JP6860287B2 - Thermally conductive filler and transparent thermally conductive resin composition - Google Patents

Thermally conductive filler and transparent thermally conductive resin composition Download PDF

Info

Publication number
JP6860287B2
JP6860287B2 JP2015206839A JP2015206839A JP6860287B2 JP 6860287 B2 JP6860287 B2 JP 6860287B2 JP 2015206839 A JP2015206839 A JP 2015206839A JP 2015206839 A JP2015206839 A JP 2015206839A JP 6860287 B2 JP6860287 B2 JP 6860287B2
Authority
JP
Japan
Prior art keywords
refractive index
thermally conductive
resin
control layer
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015206839A
Other languages
Japanese (ja)
Other versions
JP2017078122A (en
Inventor
中嶋 孝宏
孝宏 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2015206839A priority Critical patent/JP6860287B2/en
Publication of JP2017078122A publication Critical patent/JP2017078122A/en
Application granted granted Critical
Publication of JP6860287B2 publication Critical patent/JP6860287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、透明性と熱伝導性を兼ね備えた樹脂組成物を与える熱伝導性フィラーおよびそれからなる透明熱伝導性樹脂組成物に関する。 The present invention relates to a thermally conductive filler that provides a resin composition having both transparency and thermal conductivity, and a transparent thermally conductive resin composition comprising the same.

近年、LED照明やパワーエレクトロニクスデバイスなどで電子回路等から発生する熱が問題となっており、アルミ製のヒートシンクなどが使われている。最近では、軽量化等の観点から熱伝導性樹脂の開発が活発に行われている。LED照明やディスプレー周りの部材においては、透明性の確保が重要で、それに加えて熱伝導性を高めることも要求されている。従来、熱伝導性樹脂として、樹脂にカーボン系フィラーや窒化ホウ素などを添加したものが開示されているが、熱伝導性を高めるためにフィラーを高濃度に添加すると樹脂の透明性が損なわれてしまう。樹脂に屈折率の近いフィラーを添加して透明性と熱伝導性を兼ね備えた樹脂組成物が開示されている。例えば、シリコーン樹脂にシリカを添加した樹脂などが開示されているが(特許文献1)、透明性を維持しようとすると、フィラーの種類や添加量が限られ、熱伝導性は不十分なものであった。また、この方法では樹脂の種類も限定され、幅広い種類の樹脂へ展開できないという問題もあった。一方、樹脂にCNTやセルロースナノファイバーなどのナノフィラーを添加したものが開示されており(特許文献2、3)、フィラーのナノ分散による透明性と熱伝導性の両立が挙げられているが、ナノフィラーを高い濃度で樹脂に添加することは困難を伴うものであるとともに、高濃度で添加すると透明性が低下し、この方法では透明性と熱伝導性を両立するには限界があった。 In recent years, heat generated from electronic circuits and the like has become a problem in LED lighting and power electronics devices, and aluminum heat sinks and the like have been used. Recently, thermal conductive resins have been actively developed from the viewpoint of weight reduction and the like. It is important to ensure transparency in LED lighting and members around displays, and in addition, it is also required to improve thermal conductivity. Conventionally, as a heat conductive resin, a resin to which a carbon-based filler or boron nitride is added has been disclosed, but if a filler is added at a high concentration in order to improve the heat conductivity, the transparency of the resin is impaired. It ends up. A resin composition having both transparency and thermal conductivity by adding a filler having a refractive index close to the resin is disclosed. For example, a resin obtained by adding silica to a silicone resin is disclosed (Patent Document 1), but when trying to maintain transparency, the type and amount of filler added are limited, and the thermal conductivity is insufficient. there were. Further, this method has a problem that the types of resins are limited and cannot be developed into a wide variety of resins. On the other hand, those in which nanofillers such as CNTs and cellulose nanofibers are added to resins are disclosed (Patent Documents 2 and 3), and both transparency and thermal conductivity are mentioned by nano-dispersion of the fillers. It is difficult to add the nanofiller to the resin at a high concentration, and the transparency is lowered when the nanofiller is added at a high concentration, and this method has a limit in achieving both transparency and thermal conductivity.

特開2012−82314号公報Japanese Unexamined Patent Publication No. 2012-82314 特開2006−241248号公報Japanese Unexamined Patent Publication No. 2006-241248 特開2007−146143号公報JP-A-2007-146143

本発明の目的は、高い透明性と熱伝導性を兼ね備えた樹脂材料を与える熱伝導性フィラーを開発することにある。また、本発明の別の目的は、該熱伝導性フィラーを用いた透明熱伝導性樹脂組成物を開発することにある。 An object of the present invention is to develop a heat conductive filler that provides a resin material having both high transparency and heat conductivity. Another object of the present invention is to develop a transparent heat conductive resin composition using the heat conductive filler.

