JP6860147B2 - Absorbents and absorbents for substituted piperazine compounds and acid gases - Google Patents

Absorbents and absorbents for substituted piperazine compounds and acid gases Download PDF

Info

Publication number
JP6860147B2
JP6860147B2 JP2017171802A JP2017171802A JP6860147B2 JP 6860147 B2 JP6860147 B2 JP 6860147B2 JP 2017171802 A JP2017171802 A JP 2017171802A JP 2017171802 A JP2017171802 A JP 2017171802A JP 6860147 B2 JP6860147 B2 JP 6860147B2
Authority
JP
Japan
Prior art keywords
compound
cis
trans
substituted piperazine
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017171802A
Other languages
Japanese (ja)
Other versions
JP2018140981A (en
Inventor
佐藤 裕
佐藤  裕
宣弘 鹿又
宣弘 鹿又
武 由渕
武 由渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
IHI Corp
Original Assignee
Waseda University
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, IHI Corp filed Critical Waseda University
Publication of JP2018140981A publication Critical patent/JP2018140981A/en
Application granted granted Critical
Publication of JP6860147B2 publication Critical patent/JP6860147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、酸性ガスを含んだガスの処理に利用可能な置換ピペラジン化合物、及び、それを用いた吸収剤、吸収液に関する。 The present invention relates to a substituted piperazine compound that can be used for treating a gas containing an acid gas, and an absorbent and an absorbent liquid using the substituted piperazine compound.

火力発電所や製鉄所、ボイラーなどの設備では、石炭、重油、超重質油などの燃料を多量に使用しており、燃料の燃焼によって排出される硫黄酸化物、窒素酸化物、二酸化炭素などの酸性ガスは、大気汚染防止や地球環境保全の見地から放出に関する量的及び濃度的制限が必要とされている。又、二酸化炭素は、地球温暖化の主原因として問題視され、世界的にも排出を抑制する動きが活発化している。このため、燃焼排ガスやプロセス排ガス中の酸性ガスを分離又は除去するガス処理対策が進められており、二酸化炭素については、回収・貯蔵を可能とするための様々な研究も精力的に進められている。 Facilities such as thermal power plants, steel mills, and boilers use large amounts of fuel such as coal, heavy oil, and super-heavy oil, and sulfur oxides, nitrogen oxides, carbon dioxide, etc. emitted by combustion of fuel are used. From the standpoint of preventing air pollution and preserving the global environment, acidic gas requires quantitative and concentration restrictions on its release. In addition, carbon dioxide is regarded as a problem as a main cause of global warming, and movements to curb emissions are becoming active worldwide. For this reason, gas treatment measures are being promoted to separate or remove acid gases in combustion exhaust gas and process exhaust gas, and various studies are being energetically promoted to enable the recovery and storage of carbon dioxide. There is.

二酸化炭素を分離又は回収する方法として、例えば、PSA(圧力スウィング)法、膜分離濃縮法や、塩基性化合物による反応吸収を利用する化学吸収法などが知られている。化学吸収法では、主にアルカノールアミン系の塩基性化合物を吸収剤として用いるアミン吸収法が一般的であるが、このような塩基性化合物は、二酸化炭素だけでなく、他の酸性ガスに対しても吸収性を発揮し、各種酸性ガス用吸収剤として利用可能である。化学吸収法による処理プロセスでは、概して、吸収剤を含む水性液を吸収液として用いて、ガスに含まれる二酸化炭素を吸収液に吸収させた後に、吸収液を加熱して吸収された二酸化炭素を放出させて吸収液を再生する。再生後の吸収液は冷却し、吸収工程において再使用するようにして、これらの工程を交互に繰り返すように吸収液を循環させる(例えば、下記特許文献1参照)。 As a method for separating or recovering carbon dioxide, for example, a PSA (pressure swing) method, a membrane separation concentration method, a chemical absorption method utilizing reaction absorption by a basic compound, and the like are known. In the chemical absorption method, an amine absorption method in which an alkanolamine-based basic compound is mainly used as an absorbent is generally used, but such a basic compound is used not only for carbon dioxide but also for other acid gases. Also exhibits absorbency and can be used as an absorbent for various acid gases. In the treatment process by the chemical absorption method, generally, an aqueous liquid containing an absorbent is used as an absorption liquid, carbon dioxide contained in the gas is absorbed by the absorption liquid, and then the absorption liquid is heated to absorb the absorbed carbon dioxide. Regenerate the absorbent by releasing it. The absorbed liquid after regeneration is cooled and reused in the absorption step, and the absorbed liquid is circulated so as to alternately repeat these steps (see, for example, Patent Document 1 below).

吸収液の性能に関連する項目として、二酸化炭素の吸収速度及び吸収容量、並びに、二酸化炭素との反応熱などがあり、二酸化炭素の分離回収に必要な設備費用や回収エネルギーを低減するために、これらの項目を考慮して吸収液に用いる吸収剤が決定される。一般的には、複数種のアミン系化合物を組み合わせて使用する。その理由は、上述の項目全てに優れたアミン系化合物を見出すのは事実上困難であるからであり、性質の異なる化合物を組み合わせて互いの性質を補完するように、数多くの吸収剤の組み合わせ及び組成について網羅的な調査及び検討がなされ、様々な組み合わせ及び組成が報告されている(例えば、下記特許文献2参照)。 Items related to the performance of the absorption liquid include the absorption rate and capacity of carbon dioxide, and the heat of reaction with carbon dioxide, in order to reduce the equipment cost and energy recovery required for the separation and recovery of carbon dioxide. The absorbent used for the absorbent is determined in consideration of these items. Generally, a combination of a plurality of types of amine compounds is used. The reason is that it is practically difficult to find an excellent amine compound in all of the above items, and a large number of absorbent combinations and combinations of absorbents are used so as to combine compounds having different properties to complement each other's properties. Comprehensive investigations and studies have been conducted on the compositions, and various combinations and compositions have been reported (see, for example, Patent Document 2 below).

特開2009−214089号公報Japanese Unexamined Patent Publication No. 2009-214089 特開2008−13400号公報Japanese Unexamined Patent Publication No. 2008-13400

しかし、上述のような網羅的な検討によって提案される吸収剤の組み合わせが全面的に優れた吸収液となる訳ではなく、実用的には更に改善を重ねることが必要となる。又、アミン系化合物の揮発性に起因して吸収液の組成が経時的に変動する問題があり、吸収液の定期的な品質管理及び調整が必要となる。 However, the combination of absorbents proposed by the comprehensive study as described above does not mean that the absorbent solution is totally excellent, and it is necessary to further improve it practically. Further, there is a problem that the composition of the absorbing liquid fluctuates with time due to the volatility of the amine compound, and it is necessary to regularly control and adjust the quality of the absorbing liquid.

本発明の課題は、上述の問題を解決し、吸収液に調製して使用した際に経時的な組成変動を抑制可能で、定期的な品質管理及び調整による負担が低減される吸収液を提供可能な新規な化合物、及び、それを用いた酸性ガス処理用の吸収剤、吸収液を提供することである。 An object of the present invention is to provide an absorbent solution that solves the above-mentioned problems, can suppress compositional fluctuations over time when prepared and used as an absorbent solution, and reduces the burden of regular quality control and adjustment. It is to provide a novel compound possible, and an absorbent and an absorbent for acid gas treatment using the compound.

上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、従来の吸収剤の分子構造及び吸収性能を参考としてアミン系化合物の分子設計を行うことによって、極めて有望な化合物が得られ、本発明を完成するに至った。 In order to solve the above problems, the present inventors have conducted intensive studies, and as a result, by designing the molecule of the amine compound with reference to the molecular structure and absorption performance of the conventional absorbent, an extremely promising compound can be obtained. It was obtained, and the present invention was completed.

本発明の一態様によれば、置換ピペラジン化合物は、下記の一般式で表される。

Figure 0006860147
According to one aspect of the present invention, the substituted piperazine compound is represented by the following general formula.
Figure 0006860147

酸性ガスの吸収剤、及び、二酸化炭素の吸収剤は、上記の置換ピペラジン化合物を有効成分とする。酸性ガス処理用の吸収液、及び、二酸化炭素処理用の吸収液は、上記の置換ピペラジン化合物及び水を含有するように調製するとよい。 The acid gas absorber and the carbon dioxide absorber contain the above-mentioned substituted piperazine compound as an active ingredient. The absorption liquid for acid gas treatment and the absorption liquid for carbon dioxide treatment may be prepared so as to contain the above-mentioned substituted piperazine compound and water.

本発明によれば、揮発性が低く、酸性ガスの吸収性能に優れた置換ピペラジン化合物が提供され、それを酸性ガスの吸収剤として用いて、経時的な品質変動の抑制や定期的な品質管理及び調整に関する負担の軽減が可能な吸収液を提供が可能であるので、ガス処理における作業負担が軽減され、経済的に有利である。 According to the present invention, a substituted piperazine compound having low volatility and excellent acid gas absorption performance is provided, and the substituted piperazine compound is used as an acid gas absorber to suppress quality fluctuations over time and to perform regular quality control. Since it is possible to provide an absorbing liquid capable of reducing the burden of adjustment, the work load in gas treatment is reduced, which is economically advantageous.

置換ピペラジン化合物(trans-1)を吸収剤として用いた吸収液における二酸化炭素の吸収性能を示すグラフ。The graph which shows the absorption performance of carbon dioxide in the absorption liquid which used the substituted piperazine compound (trans-1) as an absorbent. 置換ピペラジン化合物(trans-1)の粉末X線回折における回折強度を示すチャート。The chart which shows the diffraction intensity in the powder X-ray diffraction of a substituted piperazine compound (trans-1). 置換ピペラジン化合物(cis-1)の粉末X線回折における回折強度を示すチャート。The chart which shows the diffraction intensity in the powder X-ray diffraction of a substituted piperazine compound (cis-1). 置換ピペラジン化合物(cis-1)を吸収剤として用いた吸収液における二酸化炭素の吸収性能を、置換ピペラジン化合物(trans-1)の吸収性能と併せて示すグラフ。The graph which shows the absorption performance of carbon dioxide in the absorption liquid which used the substituted piperazine compound (cis-1) as an absorbent together with the absorption performance of the substituted piperazine compound (trans-1).

二酸化炭素の回収において使用する吸収液の性能に関連する項目として、二酸化炭素の吸収速度及び吸収容量、並びに、二酸化炭素吸収時の反応熱などがある。二酸化炭素の分離回収に必要な操業費用や消費エネルギーを低減するためには、これらの項目を考慮して吸収液に用いる吸収剤を決定する。その際、複数種の吸収剤を選択して互いの性能を補完するように組み合わせて吸収液を調製するのが一般的である。例えば、環状アミノ化合物は、概して、二酸化炭素の吸収速度が速いが、水溶性が低い。他方、水酸基を有するアルカノールアミンは、水溶性を示すが、二酸化炭素の吸収速度が相対的に遅い。そこで、これらを組み合わせて相互に欠点を補完することによって、水溶性及び吸収速度において良好な吸収液が得られる。しかし、環状アミノ化合物は沸点が低く、蒸気圧が比較的高いので、吸収液の再生時に気化し易い。他方、アルカノールアミンの沸点は、環状アミノ化合物より高いが、それでも吸収液からの放散を無視できる程ではない。このため、吸収液の使用/再生を繰り返すことによって、吸収剤の放散による吸収液の組成変動が顕著になる。このような吸収液の経時的な組成変動の問題を解決するには、気化し難い吸収剤を使用することが重要になる。つまり、分子量が従来のものより大きく、良好な吸収性能を発揮する化合物を見出す必要がある。 Items related to the performance of the absorption liquid used in the recovery of carbon dioxide include the absorption rate and capacity of carbon dioxide, and the heat of reaction during carbon dioxide absorption. In order to reduce the operating cost and energy consumption required for the separation and recovery of carbon dioxide, the absorbent to be used for the absorbent is determined in consideration of these items. At that time, it is common to select a plurality of types of absorbents and combine them so as to complement each other's performance to prepare an absorbent solution. For example, cyclic amino compounds generally have a high rate of carbon dioxide absorption but low water solubility. On the other hand, alkanolamines having a hydroxyl group are water-soluble, but the absorption rate of carbon dioxide is relatively slow. Therefore, by combining these and complementing each other's defects, a good absorption liquid in terms of water solubility and absorption rate can be obtained. However, since the cyclic amino compound has a low boiling point and a relatively high vapor pressure, it is easily vaporized during regeneration of the absorbing liquid. On the other hand, the boiling point of alkanolamines is higher than that of cyclic amino compounds, but the emission from the absorbent is still not negligible. Therefore, by repeating the use / regeneration of the absorbent liquid, the composition fluctuation of the absorbent liquid due to the dissipation of the absorbent liquid becomes remarkable. In order to solve the problem of the composition fluctuation of the absorbent liquid over time, it is important to use an absorbent that is hard to vaporize. That is, it is necessary to find a compound having a larger molecular weight than the conventional one and exhibiting good absorption performance.

