JP6858361B2 - A method for producing a defibrated product of a natural fibrous material and a method for producing a composite cotton-like material of the defibrated product and a cotton-like defibrated product. - Google Patents
A method for producing a defibrated product of a natural fibrous material and a method for producing a composite cotton-like material of the defibrated product and a cotton-like defibrated product. Download PDFInfo
- Publication number
- JP6858361B2 JP6858361B2 JP2016073290A JP2016073290A JP6858361B2 JP 6858361 B2 JP6858361 B2 JP 6858361B2 JP 2016073290 A JP2016073290 A JP 2016073290A JP 2016073290 A JP2016073290 A JP 2016073290A JP 6858361 B2 JP6858361 B2 JP 6858361B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- defibrated
- dry
- weight
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 118
- 239000002657 fibrous material Substances 0.000 title claims description 65
- 239000002131 composite material Substances 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000000835 fiber Substances 0.000 claims description 111
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 67
- 239000002023 wood Substances 0.000 claims description 55
- 239000011230 binding agent Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 32
- 238000007790 scraping Methods 0.000 claims description 26
- 238000000227 grinding Methods 0.000 claims description 25
- 238000009413 insulation Methods 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000009837 dry grinding Methods 0.000 claims description 12
- 229920005610 lignin Polymers 0.000 claims description 12
- 206010061592 cardiac fibrillation Diseases 0.000 claims description 10
- 230000002600 fibrillogenic effect Effects 0.000 claims description 10
- 230000014759 maintenance of location Effects 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims description 3
- 239000011121 hardwood Substances 0.000 claims description 3
- 239000011122 softwood Substances 0.000 claims description 2
- 229920000742 Cotton Polymers 0.000 claims 2
- 239000002028 Biomass Substances 0.000 description 44
- 239000000123 paper Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- 240000005109 Cryptomeria japonica Species 0.000 description 15
- 239000001913 cellulose Substances 0.000 description 13
- 229920002678 cellulose Polymers 0.000 description 12
- 239000011810 insulating material Substances 0.000 description 12
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 11
- 235000017491 Bambusa tulda Nutrition 0.000 description 11
- 241001330002 Bambuseae Species 0.000 description 11
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 11
- 239000011425 bamboo Substances 0.000 description 11
- 239000002994 raw material Substances 0.000 description 9
- 238000005520 cutting process Methods 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 229920002522 Wood fibre Polymers 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 239000002025 wood fiber Substances 0.000 description 7
- 241000218691 Cupressaceae Species 0.000 description 6
- 238000005452 bending Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229920003043 Cellulose fiber Polymers 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000003801 milling Methods 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical group N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- 240000000797 Hibiscus cannabinus Species 0.000 description 2
- 241000534018 Larix kaempferi Species 0.000 description 2
- 241000209504 Poaceae Species 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- -1 de Npun Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 238000001665 trituration Methods 0.000 description 2
- 244000283070 Abies balsamea Species 0.000 description 1
- 235000007173 Abies balsamea Nutrition 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 239000004368 Modified starch Substances 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000012773 agricultural material Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011094 fiberboard Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 239000000077 insect repellent Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012763 reinforcing filler Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Landscapes
- Chemical And Physical Treatments For Wood And The Like (AREA)
- Dry Formation Of Fiberboard And The Like (AREA)
- Crushing And Pulverization Processes (AREA)
Description
本発明は、木質マットや軽量成形体の原料として用いられる天然繊維質材料の解繊物の提供及び同解繊物を用いた複合綿状材料や高断熱性能で保形性に優れたマット材の提供に関するものである。 The present invention provides a defibrated material of a natural fiber material used as a raw material for a wood mat or a lightweight molded product, a composite cotton-like material using the defibrated material, and a mat material having high heat insulation performance and excellent shape retention. It is about the provision of.
従来、地域木材は、製材品、繊維を利用した紙パルプ、合板や繊維ボードが主な用途として利用されてきたが、社会構造の変化と充足度から地域木材の利用数量は減少している。そこで、地域木質バイオマスを新たな分野に利用しようとする機運が非常に高まってきている。
従来より、バイオマスから繊維を得るためには湿式加熱処理が有効であることが知られているが、この技術では湿式状態にて加熱を施しながら粉砕しなければならず、また水分が共存する形で加熱しなければ繊維を得ることができず、作業工程に時間がかかり、かつ製造設備が大掛かりとなるだけでなく大量の工業用水の使用と汚染対策が必要である。
また、木質バイオマスから繊維を得るために、苛性ソーダ水溶液中に浸漬して木質に強固に結合されているバインダー成分のリグニンをアルカリ液で溶出させることにより、繊維を得ている。
このように湿式で処理する理由は、溶液を組織に含浸されることにより、木質バイオマスを化学的に解繊する必要があるためである。
さらに、木材の構造は非常に強固であるためにドライアイスで固化した後に粉砕すること、すなわち組織を脆くした後に解繊する処理も行われている。
Traditionally, regional timber has been mainly used for sawn timber, pulp and paper using fibers, plywood and fiberboard, but the quantity of regional timber used is decreasing due to changes in social structure and the degree of sufficiency. Therefore, the momentum to use regional woody biomass for new fields is increasing significantly.
Conventionally, it has been known that wet heat treatment is effective for obtaining fibers from biomass, but in this technology, it is necessary to grind while heating in a wet state, and water coexists. Fiber cannot be obtained without heating in the above, the work process takes time, the manufacturing equipment becomes large, and it is necessary to use a large amount of industrial water and take measures against pollution.
Further, in order to obtain fibers from woody biomass, fibers are obtained by immersing in an aqueous solution of caustic soda and eluting lignin, which is a binder component firmly bound to wood, with an alkaline solution.
The reason for such wet treatment is that it is necessary to chemically defibrate the woody biomass by impregnating the tissue with the solution.
Furthermore, since the structure of wood is very strong, it is solidified with dry ice and then crushed, that is, the structure is fragile and then defibrated.
また、従来の乾式の粉砕手段には、カッターミル(切断方式)、ハンマーミル(叩き潰し)、インパクトミル(衝撃粉砕)、ローラーミル(押し潰し)等がある。
しかしながら、これらの従来の乾式粉砕では木質バイオマスからアスペクト比の高く軽量で断熱性能に優れた繊維を得られない。
一方で前述したような叩解方式、すり潰しによる粉砕方式による湿式法があるが、水分が共存する形でなければ繊維を得ることができず、作業工程に時間がかかり、製造設備が大掛かりとなるだけでなく大量の工業用の使用と汚染対策が必要である。
Further, conventional dry crushing means include a cutter mill (cutting method), a hammer mill (crushing), an impact mill (impact crushing), a roller mill (crushing) and the like.
However, these conventional dry pulverizations cannot obtain fibers having a high aspect ratio, light weight, and excellent heat insulating performance from woody biomass.
On the other hand, there are the above-mentioned beating method and the wet method by the crushing method by grinding, but the fiber cannot be obtained unless the water coexists, the work process takes time, and the manufacturing equipment becomes large-scale. It requires a large amount of industrial use and pollution control.
上記の種々の課題があるため、木質バイオマスからバイオマス繊維(繊維状解繊物)を低コストで有効に取り出せる簡便な乾式法の提供が期待されている。 Due to the various problems described above, it is expected to provide a simple dry method capable of effectively extracting biomass fibers (fibrous defibrated products) from woody biomass at low cost.
本発明者らは、上記課題を下記の手段により解決した。
〔1〕天然繊維質材料を含水率20〜30%に調整した後、掻き取り刃を備えた乾式解繊機に掛けて乾式摩砕し、繊維径1〜600μm、繊維長0.1〜50mm、アスペクト比10〜60の天然繊維質材料の解繊物を取得する第1工程と、同工程で得られた天然繊維質材料の解繊物100重量部に対し、バインダーあるいは熱融着繊維を0.1〜30重量部添加し、無加圧で、常温〜250℃で加熱する第2工程とからなることを特徴とする高断熱性能で保形性に優れたマット材を製造する方法。
〔2〕天然繊維質材料を含水率20〜30%に調整した後、掻き取り刃を備えた乾式解繊機に掛けて乾式摩砕し、繊維径1〜600μm、繊維長0.1〜50mm、アスペクト比10〜60の天然繊維質材料の解繊物を取得する第1工程と、同工程で得られた天然繊維質材料の解繊物100重量部に対し、バインダーあるいは熱融着繊維を0.1〜30重量部添加し、1〜50Mpaで加圧して、常温〜250℃で加熱する第2工程とからなることを特徴とする軽量・高強度の成形体を製造する方法。
〔3〕含水率20〜30%に調整した天然繊維質材料100重量部に対して、紙質材を25〜400重量部を同時投入して含水率20〜30%に調整した後、掻き取り刃を備えた乾式解繊機に掛けて乾式摩砕し、繊維径10〜500μm、繊維長1.0〜10mm、アスペクト比10〜50の天然繊維質材料の解繊物と綿状の解繊物との複合綿状材料を取得する第1工程と、同工程で得られた複合綿状材料100重量部に対し、バインダーあるいは熱融着繊維を0.1〜30重量部添加し、無加圧で、常温〜250℃で加熱する第2工程とからなることを特徴とする高断熱性能で保形性に優れたマット材を製造する方法。
〔4〕含水率20〜30%に調整した天然繊維質材料100重量部に対して、紙質材を25〜400重量部を同時投入して含水率20〜30%に調整した後、掻き取り刃を備えた乾式解繊機に掛けて乾式摩砕し、繊維径10〜500μm、繊維長1.0〜10mm、アスペクト比10〜50の天然繊維質材料の解繊物と綿状の解繊物との複合綿状材料を取得する第1工程と、同工程で得られた複合綿状材料100重量部に対し、バインダーあるいは熱融着繊維を0.1〜30重量部添加し、1〜50Mpaで加圧して、常温〜250℃で加熱する第2工程とからなることを特徴とする軽量・高強度の成形体を製造する方法。
〔5〕天然繊維質材料を含水率20〜30%に調整した後、掻き取り刃を備えた乾式解繊機に掛けて乾式摩砕し、繊維径1〜600μm、繊維長0.1〜50mm、アスペクト比10〜60の天然繊維質材料の解繊物を取得する第1の工程と、第1の工程で得られた解繊物を篩い分けして、繊維長の長いグループの解繊物と繊維長の短いグループの解繊物に分別する第2の工程と、第2の工程で得られた繊維長の長いグループの解繊物100重量部に対して繊維長の短いグループの解繊物0.1〜30重量部を添加・混合して、1〜50Mpaで加圧して、常温〜250℃で加熱し、バインダーあるいは熱融着繊維を添加することなく、前記繊維長の短いグループの解繊物に含まれるバインダー成分であるリグニンを溶融固化させる第3の工程とからなることを特徴とする軽量・高強度の成形体を製造する方法。
〔6〕前記〔1〕〜〔5〕のいずれか1項の方法において使用される天然繊維質材料が、(1)針葉樹・広葉樹の木材又はそれらの木皮、あるいは(2)禾本科植物の木質部又は皮・枝葉部であることを特徴とする方法。
〔7〕前記〔1〕〜〔5〕のいずれか1項の方法において使用される掻き取り刃を備えた乾式解繊機が、
内側に固定刃(1)を備えた有底円筒ケーシング(2)と、前記有底円筒ケーシング(2)の内壁との間にクリアランスを設けて周設した多孔スクリーン(3)と、前記有底円筒ケーシング(2)の軸中心に軸装され前記固定刃(1)と協働して繊維含有材料を切断又は裂断する回転刃(4)と、稼働中に前記有底円筒ケーシング(2)内の気体を吸引するとともに前記多孔スクリーン(3)を介して被摩砕物を外部に排出・回収するための気体吸引部(5)を有した繊維含有材料の縦型粗摩砕装置(X)であって、回転により有底円筒ケーシング(2)内で上向きの気流を生じるような羽根構造を有し、かつ、回転面外周に複数の回転刃取付け部(61)を等配した回転刃物台(6)を軸方向にそれぞれ離間して多段設置するとともに、有底円筒ケーシング(2)の下部側壁の一又は複数カ所に気体吸引部(5)を形設してなり、稼働中に有底円筒ケーシング(2)内で生じる上向きの気流及び被摩砕物の流動に抗して、下方により大きな吸引気流を生じさせ、被摩砕物を一又は多方向から随時排出・回収するようにしたものであることを特徴とする方法。」
The present inventors have solved the above problems by the following means.