本発明者は、上記課題の解決へ向けて鋭意検討した結果、熱伝導性粒子の表面に、屈折率制御層を設けたものを用いることで、透明性と熱伝導性を兼ね備えた樹脂材料が得られることを見いだし、本発明を完成するに至った。
すなわち、本発明は下記[1]〜[7]に記載の事項を特徴とするものである。
[1]熱伝導性フィラーであって、熱伝導性粒子の表面に屈折率制御層を設けたことを特徴とする熱伝導性フィラー。
[2]屈折率制御層が、SiおよびAlのうち少なくとも1種の元素を含むことを特徴とする前記[1]に記載の熱伝導性フィラー。
[3]屈折率制御層の厚みが、0.05〜1μmの範囲にあることを特徴とする前記[1]または[2]に記載の熱伝導性フィラー。
[4]熱伝導性粒子の粒径が平均粒径で0.5〜100μmの範囲にあることを特徴とする前記[1]〜[3]のいずれかに記載の熱伝導性フィラー。
[5]熱伝導性粒子の熱伝導率が3W/mK以上であることを特徴とする前記[1]〜[4]のいずれかに記載の熱伝導性フィラー。
[6]前記[1]〜[5]のいずれかに記載の熱伝導性フィラーを含有する樹脂組成物。
[7]前記熱伝導性フィラーの含有量が樹脂組成物の5〜95wt%の範囲にあることを特徴とする前記[6]に記載の樹脂組成物。
As a result of diligent studies aimed at solving the above problems, the present inventor has made a resin material having both transparency and thermal conductivity by using a material provided with a refractive index control layer on the surface of the thermally conductive particles. We have found that we can obtain it, and have completed the present invention.
That is, the present invention is characterized by the matters described in the following [1] to [7].
[1] A thermally conductive filler, characterized in that a refractive index control layer is provided on the surface of the thermally conductive particles.
[2] The thermally conductive filler according to the above [1], wherein the refractive index control layer contains at least one element of Si and Al.
[3] The thermally conductive filler according to the above [1] or [2], wherein the thickness of the refractive index control layer is in the range of 0.05 to 1 μm.
[4] The heat conductive filler according to any one of the above [1] to [3], wherein the heat conductive particles have an average particle size in the range of 0.5 to 100 μm.
[5] The heat conductive filler according to any one of the above [1] to [4], wherein the heat conductive particles have a thermal conductivity of 3 W / mK or more.
[6] A resin composition containing the thermally conductive filler according to any one of the above [1] to [5].
[7] The resin composition according to the above [6], wherein the content of the thermally conductive filler is in the range of 5 to 95 wt% of the resin composition.

本発明の熱伝導性フィラーからなる樹脂組成物は、透明性と熱伝導性を兼ね備えているため、LED照明周りやディスプレー周りなどの透明部材の熱の問題を解決することにつながる。 Since the resin composition composed of the heat conductive filler of the present invention has both transparency and heat conductivity, it leads to solving the heat problem of transparent members such as around LED lighting and around displays.

本発明の熱伝導性フィラーは、熱伝導性粒子の表面に屈折率制御層を設けたものであることを特徴とする。熱伝導性フィラーとは、樹脂等のマトリクスに添加して熱伝導性を高めるための粒子のことを言う。本発明の熱伝導性フィラーを構成する熱伝導性粒子の熱伝導率は3W/mK以上であることが好ましい。該粒子の熱伝導率が3W/mKより小さいと、本発明の熱伝導性フィラーを樹脂等のマトリクスに添加した際に熱伝導性を高める効果が小さい。熱伝導性粒子の熱伝導率は5W/mK以上であることが好ましく、7W/mK以上であることがより好ましい。 The thermally conductive filler of the present invention is characterized in that a refractive index control layer is provided on the surface of the thermally conductive particles. The thermally conductive filler refers to particles that are added to a matrix such as a resin to enhance the thermal conductivity. The thermal conductivity of the thermally conductive particles constituting the thermally conductive filler of the present invention is preferably 3 W / mK or more. When the thermal conductivity of the particles is smaller than 3 W / mK, the effect of increasing the thermal conductivity when the thermally conductive filler of the present invention is added to a matrix such as a resin is small. The thermal conductivity of the thermally conductive particles is preferably 5 W / mK or more, and more preferably 7 W / mK or more.

本発明の熱伝導性フィラーを構成する熱伝導性粒子は、有機系、無機系を問わず使用可能であるが、無機系のものは熱伝導率が高く好ましい。無機系のフィラーとしては、金属の酸化物、水酸化物、炭酸塩、窒化物、炭化物などが挙げられる。これらのうち、酸化物、水酸化物、炭酸塩が好ましい。 The thermally conductive particles constituting the thermally conductive filler of the present invention can be used regardless of whether they are organic or inorganic, but inorganic particles have high thermal conductivity and are preferable. Examples of the inorganic filler include metal oxides, hydroxides, carbonates, nitrides, and carbides. Of these, oxides, hydroxides and carbonates are preferable.

酸化物としては、酸化ケイ素、酸化アルミニウム、酸化マグネシウムなどが挙げられる。 Examples of the oxide include silicon oxide, aluminum oxide, magnesium oxide and the like.

水酸化物としては、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどが挙げられる。 Examples of the hydroxide include aluminum hydroxide, magnesium hydroxide, calcium hydroxide and the like.

炭酸塩としては、炭酸マグネシウムや炭酸カルシウムなどが挙げられる。 Examples of the carbonate include magnesium carbonate and calcium carbonate.

これらのうち、水酸化物が好ましい。水酸化物の中でも、水酸化アルミニウム、水酸化マグネシウムが好ましく、このうち水酸化マグネシウムがとくに好ましい。 Of these, hydroxides are preferred. Among the hydroxides, aluminum hydroxide and magnesium hydroxide are preferable, and magnesium hydroxide is particularly preferable.

熱伝導性粒子の形状は、とくに限定はされず、球状、棒状、板状、鱗片状、針状、繊維状、中空状、角状、塊状のものなどを用いることができる。 The shape of the thermally conductive particles is not particularly limited, and spherical, rod-shaped, plate-shaped, scaly, needle-shaped, fibrous, hollow, square, and lump-shaped particles can be used.