本願発明者等は、従来の吸収剤の分子構造と吸収性能との関係を考慮しつつ、上述のような要件を満たす化合物の分子構造について検討し、分子量が大きい吸収剤の分子設計を試みた。その際、従来の吸収剤の様々な組み合わせを調査して、組み合わせを構成する2種類の吸収剤の分子構造を合体させて1つの分子構造に構成することを試みた。その結果、ピペラジンとN−メチルジエタノールアミン(以下、MDEAと略記する)とを結合させた分子構造を有する新規な置換ピペラジン化合物を実現するに至った。従って、本願では、新規な置換ピペラジン化合物を提案する。これは、二酸化炭素の吸収速度が速いピペラジンの利点を活かし、その揮発性の抑制及び水溶性の向上を意図して設計された化合物であり、吸収剤に適した構造を有する。 The inventors of the present application examined the molecular structure of a compound satisfying the above requirements while considering the relationship between the molecular structure of a conventional absorbent and the absorption performance, and attempted to design the molecule of an absorbent having a large molecular weight. .. At that time, various combinations of conventional absorbents were investigated, and an attempt was made to combine the molecular structures of the two types of absorbents constituting the combination into one molecular structure. As a result, a novel substituted piperazine compound having a molecular structure in which piperazine and N-methyldiethanolamine (hereinafter abbreviated as MDEA) are bound has been realized. Therefore, the present application proposes a novel substituted piperazine compound. This is a compound designed to take advantage of piperazine, which has a high absorption rate of carbon dioxide, to suppress its volatility and improve its water solubility, and has a structure suitable for an absorbent.

提案される置換ピペラジン化合物(1)は、下記の一般式で示すように、ピペラジンの複素環骨格を基盤として、これに置換基を導入することによって分子量を高めた分子構造を有し、置換基は、N−ジ(2−ヒドロキシエチル)アミノメチル基である。つまり、置換ピペラジン化合物(1)は、1分子のピペラジンと2分子のMDEAとを結合した構造を有する複合アミン化合物である。置換基が水酸基を有することによって、置換ピペラジン化合物(1)の水溶性は、ピペラジンに比べて向上する。

Figure 0006860147
As shown by the following general formula, the proposed substituted piperazine compound (1) has a molecular structure in which the molecular weight is increased by introducing a substituent into the heterocyclic skeleton of piperazine as a base, and the substituent has a substituent. Is an N-di (2-hydroxyethyl) aminomethyl group. That is, the substituted piperazine compound (1) is a complex amine compound having a structure in which one molecule of piperazine and two molecules of MDEA are bonded. Since the substituent has a hydroxyl group, the water solubility of the substituted piperazine compound (1) is improved as compared with piperazine.
Figure 0006860147

MDEAの構造を有する置換基は、ピペラジンとMDEAとの混合系の吸収液における特有の反応連係及び有効性を考慮して採用されている。ピペラジンとMDEAとの混合系では、MDEAが水素を受容することによって、二酸化炭素とピペラジンとによるカルバメート形成反応の平衡がシフトして、重炭酸イオンの増加及び新たな二酸化炭素の取り込みが促進される。つまり、このような反応連係を1つの分子内で実現することを意図した設計である。置換ピペラジン化合物(1)には、2つの置換基が複素環骨格に導入されている。これは、混合系におけるピペラジンのアミノ基に対するMDEAのアミノ基の数が当量である時に二酸化炭素の吸収が最も効率的であることに基づいている。つまり、置換ピペラジン化合物(1)は、置換基のアミノ基による水素受容と、複素環のアミノ基によるカルバメート形成とが分子内で効率的に進行するように設計され、高い吸収性能が期待される。 Substituents having the structure of MDEA have been adopted in consideration of the unique reaction linkage and effectiveness in the absorption liquid of the mixed system of piperazine and MDEA. In a mixed system of piperazine and MDEA, the acceptance of hydrogen by MDEA shifts the equilibrium of the carbamate formation reaction between carbon dioxide and piperazine, and promotes the increase of bicarbonate ion and the uptake of new carbon dioxide. .. That is, the design is intended to realize such reaction linkage within one molecule. In the substituted piperazine compound (1), two substituents are introduced into the heterocyclic skeleton. This is based on the fact that carbon dioxide absorption is most efficient when the number of amino groups in MDEA relative to the amino groups in piperazine in the mixture is equivalent. That is, the substituted piperazine compound (1) is designed so that hydrogen acceptance by the amino group of the substituent and carbamate formation by the amino group of the heterocycle proceed efficiently in the molecule, and high absorption performance is expected. ..

置換ピペラジン化合物(1)の分子設計においては、新規物質の物性値を予測・算出する予測モデル(EPI suite:The Estimations Programs Interface for Windows、URLより入手可能。http://www.epa.gov/opptintr/exposure/rubs/episuitedl.htm)を用いて、設計された分子の揮発性を予測し、分子構造の評価に利用している。予測モデルによれば、置換ピペラジン化合物(1)の沸点及び蒸気圧(25℃)の推算値は、523.6℃及び3.19×10-12Paとなる。ピペラジン(沸点:146℃、蒸気圧(25℃):21.3Pa)の予測モデルによる沸点及び蒸気圧(25℃)の推算値が163.75℃及び94.9Paとなり、MDEA(沸点:247℃、蒸気圧(25℃):0.0267Pa)の推算値が233.46℃及び0.327Paとなることから、予測モデルによる推算値の依拠は妥当性がある。従って、置換ピペラジン化合物(1)の推算値によれば、置換ピペラジン化合物(1)は、吸収液における経時的変動の問題を解決するために満足な性質を実際に備えていると見なすことができる。 In the molecular design of the substituted piperazine compound (1), a prediction model (EPI suite: The Estimations Programs Interface for Windows, available from URL) that predicts and calculates the physical properties of new substances. Http://www.epa.gov/ opptintr / exposure / rubs / episuitedl.htm) is used to predict the volatility of the designed molecule and use it to evaluate the molecular structure. According to the prediction model, the estimated values of the boiling point and vapor pressure (25 ° C.) of the substituted piperazine compound (1) are 523.6 ° C. and 3.19 × 10 -12 Pa. Estimated values of boiling point and vapor pressure (25 ° C) based on the prediction model of piperazine (boiling point: 146 ° C, vapor pressure (25 ° C): 21.3 Pa) are 163.75 ° C and 94.9 Pa, and MDEA (boiling point: 247 ° C). , Vapor pressure (25 ° C.): 0.0267 Pa) Since the estimated values are 233.46 ° C. and 0.327 Pa, the reliance on the estimated values by the prediction model is valid. Therefore, according to the estimated value of the substituted piperazine compound (1), it can be considered that the substituted piperazine compound (1) actually has satisfactory properties for solving the problem of time-dependent fluctuation in the absorption liquid. ..

置換ピペラジン化合物(1)は、2,5−ジメチルピラジン(2)を出発原料とする下記のような合成ルートに従って、公知の合成手法によって調製することができる。或いは、この合成ルートにおいて2,5−ジメチルピラジン(2)の酸化によって生成される2,5−ピラジンジカルボン酸(3)は市販品として入手可能であるので、これを出発原料としても良い。合成ルートに従って、2,5−ピラジンジカルボン酸(3)は、水素による接触還元によって、ピペラジンジカルボン酸(4)に変換される。ピペラジンジカルボン酸(4)は、カルボキシ基をエステル化したエステル化合物(5)に変換して、ジエタノールアミン(6)との縮合反応を行うことによって、ジアミド化合物(7)が得られる。この化合物のアミド基を還元してカルボニル基をメチレン基に変換すると、ピペラジン環に結合する置換基は、ジ(2−ヒドロキシエチル)アミノメチル基になる。この還元反応を進行させるために、予め、ジアミド化合物(7)の水酸基を保護して保護アミド化合物(8)に変換した後に、カルボニル基を還元する。これによって得られる保護アミン化合物(9)は、水酸基が保護された置換ピペラジン化合物(1)であるので、保護アミン化合物(9)を脱保護することによって、置換ピペラジン化合物(1)が得られる。ジアミド化合物(7)の水酸基は、臭化ベンジルを用いたベンジル化によって好適に保護され、この時、ピペラジン環のアミノ基もベンジル化される。脱保護は、Pd/C触媒を用いた水素添加反応によって好適に進行し、水酸基及びピペラジン環のアミノ基の保護が共に外される。合成ルートにおける各反応工程の反応条件は、後述の実施例において記載する。

Figure 0006860147
The substituted piperazine compound (1) can be prepared by a known synthetic method according to the following synthetic route using 2,5-dimethylpyrazine (2) as a starting material. Alternatively, the 2,5-pyrazinedicarboxylic acid (3) produced by the oxidation of 2,5-dimethylpyrazine (2) in this synthetic route is available as a commercially available product, and may be used as a starting material. According to the synthetic route, 2,5-pyrazinedicarboxylic acid (3) is converted to piperazinedicarboxylic acid (4) by catalytic reduction with hydrogen. The piperazine dicarboxylic acid (4) is converted into an ester compound (5) in which a carboxy group is esterified, and a condensation reaction with diethanolamine (6) is carried out to obtain a diamide compound (7). When the amide group of this compound is reduced to convert the carbonyl group to a methylene group, the substituent attached to the piperazine ring becomes a di (2-hydroxyethyl) aminomethyl group. In order to proceed with this reduction reaction, the hydroxyl group of the diamide compound (7) is protected in advance and converted into the protected amide compound (8), and then the carbonyl group is reduced. Since the protected amine compound (9) thus obtained is a substituted piperazine compound (1) having a protected hydroxyl group, the substituted piperazine compound (1) can be obtained by deprotecting the protected amine compound (9). The hydroxyl group of the diamide compound (7) is suitably protected by benzylation with benzyl bromide, at which time the amino group of the piperazine ring is also benzylated. Deprotection proceeds favorably by a hydrogenation reaction using a Pd / C catalyst, and protection of both the hydroxyl group and the amino group of the piperazine ring is removed. The reaction conditions of each reaction step in the synthetic route will be described in Examples described later.
Figure 0006860147

上述の合成ルートにおける2,5−ピペラジンジカルボン酸(4)から保護アミン化合物(9)までの中間化合物、及び、最終生成物である置換ピペラジン化合物(1)には、各々、複素環に対する置換基の結合に関してシス型及びトランス型の立体異性体が存在し、シス型及びトランス型の置換ピペラジン化合物(cis-1,trans-1)の各々は、シス型及びトランス型の2,5−ピペラジンジカルボン酸(cis-4,trans-4)の各々から立体異性を保持して合成することができる。上記の合成ルートにおいては、トランス型の2,5−ピペラジンジカルボン酸(trans-4)からトランス型の置換ピペラジン化合物(trans-1)を生成するように記載されるが、シス型の置換ピペラジン化合物(cis-1)も同様にして、シス型の2,5−ピペラジンジカルボン酸(cis-4)から得られる。 The intermediate compound from 2,5-piperazindicarboxylic acid (4) to the protected amine compound (9) and the substituted piperazine compound (1), which is the final product, in the above-mentioned synthetic route each have a substituent for the heterocycle. There are cis and trans isomers with respect to the binding of, and each of the cis and trans substituted piperazine compounds (cis-1, trans-1) is a cis and trans type 2,5-piperazindicarboxylic acid. It can be synthesized from each of the acids (cis-4, trans-4) while retaining the steric isomerism. In the above synthetic route, it is described that a trans-type substituted piperazine compound (trans-1) is produced from a trans-type 2,5-piperazine dicarboxylic acid (trans-4), but a cis-type substituted piperazine compound is produced. (Cis-1) is also obtained from the cis-type 2,5-piperazindicarboxylic acid (cis-4) in the same manner.

接触還元反応によって得られる2,5−ピペラジンジカルボン酸(4)は、シス型及びトランス型の異性体の1:1混合物であり、この混合物の異性体分離又は異性化を行うことによって、シス型又はトランス型の2,5−ピペラジンジカルボン酸(cis-4又はtrans-4)を単体として得ることができる。 The 2,5-piperazindicarboxylic acid (4) obtained by the catalytic reduction reaction is a 1: 1 mixture of cis-type and trans-type isomers, and the cis-type is obtained by isomer separation or isomerization of this mixture. Alternatively, a trans-type 2,5-piperazindicarboxylic acid (cis-4 or trans-4) can be obtained as a single substance.

2,5−ピペラジンジカルボン酸(4)の異性化に関して、シス型の2,5−ピペラジンジカルボン酸(cis-4)は、水酸化カリウム水溶液中で加熱することによってトランス型への異性化が可能である。従って、接触還元によって生成される2,5−ピペラジンジカルボン酸(4)のシス型及びトランス型の混合物に異性化処理を施すことによって、trans-2,5−ピペラジンジカルボン酸(trans-4)が得られる。 Regarding the isomerization of 2,5-piperazine dicarboxylic acid (4), the cis-type 2,5-piperazine dicarboxylic acid (cis-4) can be isomerized to the trans-type by heating in an aqueous potassium hydroxide solution. Is. Therefore, by subjecting the cis-type and trans-type mixtures of 2,5-piperazindicarboxylic acid (4) produced by catalytic reduction to isomerization treatment, trans-2,5-piperazindicarboxylic acid (trans-4) can be obtained. can get.