[1] After adjusting the natural fiber material to a water content of 20 to 30%, it is dry-ground by using a dry fiber defibrator equipped with a scraping blade to obtain a fiber diameter of 1 to 600 μm and a fiber length of 0.1 to 50 mm. 0 binders or heat-sealed fibers were added to 100 parts by weight of the defibrated product of the natural fiber material obtained in the first step of obtaining the defibrated product of the natural fiber material having an aspect ratio of 10 to 60. A method for producing a matte material having high heat insulation performance and excellent shape retention, which comprises a second step of adding 1 to 30 parts by weight and heating at room temperature to 250 ° C. without pressurization.
[2] After adjusting the natural fiber material to a water content of 20 to 30%, it is subjected to dry grinding by using a dry fiber defibrator equipped with a scraping blade to obtain a fiber diameter of 1 to 600 μm and a fiber length of 0.1 to 50 mm. 0 binders or heat-sealed fibers were added to 100 parts by weight of the defibrated product of the natural fiber material obtained in the first step of obtaining the defibrated product of the natural fiber material having an aspect ratio of 10 to 60. A method for producing a lightweight and high-strength molded product, which comprises a second step of adding 1 to 30 parts by weight, pressurizing at 1 to 50 Mpa, and heating at room temperature to 250 ° C.
[3] To 100 parts by weight of the natural fiber material adjusted to have a water content of 20 to 30%, 25 to 400 parts by weight of paper material is simultaneously added to adjust the water content to 20 to 30%, and then a scraping blade. the dry milling over the dry fiberizer having a fiber diameter of 10 to 500 [mu] m, and a fiber length of 1.0 to 10 mm, the solution of defibrated material and flocculent natural fibrous material having an aspect ratio 10-50 defibrated material To 100 parts by weight of the composite cotton-like material obtained in the first step and the same step of obtaining the composite cotton-like material , 0.1 to 30 parts by weight of a binder or heat-sealing fiber was added, and no pressure was applied. A method for producing a matte material having high heat insulation performance and excellent shape retention, which comprises a second step of heating at room temperature to 250 ° C.
[4] To 100 parts by weight of the natural fiber material adjusted to have a water content of 20 to 30%, 25 to 400 parts by weight of paper material is simultaneously added to adjust the water content to 20 to 30%, and then a scraping blade. the dry milling over the dry fiberizer having a fiber diameter of 10 to 500 [mu] m, and a fiber length of 1.0 to 10 mm, the solution of defibrated material and flocculent natural fibrous material having an aspect ratio 10-50 defibrated material To 100 parts by weight of the composite cotton-like material obtained in the first step and the same step of obtaining the composite cotton-like material , 0.1 to 30 parts by weight of a binder or a heat-sealing fiber was added, and the content was 1 to 50 Mpa. A method for producing a lightweight and high-strength molded product, which comprises a second step of pressurizing and heating at room temperature to 250 ° C.
[5] After adjusting the natural fibrous material to a water content of 20 to 30%, the natural fibrous material is subjected to dry grinding by using a dry fiber defibrator equipped with a scraping blade to obtain a fiber diameter of 1 to 600 μm and a fiber length of 0.1 to 50 mm. a first step of obtaining a fibrillation of natural fibrous material having an aspect ratio of 10 to 60, and sieved resulting fibrillated product in the first step, the defibration of the long groups of fiber length a second step of separating the fibrillation of a short group fiber length, fibrillation of a short group fiber length with respect to the opener was 100 parts by weight of a long group of fiber length obtained in the second step Add and mix 0.1 to 30 parts by weight, pressurize at 1 to 50 Mpa, heat at room temperature to 250 ° C., and solve the short fiber length group without adding binders or heat-sealed fibers. method for producing a molded article of lightweight, high strength lignin as a binder component, comprising the third step of Ru is melted and solidified contained defibrated material.
[6] The natural fibrous material used in any one of the above [1] to [5] is (1) softwood / hardwood wood or their bark, or (2) xylem of grasses. Alternatively, a method characterized by being a skin / branch / leaf part.
[7] A dry defibrator equipped with a scraping blade used in any one of the above [1] to [5] can be used.
A perforated screen (3) provided with a clearance between a bottomed cylindrical casing (2) having a fixed blade (1) inside and an inner wall of the bottomed cylindrical casing (2), and the bottomed cylindrical casing (3). a cylindrical casing rotary blade in the axial center is JikuSo cutting or tearing the textiles containing material in cooperation with said fixed blade (1) (2) (4), wherein during operation the bottomed cylindrical casing (2 ), And a vertical coarse grinding device (X) for a fiber-containing material having a gas suction unit (5) for sucking the gas in () and discharging and recovering the crushed material to the outside through the porous screen (3). ), Which has a blade structure that generates an upward air flow in the bottomed cylindrical casing (2) by rotation, and has a plurality of rotary blade mounting portions (61) equally arranged on the outer periphery of the rotating surface. The pedestal (6) is installed in multiple stages separated from each other in the axial direction, and the gas suction part (5) is formed at one or a plurality of places on the lower side wall of the bottomed cylindrical casing (2). A larger suction airflow is generated downward against the upward airflow and the flow of the crushed material generated in the bottom cylindrical casing (2), and the crushed material is discharged and recovered from one or more directions at any time. A method characterized by being. "
本発明によれば、針葉樹・広葉樹の木材又はそれらの木皮、あるいは竹、笹などの禾本科植物の木質部又は皮・枝葉部などの天然繊維質材料を原材料として、製造の全行程を乾式で行って、アスペクト比の高い解繊物を製造でき、かつ薬品処理も不要とし、低コストで実施できる。
本発明による掻き取り刃を備えた乾式解繊機による摩砕(切削)を採用することで、乾式工程のみで全行程を実施できる。
本発明で得られた天然繊維質材料の解繊物である繊維状材料は高断熱性かつ高強度であり、マット材に使用した場合は、高断熱性で保形性(形状復元性)に優れたものとなる。
また、得られた天然繊維質材料の解繊物を綿状の解繊物に均一分散した場合に綿状の解繊物間の空隙を広げつつ微細な解繊物と補強性を有する解繊物が絡み合い、補強性を有する複合綿状材料となる。
さらに、繊維長の長いグループの解繊物に繊維長の短いグループの解繊物を添加・混合して加熱すると、繊維長の短いグループの解繊物に多量に含有されているリグニンがバインダーとなって作用し、他のバインダーの使用を少量、又は不要として高断熱性の成形体が取得できる。
According to the present invention, the entire manufacturing process is carried out in a dry manner using coniferous / hardwood wood or their bark, or woody parts of grasses such as bamboo and bamboo, or natural fiber materials such as bark / branches and leaves as raw materials. Therefore, a defibrated product having a high aspect ratio can be produced, chemical treatment is not required, and it can be carried out at low cost.
By adopting grinding (cutting) by a dry defibrator equipped with a scraping blade according to the present invention, the entire process can be carried out only in the dry process.
The fibrous material, which is a defibrated product of the natural fibrous material obtained in the present invention, has high heat insulation and high strength, and when used as a mat material, has high heat insulation and shape retention (shape restoration). It will be excellent.
Further, fibrillation with resultant natural fibrous reinforcement and fine defibration while widening the gap between the defibrated material in the cotton-like when the defibrated material was uniformly dispersed in the defibrated material of flocculent material Objects are entangled to form a composite cotton-like material with reinforcing properties.
Furthermore, when heat is added to and mixed with fibrillation of a short group fiber length in fibrillated of long groups of fiber length, lignin is contained in large quantities fibrillation of a short group of fiber length and the binder It is possible to obtain a highly heat-insulating molded product with a small amount or unnecessary use of other binders.
