイズなど)をコイルに流し、コイルに流れる電流に応じて指針11を振らせる。 In this way, the ammeter 8 causes a current (leakage current, noise, etc.) other than the lightning strike input from the lightning arrester 1 to flow through the coil, and swings the pointer 11 according to the current flowing through the coil.

図3に示すように、目盛板10には、例えばmAなどの単位12と目盛13、補助目盛13aなどが印字または刻印などにより設けられている。目盛り13の間隔は等間隔ではなく、図6に示す電圧−電流特性(非線形特性)に対応する間隔とされている。補助目盛13aは4mA以下の目盛13の間隔をさらに細分するように設けられている。つまり目盛板10は電流計8の指針の振れに合わせて間隔を変えて目盛を付したものである。 As shown in FIG. 3, the scale plate 10 is provided with, for example, a unit 12 such as mA, a scale 13, an auxiliary scale 13a, or the like by printing or engraving. The intervals of the scales 13 are not equal intervals, but are intervals corresponding to the voltage-current characteristics (non-linear characteristics) shown in FIG. The auxiliary scale 13a is provided so as to further subdivide the interval of the scale 13 of 4 mA or less. That is, the scale plate 10 is provided with scales by changing the interval according to the deviation of the pointer of the ammeter 8.

図6に示す電圧−電流特性では、電圧が0〜4V弱程度までは電流値もほぼ1対1の割合で0〜4mAへ第1の傾斜角度で直線的に変化し、電圧が4V〜6Vの範囲は、電流値の変化の割合が増大し、1対5程度の第2の傾斜角度で5mA〜14mAへ直線的に変化する。なおこの例では目盛板10を実効値表示としたが波高値表示としてもよい。 In the voltage-current characteristic shown in FIG. 6, the current value changes linearly from 0 to 4 mA at a ratio of about 1: 1 from 0 to a little less than 4 V at the first inclination angle, and the voltage changes from 4 V to 6 V. In the range of, the rate of change of the current value increases, and the current value changes linearly from 5 mA to 14 mA at a second inclination angle of about 1: 5. In this example, the scale plate 10 is used as the effective value display, but the peak value may be displayed.

図4に示すように、放電度数計2は、避雷器1から雷撃電流を大地へ逃がす避雷素子19と、この避雷素子19と並列に接続された雷撃計数および検流回路20とを有する。 As shown in FIG. 4, the discharge frequency meter 2 has a lightning rod element 19 that releases a lightning current from the lightning arrester 1 to the ground, and a lightning rod counting and flow detection circuit 20 connected in parallel with the lightning rod element 19.

雷撃計数および検流回路20は、避雷器1を通じた電流のうち避雷素子19に流れた雷撃電流の一部の電流や避雷器1から常に流れる微少な漏れ電流などを取り込み、漏れ電流を検流すると共に落雷などの異常電流を検出した場合に落雷回数を計数(カウント)する。 The lightning strike counting and flow detection circuit 20 takes in a part of the lightning current that flows through the lightning arrester 1 and a minute leakage current that always flows from the lightning arrester 1, and detects the leakage current. When an abnormal current such as a lightning strike is detected, the number of lightning strikes is counted.

放電度数計2は、端子P1−端子P8間に接続された低抵抗酸化亜鉛素子ZnOなどの避雷素子19と、端子P1に接続された端子P2−端子P4間に接続されたコンデンサCと、このコンデンサCに抵抗素子R0を介して接続された駆動コイルTと、端子P3−端子P4間に駆動コイルTと並列に接続されたコンデンサC1と、端子P4−端子P8間に接続された保護ギャップGと、端子P4と端子P6間に接続された非線形特性電流生成回路22と、この非線形特性電流生成回路22に接続された電流計8とを有する。この図4に示した回路のうち避雷素子19を除いた回路が雷撃計数および検流回路20である。 The discharge frequency meter 2 includes a lightning protection element 19 such as a low resistance zinc oxide element ZnO connected between terminals P1-terminal P8, a capacitor C connected between terminals P2-terminal P4 connected to terminal P1, and a capacitor C thereof. A drive coil T connected to the capacitor C via a resistor element R0, a capacitor C1 connected in parallel with the drive coil T between terminals P3-terminal P4, and a protection gap G connected between terminals P4-terminal P8. A non-linear characteristic current generation circuit 22 connected between the terminal P4 and the terminal P6, and a current meter 8 connected to the non-linear characteristic current generation circuit 22. Of the circuits shown in FIG. 4, the circuit excluding the lightning rod element 19 is the lightning rod counting and flow detection circuit 20.