熱伝導性粒子は、レーザー回折法で測定した平均粒径が0.5〜100μmの範囲にあることが好ましい。熱伝導性粒子の平均粒径が0.5μmを下回ると、透明性と熱伝導性の両立が困難となり、100μmを上回ると、樹脂組成物の強度等の力学的特性が損なわれる。熱伝導性粒子の平均粒径は1〜50μmの範囲にあることが好ましく、5〜30μmの範囲にあることがより好ましい。 The thermally conductive particles preferably have an average particle size in the range of 0.5 to 100 μm measured by a laser diffraction method. If the average particle size of the thermally conductive particles is less than 0.5 μm, it becomes difficult to achieve both transparency and thermal conductivity, and if it exceeds 100 μm, the mechanical properties such as the strength of the resin composition are impaired. The average particle size of the thermally conductive particles is preferably in the range of 1 to 50 μm, more preferably in the range of 5 to 30 μm.

熱伝導性粒子の平均粒径は、レーザー回折法で測定する。 The average particle size of the thermally conductive particles is measured by laser diffraction.

本発明の熱伝導性フィラーを構成する屈折率制御層は、熱伝導性粒子とは異なる屈折率を有する成分からなることを特徴とする。屈折率制御層の成分としては、有機系、無機系、あるいは有機と無機の複合物のいずれでも良いが、無機系、あるいは有機と無機の複合物のいずれかであることが好ましく、無機系であることがより好ましい。屈折率制御層としては、Si、AlおよびTiからなる群から選ばれる少なくとも1種の元素を含むことが好ましく、SiおよびAlのうち少なくとも1種の元素を含むことがより好ましい。更には、屈折率制御層が、酸化ケイ素、酸化アルミニウムおよびそれらの複合酸化物から選ばれることが好ましい。また、屈折率制御層は単一成分から構成されても、複数の成分から構成されても良い。複数の成分から構成される場合は、多層構造であっても良いし、最内面から最表面へ向けて少しずつ成分が異なる傾斜構造であっても良い。 The refractive index control layer constituting the heat conductive filler of the present invention is characterized by being composed of a component having a refractive index different from that of the heat conductive particles. The component of the refractive index control layer may be an organic system, an inorganic system, or an organic / inorganic composite, but is preferably an inorganic system or an organic / inorganic composite, and is an inorganic system. More preferably. The refractive index control layer preferably contains at least one element selected from the group consisting of Si, Al and Ti, and more preferably contains at least one element among Si and Al. Furthermore, the refractive index control layer is preferably selected from silicon oxide, aluminum oxide and composite oxides thereof. Further, the refractive index control layer may be composed of a single component or a plurality of components. When it is composed of a plurality of components, it may have a multi-layer structure or an inclined structure in which the components are slightly different from the innermost surface to the outermost surface.

屈折率制御層の厚みは0.05〜1μmの範囲にあることが好ましい。屈折率制御層の厚みが0.05μmを下回ると、本発明の熱伝導性フィラーを樹脂等のマトリクスに添加した際に透明性を高める効果が小さくなり、1μmを上回ると熱伝導性を高める効果が小さくなる場合がある。屈折率制御層の厚みは、0.1〜0.5μmの範囲にあることがより好ましい。また、屈折率制御層は、熱伝導性粒子を完全に覆っていることが好ましいが、完全に覆っていなくても良い。屈折率制御層の形状は、必ずしも層状でなくても良く、粒子形状で熱伝導性粒子に付着していても良い。粒子形状の場合は、粒径が0.05〜1μmの範囲にあることが好ましく、0.1〜0.5μmの範囲にあることがより好ましい。 The thickness of the refractive index control layer is preferably in the range of 0.05 to 1 μm. When the thickness of the refractive index control layer is less than 0.05 μm, the effect of increasing the transparency when the heat conductive filler of the present invention is added to a matrix such as a resin becomes small, and when it exceeds 1 μm, the effect of increasing the thermal conductivity May be smaller. The thickness of the refractive index control layer is more preferably in the range of 0.1 to 0.5 μm. Further, the refractive index control layer preferably completely covers the heat conductive particles, but may not completely cover the heat conductive particles. The shape of the refractive index control layer does not necessarily have to be layered, and it may be in the form of particles and adhere to the thermally conductive particles. In the case of the particle shape, the particle size is preferably in the range of 0.05 to 1 μm, more preferably in the range of 0.1 to 0.5 μm.

熱伝導性粒子と屈折率制御層の屈折率差は絶対値で0.15以下であることが好ましい。該屈折率差が0.15を上回ると屈折率制御層の効果が極端に低下し、本発明の熱伝導性フィラーを樹脂等のマトリクスに添加した際に透明性を高める効果が小さくなる。屈折率制御層が複数層から構成される場合は、屈折率制御層の最内面の屈折率と熱伝導性粒子との屈折率差とする。該屈折率差は、0.10以下であることがより好ましく、0.05以下であることが更に好ましく、0.01未満であることが尚更好ましい。 The difference in refractive index between the thermally conductive particles and the refractive index control layer is preferably 0.15 or less in absolute value. If the difference in refractive index exceeds 0.15, the effect of the refractive index control layer is extremely reduced, and the effect of increasing transparency when the thermally conductive filler of the present invention is added to a matrix such as a resin is reduced. When the refractive index control layer is composed of a plurality of layers, the difference between the refractive index of the innermost surface of the refractive index control layer and the heat conductive particles is used. The difference in refractive index is more preferably 0.10 or less, further preferably 0.05 or less, and even more preferably less than 0.01.