2,5−ピペラジンジカルボン酸(4)の異性体分離に関して、異性体間の溶解度差を利用して一方の異性体を析出させることによって、異性体混合物を各々の異性体に分離可能である。具体的には、接触還元反応後の反応液(2,5−ピペラジンジカルボン酸(4)の塩基性水溶液)をpH6.3程度に調整することによって、トランス型の2,5−ピペラジンジカルボン酸(trans-4)が水溶液から析出する。これを濾取することで、純粋なtrans-2,5−ピペラジンジカルボン酸(trans-4)が得られる。濾液においては、濾過時の刺激等によって両異性体の析出が生じるので、一旦pHを3.0程度以下に低下させて析出物を溶解する。これにより、cis-2,5−ピペラジンジカルボン酸(cis-4)が豊富な溶液を得られ、この溶液をpH4.3程度に調整することによって、cis-2,5−ピペラジンジカルボン酸(cis-4)が析出する。これを濾取することで、純粋なcis-2,5−ピペラジンジカルボン酸(cis-4)が得られる。この後、回収した濾液を塩基性(pH13程度)に調整して濾液の析出物を溶解すれば、上述の操作を繰り返すことによって、trans-2,5−ピペラジンジカルボン酸(trans-4)及びcis-2,5−ピペラジンジカルボン酸(cis-4)を交互に析出し濾別することができる。 Regarding the isomer separation of 2,5-piperazindicarboxylic acid (4), the isomer mixture can be separated into each isomer by precipitating one isomer by utilizing the difference in solubility between the isomers. Specifically, by adjusting the reaction solution after the catalytic reduction reaction (basic aqueous solution of 2,5-piperazindicarboxylic acid (4)) to about pH 6.3, trans-type 2,5-piperazindicarboxylic acid (2,5-piperazindicarboxylic acid (4)) trans-4) precipitates from the aqueous solution. By filtering this, pure trans-2,5-piperazindicarboxylic acid (trans-4) can be obtained. In the filtrate, precipitation of both isomers occurs due to irritation during filtration or the like, so the pH is once lowered to about 3.0 or less to dissolve the precipitate. As a result, a solution rich in cis-2,5-piperazindicarboxylic acid (cis-4) was obtained, and by adjusting this solution to about pH 4.3, cis-2,5-piperazindicarboxylic acid (cis-) was obtained. 4) precipitates. By filtering this, pure cis-2,5-piperazindicarboxylic acid (cis-4) is obtained. After that, if the recovered filtrate is adjusted to be basic (about pH 13) and the precipitate of the filtrate is dissolved, trans-2,5-piperazindicarboxylic acid (trans-4) and cis can be obtained by repeating the above operation. -2,5-Piperazine dicarboxylic acid (cis-4) can be alternately precipitated and filtered.

置換ピペラジン化合物(1)は、4つのアミノ基によって、二酸化炭素、硫黄酸化物、窒素酸化物、塩化水素等の酸性ガスに対する吸収剤としての機能を発揮する。その分子構造は、二酸化炭素の吸収に優れた性能を発揮するピペラジンとMDEAとの組み合わせを模倣して設計されているので、特に二酸化炭素に対する吸収性能が期待される。置換ピペラジン化合物(1)を吸収剤として用いた吸収液における二酸化炭素の吸収・放散性能は、図1から理解される。図1は、トランス型の置換ピペラジン化合物(trans-1)を吸収剤として用いた吸収液における二酸化炭素のローディング(吸収剤1モル当たりの吸収二酸化炭素モル数)を測定した結果を示し、比較のために、ピペラジン/MDEA(モル比=1:2)の吸収液における測定結果を合わせて記載している(尚、図1において、「PZ」はピペラジンを、「TEDAPz」は置換ピペラジン化合物(1)を示す)。 The substituted piperazine compound (1) exerts a function as an absorbent for acid gases such as carbon dioxide, sulfur oxides, nitrogen oxides and hydrogen chloride by means of four amino groups. Its molecular structure is designed to imitate the combination of piperazine and MDEA, which exhibit excellent performance in absorbing carbon dioxide, and thus is expected to have particularly high absorption performance in carbon dioxide. The absorption / emission performance of carbon dioxide in the absorption liquid using the substituted piperazine compound (1) as an absorbent is understood from FIG. FIG. 1 shows the results of measuring the loading of carbon dioxide (the number of moles of carbon dioxide absorbed per mole of the absorbent) in the absorbent liquid using the trans-type substituted piperazine compound (trans-1) as the absorbent, and shows the results for comparison. Therefore, the measurement results of the piperazine / MDEA (molar ratio = 1: 2) in the absorption solution are also described (in FIG. 1, “PZ” is piperazine and “TEDAPz” is the substituted piperazine compound (1). ) Is shown).

図1に示す測定結果から判るように、置換ピペラジン化合物(1)の吸収液は、温度が50℃(開始から60分まで)において二酸化炭素を吸収し、温度が80℃(60分以降)において二酸化炭素を放出する。従って、置換ピペラジン化合物(1)は二酸化炭素の吸収剤として機能し、これを有効成分として二酸化炭素処理用の吸収剤を構成することができる。ピペラジン/MDEAの混合吸収液と比較すると、トランス型の置換ピペラジン化合物(trans-1)の吸収液における二酸化炭素の吸収速度は小さいが、吸収液の加熱再生時に吸収剤の放散が抑制される点を活かして温度条件を最適化することによって、より多くの二酸化炭素のローディングが可能である。シス型の置換ピペラジン化合物(cis-1)についても、吸収剤として用いた吸収液は良好な吸収性能を示すことが、後述する図4の結果から明らかである。シス型の置換ピペラジン化合物(cis-1)は、トランス型のものよりも、ピペラジン/MDEAの混合吸収液に近い吸収挙動を示す。このように、置換ピペラジン化合物(1)は、シス型及びトランス型の何れも吸収剤として有用である。従って、置換ピペラジン化合物(1)は、シス型及びトランス型の混合状態で吸収剤として用いることも可能である。 As can be seen from the measurement results shown in FIG. 1, the absorbent solution of the substituted piperazine compound (1) absorbs carbon dioxide at a temperature of 50 ° C. (from the start to 60 minutes) and at a temperature of 80 ° C. (after 60 minutes). Releases carbon dioxide. Therefore, the substituted piperazine compound (1) functions as an absorbent for carbon dioxide, and can be used as an active ingredient to form an absorbent for carbon dioxide treatment. Compared with the mixed absorption liquid of piperazine / MDEA, the absorption rate of carbon dioxide in the absorption liquid of the trans-type substituted piperazine compound (trans-1) is small, but the emission of the absorbent is suppressed during the heating and regeneration of the absorption liquid. By optimizing the temperature conditions by taking advantage of this, more carbon dioxide can be loaded. It is clear from the results of FIG. 4 described later that the absorption liquid used as the absorbent also exhibits good absorption performance for the cis-type substituted piperazine compound (cis-1). The cis-type substituted piperazine compound (cis-1) exhibits an absorption behavior closer to that of the piperazine / MDEA mixed absorption solution than the trans-type compound. As described above, the substituted piperazine compound (1) is useful as an absorbent in both the cis type and the trans type. Therefore, the substituted piperazine compound (1) can also be used as an absorbent in a mixed state of cis type and trans type.

置換ピペラジン化合物(1)を吸収剤として使用して吸収液を調製する際に、助剤の添加や溶媒組成の調整によって、吸収液の吸収・放散性能を改善することが可能である。助剤としては、ピペラジンとMDEAの組み合わせにおけるMDEAの役割をする化合物、つまり、置換ピペラジン化合物(1)に対して水素イオンの収受を行う水素イオン受容体として作用し得る化合物が使用可能である。従って、活性メチレン基を有する各種化合物から選定することができ、例えば、MDEAや2−(イソプロピルアミノ)エタノール(IPAE)などが挙げられるが、アミノ化合物に限定する必要はない。但し、吸収液中の置換ピペラジン化合物(1)が溶存安定性の点から、置換ピペラジン化合物(1)と親和性を有する水溶性の化合物が適している。置換ピペラジン化合物(1)より酸解離定数pKaが高い化合物であると、共存状態において水素イオン受容体として作用し易い。化合物のpKa値は、測定条件によって変化するが、同じ測定条件でのpKa値を用いた比較によって簡易的に選定することができる。例えば、アセト酢酸エチル、マロン酸ジメチル等のオキソカルボン酸エステル及びマロン酸ジエステルは活性水素を有し、pKa値が高い(アセト酢酸エチル:11、マロン酸ジメチル:13)ので、このような構造を含んだ水溶性化合物を助剤として使用可能である。また、マロノニトリル、シアノ酢酸エチル等のシアノ化合物やメルドラム酸等も活性メチレン基を有する。 When preparing an absorption liquid using the substituted piperazine compound (1) as an absorbent, it is possible to improve the absorption / dissipation performance of the absorption liquid by adding an auxiliary agent or adjusting the solvent composition. As the auxiliary agent, a compound that plays a role of MDEA in the combination of piperazine and MDEA, that is, a compound that can act as a hydrogen ion receptor that receives hydrogen ions from the substituted piperazine compound (1) can be used. Therefore, it can be selected from various compounds having an active methylene group, and examples thereof include MDEA and 2- (isopropylamino) ethanol (IPAE), but it is not necessary to limit the compound to amino compounds. However, a water-soluble compound having an affinity with the substituted piperazine compound (1) is suitable from the viewpoint of dissolution stability of the substituted piperazine compound (1) in the absorbing solution. When the compound has a higher acid dissociation constant pKa than the substituted piperazine compound (1), it easily acts as a hydrogen ion receptor in the coexistence state. The pKa value of the compound varies depending on the measurement conditions, but can be easily selected by comparison using the pKa values under the same measurement conditions. For example, oxocarboxylic acid esters such as ethyl acetoacetate and dimethyl malonate and malonic acid diesters have active hydrogen and have a high pKa value (ethyl acetoacetate: 11, dimethyl malonate: 13). The contained water-soluble compound can be used as an auxiliary agent. In addition, cyano compounds such as malononitrile and ethyl cyanoacetate and meldrum's acid also have an active methylene group.

助剤として使用可能な、MDEA及びIPAE以外のアミノ化合物としては、例えば、モノエタノールアミン(MEA)、2−アミノ−2−メチルプロパノール、ジエタノールアミン、2−(メチルアミノ)エタノール(MAE)、2−(エチルアミノ)エタノール(EAE)、2−(プロピルアミノ)エタノール(PAE)、N−エチル−2−アミノ−2−メチルプロパノール、1−ジメチルアミノ−2−プロパノール、2−アミノ−2−メチルプロパノール、ジイソプロパノールアミン、トリエタノールアミン等の鎖状アミノアルカノール類が挙げられる。実用的には、水溶性の観点では、炭素数が10以下、好ましくは5以下の鎖状脂肪族アミノアルコール類が好ましい。pKa値の高さでは、アミノ基数及び水酸基数の和が3以下である鎖状脂肪族アミノアルコールであると好ましく、概してpKa値が8.5程度以上であると好適である。 Amino compounds other than MDEA and IPAE that can be used as auxiliaries include, for example, monoethanolamine (MEA), 2-amino-2-methylpropanol, diethanolamine, 2- (methylamino) ethanol (MAE), 2- (Ethylamino) ethanol (EAE), 2- (propylamino) ethanol (PAE), N-ethyl-2-amino-2-methylpropanol, 1-dimethylamino-2-propanol, 2-amino-2-methylpropanol , Diisopropanolamine, triethanolamine and other chain aminoalkanols. Practically, from the viewpoint of water solubility, chain aliphatic amino alcohols having 10 or less carbon atoms, preferably 5 or less carbon atoms are preferable. In terms of high pKa value, it is preferable that the chain aliphatic amino alcohol has a sum of the number of amino groups and the number of hydroxyl groups of 3 or less, and generally, the pKa value is preferably about 8.5 or more.

吸収剤として、他のアミノ化合物を置換ピペラジン化合物(1)と組み合わせて使用しても良い。但し、置換ピペラジン化合物(1)は、加熱再生時に気化し難い吸収剤として設計された化合物であるので、これと組み合わせて使用するには、同等に気化し難い吸収剤を選択することが望ましい。従って、分子量が大きいアミノ化合物が好ましく、例えば、ジグリコールアミン等のアミノポリオール類などが挙げられる。 As an absorbent, another amino compound may be used in combination with the substituted piperazine compound (1). However, since the substituted piperazine compound (1) is a compound designed as an absorbent that is hard to vaporize during heat regeneration, it is desirable to select an absorbent that is equally hard to vaporize in order to use it in combination with the absorbent. Therefore, an amino compound having a large molecular weight is preferable, and examples thereof include amino polyols such as diglycolamine.

一般的に、吸収液の吸収剤濃度は、処理対象とするガスに含まれる二酸化炭素等の酸性ガスの量や処理速度等に応じて適宜設定することができ、吸収液の流動性や消耗損失抑制などの点を考慮して、10〜50質量%程度の濃度が適用される。例えば、二酸化炭素含有量20%程度のガスの処理に対して、濃度30質量%程度の吸収液が好適に使用される。本発明においても、処理対象とするガスの酸性ガス含有量や処理速度等に応じて吸収剤の濃度を適宜設定することができ、吸収剤の濃度は、吸収液の10〜50質量%程度が好ましい。助剤として水素イオン受容性化合物を添加する場合は、吸収剤と助剤との総量として10〜50質量%程度の濃度が適用される。助剤の濃度は、吸収剤のヘテロ窒素(ピペリジン環のアミノ基)に対してモル当量の0.5〜1.2倍程度に相当するように設定するとよい。吸収剤と助剤とを組み合わせることによって、吸収液の二酸化炭素吸収速度が速まり、接触時間当たりの吸収量つまり吸収性能が向上する。 In general, the absorbent concentration of the absorbing liquid can be appropriately set according to the amount of acid gas such as carbon dioxide contained in the gas to be treated, the treatment speed, and the like, and the fluidity and consumption loss of the absorbing liquid can be set appropriately. A concentration of about 10 to 50% by mass is applied in consideration of suppression and the like. For example, an absorbing liquid having a concentration of about 30% by mass is preferably used for treating a gas having a carbon dioxide content of about 20%. Also in the present invention, the concentration of the absorbent can be appropriately set according to the acid gas content of the gas to be treated, the treatment speed, and the like, and the concentration of the absorbent is about 10 to 50% by mass of the absorbent. preferable. When a hydrogen ion-accepting compound is added as an auxiliary agent, a concentration of about 10 to 50% by mass is applied as the total amount of the absorbent and the auxiliary agent. The concentration of the auxiliary agent may be set so as to correspond to about 0.5 to 1.2 times the molar equivalent with respect to the heteronitrogen (amino group of the piperidine ring) of the absorbent. By combining the absorbent and the auxiliary agent, the carbon dioxide absorption rate of the absorbing liquid is increased, and the absorption amount per contact time, that is, the absorption performance is improved.