非線形特性電流生成回路22は、避雷器1の通常の漏れ電流(0.2mA、0.3mA程度)の範囲を超える所定の電流値(例えば4mAか5mA付近)を境に電圧−電流特性(図6参照)が変化するよう構成された回路である。つまり非線形特性電流生成回路22は、漏れ電流の範囲を超える所定の閾値を境に電流の特性が変化する非線形特性の電流を生成するよう構成されている。 The non-linear characteristic current generation circuit 22 has a voltage-current characteristic (FIG. 6) with a predetermined current value (for example, around 4 mA or 5 mA) exceeding the range of the normal leakage current (about 0.2 mA, 0.3 mA) of the lightning arrester 1. (See) is a circuit configured to change. That is, the non-linear characteristic current generation circuit 22 is configured to generate a non-linear characteristic current in which the current characteristics change with a predetermined threshold value exceeding the leakage current range.

具体的には、非線形特性電流生成回路22は、端子P4−端子P5間に接続された抵抗素子R1と、端子P5−端子P6間に接続されたツェナーダイオードZDと、端子P5と電流計8との間に接続された抵抗素子R2、R3と、これら抵抗素子R2と抵抗素子R3の間の端子P7と端子P6間に接続された逆並列接続型のダイオード群Dとを有する。 Specifically, the non-linear characteristic current generation circuit 22 includes a resistance element R1 connected between terminals P4-terminal P5, a Zener diode ZD connected between terminals P5-terminal P6, terminals P5, and a current meter 8. It has resistance elements R2 and R3 connected between the two, and a reverse parallel connection type diode group D connected between terminals P7 and terminals P6 between the resistance elements R2 and R3.

保護ギャップGは端子P4−端子P8間に接続した電流計8などを保護するためのギャップ(放電素子)である。 The protection gap G is a gap (discharge element) for protecting the ammeter 8 and the like connected between the terminals P4- and P8.

ツェナーダイオードZDはツェナー電圧以上(一定電圧以上)の電流を電流計8に流さないようパイパスするものであり、過大な電流から電流計8を保護するためのものである。つまりツェナーダイオードZDは、電流計8に過大な電流が流れて破損しないように保護する目的で使用している。 The Zener diode ZD is for piping so that a current higher than the Zener voltage (above a constant voltage) does not flow through the ammeter 8 and protects the ammeter 8 from an excessive current. That is, the Zener diode ZD is used for the purpose of protecting the ammeter 8 from being damaged by an excessive current flowing through it.

電流計8は避雷器1から駆動コイルTおよび非線形電流回路22を通じて入力される電流に応じて指針を振らせる。つまり電流計8は避雷器1から放電度数計2に流れる漏れ電流やノイズなどの電流に応じて指針11を振らせるアナログタイプの電流計である。 The ammeter 8 swings the pointer according to the current input from the lightning arrester 1 through the drive coil T and the nonlinear current circuit 22. That is, the ammeter 8 is an analog type ammeter that swings the pointer 11 according to a current such as a leakage current or noise flowing from the lightning arrester 1 to the discharge meter 2.

コンデンサCは避雷素子19に流れた雷撃のエネルギーの一部を蓄え、蓄えた一部のエネルギーを、抵抗素子R0を通じて駆動コイルTとコンデンサC1に供給する。 The capacitor C stores a part of the energy of the lightning strike flowing through the lightning protection element 19, and supplies the stored part of the energy to the drive coil T and the capacitor C1 through the resistance element R0.

駆動コイルTはコンデンサCから供給されるエネルギーによりカウンタ7を動作させて雷撃(落雷)の回数を計数(カウント)するためのものである。 The drive coil T is for operating the counter 7 by the energy supplied from the capacitor C to count the number of lightning strikes (lightning strikes).

抵抗素子R0とコンデンサC1とで感度調整回路21が構成されている。感度調整回路21は駆動コイルTの落雷計数のための感度を鈍化させる回路である。この回路の抵抗素子R0とコンデンサC1の定数を変えることで、駆動コイルTの感度を可変(調整)できる。つまり感度調整回路21は落雷カウントアップ時の感度調整用の回路である。 The sensitivity adjustment circuit 21 is composed of the resistance element R0 and the capacitor C1. The sensitivity adjustment circuit 21 is a circuit that slows down the sensitivity of the drive coil T for counting lightning strikes. The sensitivity of the drive coil T can be changed (adjusted) by changing the constants of the resistance element R0 and the capacitor C1 of this circuit. That is, the sensitivity adjustment circuit 21 is a circuit for adjusting the sensitivity at the time of lightning strike count-up.