本発明の熱伝導性フィラーは、熱伝導性粒子と屈折率制御層がともに金属化合物から選ばれることが好ましい。この場合、熱伝導性粒子を構成する金属成分の含有量(M1)と屈折率制御層を構成する金属成分の含有量(M2)の比、M2/M1が各金属の原子数濃度比で0.1以上であることが好ましい。それぞれ、複数の金属成分からなる場合はこれらの合算値とする。原子数濃度比が0.1より小さいと屈折率制御層を設けた効果が小さい。原子数濃度比は0.5〜5.0であることが好ましく、1.0〜2.5であることがより好ましい。原子数濃度比は、エネルギー分散型X線分析(EDS)で測定する。 In the heat conductive filler of the present invention, it is preferable that both the heat conductive particles and the refractive index control layer are selected from metal compounds. In this case, the ratio of the content of the metal component (M1) constituting the thermally conductive particles to the content (M2) of the metal component constituting the refractive index control layer, M2 / M1 is 0 in the atomic number concentration ratio of each metal. It is preferably 1 or more. If each consists of a plurality of metal components, the total value is used. When the atomic number concentration ratio is smaller than 0.1, the effect of providing the refractive index control layer is small. The atomic number concentration ratio is preferably 0.5 to 5.0, more preferably 1.0 to 2.5. The atomic number concentration ratio is measured by energy dispersive X-ray analysis (EDS).

本発明の熱伝導性フィラーの製造方法としては、溶媒中で熱伝導性粒子と屈折率制御層の成分を混合する方法、金属アルコキシドを用いたゾルゲル法のように、溶媒中で屈折率制御層を形成する方法、熱伝導性粒子に屈折率制御層の成分をスプレー等でコーティングする方法、あるいは熱伝導性粒子と屈折率制御層の成分をボールミルやミキサー等で機械的に混合する方法などが挙げられる。これらのうち、ゾルゲル法が均一な粒子が精度高く得られるため好ましい。 The method for producing the thermally conductive filler of the present invention includes a method of mixing the thermally conductive particles and the components of the refractive index control layer in a solvent, and a sol-gel method using a metal alkoxide, which is a refractive index control layer in a solvent. The method of forming the heat conductive particles, the method of coating the heat conductive particles with the components of the refractive index control layer by spraying, or the method of mechanically mixing the heat conductive particles and the components of the refractive index control layer with a ball mill, a mixer, etc. Can be mentioned. Of these, the sol-gel method is preferable because uniform particles can be obtained with high accuracy.

本発明の熱伝導性フィラーは、シランカップリング剤などで表面処理されていても良い。 The thermally conductive filler of the present invention may be surface-treated with a silane coupling agent or the like.

本発明の樹脂組成物は、樹脂と本発明の熱伝導性フィラーとからなる。本発明の熱伝導性フィラーの屈折率制御層の屈折率は、樹脂と熱伝導性粒子のそれぞれの屈折率の間の値であることが好ましい。屈折率制御層は、単一層でも良いが、複数層から構成され、熱伝導性粒子から樹脂の間を段階的に屈折率が変化するようにすると樹脂の透明性に優れるため好ましい。更に、最内面から最表面へ向けて少しずつ成分が異なる傾斜構造であるとより好ましい。 The resin composition of the present invention comprises the resin and the thermally conductive filler of the present invention. The refractive index of the refractive index control layer of the heat conductive filler of the present invention is preferably a value between the refractive indexes of the resin and the heat conductive particles. The refractive index control layer may be a single layer, but it is preferable that the layer is composed of a plurality of layers and the refractive index is gradually changed between the heat conductive particles and the resin because the transparency of the resin is excellent. Further, it is more preferable to have an inclined structure in which the components are slightly different from the innermost surface to the outermost surface.

樹脂と屈折率制御層の屈折率差は絶対値で0.15以下であることが好ましい。該屈折率差が0.15を上回ると樹脂組成物の透明性が極端に低下する。屈折率制御層が複数層から構成される場合は、屈折率制御層の最表面の屈折率と樹脂との屈折率差とする。該屈折率差は、0.10以下であることがより好ましく、0.05以下であることが更に好ましく、0.01未満であることが尚更好ましい。また、樹脂と熱伝導性粒子の屈折率差は絶対値で0.35以下であることが好ましい。該屈折率差が0.35を上回ると、屈折率制御層の効果が極端に小さくなる。該屈折率差は、0.25以下であることがより好ましく、0.15以下であることが更に好ましく、0.05以下であることが尚更好ましい。 The difference in refractive index between the resin and the refractive index control layer is preferably 0.15 or less in absolute value. If the difference in refractive index exceeds 0.15, the transparency of the resin composition is extremely lowered. When the refractive index control layer is composed of a plurality of layers, the difference between the refractive index of the outermost surface of the refractive index control layer and the resin is used. The difference in refractive index is more preferably 0.10 or less, further preferably 0.05 or less, and even more preferably less than 0.01. Further, the difference in refractive index between the resin and the thermally conductive particles is preferably 0.35 or less in absolute value. When the difference in refractive index exceeds 0.35, the effect of the refractive index control layer becomes extremely small. The difference in refractive index is more preferably 0.25 or less, further preferably 0.15 or less, and even more preferably 0.05 or less.