又、アルコール類、ポリオール類等のアルコール系溶剤は、置換ピペラジン化合物(1)の溶解安定性を高めるのに有効であるので、このような溶剤を含んだ水性液を溶媒として用いて吸収液を調製しても良い。溶剤の添加によって、吸収剤としての機能発現を安定化し得る。アルコール系溶剤を添加する場合、酸性ガスの溶解性等を考慮して水性液の溶剤濃度を設定すると好ましい。更に、必要に応じて、従来使用されている他の各種添加剤を吸収液に配合しても良い。 Further, since alcohol-based solvents such as alcohols and polyols are effective in enhancing the dissolution stability of the substituted piperazine compound (1), an aqueous solution containing such a solvent is used as a solvent to prepare an absorbent solution. May be prepared. The addition of a solvent can stabilize the expression of function as an absorbent. When an alcohol-based solvent is added, it is preferable to set the solvent concentration of the aqueous solution in consideration of the solubility of acid gas and the like. Further, if necessary, various other conventionally used additives may be added to the absorption liquid.

置換ピペラジン化合物(1)を吸収剤として含有する水性液を調製し、これを吸収液として用いて、ガスと吸収液とを気液接触させることにより、ガス中に含まれる酸性ガスが吸収液に吸収される。従って、硫黄酸化物、窒素酸化物、二酸化炭素、硫化水素、ハロゲン化水素等の酸性ガスを除去する酸性ガス処理用の吸収液に利用することができ、燃焼排ガス等のガス処理に適用できる。必要に応じて、ガスの吹き込みによるスクラバ洗浄や、充填材を通過させる形態など、様々な処理形態から適宜選択して処理を実施することができる。吸収液に吸収された酸性ガスは、熱平衡に従って放散し得るので、加熱によって吸収液は再生され、再度使用可能になる。概して、再生時の吸収液の加熱温度は沸点近傍に設定することができる。必要に応じて再生雰囲気の圧力を調整することによって、加熱温度を適宜調整することができる。 An aqueous liquid containing the substituted piperazine compound (1) as an absorbent is prepared, and this is used as the absorbent to bring the gas and the absorbent into gas-liquid contact, whereby the acid gas contained in the gas becomes the absorbent. Be absorbed. Therefore, it can be used as an absorption liquid for acid gas treatment for removing acid gas such as sulfur oxide, nitrogen oxide, carbon dioxide, hydrogen sulfide, and hydrogen halide, and can be applied to gas treatment such as combustion exhaust gas. If necessary, the treatment can be carried out by appropriately selecting from various treatment forms such as scrubber cleaning by blowing gas and a form in which a filler is passed. Since the acid gas absorbed by the absorption liquid can be dissipated according to thermal equilibrium, the absorption liquid is regenerated by heating and can be used again. In general, the heating temperature of the absorbent during regeneration can be set near the boiling point. The heating temperature can be appropriately adjusted by adjusting the pressure of the regeneration atmosphere as needed.

[置換ピペラジン化合物(1)の合成1]
前述の合成ルートに従って、以下の手順による置換ピペラジン化合物(1)の合成を行った。下記の合成では、トランス型の置換ピペラジン化合物(trans-1)を得た。
[Synthesis of Substituted Piperazine Compound (1) 1]
According to the above-mentioned synthesis route, the substituted piperazine compound (1) was synthesized by the following procedure. In the synthesis below, a trans-type substituted piperazine compound (trans-1) was obtained.

<2,5−ピラジンジカルボン酸(3)>
ピリジンと水の混合液(混合質量比:20/1)840mlに、54g(498mmol)の2,5−ジメチルピラジン(東京化成社製)、及び、224g(2.02mol)の二酸化セレンを加えて攪拌し、この混合物を48時間加熱還流した。反応液を常温まで冷却して濾過し、濾過残渣をピリジンと水の混合液(混合質量比:20/1)で洗浄して、濾液及び洗浄液を合わせて液体を留去し、固形物を得た。
<2,5-Pyrazinedicarboxylic acid (3)>
To 840 ml of a mixture of pyridine and water (mixed mass ratio: 20/1), 54 g (498 mmol) of 2,5-dimethylpyrazine (manufactured by Tokyo Kasei Co., Ltd.) and 224 g (2.02 mol) of selenium dioxide were added. The mixture was stirred and the mixture was heated to reflux for 48 hours. The reaction solution is cooled to room temperature and filtered, the filtration residue is washed with a mixed solution of pyridine and water (mixed mass ratio: 20/1), the filtrate and the washing solution are combined, and the liquid is distilled off to obtain a solid substance. It was.

得られた固形物を、抽出溶媒として用いた2Mジメチルアミン水溶液に分散させ、濾過によって残留固形物を抽出液から除去した。抽出液から溶媒を留去することにより、71g(収率85%)の2,5−ピラジンジカルボン酸(3)を得た。 The obtained solid was dispersed in a 2M dimethylamine aqueous solution used as an extraction solvent, and the residual solid was removed from the extract by filtration. By distilling off the solvent from the extract, 71 g (yield 85%) of 2,5-pyrazinedicarboxylic acid (3) was obtained.

<2,5−ピペラジンジカルボン酸(4)>
9.35g(167mmol)の水酸化カリウム及び11g(65mmol)の2,5−ピラジンジカルボン酸(3)を水(200ml)に溶解した。この溶液に、反応基質に対して5mol%の割合で5%Pd/C触媒を添加し、50℃に加熱しながら水素(1MPa)を供給して、水素添加反応を18時間行った。原料が消費され定量的に反応が進行していることをガスクロマトグラフで確認した。反応液を濾過して触媒を除去することにより、生成物の水溶液を得た。この生成物は、1H NMR測定で得られた測定結果が、参照文献(Witiak, D.T.; Nair, R.V.; Schmid, F.A., "Synthesis and antimetastatic properties of stereoisomeric tricyclic bis(dioxopiperazines) in the Lewis lung carcinoma model", J. Med. Chem. 1985, 28, 1228-1234)に記載される化学シフト値と一致したことによって、2,5−ピペラジンジカルボン酸(4)であることを確認した。
<2,5-Piperazine dicarboxylic acid (4)>
9.35 g (167 mmol) of potassium hydroxide and 11 g (65 mmol) of 2,5-pyrazinedicarboxylic acid (3) were dissolved in water (200 ml). A 5% Pd / C catalyst was added to this solution at a ratio of 5 mol% with respect to the reaction substrate, hydrogen (1 MPa) was supplied while heating at 50 ° C., and the hydrogenation reaction was carried out for 18 hours. It was confirmed by gas chromatography that the raw material was consumed and the reaction was proceeding quantitatively. The reaction solution was filtered to remove the catalyst to obtain an aqueous solution of the product. For this product, the measurement result obtained by 1 H NMR measurement is the reference (Witiak, DT; Nair, RV; Schmid, FA, "Synthesis and antimetastatic properties of stereoisomeric tricyclic bis (dioxopiperazines) in the Lewis lung carcinoma model". By agreeing with the chemical shift value described in ", J. Med. Chem. 1985, 28, 1228-1234), it was confirmed that it was 2,5-piperazin dicarboxylic acid (4).

<2,5−ピペラジンジカルボン酸(4)の異性体分離>
上述において生成物の水溶液として得た2,5−ピペラジンジカルボン酸(4)の水溶液に、3MHCl水溶液を添加してpHを6.3に調整したところ、水溶液から白色の固形物が析出した。水溶液の濾過によって固形物を分離し、これを乾燥して7gの固形物を得た。得られた固形物の1H NMR測定結果から、この固形物がトランス型の2,5−ピペラジンジカルボン酸(trans-4)である(収率63%)ことを前記参照文献によって確認した。
<Isomer separation of 2,5-piperazindicarboxylic acid (4)>
When the pH was adjusted to 6.3 by adding a 3M HCl aqueous solution to the aqueous solution of 2,5-piperazindicarboxylic acid (4) obtained as the aqueous solution of the product described above, a white solid substance was precipitated from the aqueous solution. The solid matter was separated by filtration of the aqueous solution and dried to obtain 7 g of the solid matter. From the 1 H NMR measurement result of the obtained solid matter, it was confirmed by the above-mentioned reference that this solid matter was a trans-type 2,5-piperazindicarboxylic acid (trans-4) (yield 63%).

一方、上述の濾過で得られた濾液に3MHCl水溶液を添加してpHを3.0に調整し、濾過後の析出物を濾液に溶解させた。この水溶液に2MKOH水溶液を添加してpHを4.3に調整したところ、水溶液から白色の固形物が析出した。この水溶液の濾過によって固形物を分離し、これを乾燥して4gの固形物を得た。1H NMR測定結果から、この固形物がシス型の2,5−ピペラジンジカルボン酸(cis-4)である(収率37%)ことを前記参照文献によって確認した。 On the other hand, a 3M HCl aqueous solution was added to the filtrate obtained by the above filtration to adjust the pH to 3.0, and the precipitate after filtration was dissolved in the filtrate. When a 2MKOH aqueous solution was added to this aqueous solution to adjust the pH to 4.3, a white solid substance was precipitated from the aqueous solution. The solid matter was separated by filtration of this aqueous solution and dried to obtain 4 g of the solid matter. From the 1 H NMR measurement results, it was confirmed by the above-mentioned reference that this solid substance was a cis-type 2,5-piperazindicarboxylic acid (cis-4) (yield 37%).

<2,5−ピペラジンジカルボン酸(4)の異性化>
前述の水素添加反応によって得られた、シス:トランス混合物(1:1)である2,5−ピペラジンジカルボン酸(4)の水溶液をオートクレーブに投入し、200℃で16時間加熱した。得られた水溶液に含まれる生成物は、トランス型の2,5−ピペラジンジカルボン酸であり、シス型からトランス型への異性化が進行したことが、1H NMR測定により確認された。
<Isomerization of 2,5-piperazindicarboxylic acid (4)>
An aqueous solution of 2,5-piperazindicarboxylic acid (4), which is a cis: trans mixture (1: 1), obtained by the above-mentioned hydrogenation reaction was put into an autoclave and heated at 200 ° C. for 16 hours. The product contained in the obtained aqueous solution was a trans-type 2,5-piperazindicarboxylic acid, and it was confirmed by 1 1 1 H NMR measurement that the isomerization from the cis-type to the trans-type proceeded.

<trans-エステル化合物(trans-5):trans-2,5−ピペラジンジカルボン酸ジメチルエステル>
14g(78mmol)のtrans-2,5−ピペラジンジカルボン酸(trans-4)をメタノール(800ml)に溶解し、触媒として濃硫酸(80g、10eq)を加えて18時間加熱還流することによって脱水反応を進行させた。反応後、飽和炭酸ナトリウム水溶液及び塩化メチレンを加え、水相のpHを9.0に調整して有機相と水相とを分離した。有機相を取り出して塩化メチレン及び余剰のメタノールを留去して濃縮し、残留物にヘキサンを加えることによって、ヘキサンから析出物が生じた。この析出物を濾過によって分離して乾燥することにより、10.5gの生成物を得た。得られた生成物の1H NMR測定を行って、上述の参照文献における測定値との一致により、生成物はtrans-2,5−ピペラジンジカルボン酸ジメチルエステルであることが確認された(収率69%)。
<Trans-ester compound (trans-5): trans-2,5-piperazindicarboxylic acid dimethyl ester>
The dehydration reaction was carried out by dissolving 14 g (78 mmol) of trans-2,5-piperazindicarboxylic acid (trans-4) in methanol (800 ml), adding concentrated sulfuric acid (80 g, 10 eq) as a catalyst, and heating under reflux for 18 hours. I made it progress. After the reaction, saturated aqueous sodium carbonate solution and methylene chloride were added to adjust the pH of the aqueous phase to 9.0, and the organic phase and the aqueous phase were separated. The organic phase was taken out, methylene chloride and excess methanol were distilled off and concentrated, and hexane was added to the residue to form a precipitate from hexane. The precipitate was separated by filtration and dried to give 10.5 g of product. 1 H NMR measurement of the obtained product was carried out, and it was confirmed that the product was a trans-2,5-piperazindicarboxylic acid dimethyl ester by agreement with the measured values in the above references (yield). 69%).

<trans-ジアミド化合物(trans-7):trans-2,5−ピペラジンジカルボン酸ジ(2−ヒドロキシエチル)アミド>
1.3g(6.3mmol)のtrans-エステル化合物(trans-5)と1.3g(13mmol)のジエタノールアミン(6)との混合物を80℃で2時間加熱して縮合反応を進行させた。反応液は固化し、この固化物をメタノールで洗浄して残留ジエタノールアミンを固化物から除去し、デカンテーションして、粗生成物として固化物2.3gを得た。得られた固化物の1H NMR測定によって、trans-2,5−ピペラジンジカルボン酸の2つのカルボキシ基がジエタノールアミンによってアミド化されたtrans-ジアミド化合物(trans-7)であることが確認された(収率96%)。
<Trans-diamide compound (trans-7): trans-2,5-piperazine dicarboxylic acid di (2-hydroxyethyl) amide>
A mixture of 1.3 g (6.3 mmol) of the trans-ester compound (trans-5) and 1.3 g (13 mmol) of diethanolamine (6) was heated at 80 ° C. for 2 hours to allow the condensation reaction to proceed. The reaction mixture was solidified, and the solidified product was washed with methanol to remove residual diethanolamine from the solidified product and decanted to obtain 2.3 g of the solidified product as a crude product. 1 H NMR measurement of the obtained solidified product confirmed that the two carboxy groups of trans-2,5-piperazindicarboxylic acid were trans-diamide compounds (trans-7) amidated with diethanolamine (trans-7). Yield 96%).