この例では、避雷器1の漏れ電流の100倍以上の電流(例えば100A以上の電流)で駆動コイルTが計数動作を行うよう抵抗素子R0とコンデンサC1の定数を設定している。この例では、抵抗素子R0の定数を例えば5.1KΩとしている。なお抵抗素子R0の定数は5KΩ〜10KΩの範囲で適用することがよい。 In this example, the constants of the resistance element R0 and the capacitor C1 are set so that the drive coil T performs the counting operation with a current 100 times or more the leakage current of the lightning arrester 1 (for example, a current of 100 A or more). In this example, the constant of the resistance element R0 is, for example, 5.1 KΩ. The constant of the resistance element R0 may be applied in the range of 5KΩ to 10KΩ.

コンデンサC1は落雷発生時にコンデンサCから供給されるエネルギーの一部を蓄電することで駆動コイルTに供給されるエネルギーを少なくし駆動コイルTの感度を調整する。 The capacitor C1 stores a part of the energy supplied from the capacitor C when a lightning strike occurs, thereby reducing the energy supplied to the drive coil T and adjusting the sensitivity of the drive coil T.

通常、駆動コイルTは、数10mA程度の交流電流で動作してしまうため、コンデンサC1はインピーダンスを変えて50mA程度の電流では駆動コイルTが動作しないように動作感度を下げる(感度調整する)ためのものである。 Normally, the drive coil T operates with an alternating current of about several tens of mA. Therefore, the capacitor C1 changes the impedance to lower the operating sensitivity (adjust the sensitivity) so that the drive coil T does not operate with a current of about 50 mA. belongs to.

すなわち駆動コイルTに並列に接続されたコンデンサC1と、コンデンサCと駆動コイルT間に接続された抵抗素子R0は、コンデンサCから駆動コイルTへのエネルギーの一部を吸収することで駆動コイルTの感度を低下させる感度調整用の素子である。 That is, the capacitor C1 connected in parallel to the drive coil T and the resistance element R0 connected between the capacitor C and the drive coil T absorb a part of the energy from the capacitor C to the drive coil T to absorb a part of the energy from the capacitor C to the drive coil T. It is an element for adjusting the sensitivity that lowers the sensitivity of the coil.

抵抗素子R2と抵抗素子R3は、電流を、電流計8とダイオード群Dに分流する抵抗である。 The resistance element R2 and the resistance element R3 are resistors that divide the current into the ammeter 8 and the diode group D.

逆並列接続型のダイオード群Dとは接続方向の異なる2つのダイオード群を並列に接続したものである。この例は交流電流(時間によって位相が反転する特徴を持つ電流)回路に適用しているため、2つのダイオード群を逆方向に並列に接続した逆並列接続の形態を採用している。 The anti-parallel connection type diode group D is a group of two diodes having different connection directions connected in parallel. Since this example is applied to an alternating current (current having a characteristic that the phase is inverted with time) circuit, a form of antiparallel connection in which two diode groups are connected in parallel in opposite directions is adopted.

この例では、複数のダイオードを接続したダイオード群Dとしたが、この他、外部から制御可能なトランジスタ群などのスイッチング素子群を用いてもよい。この場合、外部からの制御により非線形特性となるポイントの点Q(図6参照)を可変することができる。 In this example, the diode group D in which a plurality of diodes are connected is used, but in addition, a switching element group such as a transistor group that can be controlled from the outside may be used. In this case, the point Q (see FIG. 6) at the point where the non-linear characteristic is obtained can be changed by external control.

つまりこの逆並列接続型のダイオード群Dは、交流電流で電流の極性が反転したときにも一定方向の電流を電流計8へ流し電流計8の指針11を目盛板10の目盛13の方向に振らせるためのものである。 That is, this antiparallel connection type diode group D causes a current in a certain direction to flow to the ammeter 8 even when the polarity of the current is reversed by an alternating current, and the pointer 11 of the ammeter 8 is directed to the scale 13 of the scale plate 10. It is for shaking.

避雷素子19は雷撃による避雷器1からの大電流の大部分をバイパスして地面(大地)に流す保護回路として機能する。避雷素子19は避雷器1の避雷素子と同等の性能を有する。 The lightning rod element 19 functions as a protection circuit that bypasses most of the large current from the lightning arrester 1 due to a lightning strike and allows it to flow to the ground (ground). The lightning rod 19 has the same performance as the lightning rod of the lightning arrester 1.