本発明の樹脂組成物を構成する熱伝導性フィラーは、1種類のものを単独で用いても良いし、2種類以上のものを共存して用いても良い。2種類以上のものを共存して用いると熱伝導性と透明性の両立の観点から好ましい。ここで2種類以上のフィラーとは、異なる種類のフィラーを2種類以上用いても良いし、同種のフィラーで平均粒径が異なるものを共存して用いても良い。とくに、透明性の観点からは、後者の方がより好ましい。 As the heat conductive filler constituting the resin composition of the present invention, one kind may be used alone, or two or more kinds may be used in coexistence. It is preferable to use two or more types in coexistence from the viewpoint of achieving both thermal conductivity and transparency. Here, as the two or more types of fillers, two or more types of fillers of different types may be used, or fillers of the same type having different average particle sizes may be used in coexistence. In particular, from the viewpoint of transparency, the latter is more preferable.

また、本発明の熱伝導性フィラーに加えて、それ以外の熱伝導性フィラーを少量共存して用いることは、本発明の目的を損なわない範囲であれば可能である。この場合の熱伝導性フィラーとしては、例えば、CNT、セルロースナノファイバーや無機系のナノ粒子、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化インジウムスズなどが挙げられる。 Further, in addition to the heat conductive filler of the present invention, it is possible to use a small amount of other heat conductive fillers in coexistence as long as the object of the present invention is not impaired. Examples of the thermally conductive filler in this case include CNTs, cellulose nanofibers and inorganic nanoparticles such as titanium oxide, zinc oxide, zirconium oxide and indium tin oxide.

また、本発明の樹脂組成物には、本発明の目的を損なわない範囲で熱伝導性フィラー以外のフィラーが含まれていても良い。このようなフィラーとしては、難燃剤、耐衝撃性改善剤、補強剤、耐候性改善剤、酸化防止剤、帯電防止剤、顔料、染料等が使用可能である。 Further, the resin composition of the present invention may contain a filler other than the thermally conductive filler as long as the object of the present invention is not impaired. As such a filler, a flame retardant, an impact resistance improving agent, a reinforcing agent, a weather resistance improving agent, an antioxidant, an antistatic agent, a pigment, a dye and the like can be used.

本発明の樹脂としては、とくに限定はされないが、各種の熱可塑性樹脂やエポキシ樹脂等の熱硬化性樹脂、シリコーン樹脂等のゴム系樹脂などを用いることができる。このうち、透明性と耐熱性の観点からシリコーン樹脂が好ましい。また、溶融成形可能な熱可塑性樹脂を使用すると工程が簡素化されるため好ましい。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリビニルアルコール、EVA樹脂、EVOH樹脂、ポリスチレン、AS樹脂、ABS樹脂、ASA樹脂、AES樹脂、PMMA等のアクリル樹脂、MS樹脂、MBS樹脂、SBC樹脂、シクロオレフィン樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、液晶ポリマー、PPS、PEEK、PPE、ポリサルフォン系樹脂、ポリイミド系樹脂、フッ素系樹脂、熱可塑性エラストマーなどが挙げられる。樹脂としては、樹脂単体で透明性が高いものが好ましく、非晶性の樹脂がより好ましい。共重合ポリマーは共重合比を変えることで樹脂の屈折率を調整することができるため好ましく、このような樹脂として、MS樹脂、MBS樹脂、透明ABS樹脂などを挙げることができる。 The resin of the present invention is not particularly limited, but various thermoplastic resins, thermosetting resins such as epoxy resins, rubber-based resins such as silicone resins, and the like can be used. Of these, silicone resin is preferable from the viewpoint of transparency and heat resistance. Further, it is preferable to use a thermoplastic resin that can be melt-molded because the process is simplified. Examples of the thermoplastic resin include polyethylene, polypropylene, polyvinyl alcohol, EVA resin, EVOH resin, polystyrene, AS resin, ABS resin, ASA resin, AES resin, acrylic resin such as PMMA, MS resin, MBS resin, SBC resin, and cycloolefin. Examples thereof include resins, polyacetal resins, polyamide resins, polyester resins, polycarbonate resins, polyurethane resins, liquid crystal polymers, PPS, PEEK, PPE, polysulfone resins, polyimide resins, fluororesins, and thermoplastic elastomers. As the resin, a resin alone having high transparency is preferable, and an amorphous resin is more preferable. The copolymerized polymer is preferable because the refractive index of the resin can be adjusted by changing the copolymerization ratio, and examples of such a resin include MS resin, MBS resin, and transparent ABS resin.

樹脂は1種類を単独で用いても良いし、2種類以上の樹脂を共存して用いても良い。2種類以上の樹脂を共存して用いて、樹脂の屈折率を調整することができる。この場合、2種類以上の樹脂が分子レベルで相溶することが透明性の観点から好ましく、このような組み合わせとして、例えば、PMMA/AS樹脂、PMMA/PVDF、PVC/AS樹脂などが挙げられる。 One type of resin may be used alone, or two or more types of resins may be used in coexistence. The refractive index of the resin can be adjusted by using two or more kinds of resins in coexistence. In this case, it is preferable that two or more kinds of resins are compatible with each other at the molecular level from the viewpoint of transparency, and examples of such a combination include PMMA / AS resin, PMMA / PVDF, PVC / AS resin and the like.

樹脂の屈折率としては、1.4〜1.7の範囲にあることが好ましく、1.4〜1.6の範囲にあることがより好ましい。 The refractive index of the resin is preferably in the range of 1.4 to 1.7, and more preferably in the range of 1.4 to 1.6.