(測定結果)
trans-ジアミド化合物(trans-7):白色固体、mp102.5−103.8℃(from AcOEt/Et2O)
1H NMR(399.78MHz,D2O):δ=3.76(dd,J=11.0, 3.0Hz,2H),3.66-3.38(m,14H),3.27(dt,J=13.6, 6.0Hz,2H)、3.04(dd,J=13.4,3.0Hz,2H),2.52(dd,J=13.4, 11.0Hz,2H),6H(-NH, -OH) was not observed
13C NMR(100.53MHz,D2O):δ=173.85(2C),59.39(2C),59.37(2C),54.98(2C),50.84(2C),48.66(2C),46.61(2C)
HRMS(ESI+)m/z:calcd for C142946[M+H]+ 349.2082, found 349.2082
(Measurement result)
trans-diamide compound (trans-7): white solid, mp 102.5-13.8 ° C (from AcOEt / Et 2 O)
1 1 H NMR (399.78MHz, D 2 O): δ = 3.76 (dd, J = 11.0, 3.0Hz, 2H), 3.66-3.38 (m, 14H), 3.27 (dt, J = 13.6, 6.0Hz, 2H) , 3.04 (dd, J = 13.4, 3.0Hz, 2H), 2.52 (dd, J = 13.4, 11.0Hz, 2H), 6H (-NH, -OH) was not observed
13 C NMR (100.53 MHz, D 2 O): δ = 173.85 (2C), 59.39 (2C), 59.37 (2C), 54.98 (2C), 50.84 (2C), 48.66 (2C), 46.61 (2C)
HRMS (ESI + ) m / z: calcd for C 14 H 29 N 4 O 6 [M + H] + 349.2082, found 349.2082

<trans-ジアミド化合物(trans-7)の水酸基保護>
上述の生成方法によって得られた5.0g(13mmol)のtrans-ジアミド化合物(7)をN,N−ジメチルホルムアミド(15ml)に溶解して0℃に冷却し、2.2g(7eq)の水素化ナトリウムを加えた。これに1.6g(7eq)の臭化ベンジルを滴下した後、3時間攪拌して反応を進行させた。この後、反応液に水を加えて攪拌することによって反応を止め、溶媒を減圧留去して残渣物を得た。この残渣物に酢酸エチルを加えて有機相とし、この有機相を水及び食塩水を用いて順次洗浄した。洗浄後の有機相を取り出し、乾燥剤で乾燥した後に溶媒を源圧留去して濃縮した。この濃縮物を、エーテルを用いて結晶化することにより、10.7gの白色の固体が得られた。得られた白色固体の1H NMR測定を行った。その結果は、以下の通りであり、生成物は、trans-ジアミド化合物(7)の4つの水酸基及び2つの環状アミノ基において水素がベンジル基に置換された保護アミド化合物(trans-8)であることが確認された(収率88%)。
<Hydroxy group protection of trans-diamide compound (trans-7)>
5.0 g (13 mmol) of the trans-diamide compound (7) obtained by the above-mentioned production method is dissolved in N, N-dimethylformamide (15 ml), cooled to 0 ° C., and 2.2 g (7eq) of hydrogen. Sodium hydride was added. After adding 1.6 g (7 eq) of benzyl bromide to this, the reaction was allowed to proceed with stirring for 3 hours. Then, water was added to the reaction solution and stirred to stop the reaction, and the solvent was distilled off under reduced pressure to obtain a residue. Ethyl acetate was added to the residue to prepare an organic phase, and the organic phase was washed successively with water and brine. The organic phase after washing was taken out, dried with a desiccant, and the solvent was distilled off at source pressure to concentrate. Crystallization of this concentrate with ether gave 10.7 g of a white solid. 1 H NMR measurement of the obtained white solid was performed. The results are as follows, and the product is a protected amide compound (trans-8) in which hydrogen is replaced with a benzyl group at the four hydroxyl groups and two cyclic amino groups of the trans-diamide compound (7). It was confirmed (yield 88%).

(測定結果)
1H NMR(399.78MHz,CDCl3):δ=7.33-7.17(m,30H),4.38(s,4H)、4.17(dd,J=16.0,12.0Hz,4H),3.78-3.38(m,20H),3.08(d,J=12.8Hz,2H),2.84(d,J=11.2Hz,2H),2.50(t,J=11.2Hz,2H)
(Measurement result)
1 1 H NMR (399.78 MHz, CDCl 3 ): δ = 7.33-7.17 (m, 30H), 4.38 (s, 4H), 4.17 (dd, J = 16.0, 12.0Hz, 4H), 3.78-3.38 (m, 20H) ), 3.08 (d, J = 12.8Hz, 2H), 2.84 (d, J = 11.2Hz, 2H), 2.50 (t, J = 11.2Hz, 2H)

<保護アミド化合物(trans-8)の還元>
上述の生成方法によって得た9.5g(10mmol)の保護アミド化合物(trans-8)を脱水THF(100ml)に加えて溶解し、保護アミド化合物溶液を調製した。0.8g(2eq)のLiAlH4のTHF溶液を調製して、これを攪拌しながら、保護アミド化合物溶液を徐々に滴下して混合し、14時間加熱還流して反応を進行させた。この後、反応液を室温に冷却し、攪拌しながら、水(0.8ml)、15%水酸化ナトリウム水溶液(0.8ml)及び水(2.4ml)を順次ゆっくりと反応液に滴下した。セライトを用いて反応液を吸引濾過して反応液から沈殿物を除去し、濾過残渣をTHFで良く洗浄した。濾液及び洗浄液を合わせてTHFを留去して、無色の油状生成物7.7gを得た。
<Reduction of protected amide compound (trans-8)>
9.5 g (10 mmol) of the protected amide compound (trans-8) obtained by the above-mentioned production method was added to dehydrated THF (100 ml) and dissolved to prepare a protected amide compound solution. A 0.8 g (2 eq) THF solution of LiAlH 4 was prepared, and the protected amide compound solution was gradually added dropwise and mixed while stirring the mixture, and the mixture was heated under reflux for 14 hours to allow the reaction to proceed. Then, the reaction solution was cooled to room temperature, and water (0.8 ml), a 15% aqueous sodium hydroxide solution (0.8 ml) and water (2.4 ml) were slowly added dropwise to the reaction solution while stirring. The reaction solution was suction-filtered using Celite to remove the precipitate from the reaction solution, and the filtration residue was thoroughly washed with THF. The filtrate and washing solution were combined and THF was distilled off to obtain 7.7 g of a colorless oily product.

得られた油状生成物について、1H NMR測定及び13C NMR測定、高分解能質量分析装置(HRMS)による分子量測定を行った。その結果は、以下の通りであり、生成物は、置換ピペラジン化合物(trans-1)の水酸基及びアミノ基の水素がベンジル基に置換された保護アミン化合物(trans-9)であることが確認された(収率89%)。 The obtained oily product was subjected to 1 H NMR measurement, 13 C NMR measurement, and molecular weight measurement by a high resolution mass spectrometer (HRMS). The results are as follows, and it was confirmed that the product is a protected amine compound (trans-9) in which the hydrogen of the hydroxyl group and amino group of the substituted piperazine compound (trans-1) is substituted with a benzyl group. (Yield 89%).

(測定結果)
1H NMR(399.78MHz,CDCl3):δ=7.25-7.15(m,30H),4.32(s,8H)、4.09(d,J=13.6Hz,2H),3.33(m,8H),3.09(d,J=13.6Hz,2H),2.80(dd,J=14.4,12.4Hz,4H),2.57(t,J=6.2Hz,8H),2.37(m,4H),2.00(m,2H)
13C NMR(600.13MHz、CDCl3):δ=139.4(2C),138.5(4C),128.9(4C),128.3(8C),128.1(4C),127.6(8C),127.4(4C),126.6(2C),73.0(8C),68.9(4C),58.2(2C),58.1(2C),55.0(4C)
HRMS(ESI+)m/z:calcd for C566944[M+H]+ 861.5313, found 861.5307
(Measurement result)
1 1 H NMR (399.78 MHz, CDCl 3 ): δ = 7.25-7.15 (m, 30H), 4.32 (s, 8H), 4.09 (d, J = 13.6Hz, 2H), 3.33 (m, 8H), 3.09 ( d, J = 13.6Hz, 2H), 2.80 (dd, J = 14.4, 12.4Hz, 4H), 2.57 (t, J = 6.2Hz, 8H), 2.37 (m, 4H), 2.00 (m, 2H)
13 C NMR (600.13 MHz, CDCl 3 ): δ = 139.4 (2C), 138.5 (4C), 128.9 (4C), 128.3 (8C), 128.1 (4C), 127.6 (8C), 127.4 (4C), 126.6 ( 2C), 73.0 (8C), 68.9 (4C), 58.2 (2C), 58.1 (2C), 55.0 (4C)
HRMS (ESI + ) m / z: calcd for C 56 H 69 N 4 O 4 [M + H] + 861.5313, found 861.5307

<置換ピペラジン化合物(trans-1):trans-2,5−ジ(N−ジ(2−ヒドロキシエチル)アミノメチル)ピペラジン>
上述の生成方法によって得た1.35g(1.6mmol)の保護アミン化合物(trans-9)を99%エタノール(30ml)に加えて溶解し、この溶液に、反応基質に対して5mol%の割合で5%Pd/C触媒を添加し、攪拌しながら室温で水素(1MPa)を供給して、水素添加反応を24時間行った。この反応液を、オートクレーブ中で80℃に加熱しながら、更に水素の供給を続けて、水素添加反応を24時間行った。ガスクロマトグラフによって、原料が消費され定量的に反応が進行していることを確認した。
<Substituted piperazine compound (trans-1): trans-2,5-di (N-di (2-hydroxyethyl) aminomethyl) piperazine>
1.35 g (1.6 mmol) of the protected amine compound (trans-9) obtained by the above-mentioned production method was added to 99% ethanol (30 ml) to dissolve it, and the solution was dissolved in this solution at a ratio of 5 mol% to the reaction substrate. A 5% Pd / C catalyst was added, and hydrogen (1 MPa) was supplied at room temperature with stirring, and the hydrogenation reaction was carried out for 24 hours. The hydrogenation reaction was carried out for 24 hours by continuing to supply hydrogen while heating the reaction solution to 80 ° C. in an autoclave. By gas chromatography, it was confirmed that the raw materials were consumed and the reaction was proceeding quantitatively.

反応液を濾過して触媒を除去することによって得た濾液からエタノールを減圧留去し、得られた固形物にHCl水溶液及びベンゼンを加えて溶解した後に分液して水相を取り出した。この水相を、NaOH水溶液を用いて塩基性に調整した後に、酢酸エチルを用いて分液し、有機相を取り出して酢酸エチルを留去することによって、白色固体状の生成物0.5gを得た。これをエタノール中での再結晶によって精製した。 Ethanol was distilled off under reduced pressure from the filtrate obtained by filtering the reaction solution to remove the catalyst, and the obtained solid substance was dissolved by adding an aqueous HCl solution and benzene, and then separated to take out the aqueous phase. This aqueous phase was adjusted to be basic with an aqueous NaOH solution, then separated with ethyl acetate, and the organic phase was taken out and ethyl acetate was distilled off to obtain 0.5 g of a white solid product. Obtained. It was purified by recrystallization in ethanol.

精製した生成物について、1H NMR測定及び13C NMR測定、高分解能質量分析装置(HRMS)による分子量測定、元素分析、及び、粉末X線回折を行った。測定結果は、以下の通りであり(DSS:3−(トリメチルシリル)−1−プロパンスルホン酸ナトリウム)、粉末X線回折における回折強度を示すチャートは図2に示す。この結果から、生成物は、trans-2,5−ジ(N−ジ(2−ヒドロキシエチル)アミノメチル)ピペラジン(精製物は、その二水和物)であることが確認された(収率99%、融点112.2−114.0℃(from EtOH))。 The purified product was subjected to 1 H NMR measurement and 13 C NMR measurement, molecular weight measurement by a high resolution mass spectrometer (HRMS), elemental analysis, and powder X-ray diffraction. The measurement results are as follows (DSS: 3- (trimethylsilyl) -1-sodium propanesulfonate), and a chart showing the diffraction intensity in powder X-ray diffraction is shown in FIG. From this result, it was confirmed that the product was trans-2,5-di (N-di (2-hydroxyethyl) aminomethyl) piperazine (the purified product is its dihydrate) (yield). 99%, melting point 112.2-114.0 ° C. (from EtOH)).