以下、この落雷検知システムの作用・効果を説明する。
ダイオード群Dがない場合、抵抗R3と電流計8に流れる電流をI0、端子P7の電圧をV0とすると、図5に示すような直線的な電流−電圧特性となり、傾きをZ0とすると、V0=I0×Z0となる。
The operation and effect of this lightning strike detection system will be described below.
When there is no diode group D, if the current flowing through the resistor R3 and the ammeter 8 is I0 and the voltage at the terminal P7 is V0, a linear current-voltage characteristic as shown in FIG. 5 is obtained. = I0 × Z0.

一方、本実施形態のように電流計8にダイオード群Dを接続した場合、図6に示すようにダイオード群Dの各ダイオードのオン電圧(図6の点Q)付近から、それまで抵抗素子R3と電流計8にだけ流れていた電流が抵抗素子R2を通じて分流し、ダイオード群Dにも流れ込むようになる。 On the other hand, when the diode group D is connected to the ammeter 8 as in the present embodiment, as shown in FIG. 6, the resistance element R3 starts from the vicinity of the on-voltage (point Q in FIG. 6) of each diode in the diode group D until then. The current flowing only through the ammeter 8 is split through the resistance element R2 and also flows into the diode group D.

このときの抵抗素子R3と電流計8に流れる電流をI0´、ダイオード群DのインピーダンスをZ1、ダイオード群Dに流れ込む電流をI1、端子P5の電圧をV1とすると、V1=I1×Z1=I0´×Z0となる。 Assuming that the current flowing through the resistance element R3 and the ammeter 8 at this time is I0', the impedance of the diode group D is Z1, the current flowing through the diode group D is I1, and the voltage of the terminal P5 is V1, V1 = I1 × Z1 = I0. ´ × Z0.

図6は説明のためのイメージ図であるが、実際には図7に示すような非直線的な電流−電圧特性となる。 Although FIG. 6 is an image diagram for explanation, it actually has a non-linear current-voltage characteristic as shown in FIG. 7.

この実施形態では、ダイオード群Dに、1.2V程度のON電圧のダイオードを使用している。この場合、抵抗素子R2に30Ω、抵抗素子R3に概ねその3倍の抵抗値(100Ω程度)のものを利用している。 In this embodiment, a diode having an ON voltage of about 1.2 V is used for the diode group D. In this case, the resistance element R2 uses a resistance element of 30Ω, and the resistance element R3 uses a resistance value (about 100Ω) that is approximately three times that of the resistance element R2.

これにより、実際の電流計8には、図7に示すような非線形特性に従った電流が流れるようになるため、この特性に合わせて電流計8の目盛板10を、図3に示すように、目盛13の間隔が異なる目盛板10に変更している。目盛13の間隔は、上記特性と共に使用部品の個体差を十分に考慮し、実測に合せて印字位置を細かく調整するものとする。 As a result, a current according to the non-linear characteristic as shown in FIG. 7 flows through the actual ammeter 8, so that the scale plate 10 of the ammeter 8 is shown in FIG. 3 according to this characteristic. , The scale plate 10 has a different spacing between the scales 13. The spacing between the scales 13 shall be finely adjusted according to the actual measurement, taking into consideration the individual differences of the parts used as well as the above characteristics.

この実施形態では、新たに導入する部品(コンデンサC1、ダイオード群D、抵抗素子R2、R3など)の値や目盛13の間隔を調整し、電流値の範囲が0−3mA間のレンジでは細かな補助目盛13aを設けて読み取り精度を上げて、3mA−50mA間のレンジでの目盛13は間引いて配置したが、この例以外にも別の要求性能に合わせて部品の値や目盛間隔を調整することで、高精度の読み取りと間引いた読み取りに変更することも可能である。 In this embodiment, the values of newly introduced components (capacitor C1, diode group D, resistance elements R2, R3, etc.) and the intervals of the scales 13 are adjusted, and the current value range is fine in the range of 0-3 mA. Auxiliary scales 13a were provided to improve reading accuracy, and scales 13 in the range of 3 mA to 50 mA were thinned out, but in addition to this example, component values and scale intervals are adjusted according to other required performance. Therefore, it is possible to change to a high-precision reading and a thinned reading.

このようにこの実施形態の落雷検知システムによれば、既存の放電度数計の回路の一部に、新たな部品(部品定数を調整したコンデンサC1、抵抗素子R3、ダイオード群Dなど)を増設しまた電流計8の目盛板10を交換することで、例えば0.2mA、0.3mA程度の漏れ電流からその100倍程度の大きな電流(30mAまたは50mA程度)までを一つの指針11の振れで視認することができるワイドレンジ表示で低コストな放電度数計2を提供することができる。表示レンジとしては、例えば10mA−100mA程度でも可能である。 As described above, according to the lightning detection system of this embodiment, new parts (capacitor C1 with adjusted component constants, resistance element R3, diode group D, etc.) are added to a part of the circuit of the existing discharge ammeter. By exchanging the scale plate 10 of the ammeter 8, for example, from a leakage current of about 0.2 mA or 0.3 mA to a current about 100 times larger than that (about 30 mA or 50 mA) can be visually recognized with the deflection of one pointer 11. It is possible to provide a low-cost discharge ammeter 2 with a wide range display. The display range can be, for example, about 10 mA to 100 mA.