本発明者らは、天然繊維質材料であるスギ、ヒノキ、カラマツ等の木質バイオマスから乾式で解繊物を取得すべく、種々検討をする中で、掻き取り刃を備えた乾式解繊機に着目し、様々な木質バイオマスを用いて摩砕(以下、掻き取り刃で、「削り取る」又は「切削」することを意味する)実験を行った結果、木質バイオマスのような天然繊維質材料の含水率を20〜30%に調整した後、掻き取り刃を備えた乾式解繊機で摩砕処理を行えば、繊維径が小さく、かつアスペクト比の高い解繊物が高効率で得られることを見いだした。
木質バイオマスから乾式摩砕により低コストで量産可能な方式で高性能なバイオマス解繊物を作製し、摩砕物(天然繊維質材料の解繊物)を用いた軽量・断熱材の作製方法について検討した。
すなわち本発明は、地域木材を代表するスギ、ヒノキ、カラマツ、モミ、ツガ等の針葉樹の木皮や木片・木材、広葉樹の木片・木材、竹や笹等の禾本科植物の茎・枝葉等から、掻き取り刃を備えた乾式解繊機、例えば特許第3051981号「繊維含有材料の縦型粗粉砕装置及びその刃物構造」の乾式解繊機を用いて、繊維状の解繊物(天然繊維質材料の解繊物)を得て、それを建築・住宅用等の断熱材に利用しようとするものである。
上記特許の縦型粗粉砕装置(乾式解繊機)は、固定刃と回転刃と多孔スクリーンを備えたもので、同乾式解繊装置の前工程の排出部スクリーンの篩目と、後工程の排出部スクリーンの篩目の調整により、バイオマス繊維(解繊物)の径や繊維長を調整することが可能である。
本発明で材料とする地域未利用木質バイオマスは、樹種によりそれぞれの繊維に特徴があり皮部、幹の部位、枝部に寄っても性質が違い、含水率も大きな差がある。
本発明者らは研究の結果、表乾状態の含水率20%〜30%に調整した木質バイオマス(天然繊維質材料)を使用すれば、得られる解繊物の強度、保形性等の特性が格段に良好になることを見いだした。なお、含水率20%〜30%は、天然繊維質材料(木質バイオマス)の全乾状態を含水率0%として算出した数値である。
そこで、乾燥しすぎて含水量が不足する材料に対しては、乾式解繊機に投入する前に水をスプレーする等して含水率を調整することが望ましい。
The present inventors focused on a dry defibrator equipped with a scraping blade while conducting various studies in order to obtain a dry defibrator from woody biomass such as cedar, hinoki, and karamatsu, which are natural fiber materials. However, as a result of conducting grinding experiments (hereinafter, meaning "shaving" or "cutting" with a scraping blade) using various woody biomass, the moisture content of natural fibrous materials such as woody biomass after adjusting to 20-30%, by performing triturated with dry fiberizer with a scraping blade, it found that fiber diameter is small and a high defibration aspect ratio can be obtained with high efficiency ..
By dry milling from woody biomass to produce a high-performance biomass defibration in mass-producible manner at a lower cost, consider a method for manufacturing a lightweight, heat insulating material using the ground material (solution of natural fibrous material defibrated material) did.
That is, the present invention is made from the bark, wood chips and wood of coniferous trees such as sugi, cypress, karamatsu, fir and hemlock, which are representative of regional wood, the wood chips and wood of broadleaf trees, and the stems and branches and leaves of plants of the family such as bamboo and bamboo. dry fiberizer with a scraper blade, for example using a dry fiberizer of Patent No. 3,051,981, "vertical coarse crusher and a cutter structure of fiber-containing material", the solution of the fibrous defibrated material (natural fibrous material It is intended to obtain defibrated material) and use it as a heat insulating material for construction and housing.
The patented vertical coarse crusher (dry defibrator) is equipped with a fixed blade, a rotary blade, and a perforated screen. By adjusting the mesh of the partial screen, it is possible to adjust the diameter and fiber length of the biomass fiber (defibrated product).
The locally unused woody biomass used as a material in the present invention has characteristics in each fiber depending on the tree species, and the properties are different even if it approaches the skin, the trunk, and the branches, and the water content is also greatly different.
As a result of research, the present inventors have obtained characteristics such as strength and shape retention of the defibrated product obtained by using woody biomass (natural fiber material) adjusted to have a moisture content of 20% to 30% in a dry state. I found that it would be much better. The water content of 20% to 30% is a value calculated assuming that the total dry state of the natural fiber material (woody biomass) is 0%.
Therefore, for a material that is too dry and has a insufficient water content, it is desirable to adjust the water content by spraying water or the like before putting the material into the dry defibrator.
木材は乾燥して含水率が低下し、繊維飽和点以下となると自由水はすべて蒸発し、その後は細胞壁中の組織水が乾燥し始める。この時木材の強度は徐々に増大する。含水率20%以下となり平衡含水率の15%以下となると乾燥が進みすぎて摩砕がうまくいかない。
本発明では一度乾燥して繊維飽和点以下となり、含水率20%以下となった木材に対しては、繊維飽和点まで水分添加することにより、木質バイオマスを効率良く摩砕することが可能となる。
この水分範囲においては木質バイオマスの強度が摩砕時の剪断力に適切に作用し、良好な繊維状の解繊物(天然繊維質材料の解繊物)が得られる。
含水率の調整方法は、木質が乾燥する段階で、目的とする含水率まで乾燥する方法と一度乾燥した木質を水中に入れ、吸水させる場合が挙げられる。
さらに、加圧あるいは減圧により水分を木材中に注入する方法も提案される。
本発明で得られる繊維状の解繊物は高断熱性、高強度を有し、吹き込み断熱材、軽量マット材や軽量ボード材への適用が好適である。
含水率の調整方法は、木質が乾燥する段階で、目的とする含水率まで乾燥する方法と一度乾燥した木質を水中に入れ、吸水させる場合が挙げられる。
さらに、加圧あるいは減圧により水分を木材中に注入する方法も提案される。
When the wood dries and the moisture content decreases, all the free water evaporates below the fiber saturation point, after which the tissue water in the cell wall begins to dry. At this time, the strength of the wood gradually increases. If the moisture content is 20% or less and the equilibrium moisture content is 15% or less, drying proceeds too much and grinding does not go well.
In the present invention, for wood that has been dried once to be below the fiber saturation point and has a moisture content of 20% or less, it is possible to efficiently grind woody biomass by adding water to the fiber saturation point. ..
The strength of wood biomass in water ranges acts appropriately on the shear milling time, good fibrous defibration (defibration of natural fibrous material) is obtained.
Examples of the method for adjusting the water content include a method of drying the wood to the desired water content at the stage of drying the wood and a method of putting the dried wood in water to absorb water.
Further, a method of injecting water into wood by pressurization or depressurization is also proposed.
Defibrated material of fibrous obtained in the present invention is high heat insulating property, has a high strength, blowing insulation is suitable applied to a lightweight mat material and weight board material.
Examples of the method for adjusting the water content include a method of drying the wood to the desired water content at the stage of drying the wood and a method of putting the dried wood in water to absorb water.
Further, a method of injecting water into wood by pressurization or depressurization is also proposed.
本発明では、木質バイオマス(天然繊維質材料)が木材又は木片の場合は、繊維径0.5mm以下、アスペクト比15以上の天然繊維質材料の解繊物が得られ、木皮の場合は繊維径0.3mm以下、アスペクト20以上の繊維状の解繊物が得られる。
また木質、木片ともに開口径1.5mmフルイを通過した解繊物はアスペクト比30以上である。
解繊処理時にフルイのメッシュを変化させれば繊維径0.3mm以下でアスペクト30以上の解繊物が常に得られる。
このように掻き取り刃を備えた乾式解繊機を用いると、原料の木質バイオマスの含水率を20〜30%に調整し、装置のメッシュを調整することにより、従来の乾式粉砕では不可能であった繊維状の解繊物が容易に取得できるのである。
In the present invention, when the woody biomass (natural fiber material) is wood or a piece of wood, a defibrated product of a natural fiber material having a fiber diameter of 0.5 mm or less and an aspect ratio of 15 or more can be obtained, and in the case of bark, the fiber diameter is obtained. A fibrous defibrated product having an aspect of 0.3 mm or less and an aspect of 20 or more can be obtained.
In addition, the defibrated product that has passed through a fluid with an opening diameter of 1.5 mm for both wood and wood pieces has an aspect ratio of 30 or more.
Fibrillation treatment solution of
When a dry defibrator equipped with a scraping blade is used in this way, the moisture content of the raw wood biomass is adjusted to 20 to 30%, and the mesh of the device is adjusted, which is not possible with conventional dry pulverization. The fibrous defibrated product can be easily obtained.
従来のカッターミル(切断方式)、ハンマーミル(叩き潰し)、インパクトミル(衝撃粉砕)、ローラーミル(押し潰し)等の乾式粉砕機を用いて得られる粉砕品は、原料の含水比を調整しても粉砕品がチップ状あるいは粉状の形状となってしまう。また解繊物が得られても収率が30%程度以下と低い上に、繊維径が0.5mm以上となり、得られた解繊物を加工品として再利用することが不可能である。
従来の乾式粉砕で得られるものの多くは繊維径1000μmを越えるmm単位のものであり、木質バイオマスからアスペクト比の高く軽量で断熱性能に優れた繊維状の解繊物は得られなかった。
For crushed products obtained using a dry crusher such as a conventional cutter mill (cutting method), hammer mill (crushing), impact mill (impact crushing), roller mill (crushing), the water content ratio of the raw material is adjusted. However, the crushed product becomes a chip-like or powder-like shape. Further, even if a defibrated product is obtained, the yield is as low as about 30% or less, and the fiber diameter is 0.5 mm or more, so that the obtained defibrated product cannot be reused as a processed product.
Most of what can be obtained by the conventional dry pulverization is in mm units having a fiber diameter of more than 1000 μm, and a fibrous defibrated product having a high aspect ratio, light weight and excellent heat insulating performance could not be obtained from woody biomass.