本発明の樹脂組成物は、フィラーの添加量が5〜95wt%の範囲にあることが好ましい。フィラーの添加量が5wt%を下回ると樹脂組成物の熱伝導率が低くなり、95wt%を上回ると、均一な樹脂組成物が得られにくくなるとともに透明性が低下する。添加量は、10〜90wt%の範囲にあることがより好ましく、30〜90wt%の範囲にあることが更に好ましく、50〜80wt%の範囲にあることがとくに好ましい。 In the resin composition of the present invention, the amount of the filler added is preferably in the range of 5 to 95 wt%. If the amount of the filler added is less than 5 wt%, the thermal conductivity of the resin composition becomes low, and if it exceeds 95 wt%, it becomes difficult to obtain a uniform resin composition and the transparency is lowered. The addition amount is more preferably in the range of 10 to 90 wt%, further preferably in the range of 30 to 90 wt%, and particularly preferably in the range of 50 to 80 wt%.

本発明の樹脂組成物の製造方法は、特に限定はされないが、一軸あるいは多軸の混練機、ラボプラストミル、ニーダーやダイナミックミキサー等のバッチ式ミキサー、ロール混練機等で樹脂とフィラーを所定の配合で混練する方法や、溶媒を用いて、溶解あるいは懸濁した状態で混合する方法等が用いられ、このうち溶媒を用いずに混練機やミキサーで混合する方法が好ましい。 The method for producing the resin composition of the present invention is not particularly limited, but the resin and filler are predetermined by a uniaxial or multiaxial kneader, a lab plast mill, a batch mixer such as a kneader or a dynamic mixer, a roll kneader or the like. A method of kneading by blending, a method of mixing in a dissolved or suspended state using a solvent, and the like are used, and among these, a method of mixing with a kneader or a mixer without using a solvent is preferable.

本発明の樹脂組成物は、射出成形、押出成形、圧縮成形、ブロー成形等の成形方法で成形することができ、板状、フィルム状、シート状の他にも各種の3次元形状の成形品とすることができる。また、封止剤、塗料や接着剤のような形態で用いることもできる。 The resin composition of the present invention can be molded by a molding method such as injection molding, extrusion molding, compression molding, blow molding, etc., and is a molded product having various three-dimensional shapes other than plate-shaped, film-shaped, and sheet-shaped. Can be. It can also be used in the form of sealants, paints and adhesives.

以下、本発明を実施例および比較例を挙げて具体的に説明するが、本発明はもとよりこれらの例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these examples.

実施例および比較例において、評価は以下のように行った。
(1)熱伝導率
京都電子工業(株)QTM−500にて、うす膜測定用ソフトを用いて熱伝導率を測定した。
(2)全光線透過率
スガ試験機(株)のヘーズメータHZ−2を用いて測定した。
In the examples and comparative examples, the evaluation was performed as follows.
(1) Thermal conductivity The thermal conductivity was measured by Kyoto Denshi Kogyo Co., Ltd. QTM-500 using thin film measurement software.
(2) Total light transmittance The measurement was performed using a haze meter HZ-2 manufactured by Suga Test Instruments Co., Ltd.

[実施例1]
エタノール中で水酸化マグネシウム(平均粒径1μm 熱伝導率8W/mK 屈折率1.56)とテトラエトキシシランを触媒とともに混合した後、室温にて24時間攪拌し、白色のスラリーを得た。溶質をろ取した後、80℃で12時間真空乾燥した後、200℃で30時間真空乾燥し、水酸化マグネシウム(熱伝導性粒子)に酸化Si(屈折率制御層)をコーティングした粒子を得た。SEM観察の結果、屈折率制御層の厚みは0.4μmであった。EDSの結果、屈折率制御層を構成する金属成分Siと熱伝導性粒子を構成する金属成分Mgの原子数濃度比(Si/Mg比)は2.2であった。屈折率制御層の屈折率は1.45であった。
[Example 1]
Magnesium hydroxide (average particle size 1 μm, thermal conductivity 8 W / mK refractive index 1.56) and tetraethoxysilane were mixed with a catalyst in ethanol, and then stirred at room temperature for 24 hours to obtain a white slurry. After the solute is collected by filtration, it is vacuum-dried at 80 ° C. for 12 hours and then vacuum-dried at 200 ° C. for 30 hours to obtain particles in which magnesium hydroxide (thermally conductive particles) is coated with Si oxide (refractive index control layer). It was. As a result of SEM observation, the thickness of the refractive index control layer was 0.4 μm. As a result of EDS, the atomic number concentration ratio (Si / Mg ratio) of the metal component Si constituting the refractive index control layer and the metal component Mg constituting the heat conductive particles was 2.2. The refractive index of the refractive index control layer was 1.45.