また、既存の放電度数計(既存品)をベースとした構造のため、放電度数計2の気密容器、回路部品を流用できるので、製造コストを低く抑え、製品としての放電度数計2を安価に提供することができる。 In addition, since the structure is based on the existing discharge frequency meter (existing product), the airtight container and circuit parts of the discharge frequency meter 2 can be diverted, so the manufacturing cost can be kept low and the discharge frequency meter 2 as a product can be inexpensive. Can be provided.

また、電流計8についても既存品をベースとし、目盛板10に圧縮目盛(間隔を変化させた目盛13:図3参照)を採用し、また3mA以下のレンジには目盛13の間隔をさらに細分する形の補助目盛13aを設けることで、通常測定する範囲の電流(漏れ電流)を正確に読み取ることができ、かつ50mA程度の大きな電流についても同じ表示パネル9で指針11の振れを見ながら電流の変化を目視で確認することができる。 In addition, the ammeter 8 is also based on the existing product, and a compression scale (scale 13 with varying intervals: see FIG. 3) is adopted for the scale plate 10, and the interval of the scale 13 is further subdivided in the range of 3 mA or less. By providing the auxiliary scale 13a in the shape of a sword, the current (leakage current) in the range to be normally measured can be read accurately, and even for a large current of about 50 mA, the current is observed while observing the deflection of the pointer 11 on the same display panel 9. The change in can be visually confirmed.

上記実施形態では、放電度数計2を例にして説明したが、本実施形態は、放電度数をカウンタする機能の無い電流計、つまり電流表示装置単体にも適用できる。 In the above embodiment, the discharge frequency meter 2 has been described as an example, but this embodiment can also be applied to an ammeter having no function of countering the discharge frequency, that is, a current display device alone.

また上記実施形態では、交流放電度数計について説明したが、図8に示すように、直流送電線路30に接続される直流放電度数計31にも適用できる。 Further, in the above embodiment, the AC discharge frequency meter has been described, but as shown in FIG. 8, it can also be applied to the DC discharge frequency meter 31 connected to the DC power transmission line 30.

この場合、駆動コイルTに並列にコンデンサC1を接続すると共に、直流電流計47の前段のフィルタ回路F(コンデンサ41、43、抵抗素子R2、ダイオード44、45などから構成される)に、直列接続型のダイオード群D1とツェナーダイオードZD1を接続する。この例は直流回路のためダイオード群D1とツェナーダイオードZD1は一方向のみのものを使用する。 In this case, the capacitor C1 is connected in parallel with the drive coil T, and is connected in series to the filter circuit F (composed of the capacitors 41, 43, the resistance element R2, the diodes 44, 45, etc.) in the previous stage of the DC ammeter 47. The type diode group D1 and the Zener diode ZD1 are connected. Since this example is a DC circuit, the diode group D1 and the Zener diode ZD1 are used in only one direction.

また直流電流計47の目盛板は、図3に示した目盛板10を用いるものとする。符号33はダイオードブリッジ、符号19、39は低抵抗ZnO素子、符号48は付磁コイルである。 Further, as the scale plate of the DC ammeter 47, the scale plate 10 shown in FIG. 3 is used. Reference numeral 33 is a diode bridge, reference numerals 19 and 39 are low-resistance ZnO elements, and reference numeral 48 is a magnetically magnetized coil.

このようこの例によれば、直流送電線路30に接続される直流放電度数計31の直流電流計47に、コンデンサC1、ダイオード群D1、ツェナーダイオードZD1などの部品を追加することで、直流回路用避雷器の漏れ電流をワイドレンジで監視することができ、落雷検知システムを直流電線路用として提供することができる。 According to this example, by adding components such as a capacitor C1, a diode group D1, and a Zener diode ZD1 to the DC ammeter 47 of the DC discharge meter 31 connected to the DC transmission line 30, it is used for a DC circuit. The leakage current of a lightning arrester can be monitored in a wide range, and a lightning detection system can be provided for a DC electric line.