本発明で得られた天然繊維質材料の解繊物は複数の解繊物が集合した構造となっており、これらの天然繊維質材料の解繊物はマット材に用いた場合、竹材やケナフから得られた解繊物では高強度、高弾性の性能が期待され、特に高アスペクト比の解繊物が得られ、高性能な用途に用いることが可能となる。 The defibrated product of the natural fiber material obtained in the present invention has a structure in which a plurality of defibrated products are aggregated, and when these defibrated products of the natural fiber material are used as a mat material, bamboo material or kenaf is used. The defibrated product obtained from the above is expected to have high strength and high elasticity, and in particular, a defibrated product having a high aspect ratio can be obtained and can be used for high-performance applications.
本発明者らは更に、木片・木材の木質部分と、竹及び笹の木化部分は乾燥比重が比較的に高いため、嵩比重を下げて建築・住宅用断熱材とし、その性能を向上させる方法として、また、施工方法の一つの手法とする吹込み工法のハンドリングを向上させる手段の一手法として、古紙や新聞紙やダンボールの紙質リサイクル資源を利用した、木質材との複合綿状材料を開発した。
紙などの有セルロース(繊維)資源のセルロース(繊維)を、綿状に乾式で取り出せることに成功した。紙等と木質バイオマスも同時に摩砕(解繊)され、綿状の解繊物と木質バイオマスの解繊物が均一分散された成形体となっている。
Furthermore, since the woody parts of wood pieces and wood and the woody parts of bamboo and bamboo have relatively high dry specific gravity, the present inventors further reduce the bulk specific gravity to make them heat insulating materials for construction and housing, and improve their performance. As a method and as a means to improve the handling of the blowing method, which is one of the construction methods, we have developed a composite cotton-like material with wood using recycled paper quality resources such as used paper, newspaper and cardboard. did.
We have succeeded in extracting cellulose (fiber), which is a resource with cellulose (fiber) such as paper, in a cotton-like manner in a dry manner. Such as paper and woody biomass is ground (defibrated) simultaneously, defibrated material fluffy defibration and woody biomass is a homogeneous dispersed shaped body.
本発明者らは低コストで摩砕可能な乾式摩砕により、バイオマスから高アスペクトで様々な用途へ利用可能な摩砕方法および摩砕物を用いた軽量・断熱材の作製方法について検討した。
木材から乾式摩砕により解繊物を取り出すためには、木材の繊維束に方向にそった削剥工程が必要である(ひきちぎり)。このような摩砕装置として特殊な刃物構造を有した解繊装置がある。このような解繊装置を用いた摩砕技術、得られた摩砕物の利用技術について検討した。
The present inventors have investigated a grinding method that can be used for various purposes from biomass with a high aspect ratio by dry grinding that can be ground at low cost, and a method for producing a lightweight and heat insulating material using a ground product.
To retrieve the defibrated material by dry milling of wood, it is necessary scraping step along the direction to the fiber bundle of wood (tear). As such a grinding device, there is a defibrating device having a special blade structure. The grinding technique using such a defibrating device and the utilization technique of the obtained pyroclastic material were examined.
特許3051981号公報に示す技術ではバイオマス削剥(切削)時は刃物の回転軸に対し、バイオマスの中心軸を平行、かつ垂直線上に保ち、バイオマスの外周面を案内部材に押し当て、押圧しながら削剥(切削)することを特徴とした摩砕機により数mm以下の繊維径で数mm〜百mmの繊維長からなる単繊維が得られる。
本装置では第1段階で得られたこの繊維をピンミル構造の摩砕機にてさらに繊維を解繊分級することで、アスペクトの高い繊維を得ている。この解繊装置では、第1の摩砕においてバイオマス削剥時は刃物の回転軸に対しバイオマスの中心軸を平行粗摩砕され、一定のメッシュを通過した摩砕品がさらに第2の摩砕により破砕され所定のメッシュを通過した破砕品が得られる。この装置によれば乾式摩砕において、従来の粉砕方式と比較して圧倒的に木質材から高アスペクト比のバイオマス繊維を取り出しやすく、木質の構造由来の繊維が乾式摩砕により得られる。
In the technique shown in Japanese Patent No. 3051981, when stripping (cutting) biomass, the central axis of biomass is kept parallel and perpendicular to the rotation axis of the blade, and the outer peripheral surface of biomass is pressed against the guide member and scraped while pressing. A grinder characterized by (cutting) can obtain a single fiber having a fiber diameter of several mm or less and a fiber length of several mm to 100 mm.
In this apparatus, the fibers obtained in the first stage are further defibrated and classified by a grinder having a pin mill structure to obtain fibers having a high aspect. In this defibration device, when the biomass is stripped in the first grinding, the central axis of the biomass is coarsely ground in parallel with the rotation axis of the blade, and the ground product that has passed through a certain mesh is further ground by the second grinding. A crushed product that has been crushed and passed through a predetermined mesh is obtained. According to this apparatus, in dry grinding, it is overwhelmingly easier to extract biomass fibers having a high aspect ratio from wood materials as compared with the conventional crushing method, and fibers derived from the wood structure can be obtained by dry grinding.
本発明は、木質材を適切な水分に調節することである。木材では生木のような状態では含水率は70%以上に達することもあるが強度が小さく、このような摩砕機に適さず、摩砕により良好な解繊物が得られない。木材は乾燥して含水率が低下し、繊維飽和点以下となると自由水はすべて蒸発し、その後は細胞壁中の組織水が乾燥し始める。この時木材の強度は徐々に増大する。
含水率20%以下となり平衡含水率の15%以下となると乾燥が進みすぎて摩砕がうまくいかない。本発明では一度乾燥して繊維飽和点以下となり、含水率20%以下となった木材に水分を付与し、繊維飽和点まで水分添加することにより木質材を効率良く摩砕することが可能である。この水分範囲においては木材の強度が摩砕時の剪断力が適切に作用し、良好な解繊物が得られる。
The present invention is to adjust the wood material to an appropriate moisture content. In the case of wood, the moisture content may reach 70% or more in a state like raw wood, but the strength is low, and it is not suitable for such a grinder, and a good defibrated product cannot be obtained by grinding. When the wood dries and the moisture content decreases, all the free water evaporates below the fiber saturation point, after which the tissue water in the cell wall begins to dry. At this time, the strength of the wood gradually increases.
If the moisture content is 20% or less and the equilibrium moisture content is 15% or less, drying proceeds too much and grinding does not go well. In the present invention, it is possible to efficiently grind the wood material by adding water to the wood that has been dried once to be below the fiber saturation point and has a moisture content of 20% or less, and to add water to the fiber saturation point. .. The shear strength of the wood of milling time in water ranges act appropriately, good defibration is obtained.
本発明者らはこのような装置を用いて様々なバイオマスにおいて摩砕実験を繰り返した結果、バイオマスの含水率が20〜30%の時最も効率良く高アスペクト比の解繊物が取り出せることを見いだした。
摩砕行程において木質材の含水率を20〜30%に調整することで高アスペクト比で軽量・断熱性能に優れた解繊物をとり出せる。また紙質の材料を複合化させることで綿状の複合綿状材料を提供することができる。
The inventors have found that repeated milling experiments in various biomass using such an apparatus, found that the water content of the biomass can be taken out is defibrated material of most efficiently high aspect ratio when 20-30% It was .
Put out the moisture content of the wood material takes the excellent defibrated material in lightweight insulation performance in high aspect ratio by adjusting the 20-30% in the degree milling砕行. Further, a cotton-like composite cotton-like material can be provided by compounding a paper-like material.
本発明において、摩砕時にバークや紙材を同時に摩砕することで単繊維に近いバークや紙の場合は綿状に近いセルロースと木質繊維の複合体が得られ、断熱性能が向上する。摩砕され綿状となったセルロースは比較的低熱伝導であるがアスペクト比の大きな木質繊維が共存するとさらに空隙が広がり、さらに低熱伝導となるだけでなく、木質繊維の反発力により、圧縮されにくく低熱伝導の状態を維持できることがわかった。 In the present invention, by simultaneously grinding bark or paper material at the time of grinding, a composite of cellulose and wood fiber close to cotton-like material can be obtained in the case of bark or paper close to single fiber, and the heat insulating performance is improved. Cellulose that has become cotton-like after being ground has relatively low thermal conductivity, but when wood fibers with a large aspect ratio coexist, the voids further expand, resulting in even lower thermal conductivity, and it is difficult to be compressed due to the repulsive force of the wood fibers. It was found that the state of low heat conduction can be maintained.
本発明においてホウ酸溶液等を用いることで摩砕と同時に摩砕物の表面に防虫・防蟻・難燃機能を付与した摩砕物を得ることができる。あるいは脱臭・調湿等の機能を付与することができる。
第1の発明(請求項1)及び第5の発明(請求項5)では複数の解繊物の集合体であるがアスペクト比の大きな繊維長の長い解繊物と、繊維長は短く、さらに微細な解繊物が得られる。後者ではバイオマス由来のリグニン等バインダー成分が多く含まれる。
従ってこれらの解繊物を混合して成形し、加熱すれば容易に加熱プレスによりバインダー成分が溶融固化されボードが得られる。
これらの解繊物を篩い分けし、バインダー成分の多い粉体で成形、加熱するとより高強度のボードが得られる。
本発明により得られた解繊物のうちのアスペクト比の大きな解繊物のみを分離して使用すれば断熱性の良好な成形体やマットが得られる。
By using a boric acid solution or the like in the present invention, it is possible to obtain a pyroclastic material having insect-proof, ant-proof and flame-retardant functions on the surface of the pyroclastic material at the same time as the pyroclastic material. Alternatively, functions such as deodorization and humidity control can be added .
A first invention (Claim 1) and the fifth aspect of the present invention the long solutions of large fiber length is a collection of (claim 5) Multiple defibration aspect ratio defibrated material, the fiber length is short, further A fine defibrated product can be obtained. The latter contains a large amount of binder components such as lignin derived from biomass.