[実施例2]
エタノール中で水酸化マグネシウム(平均粒径1μm 熱伝導率8W/mK 屈折率1.56)とテトラエトキシシランおよび塩化アルミニウムを触媒とともに混合した後、室温にて24時間攪拌し、白色のスラリーを得た。溶質をろ取した後、80℃で12時間真空乾燥した後、200℃で30時間真空乾燥し、水酸化マグネシウム(熱伝導性粒子)にSiとAlの複合酸化物(屈折率制御層)をコーティングした粒子を得た。SEM観察の結果、屈折率制御層の厚みは0.2μmであった。EDSの結果、屈折率制御層を構成する金属成分SiとAlの合計と熱伝導性粒子を構成する金属成分Mgの原子数濃度比((Si+Al)/Mg比)は1.3であった。SiとAlの原子数濃度比(Si/Al比)は3であった。屈折率制御層の屈折率は1.53であった。
[Example 2]
Magnesium hydroxide (average particle size 1 μm, thermal conductivity 8 W / mK refractive index 1.56), tetraethoxysilane and aluminum chloride are mixed with a catalyst in ethanol, and then stirred at room temperature for 24 hours to obtain a white slurry. It was. After the solute is collected by filtration, it is vacuum dried at 80 ° C. for 12 hours, then vacuum dried at 200 ° C. for 30 hours, and a composite oxide of Si and Al (refractive index control layer) is added to magnesium hydroxide (thermally conductive particles). Coated particles were obtained. As a result of SEM observation, the thickness of the refractive index control layer was 0.2 μm. As a result of EDS, the sum of the metal components Si and Al constituting the refractive index control layer and the atomic number concentration ratio ((Si + Al) / Mg ratio) of the metal component Mg constituting the heat conductive particles were 1.3. The atomic number concentration ratio (Si / Al ratio) of Si and Al was 3. The refractive index of the refractive index control layer was 1.53.

[実施例3]
シリコーン樹脂(2液混合タイプ 硬化後屈折率1.41)50重量部と実施例1で得られた粒子50重量部をダイナミックミキサーで混合した後、プレス成形機を用いて、120℃にてプレス成形を行い、引き続きオーブン中で150℃で4時間加熱し、外形100mmX50mmで厚み0.5mmのシート状の成形品を得た。該成形品を用いて熱伝導率と全光線透過率の測定を行った。結果を表1に示す。
[Example 3]
After mixing 50 parts by weight of silicone resin (two-component mixed type, refractive index after curing 1.41) and 50 parts by weight of particles obtained in Example 1 with a dynamic mixer, press at 120 ° C. using a press molding machine. After molding, the mixture was subsequently heated in an oven at 150 ° C. for 4 hours to obtain a sheet-shaped molded product having an outer diameter of 100 mm × 50 mm and a thickness of 0.5 mm. The thermal conductivity and the total light transmittance were measured using the molded product. The results are shown in Table 1.

[実施例4]
実施例1で得られた粒子の代わりに、実施例2で得られた粒子を用いたこと以外は実施例3と同様の操作を行った。結果を表1に示す。
[Example 4]
The same operation as in Example 3 was performed except that the particles obtained in Example 2 were used instead of the particles obtained in Example 1. The results are shown in Table 1.

[比較例1]
実施例1で得られた粒子の代わりに、屈折率制御層を設ける前の水酸化マグネシウムを用いたこと以外は実施例3と同様の操作を行った。結果を表1に示す。
[比較例2]
実施例1で得られた粒子を添加せずに実施例3と同様の操作を行った。結果を表1に示す。
[Comparative Example 1]
The same operation as in Example 3 was performed except that magnesium hydroxide before the refractive index control layer was provided was used instead of the particles obtained in Example 1. The results are shown in Table 1.
[Comparative Example 2]
The same operation as in Example 3 was carried out without adding the particles obtained in Example 1. The results are shown in Table 1.

Figure 0006860287
Figure 0006860287

各実施例と比較例を比較すると、本発明の熱伝導性フィラーを用いた樹脂組成物は、フィラーを用いなかったものよりも熱伝導率が高く、また、屈折率制御層を設けないフィラーを用いたものと比べて熱伝導率は同等で全光線透過率が高くなっており、熱伝導性と透明性を兼ね備えていることがわかった。 Comparing each example and the comparative example, the resin composition using the heat conductive filler of the present invention has a higher thermal conductivity than the one without the filler, and the filler without the refractive index control layer is provided. It was found that the thermal conductivity was the same and the total light transmittance was higher than that used, and that it had both thermal conductivity and transparency.

本発明の熱伝導性フィラーからなる透明熱伝導性樹脂組成物は、LED照明周りやディスプレー周りなどの透明部材や電子機器のケースや壁材などの透明部材であって熱の問題がある箇所への適用が可能である。

The transparent heat conductive resin composition composed of the heat conductive filler of the present invention is a transparent member such as around an LED lighting or a display, or a transparent member such as a case or a wall material of an electronic device, where there is a heat problem. Can be applied.

Claims (5)