また、図9に示すように、図1に示した放電度数計2の駆動コイルT(カウントアップコイル)にリレーコイル51を介して警報用リレー52を接続し、この警報用リレー52の接点53を放電度数計2のケース50に設けることで、放電度数計2を継電器に接続し、避雷器動作時の接点信号を放電度数計2から継電器へ出力することができるようになる。 Further, as shown in FIG. 9, an alarm relay 52 is connected to the drive coil T (count-up coil) of the discharge frequency meter 2 shown in FIG. 1 via a relay coil 51, and the contact 53 of the alarm relay 52 is connected. Is provided in the case 50 of the discharge meter 2, so that the discharge meter 2 can be connected to the relay and the contact signal at the time of the lightning protection operation can be output from the discharge meter 2 to the relay.

上記実施形態では、電流計8を内蔵した放電度数計2について説明したが、放電度数計2と電流計8を分離してもよい。すなわち避雷器1からの雷撃電流を大地へ逃がすための避雷素子19を有し雷撃の回数を計数し、雷撃以外の避雷器1からの漏れ電流を出力する放電度数計に電流計測装置を接続してもよい。 In the above embodiment, the discharge frequency meter 2 having the ammeter 8 built-in has been described, but the discharge frequency meter 2 and the ammeter 8 may be separated. That is, even if a current measuring device is connected to a discharge meter that has a lightning rod element 19 for releasing the lightning current from the lightning arrester 1 to the ground, counts the number of lightning strikes, and outputs a leakage current from the lightning arrester 1 other than the lightning strike. Good.

この場合、避雷器1からの雷撃電流を大地へ逃がす避雷素子19と、雷撃の回数を計数する機能は、図4の回路(コンデンサC、C1、抵抗素子R0、駆動コイルTなど)を利用し、雷撃以外の避雷器1からの漏れ電流を外部へ出力するポートを設けるものとする。 In this case, the lightning arrester element 19 that releases the lightning current from the lightning arrester 1 to the ground and the function of counting the number of lightning strikes use the circuit of FIG. 4 (capacitors C, C1, resistance element R0, drive coil T, etc.). A port for outputting the leakage current from the lightning arrester 1 other than the lightning strike to the outside shall be provided.

電流計測装置には、非線形特性電流生成回路22と、この非線形特性電流生成回路22に接続された電流計8(図4参照)と、この電流計8の指針の振れに合わせて目盛13を付した目盛板10(図3参照)とを備える。 The current measuring device is provided with a non-linear characteristic current generation circuit 22, an ammeter 8 (see FIG. 4) connected to the non-linear characteristic current generation circuit 22, and a scale 13 according to the deviation of the pointer of the ammeter 8. It is provided with a scale plate 10 (see FIG. 3).

非線形特性電流生成回路22は、漏れ電流の範囲を超える電流の閾値(5mA付近)を境に電圧−電流特性(図6参照)が変化するよう構成されている。電流計8は放電度数計から非線形特性電流生成回路22を通じて入力される漏れ電流を計測する。 The nonlinear characteristic current generation circuit 22 is configured so that the voltage-current characteristic (see FIG. 6) changes with a threshold value (near 5 mA) of a current exceeding the range of the leakage current as a boundary. The ammeter 8 measures the leakage current input from the discharge frequency meter through the nonlinear characteristic current generation circuit 22.

また、避雷器1に、雷撃以外の電流(漏れ電流)を出力するポートを設け、このポートに電流計測装置を接続し、避雷器1から入力される漏れ電流を電流計測装置が計測するようにしてもよい。 Further, even if the lightning arrester 1 is provided with a port for outputting a current (leakage current) other than a lightning strike, a current measuring device is connected to this port, and the current measuring device measures the leakage current input from the lightning arrester 1. Good.

この場合、電流計測装置には、非線形特性電流生成回路22と、この非線形特性電流生成回路22に接続された電流計8、この電流計8に設けられた目盛板10を備えるものとする。 In this case, the current measuring device shall include a non-linear characteristic current generation circuit 22, an ammeter 8 connected to the non-linear characteristic current generation circuit 22, and a scale plate 10 provided on the ammeter 8.

非線形特性電流生成回路22は、漏れ電流の範囲を超える電流の閾値(5mA付近)を境に電圧−電流特性が変化するよう構成する。電流計8は雷撃以外に避雷器1から入力される避雷器1の電流を計測し、計測した電流に応じて指針を振らせる。目盛板10は電流計8の指針の振れに合わせて目盛13を付したものとする。 The non-linear characteristic current generation circuit 22 is configured so that the voltage-current characteristic changes with a threshold value (near 5 mA) of a current exceeding the range of the leakage current as a boundary. The ammeter 8 measures the current of the lightning arrester 1 input from the lightning arrester 1 in addition to the lightning strike, and swings the pointer according to the measured current. The scale plate 10 is provided with a scale 13 according to the deviation of the pointer of the ammeter 8.