Therefore, if these defibrated products are mixed, molded, and heated, the binder component is easily melted and solidified by a heating press to obtain a board.
When these defibrated products are sieved, molded with a powder containing a large amount of binder component, and heated, a board having higher strength can be obtained.
If only the defibrated product having a large aspect ratio among the defibrated products obtained by the present invention is separated and used, a molded product or mat having good heat insulating properties can be obtained.
本発明によれば天然繊維質材料から乾式摩砕により、様々な解繊物が得られる。摩砕品の特徴として複数の解繊物が集合した構造となっている。天然繊維質材料の種類や摩砕時の条件により解繊物の性質は異なる。竹材のような解繊物は弾力性を強靱性を兼ね備え、高強度の成形体に利用可能である。
一方ケナフの摩砕品やバークの摩砕品は摩砕径も細く、弾力性や反発性を兼ね備え、断熱材に応用できる。
これらの解繊物を用いて、軽量・高強度なボードやマットを作製することが可能である。
天然繊維質材料の種類や摩砕条件により様々な部材が作製可能であるが以下に高強度部材および断熱材へ応用する場合の各解繊物の機能を示す。
According to the present invention , various defibrated products can be obtained from natural fibrous materials by dry grinding. A plurality of the defibrated material has a structure set as a feature of the milling砕品. The properties of the defibrated product differ depending on the type of natural fibrous material and the conditions at the time of grinding. A defibrated product such as bamboo has elasticity and toughness, and can be used for a high-strength molded product.
On the other hand, kenaf crushed products and bark crushed products have a small grinding diameter, have elasticity and resilience, and can be applied to heat insulating materials.
Using these defibrated products, it is possible to produce lightweight and high-strength boards and mats.
Various members can be produced depending on the type of natural fibrous material and grinding conditions, but the functions of each defibrated product when applied to high-strength members and heat insulating materials are shown below.
〔高強度材への応用〕
高強度部材の製造においては、摩砕品のアスペクト比が20以上かつ繊維径200μm以上の摩砕品を用いることが望ましい。
その摩砕品をそのまま積層プレスすることで強靱な成形体が得られる。
本発明によれば高アスペクトの高強度な木質繊維(天然繊維質材料の解繊物)が得られ、バインダーを用いてプレス成形することにより、複数の高強度な解繊物が積層・密着されることで、高強度軽量体が得られる。
本摩砕品においてはミクロの部分まで繊維構造を有しており、加熱処理した場合に周辺の木質繊維(天然繊維質材料の解繊物)と絡みあい、表面からリグニンが溶出し、強固な成形体が得られる。
天然繊維質材料の解繊物を取得する第1の工程と、第1の工程で得られた解繊物を篩い分けして、繊維長の長いグループの解繊物と繊維長の短いグループの解繊物に分別する第2の工程と、第2の工程で得られた繊維長の長いグループの解繊物100重量部に対して繊維長の短いグループの解繊物0.1〜30重量部を添加・混合して、1〜50Mpaで加圧して、常温〜200℃で加熱する第3の工程とからなることを特徴とする軽量・高強度の成形体を製造する方法の本発明においては、微細な解繊物は表面積は大きくリグニンが溶出しやすく大小の解繊物同士が絡みあい、プレス体の強度が発現するものと考えられる。これによりバインダーを用いることなくリグニン等の天然由来のバインダーを利用した高強度成形体が得られる。
[Application to high-strength materials]
In the production of high-strength members, it is desirable to use a ground product having an aspect ratio of 20 or more and a fiber diameter of 200 μm or more.
A tough molded product can be obtained by laminating and pressing the ground product as it is.
According to the present invention, high-strength wood fibers with high aspect ( defibrated products of natural fibrous materials) can be obtained, and by press-molding using a binder, a plurality of high-strength defibrated products are laminated and adhered to each other. As a result , a high-strength and lightweight body can be obtained.
This ground product has a fiber structure up to the micro part, and when heat-treated, it becomes entangled with the surrounding wood fibers (defibrated products of natural fibrous materials ), and lignin elutes from the surface, making it strong. A molded body is obtained.
A first step of obtaining a fibrillation of natural fibrous material, and sieved resulting fibrillated product in the first step, long groups of fiber length defibrated material and a fiber length of short Group a second step of separating the disintegrated material, defibrated product 0.1 to 30 wt short groups of fiber length with respect to the opener was 100 parts by weight of the obtained fiber length long groups in the second step In the present invention of a method for producing a lightweight and high-strength molded body, which comprises a third step of adding and mixing parts, pressurizing at 1 to 50 Mpa, and heating at room temperature to 200 ° C. It is considered that the fine defibrated product has a large surface surface and lignin is easily eluted, and the large and small defibrated products are entangled with each other to develop the strength of the pressed body. As a result, a high-strength molded product using a naturally-derived binder such as lignin can be obtained without using a binder.
〔断熱材への応用〕
断熱性能を有する部材の作製に関しては摩砕品のアスペクト比が20以上かつ繊維径200μm以下の摩砕品を用いることが望ましい。
摩砕品のアスペクト比が20以上でかつ繊維径;200μm以下の摩砕品を複合綿状材料の綿状の解繊物中に分散させて点接合させ断熱性能と強度を維持できる。
いわゆるスプリングバック機能により複合綿状材料の綿状の解繊物同志間の空隙を広げる。摩砕品はバインダーや熱融着繊維により固定することで、成形体の保持力を維持する。
バインダーとして無機バインダーを用いる場合は密度が高くなるため、バインダー成分を発泡させることが考えられるが、この場合も保持力がなければ、成形体は乾燥凝集し、密度が高くなり、断熱性能が低下するが、本構造を維持することで断熱性能を低下させることなく成形可能である。
アスペクト比は高い程、成形体の強度や弾性を保持する上で有利であるが、断熱材に応用する場合は成形体の断熱性能が劣化するので高性能な断熱材に使用する場合は繊維径200μm程度以下が望ましい。
添加する有機バインダーとしては熱硬化性樹脂としてフェノール樹脂、エポキシ樹脂)メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン熱硬化性ポリイミド等から選ばれた樹脂が好ましく用いられ、それらは繊維として添加使用されても良い。また熱融着繊維としては2層構造となった(芯となる繊維に熱硬化性樹脂がコーティングされた)構造でも良い。
また有機バインダーとしては、デンプン、寒天、ニカワ等の天然ポリマー、カルボキシメチルセルロース、ヒドロキシエチルセルロース、リグニンスルフォン酸、変成でんぷん等の半合成ポリマー、ポリアクリル酸ナトリウム、ポリアクリルアミド、ポリビニルアルコール、ポリエチレンイミン、オリエチレンオキシド、ポリビニルピロリドン等の合成ポリマーが利用可能である。
本発明で得られた天然繊維質材料の解繊物および複合綿状材料中の綿状の解繊物はこのような有機バインダーと絡みやすく、高強度となり、また多孔性を維持し、高断熱性を維持する。
無機バインダーとしてはアルカリ珪酸塩、コロイダルシリカ等の水溶性珪酸塩、無機-有機複合ポリマー、リン酸アルミニウム、アルミナゾル、ポルトランドセメント、アルキルシリケート、アルミナセメント、石膏、石灰等が利用可能である。
[Application to heat insulating materials]
Regarding the production of a member having heat insulating performance, it is desirable to use a ground product having an aspect ratio of 20 or more and a fiber diameter of 200 μm or less.
The aspect ratio of the friction砕品20 or more and the fiber diameter; can maintain insulation performance and strength are bonded points are dispersed in a fluffy defibrated material composite fluffy material 200μm following milling砕品.
The so-called springback function widens the gap between the cotton-like defibrated materials of the composite cotton-like material. Grinding砕品than be fixed Ri by the binder or heat fusion fibers, to maintain the holding force of the molded article.
When an inorganic binder is used as the binder, the density becomes high, so it is conceivable to foam the binder component. However, in this case as well, if there is no holding power, the molded product dries and aggregates, the density becomes high, and the heat insulating performance deteriorates. However, by maintaining this structure, molding is possible without deteriorating the heat insulating performance.
The higher the aspect ratio, the more advantageous it is in maintaining the strength and elasticity of the molded product, but when applied to a heat insulating material, the heat insulating performance of the molded product deteriorates, so when used for a high-performance heat insulating material, the fiber diameter It is preferably about 200 μm or less.
As the organic binder to be added, a resin selected from melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyurethane thermosetting polyimide and the like is preferably used as the thermosetting resin, and they are fibers. It may be added and used as. Further, the heat-sealed fiber may have a two-layer structure (the core fiber is coated with a thermosetting resin).
As also organic binder, de Npun, agar, natural polymers such as glue, carboxymethyl cellulose, hydroxyethyl cellulose, lignin sulfonic acid, semi-synthetic polymers such as modified starch, sodium polyacrylate, polyacrylamide, polyvinyl alcohol, polyethylene imine, cage Synthetic polymers such as ethylene oxide and polyvinylpyrrolidone are available.
Fluffy defibrated material of natural fiber defibration Contact and composite flocculent material of the material obtained in the present invention is easily entangled with the organic binder becomes a high strength, also maintaining porosity, high Maintains heat insulation.
As the inorganic binder, water-soluble silicates such as alkaline silicate and colloidal silica, inorganic-organic composite polymer, aluminum phosphate, alumina sol, Portland cement, alkyl silicate, alumina cement, gypsum, lime and the like can be used.
本発明を実施例により具体的に説明する。
本発明による解繊例と従来技術による解繊例との比較を行った。
まず、本発明の掻き取り刃を具備した解繊機(A;(有)西日本技術開発製の
固定刃と回転刃と多孔スクリーンを備えた乾式解繊機(解繊機A))を用いて含水比の異なる各種木質バイオマスを摩砕し、各物性を測定した。
本実施例で用いた解繊機Aの構成は、以下のものである。
The present invention will be specifically described with reference to Examples.
A comparison was made between the defibration example according to the present invention and the defibration example according to the prior art.