(測定結果)
1H NMR(399.78MHz,DO,内部標準:DSS):δ=3.63(m,8H),2.98(dd,J=16.0,2.8Hz,2H),2.68(m,10H),2.51(dd,J=16.0,4.4Hz,2H),2.43(dd,J=12.4,8,4Hz,2H),2.36(t,J=11.6Hz,2H)
13C NMR(600.13MHz、DO,内部標準:DSS):δ=61.7(4C),60.3(2C),59.0(4C),55.4(2C),51.2(2C)
HRMS(ESI+)m/z:calcd for C143344[M+H]+ 321.2496, found 321.2497
元素分析:calcd for C143244・2H2O:C,47.17;H,10.18;N,15.72, found:C,47.42;H,10.16;N,15.58
(Measurement result)
1 1 H NMR (399.78 MHz, D 2 O, internal standard: DSS): δ = 3.63 (m, 8H), 2.98 (dd, J = 16.0, 2.8 Hz, 2H), 2.68 (m, 10H), 2.51 (dd) , J = 16.0, 4.4Hz, 2H), 2.43 (dd, J = 12.4, 8,4Hz, 2H), 2.36 (t, J = 11.6Hz, 2H)
13 C NMR (600.13 MHz, D 2 O, internal standard: DSS): δ = 61.7 (4C), 60.3 (2C), 59.0 (4C), 55.4 (2C), 51.2 (2C)
HRMS (ESI + ) m / z: calcd for C 14 H 33 N 4 O 4 [M + H] + 321.24946, found 321.2497
Elemental analysis: calcd for C 14 H 32 N 4 O 4 · 2H 2 O: C, 47.17; H, 10.18; N, 15.72, found: C, 47.42; H, 10.16; N, 15.58

[置換ピペラジン化合物(1)の合成2]
下記の合成では、シス型の置換ピペラジン化合物(cis-1)を得た。
<cis-エステル化合物(cis-5)>
上述の生成方法によって得た175mg(1mmol)のcis-2,5−ピペラジンジカルボン酸(cis-4)をメタノール10mlに溶解し、触媒として濃硫酸(0.46ml)を加えて18時間加熱還流することによって脱水反応を進行させた。反応後、飽和炭酸ナトリウム水溶液及び塩化メチレンを加え、水相のpHを9.0に調整して有機相と水相とを分離した。有機相を取り出して塩化メチレン及び余剰のメタノールを留去して濃縮し、残留物にヘキサンを加えることによって、ヘキサンから析出物が生じた。この析出物を濾過により分離して乾燥することにより、123mgの生成物を得た。得られた生成物の1H NMR測定により、生成物はcis-2,5−ピペラジンジカルボン酸ジメチルエステルであることが、上述の参照文献の測定値との一致によって確認された(収率61%)。
[Synthesis of Substituted Piperazine Compound (1) 2]
In the synthesis below, a cis-type substituted piperazine compound (cis-1) was obtained.
<Cis-ester compound (cis-5)>
175 mg (1 mmol) of cis-2,5-piperazindicarboxylic acid (cis-4) obtained by the above-mentioned production method is dissolved in 10 ml of methanol, concentrated sulfuric acid (0.46 ml) is added as a catalyst, and the mixture is heated under reflux for 18 hours. This allowed the dehydration reaction to proceed. After the reaction, saturated aqueous sodium carbonate solution and methylene chloride were added to adjust the pH of the aqueous phase to 9.0, and the organic phase and the aqueous phase were separated. The organic phase was taken out, methylene chloride and excess methanol were distilled off and concentrated, and hexane was added to the residue to form a precipitate from hexane. The precipitate was separated by filtration and dried to give 123 mg of product. By 1 H NMR measurement of the obtained product, it was confirmed that the product was cis-2,5-piperazindicarboxylic acid dimethyl ester, in agreement with the measured values in the above references (yield 61%). ).

<cis-ジアミド化合物(cis-7)及びその水酸基保護>
1.1g(5.2mmol)のcis-エステル化合物(cis-5)と1.1g(10mmol)のジエタノールアミンとの混合物を80℃で24時間加熱して縮合反応を進行させた。反応液を室温まで冷却して得られた固化物をアセトンで洗浄してデカンテーションによりアセトンを除去して、cis-ジアミド化合物(cis-7)の固形の粗生成物が得られた。得られた固形の粗生成物をそのまま使用して、以下の操作を行った。
<Cis-diamide compound (cis-7) and its hydroxyl group protection>
A mixture of 1.1 g (5.2 mmol) of cis-ester compound (cis-5) and 1.1 g (10 mmol) of diethanolamine was heated at 80 ° C. for 24 hours to allow the condensation reaction to proceed. The reaction solution was cooled to room temperature, and the obtained solidified product was washed with acetone and the acetone was removed by decantation to obtain a solid crude product of the cis-diamide compound (cis-7). The following operation was performed using the obtained solid crude product as it was.

上述のcis-ジアミド化合物(cis-7)の粗生成物を、N,N−ジメチルホルムアミド(30ml)に溶解して0℃に冷却し、水素化ナトリウム(2.3g、10eq)を加えた。これに臭化ベンジル(6.2ml、7eq)を滴下した後、3時間攪拌して反応を進行させた。この後、反応液に水を加えて攪拌することによって反応を止め、溶媒を減圧留去して残渣物を得た。この残渣物に酢酸エチルを加えて有機相とし、この有機相を水及び食塩水を用いて順次洗浄した。洗浄後の有機相を取り出し、乾燥剤で乾燥した後に溶媒を減圧留去して濃縮することにより、無色の油状物が得られた。得られた油状物について、1H NMR測定及び13C NMR測定、高分解能質量分析装置(HRMS)による分子量測定を行った。その結果は、以下の通りであり、生成物は、cis-ジアミド化合物(cis-7)の4つの水酸基及び2つの環状アミノ基において水素がベンジル基に置換された保護アミド化合物(cis-8)であることが確認された(3.14g、cis-エステル化合物(cis-5)からの収率:68%)。 The crude product of the above-mentioned cis-diamide compound (cis-7) was dissolved in N, N-dimethylformamide (30 ml), cooled to 0 ° C., and sodium hydride (2.3 g, 10 eq) was added. Benzyl bromide (6.2 ml, 7eq) was added dropwise thereto, and the mixture was stirred for 3 hours to allow the reaction to proceed. Then, water was added to the reaction solution and stirred to stop the reaction, and the solvent was distilled off under reduced pressure to obtain a residue. Ethyl acetate was added to the residue to prepare an organic phase, and the organic phase was washed successively with water and brine. The organic phase after washing was taken out, dried with a desiccant, and then the solvent was distilled off under reduced pressure and concentrated to obtain a colorless oil. The obtained oil was subjected to 1 H NMR measurement, 13 C NMR measurement, and molecular weight measurement by a high resolution mass spectrometer (HRMS). The results are as follows, and the product is a protected amide compound (cis-8) in which hydrogen is replaced with a benzyl group at the four hydroxyl groups and two cyclic amino groups of the cis-diamide compound (cis-7). (3.14 g, yield from cis-ester compound (cis-5): 68%).

(測定結果)
1H NMR(399.78MHz,CDCl3):δ=7.33-7.17(m,30H),4.38(s,4H)、4.17(dd,J=16.0,12.0Hz,4H),3.78-3.38(m,20H),3.08(d,J=12.8Hz,2H),2.84(d,J=11.2Hz,2H),2.50(t,J=11.2Hz,2H)
13C NMR(100.53MHz、CDCl3):δ=171.2(2C),138.4(2C),138.2(2C),137.9(2C),128.7(4C),128.3(4C),128.3(4C),128.2(4C),127.6(2C),127.5(4C),127.5(2C),127.5(4C),126.9(2C),73.1(2C),73.0(2C),73.0(2C),68.3(2C),58.7(2C),47.7(2C),47.7(2C),47.7(2C),46.2(2C)
HRMS(ESI+)m/z:calcd for C566546[M+H]+ 889.4899, found 889.4894
(Measurement result)
1 1 H NMR (399.78 MHz, CDCl 3 ): δ = 7.33-7.17 (m, 30H), 4.38 (s, 4H), 4.17 (dd, J = 16.0, 12.0Hz, 4H), 3.78-3.38 (m, 20H) ), 3.08 (d, J = 12.8Hz, 2H), 2.84 (d, J = 11.2Hz, 2H), 2.50 (t, J = 11.2Hz, 2H)
13 C NMR (100.53 MHz, CDCl 3 ): δ = 171.2 (2C), 138.4 (2C), 138.2 (2C), 137.9 (2C), 128.7 (4C), 128.3 (4C), 128.3 (4C), 128.2 ( 4C), 127.6 (2C), 127.5 (4C), 127.5 (2C), 127.5 (4C), 126.9 (2C), 73.1 (2C), 73.0 (2C), 73.0 (2C), 68.3 (2C), 58.7 ( 2C), 47.7 (2C), 47.7 (2C), 47.7 (2C), 46.2 (2C)
HRMS (ESI + ) m / z: calcd for C 56 H 65 N 4 O 6 [M + H] + 889.4899, found 889.4894

<保護アミド化合物(cis-8)の還元>
上述の生成方法によって得た307mg(0.345mmol)の保護アミド化合物(cis-8)を脱水THF(30ml)に加えて溶解し、保護アミド化合物溶液を調製した。LiAlH4(59mg、4eq)を加え、18時間加熱還流した。原料の消失が確認され、反応液を室温に冷却し、攪拌しながら、水(60μl)、15%水酸化ナトリウム水溶液(210μl)及び水(60μl)を順次ゆっくりと反応液に滴下した。セライトを用いて反応液を吸引濾過して反応液から沈殿物を除去し、濾過残渣をTHFで良く洗浄した。濾液及び洗浄液を合わせてTHFを留去して、無色の油状生成物(238mg)を得た。
<Reduction of protected amide compound (cis-8)>
307 mg (0.345 mmol) of the protected amide compound (cis-8) obtained by the above-mentioned production method was added to dehydrated THF (30 ml) and dissolved to prepare a protected amide compound solution. LiAlH 4 (59 mg, 4eq) was added, and the mixture was heated under reflux for 18 hours. The disappearance of the raw materials was confirmed, and the reaction solution was cooled to room temperature, and water (60 μl), a 15% aqueous sodium hydroxide solution (210 μl) and water (60 μl) were slowly added dropwise to the reaction solution while stirring. The reaction solution was suction-filtered using Celite to remove the precipitate from the reaction solution, and the filtration residue was thoroughly washed with THF. The filtrate and washing solution were combined and THF was distilled off to obtain a colorless oily product (238 mg).

得られた油状生成物について、1H NMR測定及び13C NMR測定、高分解能質量分析装置(HRMS)による分子量測定を行った。その結果は、以下の通りであり、生成物は、cis-2,5−ジ(N−ジ(2−ヒドロキシエチル)アミノメチル)ピペラジンの水酸基及びアミノ基の水素がベンジル基に置換された保護アミン化合物(cis-9)であることが確認された(収率80%)。 The obtained oily product was subjected to 1 H NMR measurement, 13 C NMR measurement, and molecular weight measurement by a high resolution mass spectrometer (HRMS). The results are as follows, and the product is a protection in which the hydroxyl group of cis-2,5-di (N-di (2-hydroxyethyl) aminomethyl) piperazine and the hydrogen of the amino group are replaced with a benzyl group. It was confirmed that it was an amine compound (cis-9) (yield 80%).

(測定結果)
1H NMR(399.78MHz,CDCl3):δ=7.25-7.15(m,30H),4.30(s,8H)、3.92(d,J=13.6Hz,2H),3.33(m,8H),2.71-2.40(m,20H)
13C NMR(600.13MHz、CDCl3):δ=139.9(2C),138.5(4C),128.7(4C),128.3(8C),128.0(4C),127.5(8C),127.4(4C),126.6(2C),73.7(4C),73.0(4C),68.8(4C),58.5(2C),57.0(2C),54.9(2C),53.1(2C)
HRMS(ESI+)m/z:calcd for C566944[M+H]+ 861.5313, found 861.5314
(Measurement result)
1 1 H NMR (399.78 MHz, CDCl 3 ): δ = 7.25-7.15 (m, 30H), 4.30 (s, 8H), 3.92 (d, J = 13.6Hz, 2H), 3.33 (m, 8H), 2.71- 2.40 (m, 20H)
13 C NMR (600.13 MHz, CDCl 3 ): δ = 139.9 (2C), 138.5 (4C), 128.7 (4C), 128.3 (8C), 128.0 (4C), 127.5 (8C), 127.4 (4C), 126.6 ( 2C), 73.7 (4C), 73.0 (4C), 68.8 (4C), 58.5 (2C), 57.0 (2C), 54.9 (2C), 53.1 (2C)
HRMS (ESI + ) m / z: calcd for C 56 H 69 N 4 O 4 [M + H] + 861.5313, found 861.5314

<置換ピペラジン化合物(cis-1):cis-2,5−ジ(N−ジ(2−ヒドロキシエチル)アミノメチル)ピペラジン>
上述の生成方法によって得た231mg(0.269mmol)の保護アミン化合物(cis-9)を99%エタノール(15ml)に加えて溶解し、この溶液に、反応基質に対して5mol%の割合で5%Pd(OH)2/C触媒を添加し、攪拌しながら室温で水素(1MPa)を供給して、水素添加反応を24時間行った。この反応液を、オートクレーブ中で80℃に加熱しながら、更に水素の供給を続けて、水素添加反応を24時間行った。ガスクロマトグラフによって、原料が消費され定量的に反応が進行していることを確認した。
<Substituted piperazine compound (cis-1): cis-2,5-di (N-di (2-hydroxyethyl) aminomethyl) piperazine>
231 mg (0.269 mmol) of the protected amine compound (cis-9) obtained by the above-mentioned production method was added to 99% ethanol (15 ml) to dissolve it, and the solution was dissolved in this solution at a ratio of 5 mol% with respect to the reaction substrate. A% Pd (OH) 2 / C catalyst was added, hydrogen (1 MPa) was supplied at room temperature with stirring, and the hydrogenation reaction was carried out for 24 hours. The hydrogenation reaction was carried out for 24 hours by continuing to supply hydrogen while heating the reaction solution to 80 ° C. in an autoclave. By gas chromatography, it was confirmed that the raw materials were consumed and the reaction was proceeding quantitatively.

反応液を濾過して触媒を除去することによって得た濾液からエタノールを減圧留去し、得られた濃縮物にHCl水溶液及びベンゼンを加えて溶解した後に分液して水相を取り出した。この水相を、NaOH水溶液を用いて塩基性に調整した後に、酢酸エチルを用いて分液し、有機相を取り出して酢酸エチルを留去することによって、固体状の生成物(77mg)を得た(収率89%)。 Ethanol was distilled off under reduced pressure from the filtrate obtained by filtering the reaction solution to remove the catalyst, and an aqueous HCl solution and benzene were added to the obtained concentrate to dissolve it, and then the mixture was separated to take out the aqueous phase. This aqueous phase is adjusted to be basic with an aqueous NaOH solution, then separated with ethyl acetate, the organic phase is taken out and ethyl acetate is distilled off to obtain a solid product (77 mg). (Yield 89%).