本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. This novel embodiment can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1…避雷器、2…放電度数計、3…線路端子、4…接地端子、5…中継端子、6…接地端子、7…カウンタ、8…電流計、9…表示パネル、10…目盛板、11…指針、13…目盛、13a…補助目盛、19…避雷素子、20…雷撃計数および検流回路、21…感度調整回路、22…非線形特性電流生成回路、30…直流送電線路、31…直流放電度数計、41…コンデンサ、44、45…ダイオード、47…直流電流計、48…付磁コイル、50…ケース、51…リレーコイル、52…警報用リレー、53…接点、C…、C1…コンデンサ、D、D1…ダイオード群、F…フィルタ回路、G…保護ギャップ、P1−P8…端子、R0、R1、R2、R3…抵抗素子、T…駆動コイル、ZD、ZD1…ツェナーダイオード、ZnO…低抵抗酸化亜鉛素子。 1 ... lightning arrester, 2 ... discharge frequency meter, 3 ... line terminal, 4 ... ground terminal, 5 ... relay terminal, 6 ... ground terminal, 7 ... counter, 8 ... current meter, 9 ... display panel, 10 ... scale plate, 11 ... pointer, 13 ... scale, 13a ... auxiliary scale, 19 ... lightning protection element, 20 ... lightning strike counting and detection circuit, 21 ... sensitivity adjustment circuit, 22 ... non-linear characteristic current generation circuit, 30 ... DC transmission line, 31 ... DC discharge Frequency meter, 41 ... capacitor, 44, 45 ... diode, 47 ... DC current meter, 48 ... magnetic coil, 50 ... case, 51 ... relay coil, 52 ... alarm relay, 53 ... contact, C ..., C1 ... capacitor , D, D1 ... Diode group, F ... Filter circuit, G ... Protection gap, P1-P8 ... Terminal, R0, R1, R2, R3 ... Resistance element, T ... Drive coil, ZD, ZD1 ... Zener diode, ZnO ... Low Resistant zinc oxide element.

Claims (5)

避雷器から入力される雷撃電流および漏れ電流から落雷の回数を計数する放電度数計において、
前記避雷器からの雷撃電流を大地へ逃がす避雷素子と、
前記雷撃電流の一部をエネルギーとして落雷の回数を計数する駆動コイルと、
前記駆動コイルの落雷計数のための感度を鈍化させる感度調整回路と、
前記漏れ電流の範囲を超える所定の閾値を境に電流の特性が変化する非線形特性の電流を生成するよう構成された非線形特性電流生成回路と、
前記非線形特性電流生成回路に接続され、前記避雷器から前記駆動コイルおよび前記非線形特性電流生成回路を通じて入力される電流に応じて指針を振らせる電流計と、
前記電流計に設けられ、前記電流計の指針の振れに合わせて間隔を変えて目盛を付した目盛板と
を具備する放電度数計。
In a discharge frequency meter that counts the number of lightning strikes from the lightning current and leakage current input from the arrester.
A lightning rod that releases the lightning current from the lightning arrester to the ground,
A drive coil that counts the number of lightning strikes using a part of the lightning current as energy,
A sensitivity adjustment circuit that slows down the sensitivity of the drive coil for lightning strike counting,
A non-linear characteristic current generation circuit configured to generate a non-linear characteristic current whose current characteristics change with a predetermined threshold value exceeding the leakage current range, and a non-linear characteristic current generation circuit.
Is connected to the non-linear characteristic current generating circuit, and a current meter for swinging the pointer in response to a current input through the drive coil and the non-linear characteristics current generation circuit from the arrester,
A discharge frequency meter provided on the ammeter and provided with a scale plate having a scale at different intervals according to the deviation of the pointer of the ammeter.
前記感度調整回路は、
前記避雷器の漏れ電流の100倍以上の雷撃電流で前記駆動コイルTが計数動作を行うよう感度調整した請求項1記載の放電度数計。
The sensitivity adjustment circuit
The discharge frequency meter according to claim 1, wherein the sensitivity of the drive coil T is adjusted so that the drive coil T performs a counting operation with a lightning current of 100 times or more the leakage current of the lightning arrester.
前記駆動コイルにリレーコイルを介して接続された外部出力用の接点をさらに具備する請求項1または請求項2いずれか記載の放電度数計。 The discharge frequency meter according to claim 1 or 2, further comprising a contact for external output connected to the drive coil via a relay coil. 前記非線形特性電流生成回路が、
前記避雷器から前記駆動コイルを通じて流入する電流のうち、一定以上の電流を前記電流計に流さないよう接地端へパイパスするツェナーダイオードと、
ある閾値を境に電流の特性が変化する非線形特性の電流を前記電流計に一方向に流すスイッチング素子群と
を有する請求項1乃至請求項3いずれか1項に記載の放電度数計。
The nonlinear characteristic current generation circuit
Of the current that flows through the drive coil from the arrester, a Zener diode to bypass the certain level of current to the I power sale grounded end does not flow into the ammeter,
The discharge frequency meter according to any one of claims 1 to 3, further comprising a group of switching elements for flowing a non-linear characteristic current whose current characteristics change with a certain threshold value in one direction to the ammeter.
避雷器または避雷器に接続された放電度数計から入力される雷撃以外の電流を計測する電流計測装置において、
入力される電流のうち前記避雷器からの漏れ電流の範囲を超える電流の閾値を境に電圧−電流特性が変化するよう構成された非線形特性電流生成回路と、
前記非線形特性電流生成回路に接続され、前記避雷器から前記非線形特性電流生成回路を通じて入力される電流に応じて指針を振らせる電流計と、
前記電流計の指針の振れに合わせて間隔を変えて目盛を付した目盛板と
を具備する電流計測装置。
In a current measuring device that measures current other than lightning strikes input from a lightning arrester or a discharge frequency meter connected to a lightning arrester.
A non-linear characteristic current generation circuit configured so that the voltage-current characteristic changes at the threshold value of the input current that exceeds the range of the leakage current from the arrester.
And ammeter to shake the pointer connected to said non-linear characteristic current generating circuit, in response to the current input through the non-linear characteristics current generation circuit from the arrester,
A current measuring device including a scale plate having a scale changed at intervals according to the deviation of the pointer of the ammeter.
JP2017138769A 2017-07-18 2017-07-18 Discharge frequency meter and current measuring device Active JP6860439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017138769A JP6860439B2 (en) 2017-07-18 2017-07-18 Discharge frequency meter and current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017138769A JP6860439B2 (en) 2017-07-18 2017-07-18 Discharge frequency meter and current measuring device