First, a defibrator equipped with the scraping blade of the present invention (A; a dry defibrator equipped with a fixed blade, a rotary blade and a perforated screen manufactured by West Japan Engineering Consultants, Inc. (defibrator A)) was used to determine the water content. Various different woody biomasses were ground and each physical property was measured.
The configuration of the defibrator A used in this embodiment is as follows.
すなわち、図5〜10に示す構造のものであって、
内側に固定刃(1)を備えた有底円筒ケーシング(2)と、前記有底円筒ケーシング(2)の内壁との間にクリアランスを設けて周設した多孔スクリーン(3)と、前記有底円筒ケーシング(2)の軸中心に軸装され前記固定刃(1) と協働して繊維含有材料を切断又は裂断する回転刃(4)と、稼働中に前記有底円筒ケーシング(2)内の気体を吸引するとともに前記多孔スクリーン(3)を介して被粉砕物を外部に排出・回収するための気体吸引部(5)を有した繊維含有材料の縦型粗粉砕装置(X)であって、回転により有底円筒ケーシング(2)内で上向きの気流を生じるような羽根構造を有し、かつ、回転面外周に複数の回転刃取付け部(61)を等配した回転刃物台(6)を軸方向にそれぞれ離間して多段設置するとともに、有底円筒ケーシング(2)の下部側壁の一又は複数カ所に気体吸引部(5)を形設してなり、稼働中に有底円筒ケーシング(2)内で生じる上向きの気流及び被粉砕物の流動に抗して、下方により大きな吸引気流を生じさせ、被粉砕物を一又は多方向から随時排出・回収するようにしたものであることを特徴とする掻き取り刃を備えた乾式解繊機である。
(なお、図5は装置構成を示す斜視説明図、図6は、断面視概略説明図、図7は、平面視概略説明図である。図8は、刃物構造を示す平面図、図9は、図8における(a)I−I矢視拡大断面図、及び(b)II−II矢視拡大断面図、図10は、図8におけるA部詳細説明図である。)
そして、上記回転刃物台6の設置構成において、上下段の位置関係にある回転刃物6a,6b台間で、上段の回転刃4が、下段の回転刃4に対して回転方向に最大45度の範囲内で遅れて固定刃1に接触するようにそれぞれ軸装されており、さらに、上記の縦型粗粉砕装置Xにおける刃物構造Yは、回転面外周に複数の回転刃取付け部61を等配した回転刃物台6が、回転により有底円筒ケーシング2内で上向きの気流を生じるような羽根構造を有し、前記回転刃取付け部61に、固定刃1に対する接触角度θが鈍角となるように刃面形成した回転刃4を着脱可能に取り付けてなり、さらにまた、羽根構造Yが翼形であって、回転方向の前端縁62を斜面形成し、その傾斜角度αを2度〜10度範囲としたものである。
なお、図中7はスペーサ、8は円形床板、21は固定刃取付用リブである。
That is, it has the structure shown in FIGS. 5 to 10.
A perforated screen (3) provided with a clearance between a bottomed cylindrical casing (2) having a fixed blade (1) inside and an inner wall of the bottomed cylindrical casing (2), and the bottomed cylindrical casing (3). a cylindrical casing rotary blade in the axial center is JikuSo cutting or tearing the textiles containing material in cooperation with said fixed blade (1) (2) (4), wherein during operation the bottomed cylindrical casing (2 ), And a vertical coarse crusher (X) for a fiber-containing material having a gas suction part (5) for discharging and recovering the object to be crushed to the outside through the porous screen (3). A rotary tool post having a blade structure that generates an upward air flow in the bottomed cylindrical casing (2) by rotation, and having a plurality of rotary blade mounting portions (61) evenly arranged on the outer periphery of the rotating surface. (6) is installed in multiple stages separated from each other in the axial direction, and a gas suction part (5) is formed at one or a plurality of places on the lower side wall of the bottomed cylindrical casing (2). A larger suction airflow is generated downward against the upward airflow and the flow of the object to be crushed in the cylindrical casing (2), and the object to be crushed is discharged and recovered from one or more directions at any time. It is a dry defibrator equipped with a scraping blade, which is characterized by being present.
(Note that FIG. 5 is a perspective explanatory view showing an apparatus configuration, FIG. 6 is a sectional view schematic explanatory view, FIG. 7 is a plan view schematic explanatory view, FIG. 8 is a plan view showing a blade structure, and FIG. 9 is a plan view. , (A) I-I arrow-viewing enlarged cross-sectional view, (b) II-II arrow-viewing enlarged cross-sectional view, and FIG. 10 are detailed explanatory views of part A in FIG. 8).
Then, in the installation configuration of the
In the figure, 7 is a spacer, 8 is a circular floor plate, and 21 is a rib for attaching a fixed blade.
次に、上記の解繊機Aに、天然繊維質材料のスギ、ヒノキ等の木質バイオマス原料を20×20×100mm程度に成形した所定含水率の成形原材料を投入し、固定刃と回転刃との間で剪断して摩砕し、摩砕解繊物をフルイ分けして解繊物を取得した。 Next, a molding raw material having a predetermined water content obtained by molding a woody biomass raw material such as sugi or cypress , which is a natural fiber material , into the above-mentioned defibrator A to a size of about 20 × 20 × 100 mm is charged into the fixed blade and the rotary blade. It was sheared and ground in between, and the ground crushed fiber was separated into biomass to obtain the defibrated product.
また、比較例で用いた粉砕装置Bはカッターミルである。
そこで、粉砕装置Bに、天然繊維質材料のスギ、ヒノキ等の木質バイオマス原料を20×20×100mm程度に成形した所定含水率の成形原材料を投入し、摩砕して摩砕物を取得した。
The crushing device B used in the comparative example is a cutter mill.
Therefore, a molding raw material having a predetermined water content obtained by molding a woody biomass raw material such as sugi or cypress , which is a natural fiber material , into a crushing apparatus B to a size of about 20 × 20 × 100 mm was put into the crushing apparatus B and ground to obtain a ground product.
実施例1は、解繊機Aを用いて含水率25%のスギ木片を摩砕したものであり、実施例2は、解繊機Aを用いて含水率25%のヒノキ木片を摩砕したものである。
また、実施例3は解繊機Aを用いて含水率25%のスギ木皮を摩砕したものであり、実施例4は解繊機Aを用いて含水率25%のスギ木皮を摩砕したものである。
次に実施例5以下は、解繊機Aを用いて、含水比の異なる各種木質バイオマスと紙質材の混合品を摩砕し、各物性を測定した。
実施例5は解繊機Aを用いて含水率25%の混合品(スギ木皮:ダンボール=3:7)を摩砕したものであり、実施例6は解繊機Aを用いて含水率25%の混合品(ヒノキ木皮:ダンボール=5:5)を摩砕したものである。
Example 1 uses a defibrator A to grind a piece of sugi wood having a moisture content of 25%, and Example 2 uses a defibrator A to grind a piece of cypress wood having a moisture content of 25%. is there.
Further, Example 3 is obtained by grinding Sugi bark having a water content of 25% using a defibrator A, and Example 4 is obtained by grinding a Sugi bark having a water content of 25% using a defibrator A. is there.
Next, in Example 5 and below, a mixture of various woody biomass and paper material having different water content ratios was ground using a defibrator A, and each physical characteristic was measured.
Example 5 is obtained by grinding a mixed product (sugi bark: cardboard = 3: 7) having a moisture content of 25% using a defibrator A, and Example 6 is using a defibrator A to grind a mixture having a moisture content of 25%. It is a crushed mixture (cypress bark: cardboard = 5: 5).
次に、掻き取り刃を具備しない構造のカッターミル粉砕装置(B)を用いて含水比の異なる各種木質バイオマスを摩砕した。得られた摩砕品の繊維幅、平均アスペクト比、熱伝導率を測定した。
比較例1は、粉砕装置Bを用いて含水率15%のスギ木片を粉砕したものであり、比較例2は、粉砕装置Bを用いて含水率25%のスギ木片を粉砕したものである。
比較例3は、粉砕装置Aを用いて含水率14%(水分未調整)のスギ木片を粉砕したものであり、比較例4は、粉砕装置Aを用いて含水率70%のスギ木片(水分未調整)を粉砕したものであり、さらに比較例5は、粉砕装置Aを用いて含水率15%のヒノキ木片を粉砕したものである。(なお、含水率の水分は未調整で、本発明の数値範囲からはずれている。)
次に比較例4〜5は、本発明の掻き取り刃を具備した解繊機(A;(有)西日本技術開発製)を用いて含水比の異なる各種木質バイオマスを解繊し、繊維幅、平均アスペクト比、熱伝導率を測定した。
次に実施例1〜4は、本発明の掻き取り刃を具備した解繊機(A;(有)西日本技術開発製)を用いて含水比25%とし、各種木質バイオマスを解繊し、繊維幅、平均アスペクト比、熱伝導率を測定した。
Next, various woody biomasses having different water content were crushed using a cutter mill crusher (B) having a structure not provided with a scraping blade. The fiber width, average aspect ratio, and thermal conductivity of the obtained ground product were measured.
Comparative Example 1 is a crushed piece of Sugi wood having a water content of 15% using a crushing device B, and Comparative Example 2 is a piece of Sugi wood having a water content of 25% crushed using a crushing device B.
Comparative Example 3 is a crushed piece of wood with a moisture content of 14% (moisture unadjusted) using a crusher A, and Comparative Example 4 is a piece of wood with a moisture content of 70% (moisture) using a crusher A. (Unadjusted) was crushed, and in Comparative Example 5, a hinoki wood piece having a water content of 15% was crushed using a crushing device A. (Note that the water content of the water content has not been adjusted and is out of the numerical range of the present invention.)
Next, in Comparative Examples 4 to 5, various woody biomasses having different water content ratios were defibrated using a defibrator (A; manufactured by West Japan Engineering Consultants, Inc.) equipped with the scraping blade of the present invention, and the fiber width and average were deflated. The aspect ratio and thermal conductivity were measured.