[置換ピペラジン化合物(1)の合成3]
下記の合成によって、シス型の置換ピペラジン化合物(cis-1)を得た。
<cis-ジアミド化合物(cis-7)及びその水酸基保護>
3.0g(15mmol)のcis-エステル化合物(cis-5)と3.3g(32mmol)のジエタノールアミンとの混合物を80℃で24時間加熱して縮合反応を進行させた。反応液を室温まで冷却して得られた固化物をアセトンで洗浄してデカンテーションによりアセトンを除去して、cis-ジアミド化合物(cis-7)の固形の粗生成物が得られた。得られた固形の粗生成物をそのまま使用して、以下の操作を行った。
[Synthesis of Substituted Piperazine Compound (1) 3]
The cis-type substituted piperazine compound (cis-1) was obtained by the following synthesis.
<Cis-diamide compound (cis-7) and its hydroxyl group protection>
A mixture of 3.0 g (15 mmol) of cis-ester compound (cis-5) and 3.3 g (32 mmol) of diethanolamine was heated at 80 ° C. for 24 hours to allow the condensation reaction to proceed. The reaction solution was cooled to room temperature, and the obtained solidified product was washed with acetone and the acetone was removed by decantation to obtain a solid crude product of the cis-diamide compound (cis-7). The following operation was performed using the obtained solid crude product as it was.

上述のcis-ジアミド化合物(cis-7)の粗生成物を、N,N−ジメチルホルムアミド(50ml)に溶解して0℃に冷却し、水素化ナトリウム(5.0g、10eq)を加えた。これに臭化ベンジル(18ml、10eq)を滴下した後、4時間攪拌して反応を進行させた。この後、反応液に水を加えて攪拌することによって反応を止め、溶媒を減圧留去して残渣物を得た。この残渣物に酢酸エチルを加えて有機相とし、この有機相を水及び食塩水を用いて順次洗浄した。洗浄後の有機相を取り出し、乾燥剤で乾燥した後に溶媒を減圧留去して濃縮することにより、無色の油状物が得られた。得られた油状物について、1H NMR測定及び13C NMR測定、高分解能質量分析装置(HRMS)による分子量測定を行った。その結果は、以下の通りであり、生成物は、cis-ジアミド化合物(cis-7)の4つの水酸基及び2つの環状アミノ基において水素がベンジル基に置換された保護アミド化合物(cis-8)であることが確認された(8.07g、cis-エステル化合物(cis-5)からの収率:60%)。 The crude product of the above-mentioned cis-diamide compound (cis-7) was dissolved in N, N-dimethylformamide (50 ml), cooled to 0 ° C., and sodium hydride (5.0 g, 10 eq) was added. Benzyl bromide (18 ml, 10 eq) was added dropwise thereto, and the mixture was stirred for 4 hours to allow the reaction to proceed. Then, water was added to the reaction solution and stirred to stop the reaction, and the solvent was distilled off under reduced pressure to obtain a residue. Ethyl acetate was added to the residue to prepare an organic phase, and the organic phase was washed successively with water and brine. The organic phase after washing was taken out, dried with a desiccant, and then the solvent was distilled off under reduced pressure and concentrated to obtain a colorless oil. The obtained oil was subjected to 1 H NMR measurement, 13 C NMR measurement, and molecular weight measurement by a high resolution mass spectrometer (HRMS). The results are as follows, and the product is a protected amide compound (cis-8) in which hydrogen is replaced with a benzyl group at the four hydroxyl groups and two cyclic amino groups of the cis-diamide compound (cis-7). (8.07 g, yield from cis-ester compound (cis-5): 60%).

(測定結果)
1H NMR(399.78MHz,CDCl3):δ=7.28-7.17(m,30H),4.40(s,4H)、4.31(s,4H),3.87(d,J=14.0Hz,2H),3.75-3.37(m,22H),2.50-2.48(m,2H)
13C NMR(100.53MHz、CDCl3):δ=171.2(2C),138.4(2C),138.2(2C),137.9(2C),128.7(4C),128.3(4C),128.3(4C),128.2(4C),127.6(2C),127.5(4C),127.5(2C),127.5(4C),126.9(2C),73.1(2C),73.0(2C),73.0(2C),68.3(2C),58.7(2C),47.7(2C),47.7(2C),47.7(2C),46.2(2C)
HRMS(ESI+)m/z:calcd for C566546[M+H]+ 889.4899, found 889.4894
(Measurement result)
1 1 H NMR (399.78MHz, CDCl 3 ): δ = 7.28-7.17 (m, 30H), 4.40 (s, 4H), 4.31 (s, 4H), 3.87 (d, J = 14.0Hz, 2H), 3.75- 3.37 (m, 22H), 2.50-2.48 (m, 2H)
13 C NMR (100.53 MHz, CDCl 3 ): δ = 171.2 (2C), 138.4 (2C), 138.2 (2C), 137.9 (2C), 128.7 (4C), 128.3 (4C), 128.3 (4C), 128.2 ( 4C), 127.6 (2C), 127.5 (4C), 127.5 (2C), 127.5 (4C), 126.9 (2C), 73.1 (2C), 73.0 (2C), 73.0 (2C), 68.3 (2C), 58.7 ( 2C), 47.7 (2C), 47.7 (2C), 47.7 (2C), 46.2 (2C)
HRMS (ESI + ) m / z: calcd for C 56 H 65 N 4 O 6 [M + H] + 889.4899, found 889.4894

<保護アミド化合物(cis-8)の還元>
上述の生成方法によって得た307mg(0.345mmol)の保護アミド化合物(cis-8)を脱水THF(30ml)に加えて溶解し、保護アミド化合物溶液を調製した。LiAlH4(59mg、4eq)を加え、18時間加熱還流した。原料の消失が確認され、反応液を室温に冷却し、攪拌しながら、水(60μl)、15%水酸化ナトリウム水溶液(210μl)及び水(60μl)を順次ゆっくりと反応液に滴下した。セライトを用いて反応液を吸引濾過して反応液から沈殿物を除去し、濾過残渣をTHFで良く洗浄した。濾液及び洗浄液を合わせてTHFを留去して、無色の油状生成物(238mg)を得た。
<Reduction of protected amide compound (cis-8)>
307 mg (0.345 mmol) of the protected amide compound (cis-8) obtained by the above-mentioned production method was added to dehydrated THF (30 ml) and dissolved to prepare a protected amide compound solution. LiAlH 4 (59 mg, 4eq) was added, and the mixture was heated under reflux for 18 hours. The disappearance of the raw materials was confirmed, and the reaction solution was cooled to room temperature, and water (60 μl), a 15% aqueous sodium hydroxide solution (210 μl) and water (60 μl) were slowly added dropwise to the reaction solution while stirring. The reaction solution was suction-filtered using Celite to remove the precipitate from the reaction solution, and the filtration residue was thoroughly washed with THF. The filtrate and washing solution were combined and THF was distilled off to obtain a colorless oily product (238 mg).

得られた油状生成物について、1H NMR測定及び13C NMR測定、高分解能質量分析装置(HRMS)による分子量測定を行った。その結果は、以下の通りであり、生成物は、cis-2,5−ジ(N−ジ(2−ヒドロキシエチル)アミノメチル)ピペラジンの水酸基及びアミノ基の水素がベンジル基に置換された保護アミン化合物(cis-9)であることが確認された(収率80%)。 The obtained oily product was subjected to 1 H NMR measurement, 13 C NMR measurement, and molecular weight measurement by a high resolution mass spectrometer (HRMS). The results are as follows, and the product is a protection in which the hydroxyl group of cis-2,5-di (N-di (2-hydroxyethyl) aminomethyl) piperazine and the hydrogen of the amino group are replaced with a benzyl group. It was confirmed that it was an amine compound (cis-9) (yield 80%).

(測定結果)
1H NMR(399.78MHz,CDCl3):δ=7.25-7.15(m,30H),4.30(s,8H)、3.92(d,J=13.6Hz,2H),3.30(m,8H),2.71-2.40(m,20H)
13C NMR(600.13MHz、CDCl3):δ=139.9(2C),138.5(4C),128.7(4C),128.3(8C),128.0(4C),127.5(8C),127.4(4C),126.6(2C),73.7(4C),73.0(4C),68.8(4C),58.5(2C),57.0(2C),54.9(2C),53.1(2C)
HRMS(ESI+)m/z:calcd for C566944[M+H]+ 861.5313, found 861.5314
(Measurement result)
1 1 H NMR (399.78 MHz, CDCl 3 ): δ = 7.25-7.15 (m, 30H), 4.30 (s, 8H), 3.92 (d, J = 13.6Hz, 2H), 3.30 (m, 8H), 2.71- 2.40 (m, 20H)
13 C NMR (600.13 MHz, CDCl 3 ): δ = 139.9 (2C), 138.5 (4C), 128.7 (4C), 128.3 (8C), 128.0 (4C), 127.5 (8C), 127.4 (4C), 126.6 ( 2C), 73.7 (4C), 73.0 (4C), 68.8 (4C), 58.5 (2C), 57.0 (2C), 54.9 (2C), 53.1 (2C)
HRMS (ESI + ) m / z: calcd for C 56 H 69 N 4 O 4 [M + H] + 861.5313, found 861.5314

<置換ピペラジン化合物(cis-1):cis-2,5−ジ(N−ジ(2−ヒドロキシエチル)アミノメチル)ピペラジン>
上述の生成方法によって得た1.04g(1.20mmol)の保護アミン化合物(cis-9)を99%エタノール(50ml)に加えて溶解し、この溶液に、反応基質に対して20mol%の割合で20%Pd(OH)2/C触媒を添加し、攪拌しながら室温で水素(1MPa)を供給して、水素添加反応を24時間行った。この反応液を、オートクレーブ中で80℃に加熱しながら、更に水素の供給を続けて、水素添加反応を24時間行った。ガスクロマトグラフによって、原料が消費され定量的に反応が進行していることを確認した。
<Substituted piperazine compound (cis-1): cis-2,5-di (N-di (2-hydroxyethyl) aminomethyl) piperazine>
1.04 g (1.20 mmol) of the protected amine compound (cis-9) obtained by the above-mentioned production method was added to 99% ethanol (50 ml) to dissolve it, and the ratio of 20 mol% to the reaction substrate was added to this solution. A 20% Pd (OH) 2 / C catalyst was added, and hydrogen (1 MPa) was supplied at room temperature with stirring, and the hydrogenation reaction was carried out for 24 hours. The hydrogenation reaction was carried out for 24 hours by continuing to supply hydrogen while heating the reaction solution to 80 ° C. in an autoclave. By gas chromatography, it was confirmed that the raw materials were consumed and the reaction was proceeding quantitatively.

反応液を濾過して触媒を除去することによって得た濾液からエタノールを減圧留去し、得られた濃縮物にエーテルを加えたところ、白色固体が析出した。この固体を濾取し、固体状の生成物(331mg)を得た。 Ethanol was distilled off under reduced pressure from the filtrate obtained by filtering the reaction solution to remove the catalyst, and ether was added to the obtained concentrate to precipitate a white solid. The solid was collected by filtration to give a solid product (331 mg).

得られた生成物について、1H NMR測定及び13C NMR測定、高分解能質量分析装置(HRMS)による分子量測定、元素分析、及び、粉末X線回折を行った。測定結果は、以下の通りであり、粉末X線回折における回折強度を示すチャートは図3に示す。この結果から、生成物は、置換ピペラジン化合物(cis-1)であることが確認された(収率86%、融点98.4−99.6℃)。 The obtained product was subjected to 1 H NMR measurement and 13 C NMR measurement, molecular weight measurement by a high resolution mass spectrometer (HRMS), elemental analysis, and powder X-ray diffraction. The measurement results are as follows, and a chart showing the diffraction intensity in powder X-ray diffraction is shown in FIG. From this result, it was confirmed that the product was a substituted piperazine compound (cis-1) (yield 86%, melting point 98.4-99.6 ° C.).

(測定結果)
1H NMR(399.78MHz,D2O,内部標準:DSS):δ=3.65(m,8H),2.89(m,4H)、2.70(m,12H)、2.50(dd,J=13.2, 4.4Hz,2H)
13C NMR(600.13MHz、D2O,内部標準:DSS):δ=61.7(4C),58.8(4C),58.3(2C),53.2(2C),47.1(2C)
HRMS(ESI+)m/z:calcd for C143344[M+H]+ 321.2496, found 321.2495
元素分析:calcd for C143244:C,52.48;H,10.07;N,17.49, found:C,52.43;H,9.68;N,16.72
(Measurement result)
1 1 H NMR (399.78 MHz, D 2 O, internal standard: DSS): δ = 3.65 (m, 8H), 2.89 (m, 4H), 2.70 (m, 12H), 2.50 (dd, J = 13.2, 4.4Hz) , 2H)
13 C NMR (600.13 MHz, D 2 O, internal standard: DSS): δ = 61.7 (4C), 58.8 (4C), 58.3 (2C), 53.2 (2C), 47.1 (2C)
HRMS (ESI + ) m / z: calcd for C 14 H 33 N 4 O 4 [M + H] + 321.24946, found 321.2495
Elemental analysis: calculated for C 14 H 32 N 4 O 4 : C, 52.48; H, 10.07; N, 17.49, found: C, 52.43; H, 9.68; N, 16. 72

[置換ピペラジン化合物(trans-1)の二酸化炭素に対する吸収・放散性能]
6.4g(20mmol)の置換ピペラジン化合物(trans-1)を吸収剤として水に溶解し、濃度が0.4mol/Lの水溶液50mlを調製し、これを吸収液として、以下のようにして二酸化炭素に対する吸収・放散性能を測定した。又、1.7gのピペラジン(20mmol)及び4.8gのMDEA(40mmol)を水に溶解して、ピペラジン濃度が0.4mol/L、MDEA濃度が0.8mol/Lの水溶液50mlを調製し、これを比較用の吸収液として、同様に吸収・放散性能を測定した。
[Absorption / emission performance of substituted piperazine compound (trans-1) against carbon dioxide]
Dissolve 6.4 g (20 mmol) of the substituted piperazine compound (trans-1) in water as an absorbent to prepare 50 ml of an aqueous solution having a concentration of 0.4 mol / L, and use this as an absorbent solution for carbon dioxide dioxide as follows. The absorption / emission performance for carbon was measured. Further, 1.7 g of piperazine (20 mmol) and 4.8 g of MDEA (40 mmol) were dissolved in water to prepare 50 ml of an aqueous solution having a piperazine concentration of 0.4 mol / L and an MDEA concentration of 0.8 mol / L. Using this as an absorbent for comparison, the absorption / dissipation performance was measured in the same manner.

吸収液50mLに二酸化炭素を140mL/分の速度で吹き込んで、二酸化炭素との気液接触時間を90分間に設定して二酸化炭素の吸収処理を行った。この間、0〜60分においては吸収液の温度を50℃に維持し、60分以降は温度を80℃に上昇させて、吸収液の13C−NMRスペクトルの測定によって、吸収液に含まれる二酸化炭素量の経時変化を調べた。得られた結果を、二酸化炭素のローディング(アミン当たりの二酸化炭素吸収量[mol-CO/mol-アミン])の変化として示すと、図1のようになる。図1から判るように、何れの吸収液においても、温度が50℃である0〜60分においては、吸収液は二酸化炭素を吸収し、温度が80℃に上昇した60分以降においては二酸化炭素を放散し、吸収液として使用可能であることが明らかである。 Carbon dioxide was blown into 50 mL of the absorption liquid at a rate of 140 mL / min, and the gas-liquid contact time with carbon dioxide was set to 90 minutes to perform the carbon dioxide absorption treatment. During this period, the temperature of the absorbing solution was maintained at 50 ° C. for 0 to 60 minutes, the temperature was raised to 80 ° C. after 60 minutes, and carbon dioxide contained in the absorbing solution was measured by measuring the 13 C-NMR spectrum of the absorbing solution. The change over time in the amount of carbon was investigated. The obtained result is shown in FIG. 1 as a change in carbon dioxide loading (carbon dioxide absorption amount per amine [mol-CO 2 / mol-amine]). As can be seen from FIG. 1, in any of the absorbing liquids, the absorbing liquid absorbs carbon dioxide from 0 to 60 minutes when the temperature is 50 ° C., and carbon dioxide after 60 minutes when the temperature rises to 80 ° C. It is clear that it can be used as an absorbent solution.

比較用のピペラジン/MDEA吸収液においては、二酸化炭素を吸収するに従って、ピペラジン(PZ)が、PZ−モノカルバメートを経てPZ−ジカルバメートに変化し、これらを通じた二酸化炭素の溶解が、MDEAのプロトン受容体としての作用によって促進される。このような性質によって、比較用の吸収液における二酸化炭素のローディングが急速に増加した後に一定レベルに漸近することを考えると、置換ピペラジン化合物(trans-1)吸収液が、相対的に緩やかな増加が継続するローディング曲線を示すのは、ピペラジン環のアミノ基と置換基側のアミノ基との間での役割分担がさほど明確ではなく、協働性について互いの独立性を残していると考えられる。この点は、吸収液の溶媒組成、他の成分の共存によって改善し得ると考えられる。 In the comparative piperazine / MDEA absorbent, piperazine (PZ) is converted to PZ-dicarbamate via PZ-monocarbamate as it absorbs carbon dioxide, and the dissolution of carbon dioxide through these is the proton of MDEA. It is promoted by its action as a receptor. Given that these properties cause the loading of carbon dioxide in the comparative absorbent to increase rapidly and then approach a certain level, the substituted piperazine compound (trans-1) absorber increases relatively slowly. Shows a continuous loading curve because the division of roles between the amino group of the piperazine ring and the amino group on the substituent side is not so clear, and it is considered that they remain independent of each other in terms of cooperation. .. It is considered that this point can be improved by the solvent composition of the absorbing solution and the coexistence of other components.

[置換ピペラジン化合物(cis-1)の二酸化炭素に対する吸収・放散性能]
上述のトランス型の置換ピペラジン化合物(trans-1)の吸収・放散性能の測定と同じ条件で、シス型の置換ピペラジン化合物(cis-1)の吸収・放散性能を測定した。測定結果を、二酸化炭素吸収量(吸収液の容積当たりの二酸化炭素吸収量[g/L])の経時変化、つまり、吸収液の二酸化炭素濃度の経時変化として、図4のグラフに示す。図4においては、トランス型の置換ピペラジン化合物(trans-1)による上述の結果も併せて記載する。
[Absorption / emission performance of substituted piperazine compound (cis-1) against carbon dioxide]
The absorption / emission performance of the cis-substituted piperazine compound (cis-1) was measured under the same conditions as the measurement of the absorption / emission performance of the trans-type substituted piperazine compound (trans-1) described above. The measurement results are shown in the graph of FIG. 4 as a time-dependent change in the amount of carbon dioxide absorbed (carbon dioxide absorption amount [g / L] per volume of the absorbing liquid), that is, a time-dependent change in the carbon dioxide concentration of the absorbing liquid. In FIG. 4, the above-mentioned results by the trans-type substituted piperazine compound (trans-1) are also described.

図4によると、シス型の置換ピペラジン化合物(cis-1)による二酸化炭素の吸収量は、急速に増加した後に一定レベルに漸近し、シス型の置換ピペラジン化合物(cis-1)の方が、トランス型のものよりも、ピペラジン/MDEAの吸収液に近い吸収挙動を示す。このことから、シス型の置換ピペラジン化合物(cis-1)においては、ピペラジン環のアミノ基と置換基側のアミノ基との間での役割分担がなされ、置換基側のアミノ基が、MDEAと同様のプロトン受容体としての作用をすると考えられる。従って、シス型の置換ピペラジン化合物(cis-1)は、ピペラジン/MDEA混合系に基づく分子設計から期待される性能を示す化合物であると言え、これを吸収剤として吸収液を構成すると、良好な吸収速度で二酸化炭素を吸収し得る。 According to FIG. 4, the amount of carbon dioxide absorbed by the cis-type substituted piperazine compound (cis-1) increased rapidly and then gradually approached a certain level, and the cis-type substituted piperazine compound (cis-1) was more absorbed. It exhibits an absorption behavior closer to that of the piperazine / MDEA absorption solution than that of the trans type. From this, in the cis-type substituted piperazine compound (cis-1), the roles are divided between the amino group of the piperazine ring and the amino group on the substituent side, and the amino group on the substituent side is MDEA. It is thought to act as a similar proton receptor. Therefore, it can be said that the cis-type substituted piperazine compound (cis-1) is a compound exhibiting the performance expected from the molecular design based on the piperazine / MDEA mixed system, and it is preferable to use this as an absorbent to form an absorbent solution. It can absorb carbon dioxide at the absorption rate.

本発明は、酸性ガス処理用の吸収液に調製して、火力発電所や製鉄所、ボイラーなどの設備から排出される二酸化炭素等の酸性ガスを含む排ガスの処理等において好適に利用でき、その二酸化炭素放出量や、酸性ガスによって環境に与える影響などの軽減に有用である。二酸化炭素処理用の吸収液として、処理性能の向上や、対象となるガスへの対応力の向上に有用であり、環境保護への貢献が可能である。 INDUSTRIAL APPLICABILITY The present invention can be suitably used in the treatment of exhaust gas containing acid gas such as carbon dioxide emitted from facilities such as thermal power plants, steel mills, and boilers by preparing an absorption liquid for acid gas treatment. It is useful for reducing the amount of carbon dioxide emitted and the impact of acid gas on the environment. As an absorbent for carbon dioxide treatment, it is useful for improving treatment performance and adaptability to target gases, and can contribute to environmental protection.

Claims (5)

下記の一般式で表される置換ピペラジン化合物。
Figure 0006860147
A substituted piperazine compound represented by the following general formula.
Figure 0006860147
請求項1に記載の置換ピペラジン化合物を有効成分とする酸性ガスの吸収剤。 An acid gas absorber containing the substituted piperazine compound according to claim 1 as an active ingredient. 請求項1に記載の置換ピペラジン化合物を有効成分とする二酸化炭素の吸収剤。 A carbon dioxide absorbent containing the substituted piperazine compound according to claim 1 as an active ingredient. 請求項1に記載の置換ピペラジン化合物及び水を含有する、酸性ガス処理用の吸収液。 An absorption liquid for acid gas treatment, which contains the substituted piperazine compound according to claim 1 and water. 請求項1に記載の置換ピペラジン化合物及び水を含有する、二酸化炭素処理用の吸収液。 An absorbent solution for carbon dioxide treatment containing the substituted piperazine compound according to claim 1 and water.
JP2017171802A 2016-09-08 2017-09-07 Absorbents and absorbents for substituted piperazine compounds and acid gases Active JP6860147B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016175509 2016-09-08
JP2016175509 2016-09-08
JP2017038971 2017-03-02
JP2017038971 2017-03-02

Publications (2)

Publication Number Publication Date
JP2018140981A JP2018140981A (en) 2018-09-13
JP6860147B2 true JP6860147B2 (en) 2021-04-14

Family

ID=63526481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017171802A Active JP6860147B2 (en) 2016-09-08 2017-09-07 Absorbents and absorbents for substituted piperazine compounds and acid gases

Country Status (1)

Country Link
JP (1) JP6860147B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7616840B2 (en) * 2019-09-24 2025-01-17 積水化学工業株式会社 Gas production device, gas production system, and gas production method
CN113958013B (en) * 2021-11-06 2023-04-28 定州市筑业装配式建筑科技有限公司 Novel energy-saving environment-friendly multifunctional integrated wallboard

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429721A (en) * 1990-05-28 1992-01-31 Sumitomo Seika Chem Co Ltd Carbon dioxide absorbent and method for catching carbon dioxide using the same
JP2008013400A (en) * 2006-07-05 2008-01-24 Research Institute Of Innovative Technology For The Earth Method for absorbing and desorbing carbon dioxide in exhaust gas
JP2008168184A (en) * 2007-01-09 2008-07-24 Research Institute Of Innovative Technology For The Earth Composition and method for absorbing and desorbing and recovering carbon dioxide in exhaust gas
JP5557426B2 (en) * 2008-03-07 2014-07-23 公益財団法人地球環境産業技術研究機構 Aqueous solution and method for efficiently absorbing and recovering carbon dioxide in gas
DE102009000543A1 (en) * 2009-02-02 2010-08-12 Evonik Degussa Gmbh Process, absorption media and apparatus for absorbing CO2 from gas mixtures
JP2013158718A (en) * 2012-02-06 2013-08-19 Ihi Corp Carbon dioxide absorption liquid and method of preparing the same

Also Published As

Publication number Publication date
JP2018140981A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
US9878285B2 (en) Method and absorption medium for absorbing CO2 from a gas mixture
JP5244595B2 (en) Absorbent composition containing a hindered amine and a metal sulfonate or phosphonate molecule for an acid gas scrubbing process
JP4865530B2 (en) Mixed absorbent for carbon dioxide separation
US20180345207A1 (en) Guanidine compounds for carbon dioxide capture
US8419831B2 (en) Method for efficiently recovering carbon dioxide in gas
EP2804690B1 (en) Process for absorbing co2 from a gas mixture with an absorption medium comprising amines
JPS6312648B2 (en)
JP7048352B2 (en) Carbon dioxide absorber and carbon dioxide separation and recovery device
JP6860147B2 (en) Absorbents and absorbents for substituted piperazine compounds and acid gases
WO2008022437A1 (en) Method for capturing carbon dioxide from gas streams
EP2928581A1 (en) Process for absorption of co2 from a gas mixture using an aqueous solution of a diamine
RU2735544C2 (en) Absorbing solution based on hydroxyl derivatives of 1,6-hexanediamine and method of removing acid compounds from gaseous effluent stream
WO2023013397A1 (en) Carbon dioxide absorbent, method for recovering carbon dioxide, and apparatus for separating and recovering carbon dioxide
US20140301930A1 (en) Absorbent tertiary monoalkanolamine solution belonging to the 3-alcoxypropylamine family, and method for removing acidic compounds contained in a gas effluent
KR101516323B1 (en) Composition for absorbing carbon dioxide containing tertiary alkanolamine, method and apparatus for absorbing carbon dioxide using the same
JP7702205B2 (en) Novel amine compound, acidic gas absorbent, method for removing acidic gas, and method for removing acidic gas
KR101517513B1 (en) Composition for absorbing carbon dioxide containing sterically hindered alkanolamine, method and apparatus for absorbing carbon dioxide using the same
KR102155236B1 (en) Ether-functional diamine-based carbon dioxide absorbents and method for preparing the same
KR20130035640A (en) Highly efficient absorbents for acidic gas separation
KR20130106680A (en) Carbon dioxide capture sorbent and method for carbon dioxide capture
JP2024130186A (en) Acid gas absorbent, method for removing acid gas, and apparatus for removing acid gas
KR102086826B1 (en) Composition including corrosion inhibitor for adsorbing and desorbing carbon dioxide, method for adsorbing and desorbing carbon dioxide using the same, and carbon dioxide adsorbed product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210317

R150 Certificate of patent or registration of utility model

Ref document number: 6860147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250