熱伝導性粒子を含有する熱伝導性フィラーであって、前記熱伝導性粒子が酸化ケイ素、酸化アルミニウム、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、炭酸マグネシウム、炭酸カルシウムのうちのいずれか一種以上であり、粒径がレーザー回法で測定した平均粒径で0.5〜100μmの範囲にあり、前記熱伝導性粒子の表面に屈折率制御層を設け、前記屈折率制御層が酸化ケイ素(熱伝導性粒子が酸化ケイ素の場合を除く)、酸化アルミニウム(熱伝導性粒子が酸化アルミニウムの場合を除く)およびそれらの複合酸化物のうちの一種以上から選ばれ、前記熱伝導性粒子と前記屈折率制御層の屈折率の差が0.15以下であることを特徴とする熱伝導性フィラー。
A thermally conductive filler containing thermally conductive particles, wherein the thermally conductive particles are among silicon oxide, aluminum oxide, magnesium oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, magnesium carbonate, and calcium carbonate. is either one or more, the particle size is in the range of 0.5~100μm an average particle size measured by a laser diffraction method, the refractive index control layer provided on the surface of the thermally conductive particles, the refractive index control The layer is selected from one or more of silicon oxide (except when the heat conductive particles are silicon oxide), aluminum oxide (except when the heat conductive particles are aluminum oxide) and a composite oxide thereof, and the heat is said. A thermally conductive filler characterized in that the difference in refractive index between the conductive particles and the refractive index control layer is 0.15 or less.
前記屈折率制御層の厚みが、0.05〜1μmの範囲にあることを特徴とする請求項1に記載の熱伝導性フィラー。 The thermally conductive filler according to claim 1, wherein the thickness of the refractive index control layer is in the range of 0.05 to 1 μm. 熱伝導性粒子の熱伝導率が3W/mK以上であることを特徴とする請求項1または請求項2に記載の熱伝導性フィラー。 The heat conductive filler according to claim 1 or 2 , wherein the heat conductive particles have a thermal conductivity of 3 W / mK or more. 請求項1〜のいずれかに記載の熱伝導性フィラーを含有する樹脂組成物。 A resin composition containing the thermally conductive filler according to any one of claims 1 to 3. 前記熱伝導性フィラーの含有量が樹脂組成物の5〜95wt%の範囲にあることを特徴とする請求項に記載の樹脂組成物。 The resin composition according to claim 4 , wherein the content of the thermally conductive filler is in the range of 5 to 95 wt% of the resin composition.
JP2015206839A 2015-10-21 2015-10-21 Thermally conductive filler and transparent thermally conductive resin composition Active JP6860287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015206839A JP6860287B2 (en) 2015-10-21 2015-10-21 Thermally conductive filler and transparent thermally conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015206839A JP6860287B2 (en) 2015-10-21 2015-10-21 Thermally conductive filler and transparent thermally conductive resin composition

Publications (2)

Publication Number Publication Date
JP2017078122A JP2017078122A (en) 2017-04-27
JP6860287B2 true JP6860287B2 (en) 2021-04-14

Family

ID=58665177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015206839A Active JP6860287B2 (en) 2015-10-21 2015-10-21 Thermally conductive filler and transparent thermally conductive resin composition

Country Status (1)

Country Link
JP (1) JP6860287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179701A (en) 2017-04-11 2018-11-15 Kyb株式会社 Magnetic detector, torque sensor, and electrically-driven power steering device
JP6939364B2 (en) 2017-10-03 2021-09-22 信越化学工業株式会社 Light-transmitting heat-conducting resin sheet and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5474115B2 (en) * 2004-11-29 2014-04-16 昭和電工株式会社 Composition for heat conductive composite material containing carbon material and use thereof
JP2006241248A (en) * 2005-03-01 2006-09-14 Bussan Nanotech Research Institute Inc Polymer complex
JP2010205863A (en) * 2009-03-03 2010-09-16 Hitachi Automotive Systems Ltd On-vehicle electronic controller
JP5589856B2 (en) * 2011-01-07 2014-09-17 信越化学工業株式会社 Thermally conductive silicone composition and cured product excellent in transparency
JP2014077117A (en) * 2012-09-21 2014-05-01 Dow Corning Toray Co Ltd Highly refractive surface treatment agent, and fine member and optical material surface-treated by using the same
JP2014145012A (en) * 2013-01-28 2014-08-14 Mitsubishi Chemicals Corp Resin composition, wavelength conversion member, light-emitting device, led lighting equipment, and optical member

Also Published As

Publication number Publication date
JP2017078122A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
Hu et al. Optical diffusers with enhanced properties based on novel polysiloxane@ CeO 2@ PMMA fillers
KR102114866B1 (en) Composite system comprising a polymer matrix and core-shell nanoparticles, process for preparing it and use thereof
CN110327858B (en) Hollow particles, method for the production thereof, use thereof and method for producing microencapsulated particles
TWI635140B (en) Inorganic microparticle composite and manufacturing method, composition and cured product thereof
Suthabanditpong et al. Facile fabrication of light diffuser films based on hollow silica nanoparticles as fillers
CN102775666B (en) All dielectric self-supporting electric power optical cable high density polyethylene (HDPE) protective cover material and production method
KR101833561B1 (en) Transparent heat-radiating coating composition
TW200837109A (en) Heat-conductive resin composition and plastic article
CN107076885B (en) Light diffusion film
JP6860287B2 (en) Thermally conductive filler and transparent thermally conductive resin composition
CN108027461B (en) Low-flash matte coating and preparation method thereof
JP2008239898A (en) Heat-radiating resin composition and molded article containing the same
CN103724974B (en) High-light-reflectivity PC (polycarbonate) film material and preparation method thereof
KR20170129821A (en) Composite system including matrix and scattering element, method of manufacturing the same, and use thereof
Gong et al. Surface modification of magnesium hydroxide sulfate hydrate whiskers and its toughness and reinforcement for polyvinyl chloride
JP2009217119A (en) Metal oxide fine particle dispersion and molding
JP2009215088A (en) Spherical silica glass fine particle and method for producing the same
TW201215641A (en) Bio-based material composition and optical device employing the same
KR102013094B1 (en) Transparent light scattering body, reflective transparent screen provided with it, and image projection system provided with it
CN107873041A (en) The formation of heat-resisting titanium dioxide granule and cooling preparations
WO2021152503A1 (en) Nanocomposites
JP6712683B2 (en) Particle material, method for producing the same, and transparent resin composition
TWI713446B (en) Enhanced tactile responsive and optically translucent film for packaging
WO2019158337A1 (en) Thermoconductive filler particles and polymer compositions containing them
JP5888082B2 (en) the film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210326

R150 Certificate of patent or registration of utility model

Ref document number: 6860287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250