Next, in Examples 1 to 4, various woody biomass was defibrated by using a defibrator (A; manufactured by West Japan Engineering Consultants, Inc.) equipped with the scraping blade of the present invention to defibrate various woody biomass, and the fiber width. , Average aspect ratio and thermal conductivity were measured.
以上の実施例及び比較例について、バイオマスの種類、含水率、解繊物の繊維径、アスペクト比、熱伝導率等を表1に示した。
表1に示す結果から、本発明に係る掻き取り刃を具備した解繊機を用いて、含水率が本発明の数値範囲に調整された天然繊維質材料(木質バイオマス)を摩砕して得られた解繊物は、アスペクト比が高く高断熱性のものであることが解る。
また、実施例1と比較例1における、各フルイ目通過率をグラフ化して図1に示した。
図に示すとおり、比較例1ではフルイ目0.6mm以下は通過率が少なく、要するに径が0.6mm以上の物が多いことが解る。
そして、実施例1ではフルイ目0.6mm以下は通過率が非常に多く、要するに径が0.6mm以下の物が非常に多いことが解る。
From the results shown in Table 1, it was obtained by grinding a natural fibrous material (woody biomass) whose water content was adjusted to the numerical range of the present invention using a defibrator equipped with a scraping blade according to the present invention. It can be seen that the defibrated material has a high aspect ratio and high heat insulation.
In addition, the passing rates of the flues in Example 1 and Comparative Example 1 are graphed and shown in FIG.
As shown in the figure, in Comparative Example 1, it can be seen that the passage rate is low when the flue is 0.6 mm or less, that is, there are many objects having a diameter of 0.6 mm or more.
Then, in Example 1, it can be seen that the passage rate is very high for the flue mesh of 0.6 mm or less, that is, there are many things having a diameter of 0.6 mm or less.
セルロースと天然繊維質材料を変化させて作製した複合綿状材料の熱伝導率を測定した。
比較例6では紙質材(セルロース)を解繊機Aを用いて含水率25%で摩砕した。実施例5〜8では解繊機Aを用いて含水率25%の混合品において天然繊維質材料の配合率(天然繊維質材料:セルロース=3:7、5:5,8:2)を変化させて摩砕した複合綿状材料を得た。それぞれの熱伝導率測定結果を表2に示す。配合と熱伝導率の関係を図2に示す。
In Comparative Example 6, the paper material (cellulose) was ground using a defibrator A at a water content of 25%. Blending ratio of Oite natural fibrous material to a water content of 25% mixed product with Examples 5-8 In defibrator A (natural fiber material: cellulose = 3: 7,5: 5,8: 2) A variable and ground composite cotton-like material was obtained. Table 2 shows the results of each thermal conductivity measurement. The relationship between the composition and the thermal conductivity is shown in FIG.
セルロースと天然繊維質材料を複合させることで単独の解繊物(摩砕品)と比較して低熱伝導率を示した。本発明による解繊物はアスペクト比が高く木質の持つ弾性を有しているため、セルロースの空隙を摩砕された天然繊維質材料がセルロースの空隙を押し広げることにより密度が低下し、断熱性能が向上するものと考えられる。 By combining cellulose and a natural fiber material , it showed low thermal conductivity as compared with a single defibrated product (ground product). Since the defibrated product according to the present invention has a high aspect ratio and has the elasticity of wood, the natural fibrous material obtained by grinding the cellulose voids expands the cellulose voids, resulting in a decrease in density and heat insulating performance. Is expected to improve.
次にセルロースと天然繊維質材料を変化させて作製した複合綿状材料を用いてマットを作製した。高強度マット材を得る目的でプレス成形法によるマット作製を行った。マット作製条件としては水を加え混合した後、CMC(カルボシキメチルセルロース)を2%添加し、プレス成形(1Mpa)後、105℃で24時間乾燥した。得られたマット品の物性試験を調べた。
比較例7は紙質材(ダンボール)を解繊機Aを用いて含水率25%で摩砕して得られた摩砕品を用いた。実施例9〜11では解繊機Aを用いて含水率25%の天然繊維質材料・セルロース複合綿状材料を用いて天然繊維質材料の配合率(天然繊維質材料:セルロース=3:7、5:5,8:2)を変化させてマット材を作製した。
比較例7および実施例9〜11の熱伝導率測定結果、曲げ強度試験結果を表3、表4、図3、図4に示す。
In Comparative Example 7, a ground product obtained by grinding a paper material (cardboard) with a defibrator A at a water content of 25% was used. Blending ratio of natural fiber material with a water content of 25% natural fiber materials, cellulose composite flocculent material using fiberizer A In Examples 9-11 (natural fibrous material: cellulose = 3: 7,5 : 5, 8: 2) was changed to prepare a matte material.
The thermal conductivity measurement results and bending strength test results of Comparative Examples 7 and 9 to 11 are shown in Tables 3, 4, 3, and 4.
複合材(複合綿状材料)は紙質材配合率20〜50%(バイオマス繊維(天然繊維質材料)50〜80%)で強度が高く、かつ断熱性能も良好な成形体が得られる。アスペクト比の高い木皮繊維を天然繊維質材料として用いると断熱性能はさらに優れる。
木質バイオマスの種類、紙質材との配合率を選定することで目的とする強度、断熱性能を必要とする部材へ応用可能である。
The composite material (composite cotton-like material) has a paper quality material content of 20 to 50% (biomass fiber (natural fiber material) 50 to 80%), and a molded product having high strength and good heat insulating performance can be obtained. When wood bark fiber with a high aspect ratio is used as a natural fibrous material , the heat insulating performance is further improved.
By selecting the type of woody biomass and the mixing ratio with paper material, it can be applied to members that require the desired strength and heat insulation performance.
次に高強度を維持させつつも断熱性能を維持させる目的で熱融着法により、無加圧でマットを作製した。
実施例12では、解繊機Aを用いて含水率25%の混合品(スギ木皮:紙資材=8:2)を摩砕した複合綿状材料100重量部に熱融着繊維10重量部を添加・混合し、容器中で150℃、30分間加熱して複合マットを製造した。
さらに、実施例13では、解繊機Aを用いて含水率25%の混合品(スギ木皮:紙質材=7:3)を摩砕した複合綿状材料100重量部に熱融着繊維10重量部を添加・混合し、容器中で150℃、30分間加熱して複合マットを製造した。
さらにまた、実施例14では、解繊機Aを用いて含水率25%の混合品(スギ木皮:紙質材=5:5)を摩砕した複合綿状材料100重量部に熱融着繊維10重量部を添加・混合し、容器中で150℃、30分間加熱して複合マットを製造した。
以上の実施例12〜14で得られた複合マットの熱伝導率を表5に示した。
図11に実施例12〜14の試験で作製したマットのデジタルマイクロスコープによる観察結果を示す。
Next, a mat was produced without pressurization by a heat fusion method for the purpose of maintaining heat insulation performance while maintaining high strength.
In Example 12, fibrillating machine using A water content of 25% mixed product (Sugi bark: Paper Material = 8: 2) addition of
Further, in Example 13, fibrillating machine using A water content of 25% mixed product (Sugi bark: paper quality material = 7: 3) milled thermally fused
Furthermore, in Example 14, fibrillating machine using A water content of 25% mixed product (Sugi bark: paper quality material = 5: 5)
Table 5 shows the thermal conductivity of the composite mats obtained in Examples 12 to 14 above.
FIG. 11 shows the observation results of the mats produced in the tests of Examples 12 to 14 with a digital microscope.
表5に示す結果から、各実施例の複合綿状材料製のマットは、優れた断熱性を有するものであることが解った。
図11の結果から木質繊維(天然繊維質材料の解繊物)を複合させることで綿状セルロースの空隙を広げている。また天然繊維質材料が竹のような場合は解繊物が強靱であり、マット形状の構造をしっかり保持している様子が観察される。
From the results shown in Table 5, it was found that the mat made of the composite cotton-like material of each example had excellent heat insulating properties.
From the result of FIG. 11, the voids of cotton-like cellulose are widened by combining wood fibers (defibrated products of natural fibrous materials). In addition, when the natural fibrous material is bamboo, the defibrated product is tough, and it is observed that the mat-shaped structure is firmly maintained.
実施例15〜16
竹を含水率25%に調整した後、掻き取り刃を備えた乾式解繊機に掛けて、竹の摩砕品を取得した。
摩砕品を篩い分けして、74μm以下の繊維長の微細な解繊物(微細繊維)を採取した。
この微細な解繊物を摩砕品に添加・混合して得た混合品を金型に充填し、100Mpaで加圧して、200℃で(1時間保持)加熱して成形体(ボード)を作製した。作製したボードの曲げ強度を測定した。
After adjusting the water content of bamboo to 25%, it was hung on a dry defibrator equipped with a scraping blade to obtain a ground bamboo product.
The ground product was sieved to collect fine defibrated products ( fine fibers) having a fiber length of 74 μm or less.
The fine defibration obtained by adding and mixing the milling砕品mixed products was filled in a mold and pressurized with 100 Mpa, at 200 ° C. for (1 hour retention) heated molded body (board) Made. The bending strength of the produced board was measured.
表6に微細な解繊物添加による成形体(ボード)の曲げ強度を示す。
その結果から、本摩砕品はバインダー無添加でも強度を有した。微細な解繊物を添加することで曲げ強度は増加し、微細な解繊物(微細品)を20%添加することで曲げ強度は3倍程度まで増加した。
本摩砕品においてはミクロの部分まで繊維構造を有しており、加熱処理した場合に周辺の木質繊維と絡み合い、表面からリグニンが溶出し、強固な成形体が得られる。軽量・高強度の成形体を製造する方法においては微細な解繊物は表面積は大きくリグニンが溶出し易く大小の解繊物同士が絡み合い、プレス成形体の強度が発現するものと考えられる。これによりバインダーを用いること無くリグニン等の天然由来のバインダーを利用した高強度成形体が得られる。
Table 6 shows the bending strength of the molded product (board) due to the addition of fine defibrated material.
From the results, this ground product had strength even without the addition of a binder. Bending strength by the addition of fine defibrated material is increased, bending strength by adding fine defibration the (fine product) 20% increased to about 3 times.