Publications (2)

Publication Number Publication Date
JP2019021496A JP2019021496A (en) 2019-02-07
JP6860439B2 true JP6860439B2 (en) 2021-04-14

Family

ID=65354962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017138769A Active JP6860439B2 (en) 2017-07-18 2017-07-18 Discharge frequency meter and current measuring device

Country Status (1)

Country Link
JP (1) JP6860439B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114397516A (en) * 2021-12-01 2022-04-26 国网安徽省电力有限公司马鞍山供电公司 Transmission line arrester with on-line measuring function

Also Published As

Publication number Publication date
JP2019021496A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
KR101086878B1 (en) Method for measuring resistive leakage current of nonlinear device lightning arrester with differential and apparatus thereof
EP0034031A1 (en) Electricity meters
US3469188A (en) Combination discharge counter and grading current measuring means for a lightning arrester
KR102162207B1 (en) DC current measurement device employing rogowski coil
CN106569007A (en) IGBT turn-off voltage and on-voltage integrated measurement circuit
JP6860439B2 (en) Discharge frequency meter and current measuring device
US4577148A (en) Surge arrester equipped for monitoring functions and method of use
EP2020000A1 (en) Current interface with a blocking capacitor attached to an additional pin
US4338648A (en) Gapless discharge counter for lightning arresters
KR102634953B1 (en) Portable test device for Surge protective device
CN107765138A (en) A kind of grid monitoring system
KR102407483B1 (en) Life Prediction Method of Surge Protector
US3426274A (en) Diode bridge protection circuits for electrical measuring instruments employing the diode forward drop threshold voltage
US20230156894A1 (en) Energy metering and surge current detection
KR100925342B1 (en) Surge protector for power with power state quality monitoring function
CN208833872U (en) Lightning arrester detection device and system
JPS60238770A (en) Operating duty testing method of lightning arrester
CN110907713A (en) Surge protector detection
CN209927987U (en) Switching value detection circuit and lightning protection equipment
KR102524718B1 (en) High surge current measuring method using low-current transformer
US2583130A (en) Ohm measuring instrument
Philip Digital readout circuit with direct microcontroller interface for bridge-connected resistive sensors
US11233392B2 (en) Electronic field device with transceiver protecting circuit
US1132322A (en) Electrical measuring instrument.
KR20100019594A (en) A surge voltage detection display suppressing circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171201

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210326

R150 Certificate of patent or registration of utility model

Ref document number: 6860439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150