This ground product has a fiber structure up to the micro part, and when heat-treated, it is entangled with the surrounding wood fibers and lignin is eluted from the surface to obtain a strong molded product. In the method for producing a lightweight and high-strength molded product, it is considered that the fine defibrated product has a large surface area and lignin is easily eluted, and the large and small defibrated products are entangled with each other to develop the strength of the press-formed product. As a result, a high-strength molded product using a naturally-derived binder such as lignin can be obtained without using a binder.
本発明によれば、地域木質未利用バイオマスを活用して、建築・住宅用の断熱材を提供できる。
地域木材を代表するスギやヒノキの皮は、古くは屋根の材料や壁の材料として利用されていたが、時代の変化で利用されることが少なくなって、厄介者扱いにされている。
しかしながら、他の木材に比べ耐水性、防腐性、防虫性に優れ、スギ皮は難燃成分も有している。
特に未利用で豊富に発生するスギの外皮は、新分野でウッドウールとし最も優先して利用したい原材料として利用できることがわかった。
本発明により得られる解繊物は、大量に需要を産み出せる建築・住宅用断熱材として使用できる。また、マット材は、断熱材、断熱性能を必要とする各種部材への使用が考えられ、さらにボード材は、軽量化を伴う補強用フィラーや軽量ボードへの用途が考えられる。
その他の用途として、農業用資材として利・活用、法面緑化等の資材やセルロースナノファイバー作製用の原料として期待される。
そのため吹き込み断熱材をはじめとした多くの工業用の製造に用いることでができる。
According to the present invention, it is possible to provide a heat insulating material for construction and housing by utilizing the unused biomass of local wood.
Sugi and cypress skins, which are representative of regional timber, were used as roof materials and wall materials in the olden days, but they are rarely used due to changes in the times and are treated as troublesome people.
However, it is superior in water resistance, antiseptic property, and insect repellent property to other woods, and sugi bark also has a flame-retardant component.
In particular, it was found that the sugi husk, which is unused and abundantly generated, can be used as a raw material that we want to use as the highest priority as wood wool in new fields.
The defibrated product obtained by the present invention can be used as a heat insulating material for buildings and houses that can generate a large amount of demand. Further, the mat material is considered to be used for a heat insulating material and various members requiring heat insulating performance, and the board material is considered to be used for a reinforcing filler and a lightweight board with weight reduction.
As other uses, it is expected to be used as an agricultural material, as a material for slope greening, and as a raw material for producing cellulose nanofibers.
Therefore, it can be used in many industrial productions such as blown insulation.
Claims (7)
内側に固定刃(1)を備えた有底円筒ケーシング(2)と、前記有底円筒ケーシング(2)の内壁との間にクリアランスを設けて周設した多孔スクリーン(3)と、前記有底円筒ケーシング(2)の軸中心に軸装され前記固定刃(1)と協働して繊維含有材料を切断又は裂断する回転刃(4)と、稼働中に前記有底円筒ケーシング(2)内の気体を吸引するとともに前記多孔スクリーン(3)を介して被摩砕物を外部に排出・回収するための気体吸引部(5)を有した繊維含有材料の縦型粗摩砕装置(X)であって、回転により有底円筒ケーシング(2)内で上向きの気流を生じるような羽根構造を有し、かつ、回転面外周に複数の回転刃取付け部(61)を等配した回転刃物台(6)を軸方向にそれぞれ離間して多段設置するとともに、有底円筒ケーシング(2)の下部側壁の一又は複数カ所に気体吸引部(5)を形設してなり、稼働中に有底円筒ケーシング(2)内で生じる上向きの気流及び被摩砕物の流動に抗して、下方により大きな吸引気流を生じさせ、被摩砕物を一又は多方向から随時排出・回収するようにしたものであることを特徴とする方法。 A dry defibrator provided with a scraping blade used in the method according to any one of claims 1 to 5.
A perforated screen (3) provided with a clearance between a bottomed cylindrical casing (2) having a fixed blade (1) inside and an inner wall of the bottomed cylindrical casing (2), and the bottomed cylindrical casing (3). A rotary blade (4) that is pivotally mounted at the center of the axis of the cylindrical casing (2) and cooperates with the fixed blade (1) to cut or tear the fiber- containing material, and the bottomed cylindrical casing (2) during operation. A vertical coarse grinding device (X) for a fiber-containing material having a gas suction unit (5) for sucking the gas inside and discharging and recovering the crushed material to the outside through the porous screen (3). A rotary tool post having a blade structure that generates an upward air flow in the bottomed cylindrical casing (2) by rotation, and having a plurality of rotary blade mounting portions (61) evenly arranged on the outer periphery of the rotating surface. (6) is installed in multiple stages separated from each other in the axial direction, and a gas suction part (5) is formed at one or a plurality of places on the lower side wall of the bottomed cylindrical casing (2). A larger suction airflow is generated downward against the upward airflow and the flow of the crushed material generated in the cylindrical casing (2), and the crushed material is discharged and recovered from one or more directions at any time. A method characterized by being.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016073290A JP6858361B2 (en) | 2016-03-31 | 2016-03-31 | A method for producing a defibrated product of a natural fibrous material and a method for producing a composite cotton-like material of the defibrated product and a cotton-like defibrated product. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016073290A JP6858361B2 (en) | 2016-03-31 | 2016-03-31 | A method for producing a defibrated product of a natural fibrous material and a method for producing a composite cotton-like material of the defibrated product and a cotton-like defibrated product. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017177087A JP2017177087A (en) | 2017-10-05 |
JP6858361B2 true JP6858361B2 (en) | 2021-04-14 |
Family
ID=60003006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016073290A Active JP6858361B2 (en) | 2016-03-31 | 2016-03-31 | A method for producing a defibrated product of a natural fibrous material and a method for producing a composite cotton-like material of the defibrated product and a cotton-like defibrated product. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6858361B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7185108B2 (en) * | 2016-05-21 | 2022-12-07 | 望 青木 | coffee block forming method |
JP7303015B2 (en) * | 2018-06-07 | 2023-07-04 | 日本製紙株式会社 | METHOD FOR MANUFACTURING RESIN COMPOSITE AND MODIFIED CELLULOSE FIBER |
JP7227068B2 (en) * | 2018-06-07 | 2023-02-21 | 日本製紙株式会社 | Method for producing resin composite |
JP7188035B2 (en) * | 2018-11-30 | 2022-12-13 | セイコーエプソン株式会社 | Fibration method, fibrillation device, sheet manufacturing method, and sheet manufacturing device |
JP7100614B2 (en) * | 2019-10-31 | 2022-07-13 | 永大産業株式会社 | Wood fiber board and its manufacturing method |
JP7417419B2 (en) * | 2019-12-27 | 2024-01-18 | 永大産業株式会社 | wood fiber board |
JP7562088B1 (en) | 2023-05-23 | 2024-10-07 | 株式会社きんぱら | Non-flammable wood board and its manufacturing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3598403B2 (en) * | 1993-04-08 | 2004-12-08 | 西日本技術開発有限会社 | Paper defibrator without explosion-proof equipment |
JP3051981B1 (en) * | 1999-02-25 | 2000-06-12 | 西日本技術開発有限会社 | Vertical coarse crushing apparatus for fiber-containing material and its blade structure |
JP5656167B2 (en) * | 2010-08-13 | 2015-01-21 | 国立大学法人九州工業大学 | Bamboo fiber, method for producing the same, and method for producing a composite material using bamboo fiber |
JP2017136811A (en) * | 2016-02-02 | 2017-08-10 | 水川 伸行 | Processing and manufacturing method of wood wool insulation material and use thereof |
-
2016
- 2016-03-31 JP JP2016073290A patent/JP6858361B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017177087A (en) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6858361B2 (en) | A method for producing a defibrated product of a natural fibrous material and a method for producing a composite cotton-like material of the defibrated product and a cotton-like defibrated product. | |
JP6250007B2 (en) | Panel including recyclable component and method for manufacturing the same | |
García-Ortuño et al. | Evaluation of the physical and mechanical properties of particleboard made from giant reed (Arundo donax L.) | |
JP2013049278A (en) | Arundo donax pulp, paper product, and particle board | |
Wang et al. | Mechanical property enhancement of self-bonded natural fiber material via controlling cell wall plasticity and structure | |
CN101544010B (en) | Cotton stalk artificial boards and its production method | |
Lenormand et al. | Investigation of the acoustical and thermal properties of sunflower particleboards | |
Puspaningrum et al. | Physical and mechanical properties of binderless medium density fiberboard (MDF) from coconut fiber | |
JP2020165012A (en) | Fiberboard production method, and fiberboard | |
Ahmed et al. | Particleboard from coir pith | |
EP3135811B1 (en) | Production method of pulp derived from biomass for producing composite boards | |
KR20190111171A (en) | Brick composition comprising natural fiber and Method including the same | |
WO2013118531A1 (en) | Particle board | |
JP2011005646A (en) | Method of manufacturing bark molding of dypsis lutescens, bark molding of dypsis lutescens and molding starting material for bark molding of dypsis lutescens | |
JP6000875B2 (en) | Method for producing fine fibers for wooden insulation | |
Lübke et al. | Straw pulp as a secondary lignocellulosic raw material and its impact on properties of insulating fiberboards | |
JP5934908B2 (en) | Particle board manufacturing method | |
JP7138332B2 (en) | Molded article and its manufacturing method | |
Bakri et al. | Introduction of Various Types of Bamboo Species and Its Nanocomposites Preparation | |
WO2015011066A1 (en) | Method for producing molded products | |
Luo et al. | Binderless particleboard from steam exploded wheat straw | |
RU2404048C2 (en) | Method of producing plate composite material from lignocelluloses | |
JPH10183500A (en) | Cellulosic molding product | |
JP6504634B2 (en) | Wood board | |
Barth et al. | Fiber insulation materials from Eucalyptus bark fibers-first results. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20160418 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160418 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190918 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191004 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20191126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200602 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210312 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6858361 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |