JP6858268B2 - Heat exchanger assembly and air conditioner indoor unit - Google Patents

Heat exchanger assembly and air conditioner indoor unit Download PDF

Info

Publication number
JP6858268B2
JP6858268B2 JP2019546860A JP2019546860A JP6858268B2 JP 6858268 B2 JP6858268 B2 JP 6858268B2 JP 2019546860 A JP2019546860 A JP 2019546860A JP 2019546860 A JP2019546860 A JP 2019546860A JP 6858268 B2 JP6858268 B2 JP 6858268B2
Authority
JP
Japan
Prior art keywords
heat exchanger
crossroads
flow
row
outer row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019546860A
Other languages
Japanese (ja)
Other versions
JP2020535368A (en
Inventor
張強
謝李高
宋分平
山崎 和雄
和雄 山崎
呂建華
劉行
張晶晶
陳運強
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midea Group Co Ltd
GD Midea Air Conditioning Equipment Co Ltd
Original Assignee
Midea Group Co Ltd
GD Midea Air Conditioning Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201821444281.XU external-priority patent/CN209042730U/en
Priority claimed from CN201821443587.3U external-priority patent/CN209042727U/en
Priority claimed from CN201811028543.9A external-priority patent/CN109269071B/en
Application filed by Midea Group Co Ltd, GD Midea Air Conditioning Equipment Co Ltd filed Critical Midea Group Co Ltd
Publication of JP2020535368A publication Critical patent/JP2020535368A/en
Application granted granted Critical
Publication of JP6858268B2 publication Critical patent/JP6858268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

本願はエアコン製品の技術分野に関し、特に熱交換器組立品とエアコン室内機に関する。 The present application relates to the technical field of air conditioner products, and particularly to heat exchanger assemblies and air conditioner indoor units.

国内外でのエアコンエネルギー効率の絶え間ない進歩に伴い、如何にエアコンの熱交換器の熱交換効率を向上できるかは、早急に解決が求められている問題になっている。数多い解決案の中で、斬新設計のエアコンの中で熱交換器効率の高い熱交換器を利用するか、又は既に大量生産されたエアコンの熱交換効率の比較的低い熱交換器を、熱交換効率の高い熱交換器に交換することは、比較的有効なアプローチである。 With the continuous progress of air conditioner energy efficiency at home and abroad, how to improve the heat exchange efficiency of air conditioner heat exchangers has become an urgent issue to be solved. Among the many solutions, use heat exchangers with high heat exchanger efficiency among newly designed air conditioners, or heat exchange heat exchangers with relatively low heat exchange efficiency of already mass-produced air conditioners. Replacing with a more efficient heat exchanger is a relatively effective approach.

例示的技術において、熱交換性能の比較的良いエアコン熱交換器は普通、前方熱交換器、中間熱交換器、及び後方熱交換器を含む半包囲式配置になっている。エアコン熱交換器が冷房作動条件にある場合、冷媒は3ウェイチューブによって三つに分かれ、それぞれ前方熱交換器、中間熱交換器及び後方熱交換器に入り、熱交換を行う。しかし、前方熱交換器、中間熱交換器及び後方熱交換器はエアコン機器ケーシング内の長方形空間に制約されているので、それぞれの寸法も互いに異なってしまう。これにより各熱交換器内で設置できる熱交換管の数にも一定の差がある。多くの場合、中間熱交換器の寸法は前方熱交換器或いは後方熱交換器の2倍ひいてはそれ以上である。それなりに、中間熱交換器内に設置されている熱交換管の数も前方熱交換器或いは後方熱交換器より遥かに多くなる。こうすると、冷媒が前方熱交換器或いは後方熱交換器に入ってからエアコン熱交換器から流れ出る前、通過される熱交換管の数は冷媒が中間熱交換器に入ることで通過する熱交換管の数より遥かに少ない。言い換えると、冷媒が前方熱交換器或いは後方熱交換器において熱交換する場合、十分に熱交換をせずに室内熱交換器から排出される可能性は高い。中間熱交換器において熱交換する場合では、既に十分熱交換をしても、尚続けて熱交換管を流れる可能性は高い。要するに、即ち、この類の流路設計はエアコン熱交換器の熱交換の不均衡を起こし、エアコン熱交換器のエネルギー効率を降下させてしまう。 In exemplary techniques, air conditioner heat exchangers with relatively good heat exchange performance are typically in a semi-enclosed arrangement that includes a front heat exchanger, an intermediate heat exchanger, and a rear heat exchanger. When the air conditioner heat exchanger is in the cooling operating condition, the refrigerant is divided into three by a 3-way tube and enters the front heat exchanger, the intermediate heat exchanger and the rear heat exchanger, respectively, to exchange heat. However, since the front heat exchanger, the intermediate heat exchanger, and the rear heat exchanger are restricted to the rectangular space in the casing of the air conditioner equipment, their respective dimensions are also different from each other. As a result, there is a certain difference in the number of heat exchange tubes that can be installed in each heat exchanger. In many cases, the dimensions of the intermediate heat exchanger are twice or more than the front or rear heat exchanger. As such, the number of heat exchangers installed in the intermediate heat exchanger is also much larger than that of the front heat exchanger or the rear heat exchanger. In this way, the number of heat exchanger tubes that pass after the refrigerant enters the front heat exchanger or the rear heat exchanger and before it flows out of the air conditioner heat exchanger is the number of heat exchanger tubes that the refrigerant passes through when it enters the intermediate heat exchanger. Much less than the number of. In other words, when the refrigerant exchanges heat in the front heat exchanger or the rear heat exchanger, it is highly possible that the refrigerant is discharged from the indoor heat exchanger without sufficient heat exchange. In the case of heat exchange in the intermediate heat exchanger, there is a high possibility that the heat will continue to flow through the heat exchange tube even if the heat exchange has already been sufficiently performed. In short, that is, this kind of flow path design causes an imbalance in the heat exchange of the air conditioner heat exchanger and reduces the energy efficiency of the air conditioner heat exchanger.

本願の主な目的は、例示的技術案におけるエアコン熱交換器の中間熱交換器と前方熱交換器、後方熱交換器の熱交換均衡性を改善し、エアコン熱交換器のエネルギー効率を向上させる熱交換器組立品を提案することである。 The main purpose of the present application is to improve the heat exchange balance between the intermediate heat exchanger and the front heat exchanger and the rear heat exchanger of the air conditioner heat exchanger in the exemplary technical proposal, and to improve the energy efficiency of the air conditioner heat exchanger. To propose a heat exchanger assembly.

上記目的を達成するために、本願が提案する熱交換器組立品は、
半包囲状をなすように設置されている主体熱交換器であって、前方熱交換器、中間熱交換器及び後方熱交換器を含み、前記前方熱交換器、中間熱交換器及び後方熱交換器には吸気方向においてそれぞれ少なくとも二列の熱交換管が設置され、前記中間熱交換器の熱交換管の数は前記前方熱交換器及び後方熱交換器より大きい前記主体熱交換器と、
前記主体熱交換器の風上側に取り付けられている背管熱交換器とを含み、
前記熱交換器組立品が冷房する時、前記熱交換器組立品の熱交換流路は前記背管熱交換器を経てから第一岐路、第二岐路及び第三岐路に分かれ、前記第一岐路、第二岐路及び第三岐路は何れも前記主体熱交換器の風上側の熱交換管から風下側の熱交換管に向かって流れ、前記第一岐路は前記前方熱交換器の熱交換管を流れ、前記第二岐路は前記中間熱交換器の熱交換管を流れ、前記第三岐路は前記後方熱交換器の熱交換管を流れ、且つ前記第一岐路と第三岐路の少なくとも一方は前記中間熱交換器の熱交換管に跨って設置されている。
In order to achieve the above objectives, the heat exchanger assembly proposed by the present application is:
A main heat exchanger installed in a semi-enclosed shape, including a front heat exchanger, an intermediate heat exchanger and a rear heat exchanger, the front heat exchanger, the intermediate heat exchanger and the rear heat exchange. At least two rows of heat exchangers are installed in each in the intake direction, and the number of heat exchangers of the intermediate heat exchanger is larger than that of the front heat exchanger and the rear heat exchanger.
Including the back tube heat exchanger mounted on the windward side of the main heat exchanger.
When the heat exchanger assembly is cooled, the heat exchange flow path of the heat exchanger assembly is divided into a first crossroad, a second crossroad and a third crossroad after passing through the back tube heat exchanger, and the first crossroads. , The second crossroads and the third crossroads both flow from the heat exchange pipe on the wind side of the main heat exchanger toward the heat exchange pipe on the leeward side, and the first crossroads pass through the heat exchange pipe of the front heat exchanger. Flow, the second crossroads flow through the heat exchange tubes of the intermediate heat exchanger, the third crossroads flow through the heat exchange tubes of the rear heat exchanger, and at least one of the first and third crossroads is said. It is installed across the heat exchange tube of the intermediate heat exchanger.

好ましくは、前記第一岐路、第二岐路及び第三岐路がそれぞれ流れる熱交換管の数のうちいずれか二者の差が3より小さいか3に等しい。 Preferably, the difference between the two of the number of heat exchange tubes through which the first crossroads, the second crossroads and the third crossroads flow is less than or equal to three.

好ましくは、前記前方熱交換器、中間熱交換器及び後方熱交換器は何れも二列の熱交換管が設置され、前記主体熱交換器の熱交換管の総数は18〜22本である。 Preferably, the front heat exchanger, the intermediate heat exchanger and the rear heat exchanger are all provided with two rows of heat exchange tubes, and the total number of heat exchange tubes of the main heat exchanger is 18 to 22.

好ましくは、前記第三岐路は前記後方熱交換器の全ての熱交換管を流れ、前記第二岐路は前記中間熱交換器の一部の熱交換管を流れ、前記第一岐路は前記中間熱交換器の残りの熱交換管及び前記前方熱交換器の全ての熱交換管を流れる。 Preferably, the third crossroads flow through all the heat exchange tubes of the rear heat exchanger, the second crossroads flow through some heat exchange tubes of the intermediate heat exchanger, and the first crossroads flow through the intermediate heat. It flows through the remaining heat exchanger tubes of the exchanger and all heat exchanger tubes of the front heat exchanger.

好ましくは、前記前方熱交換器の熱交換管は第一外列と第一内列を含み、前記中間熱交換器の熱交換管は第二外列と第二内列を含み、前記第一外列と第二外列は前記主体熱交換器の風上側に位置し、
前記熱交換器組立品が冷房する時、前記第一岐路は前記第二外列から流れ込み、前記第二外列に沿って流れ第一ジャンパ管を経て前記第一外列に入り、前記第一外列と第一内列との全体を順に流れ、且つ前記第一内列から流れ出;前記第二岐路は前記第二外列から流れ込み、前記第二外列の残りの部分、及び第二内列全体を流れ、且つ前記第二内列から流れ出る。
Preferably, the heat exchange tube of the front heat exchanger includes a first outer row and a first inner row, and the heat exchange tube of the intermediate heat exchanger includes a second outer row and a second inner row, said first. The outer row and the second outer row are located on the wind side of the main heat exchanger,
When the heat exchanger assembly cools, the first crossroads flow from the second outer row, flow along the second outer row, enter the first outer row via the first jumper pipe, and enter the first outer row. The entire outer row and first inner row flow in sequence and flow out of the first inner row; the second crossroads flow in from the second outer row, the rest of the second outer row, and the second inner row. It flows through the entire row and out of the second inner row.

好ましくは、前記第一岐路は前記第二外列中部の熱交換管から流れ込み、そして前記第二外列に沿って前記前方熱交換器側に向かって流れ、更に前記第一ジャンパ管を経て前記第一外列の前記中間熱交換器に近い熱交換管に入り、前記第一外列と第一内列との全体を順に流れ、更に前記第一内列の前記中間熱交換器に近い熱交換管から流れ出る。 Preferably, the first crossroads flow from the heat exchange pipe in the middle of the second outer row, then along the second outer row toward the front heat exchanger side, and further through the first jumper pipe. Enters the heat exchange tube close to the intermediate heat exchanger in the first outer row, flows through the entire first outer row and the first inner row in order, and further heats closer to the intermediate heat exchanger in the first inner row. It flows out of the exchange tube.

好ましくは、前記第二岐路は前記第二外列上の第一岐路が流れ込む熱交換管と隣り合う熱交換管から流れ込み、前記第二外列に沿って前記後方熱交換器側に向かって流れ、そして前記第二外列から前記第二内列の前記後方熱交換器に近い熱交換管に流れ込み、前記第二内列に沿って前記前方熱交換器側に向かって流れ、更に前記第二内列の前記前方熱交換器に近い熱交換管から流れ出る。 Preferably, the second crossroads flow from a heat exchange pipe adjacent to the heat exchange pipe into which the first crossroads on the second outer row flow, and flow toward the rear heat exchanger side along the second outer row. Then, it flows from the second outer row into the heat exchange pipe near the rear heat exchanger in the second inner row, flows toward the front heat exchanger side along the second inner row, and further flows toward the front heat exchanger side, and further, the second. It flows out of a heat exchange tube near the front heat exchanger in the inner row.

好ましくは、前記後方熱交換器は第三内列と第三外列を含み、前記第三外列は前記主体熱交換器の風上側に位置し、
前記第三岐路は前記第三外列の前記中間熱交換器に近い熱交換管から流れ込み、そして前記第三外列と第三内列との全体を順に流れ、更に前記第三内列の前記中間熱交換器に近い熱交換管から流れ出る。
Preferably, the rear heat exchanger includes a third inner row and a third outer row, the third outer row located on the windward side of the main heat exchanger.
The third crossroads flow from a heat exchange tube near the intermediate heat exchanger in the third outer row, then flow through the entire third outer row and third inner row in order, and further flow through the third inner row. It flows out of the heat exchange tube near the intermediate heat exchanger.

好ましくは、前記前方熱交換器の熱交換管は第一外列と第一内列を含み、前記中間熱交換器内の熱交換管は第二外列と第二内列を含み、前記後方熱交換器の熱交換管は第三外列と第三内列を含み;前記第一外列、第二外列及び第三外列は、何れも前記主体熱交換器の風上側と近接して設置され、
前記熱交換器組立品が冷房する時、前記第一岐路は前記第一外列から流れ込み、前記第一外列と第一内列との全体を順に流れ、更に第一ジャンパ管を経て前記第二内列に入り、且つ前記第二内列から流れ出、前記第二岐路は前記第二外列から流れ込み、前記第二外列全体、及び前記第二内列の残りの部分を順に流れ、且つ前記第二内列から流れ出、前記第三岐路は前記第三外列から流れ込み、前記第三外列と第三内列との全体を順に流れ、且つ前記第三内列から流れ出る。
Preferably, the heat exchange tubes of the front heat exchanger include a first outer row and a first inner row, and the heat exchange tubes in the intermediate heat exchanger include a second outer row and a second inner row, said rearward. The heat exchanger tubes of the heat exchanger include a third outer row and a third inner row; the first outer row, the second outer row and the third outer row are all close to the wind side of the main heat exchanger. Installed,
When the heat exchanger assembly is cooled, the first crossroads flow from the first outer row, flow through the entire first outer row and the first inner row in order, and further pass through the first jumper pipe to the first. Entering the second inner row and flowing out of the second inner row, the second crossroads flow in from the second outer row, flow through the entire second outer row and the rest of the second inner row in order, and Flowing out from the second inner row, the third crossroads flow in from the third outer row, flow through the entire third outer row and the third inner row in order, and flow out from the third inner row.

好ましくは、前記第一岐路は前記第一外列の前記中間熱交換器に近い熱交換管から入り、前記第一外列と第一内列との全体を順に流れ、前記第一内列の前記中間熱交換器に近い熱交換管に到達し、更に前記第一ジャンパ管を経て前記第二内列に入る。 Preferably, the first crossroads enter through a heat exchange tube near the intermediate heat exchanger in the first outer row, flow through the entire first outer row and first inner row in sequence, and of the first inner row. It reaches the heat exchange tube close to the intermediate heat exchanger, and further enters the second inner row via the first jumper tube.

好ましくは、前記前方熱交換器の熱交換管は第一外列と第一内列を含み、前記中間熱交換器の熱交換管は第二外列と第二内列を含み、前記後方熱交換器の熱交換管は第三外列と第三内列を含み;前記第一外列、第二外列及び第三外列は何れも前記主体熱交換器の風上側と近接して設置され、
前記熱交換器組立品が冷房する時、前記第一岐路は前記第二外列から流れ込み、前記第二外列に沿って流れ且つ第一ジャンパ管を経て前記第一外列に入り、そして前記第一外列と第一内列との全体を順に流れ、更に第二ジャンパ管を経て前記第二内列に入り、前記第二内列から流れ出、前記第二岐路は前記第二外列から流れ込み、前記第二外列と前記第二内列の残りの部分を順に流れ、且つ前記第二内列から流れ出、前記第三岐路は前記第三外列から流れ込み、前記第三外列と第三内列との全体を順に流れ、且つ前記第三内列から流れ出る。
Preferably, the heat exchange tubes of the front heat exchanger include a first outer row and a first inner row, and the heat exchange tubes of the intermediate heat exchanger include a second outer row and a second inner row, the rear heat. The heat exchanger tubes of the exchanger include a third outer row and a third inner row; the first outer row, the second outer row and the third outer row are all installed close to the wind side of the main heat exchanger. Being done
When the heat exchanger assembly cools, the first crossroads flow from the second outer row, flow along the second outer row and enter the first outer row via the first jumper tube, and said. It flows through the entire first outer row and the first inner row in order, then enters the second inner row through the second jumper pipe, flows out from the second inner row, and the second crossroads is from the second outer row. It flows in, flows through the second outer row and the rest of the second inner row in order, and flows out of the second inner row, the third crossroads flow in from the third outer row, and the third outer row and the first. It flows in order with the three inner rows, and flows out from the third inner row.

好ましくは、前記背管熱交換器の熱交換管の管径は前記主体熱交換器の熱交換管の管径より大きい。 Preferably, the diameter of the heat exchange tube of the back tube heat exchanger is larger than the tube diameter of the heat exchange tube of the main heat exchanger.

好ましくは、前記背管熱交換器は前記中間熱交換器の風上側に取り付けられている。 Preferably, the back tube heat exchanger is mounted on the windward side of the intermediate heat exchanger.

好ましくは、前記背管熱交換器は前記後方熱交換器よりも前記前方熱交換器に近接して設置されている。 Preferably, the back tube heat exchanger is installed closer to the front heat exchanger than the rear heat exchanger.

好ましくは、前記背管熱交換器の熱交換管の数は2〜4本である。 Preferably, the number of heat exchange tubes of the back tube heat exchanger is 2 to 4.

本願は更に、熱交換器組立品、及び前記熱交換器組立品を収容する機器ケーシングを含むエアコン室内機を提案した。前記熱交換器組立品は、
半包囲状をなすように設置されている主体熱交換器であって、前方熱交換器、中間熱交換器及び後方熱交換器を含み、前記前方熱交換器、中間熱交換器及び後方熱交換器には吸気方向においてそれぞれ少なくとも二列の熱交換管が設置され、前記中間熱交換器の熱交換管の数は前記前方熱交換器及び後方熱交換器より大きい前記主体熱交換器と、
前記主体熱交換器の風上側に取り付けられている背管熱交換器とを含み、
前記熱交換器組立品が冷房する時、前記熱交換器組立品の熱交換流路は前記背管熱交換器を経てから第一岐路、第二岐路及び第三岐路に分かれ、前記第一岐路、第二岐路及び第三岐路は何れも前記主体熱交換器の風上側の熱交換管から風下側の熱交換管に向かって流れ、前記第一岐路は前記前方熱交換器の熱交換管を流れ、前記第二岐路は前記中間熱交換器の熱交換管を流れ、前記第三岐路は前記後方熱交換器の熱交換管を流れ、且つ前記第一岐路と第三岐路の少なくとも一方は前記中間熱交換器の熱交換管に跨って設置されている。
The present application further proposes a heat exchanger assembly and an air conditioner indoor unit including an equipment casing for accommodating the heat exchanger assembly. The heat exchanger assembly is
A main heat exchanger installed in a semi-enclosed shape, including a front heat exchanger, an intermediate heat exchanger and a rear heat exchanger, the front heat exchanger, the intermediate heat exchanger and the rear heat exchange. At least two rows of heat exchangers are installed in each in the intake direction, and the number of heat exchangers of the intermediate heat exchanger is larger than that of the front heat exchanger and the rear heat exchanger.
Including the back tube heat exchanger mounted on the windward side of the main heat exchanger.
When the heat exchanger assembly is cooled, the heat exchange flow path of the heat exchanger assembly is divided into a first crossroad, a second crossroad and a third crossroad after passing through the back tube heat exchanger, and the first crossroads. , The second crossroads and the third crossroads both flow from the heat exchange pipe on the wind side of the main heat exchanger toward the heat exchange pipe on the leeward side, and the first crossroads pass through the heat exchange pipe of the front heat exchanger. Flow, the second crossroads flow through the heat exchange tubes of the intermediate heat exchanger, the third crossroads flow through the heat exchange tubes of the rear heat exchanger, and at least one of the first and third crossroads is said. It is installed across the heat exchange tube of the intermediate heat exchanger.

好ましくは、前記機器ケーシングの前後方向に沿う幅寸法は800mmより小さく、前記機器ケーシングの上下方向に沿う高さ寸法は295mmより小さい。 Preferably, the width dimension of the equipment casing along the front-rear direction is smaller than 800 mm, and the height dimension of the equipment casing along the vertical direction is smaller than 295 mm.

好ましくは、前記熱交換器組立品が前記機器ケーシング内に設けられた時、前記後方熱交換器の配置方向と上下方向との角度範囲は38°〜48°である。 Preferably, when the heat exchanger assembly is provided in the equipment casing, the angular range between the rear heat exchanger placement direction and the vertical direction is 38 ° to 48 °.

好ましくは、前記熱交換器組立品が前記機器ケーシング内に設けられた時、前記中間熱交換器と前記前方熱交換器の配置方向と上下方向との角度範囲は45°〜55°である。 Preferably, when the heat exchanger assembly is provided in the equipment casing, the angular range between the arrangement direction and the vertical direction of the intermediate heat exchanger and the front heat exchanger is 45 ° to 55 °.

好ましくは、前記中間熱交換器と後方熱交換器の互いに近接する端部は互いに当接され、或いは
前記中間熱交換器と後方熱交換器の互いに近接する端部の間に隙間が存在しており、前記エアコン室内機は更に前記中間熱交換器と後方熱交換器の互いに近接する端部の風上側の間に跨って接続されているウィンドウシールドを含む。
Preferably, the close ends of the intermediate heat exchanger and the rear heat exchanger are in contact with each other, or there is a gap between the close ends of the intermediate heat exchanger and the rear heat exchanger. The air conditioner indoor unit further includes a window shield connected across between the wind side of the intermediate heat exchanger and the rear heat exchanger at their adjacent ends.

本願技術案の熱交換器組立品は主体熱交換器と主体熱交換器の風上側に設置されている背管熱交換器とを含み、主体熱交換器は前方熱交換器、中間熱交換器及び後方熱交換器を含む。熱交換器組立品が冷房する時、背管熱交換器を経た後、熱交換流路は第一岐路、第二岐路及び第三岐路に分流し、第一岐路は前方熱交換器を流れ、第二岐路は中間熱交換器を流れ、第三岐路は後方熱交換器を流れる。第一岐路と第三岐路のうち一方が中間熱交換器の熱交換管に跨って設置され、こうして流路を改善した後、前方熱交換器或いは後方熱交換器熱交換管を通った冷媒が、中間熱交換器の一部の熱交換管を続けて通るようにでき、第一岐路が前方熱交換器の熱交換管だけを通過或いは第三岐路が後方熱交換器の熱交換管だけを通過することで起こりうる冷媒の熱交換の不十分(前方熱交換器と後方熱交換器の熱交換管が比較的少ないので)、及び第二岐路が中間熱交換器の熱交換管だけを通過することで起こりうる構造の無駄の問題(中間熱交換器の熱交換管が比較的多いので)を避けるとともに、前方熱交換器、後方熱交換器と中間熱交換器との間の熱交換効果をより均衡にし、熱交換器組立品のエネルギー効率を有効に向上させる。 The heat exchanger assembly of the technical proposal of the present application includes a main heat exchanger and a back tube heat exchanger installed on the wind side of the main heat exchanger, and the main heat exchanger is a front heat exchanger and an intermediate heat exchanger. And rear heat exchangers are included. When the heat exchanger assembly cools, after passing through the back tube heat exchanger, the heat exchange flow path splits into the first crossroads, the second crossroads and the third crossroads, and the first crossroads flows through the front heat exchanger. The second crossroads flow through the intermediate heat exchanger and the third crossroads flow through the rear heat exchangers. One of the first and third crossroads is installed across the heat exchanger pipe of the intermediate heat exchanger, and after improving the flow path in this way, the refrigerant that has passed through the front heat exchanger or the rear heat exchanger heat exchanger pipe , Part of the heat exchanger of the intermediate heat exchanger can be passed continuously, and the first crossroads pass only the heat exchanger pipes of the front heat exchanger or the third crossroads pass only the heat exchanger pipes of the rear heat exchanger. Insufficient heat exchange of refrigerant that can occur by passing through (because there are relatively few heat exchange tubes in the front and rear heat exchangers), and the second crossroads pass only through the heat exchange tubes in the intermediate heat exchangers. While avoiding the problem of structural waste (because there are relatively many heat exchanger tubes in the intermediate heat exchanger), the heat exchange effect between the front heat exchanger and the rear heat exchanger and the intermediate heat exchanger can be avoided. To be more balanced and effectively improve the energy efficiency of the heat exchanger assembly.

本願実施例及び従来技術の技術案をより明確に説明するため、以下では、実施例或いは従来技術の説明に必要とされる添付図面を簡単に紹介する。下記説明における添付図面は本願の一部の実施例に過ぎないことは明らかであって、当業者にとって、創造的な労働を行わないことを前提に、これらの添付図面が示す構造により他の添付図面を得ることができる。
本願のエアコン室内機の一実施例の構造模式図である。 本願の熱交換器組立品の第一実施例の流路模式図である。 本願の熱交換器組立品の第二実施例の流路模式図である。 本願の熱交換器組立品の第三実施例の流路模式図である。
In order to more clearly explain the examples of the present application and the technical proposals of the prior art, the accompanying drawings required for the explanation of the examples or the prior art will be briefly introduced below. It is clear that the accompanying drawings in the following description are only a part of the embodiments of the present application, and on the premise that those skilled in the art do not carry out creative labor, other attachments are made by the structure shown in these attached drawings. Drawings can be obtained.
It is a structural schematic diagram of one Example of the air conditioner indoor unit of this application. It is a flow path schematic diagram of the 1st Example of the heat exchanger assembly of this application. It is a flow path schematic diagram of the 2nd Example of the heat exchanger assembly of this application. It is a flow path schematic diagram of the 3rd Example of the heat exchanger assembly of this application.

添付図面を参照し、実施例と組み合わせて本願目的の実現、機能特徴及び長所を説明する。 The realization of the object of the present application, functional features and advantages will be described with reference to the accompanying drawings in combination with the examples.

以下では、本願実施例における添付図面と組み合わせ、本願実施例における技術案を明確且つ完全に説明する。説明される実施例は本願の全ての実施例ではなく、本願の一部の実施例に過ぎないことは明らかである。本願における実施例に基づいて、当業者が創造的な労働を行わないことを前提に得られた全ての他の実施例は、本願の保護する範囲に属す。 In the following, the technical proposal in the embodiment of the present application will be clearly and completely described in combination with the accompanying drawings in the embodiment of the present application. It is clear that the examples described are not all of the examples of the present application, but only some of the examples of the present application. Based on the examples in the present application, all other embodiments obtained on the premise that those skilled in the art do not perform creative labor belong to the scope of the present application.

もし本願実施例で方向性指示(例えば上、下、左、右、前、後…)に関わる場合、当該方向性指示はある特定の姿勢(添付図面に示す)における各部品間の相対的位置関係、運動状況等を説明するためだけに用いられ、もし当該特定の姿勢が変わる場合、当該方向性指示もそれ相当に変わることは説明すべきである。 If the embodiment of the present application involves directional instructions (eg, up, down, left, right, front, rear ...), the directional instructions are relative positions between the parts in a particular posture (shown in the accompanying drawings). It should be explained that it is used only to explain relationships, exercise situations, etc., and if the particular posture changes, the direction instruction also changes accordingly.

また、本願実施例において「第一」、「第二」等の説明に関わる場合、当該「第一」、「第二」等の説明は、説明のために利用されるだけであって、その相対的重要性を提示又は暗示する、或いは提示される技術的特徴の数を暗示的に指定するように理解すべきではない。これにより、「第一」、「第二」に限定されている特徴は明示的或いは暗示的に少なくとも一つの当該特徴を含んでもいい。また、各実施例の技術案はお互いに組み合わせることができる。ただし、当業者が実現できることはその基礎である。技術案の組み合わせに矛盾が生じるか、実現できない場合には、このような技術案の組み合わせが存在しない、且つ本願が請求する保護範囲にないと理解すべきである。 In addition, when related to the explanation of "first", "second", etc. in the embodiment of the present application, the explanation of "first", "second", etc. is only used for the purpose of explanation. It should not be understood to suggest or imply relative importance, or to imply the number of technical features presented. Thereby, the feature limited to "first" and "second" may include at least one feature, either explicitly or implicitly. In addition, the technical proposals of each embodiment can be combined with each other. However, what can be realized by those skilled in the art is the basis. If the combination of technical proposals is inconsistent or unrealizable, it should be understood that such a combination of technical proposals does not exist and is not within the scope of protection claimed by the present application.

本願は熱交換器組立品及び当該熱交換器組立品を含むエアコン室内機を提案する。もちろん、他の実施例において、当該熱交換器組立品は一体型エアコン及びエアコン室外機などにも応用でき、本設計はこれに限定されることはない。 The present application proposes a heat exchanger assembly and an air conditioner indoor unit including the heat exchanger assembly. Of course, in other embodiments, the heat exchanger assembly can also be applied to an integrated air conditioner, an air conditioner outdoor unit, and the like, and the present design is not limited thereto.

図1を参照し、本実施例では、当該エアコン室内機は壁掛け式エアコン室内機であって、具体的に、機器ケーシング3、機器ケーシング3内に設置されている貫流ファン4を含む。勿論、熱交換器組立品1も機器ケーシング3内に設置され、且つ機器ケーシング3上の吸気口と貫流ファン4との間に位置することにより、貫流ファン4が吸い込んだ空気に対し熱交換を行う。本実施例では、壁掛け式エアコン室内機が組み立てられた後にユーザーに向かう側を前とし、壁に面する側を後とすることは容易に理解できる。壁掛け式エアコン室内機は、上方吸気下方送風の運転方式を取る。即ち、熱交換器組立品1は貫流ファン4の上側に位置する。本設計はこれに限定せず、他の実施例において、エアコン室内機は具体的に床置式室内エアコンなどとすることもできることは説明すべきである。 With reference to FIG. 1, in this embodiment, the air conditioner indoor unit is a wall-mounted air conditioner indoor unit, and specifically includes an equipment casing 3 and a once-through fan 4 installed in the equipment casing 3. Of course, the heat exchanger assembly 1 is also installed in the equipment casing 3 and is located between the intake port on the equipment casing 3 and the once-through fan 4, so that the air sucked by the through-flow fan 4 exchanges heat. Do. In this embodiment, it is easy to understand that the side facing the user is the front and the side facing the wall is the back after the wall-mounted air conditioner indoor unit is assembled. The wall-mounted air conditioner indoor unit adopts an operation method of upper intake and lower ventilation. That is, the heat exchanger assembly 1 is located above the once-through fan 4. It should be explained that the present design is not limited to this, and in other embodiments, the air conditioner indoor unit can be specifically a floor-standing indoor air conditioner or the like.

図1から図4を参照し、本願実施例において、当該熱交換器組立品1は、半包囲で貫流ファン4を取り囲むように設置されている主体熱交換器であって、前方熱交換器11、中間熱交換器12及び後方熱交換器13を含み、前方熱交換器11、中間熱交換器12及び後方熱交換器13は吸気方向においてそれぞれ少なくとも二列の熱交換管が設置され、中間熱交換器12の熱交換管の数は前方熱交換器11及び後方熱交換器13より大きい主体熱交換器と、主体熱交換器の風上側に設置されている背管熱交換器14を含む。 With reference to FIGS. 1 to 4, in the embodiment of the present application, the heat exchanger assembly 1 is a main heat exchanger installed so as to surround the once-through fan 4 in a semi-surrounding manner, and is a front heat exchanger 11. , Intermediate heat exchanger 12 and rear heat exchanger 13, the front heat exchanger 11, intermediate heat exchanger 12 and rear heat exchanger 13 are each provided with at least two rows of heat exchanger tubes in the intake direction, and intermediate heat is provided. The number of heat exchangers in the exchanger 12 includes a main heat exchanger larger than the front heat exchanger 11 and the rear heat exchanger 13, and a back tube heat exchanger 14 installed on the wind side of the main heat exchanger.

本実施例では、前方熱交換器11、中間熱交換器12及び後方熱交換器13は吸気方向において何れも二列の熱交換管が設置されている。これにより、熱交換管の列数が少なすぎて熱交換が不十分になるのを避けるだけではなく、熱交換管を多く設置し過ぎることによる構造の無駄を防ぐ。勿論、他の実施例において、各熱交換器の異なる熱交換需要を満たすために、吸気方向に三列、ひいては四列の熱交換管を設置できる。本設計はこれに限定しない。具体的に、前方熱交換器11の熱交換管は第一外列111と第一内列112を含み、中間熱交換器12の熱交換管は第二外列121と第二内列122を含み、後方熱交換器13の熱交換管は第三外列131と第三内列132を含み、第一外列111、第二外列121及び第三外列131は何れも主体熱交換器の風上側に位置する。主体熱交換器の風上側に背管熱交換器14を増設するのも、熱交換器組立品1の熱交換能力を増強するためであり、一般性を失わず、背管熱交換器14のエネルギー効率を最大化するために、それを風上面積の最も大きい中間熱交換器12の風上側に取り付ける。特に、中間熱交換器12と後方熱交換器13の互いに近接する一端の間に隙間が存在するのをできるだけ避けるべきである。本実施例では、エアコン室内機の特殊な機器ケーシング寸法に制限されるため、中間熱交換器12と後方熱交換器13の互いに近接する一端の間に隙間が存在しており、吸気口から入った空気が熱交換器組立品1を通過せずに貫流ファン4に入るのを避けるために、本実施例では、中間熱交換器12と後方熱交換器13の風上側の間には更にウィンドウシールド16が跨って接続されている。例えば、ウィンドウシールド16と熱交換器の接続を実現すると共に、ウィンドウシールド16と熱交換器接触部分の密封性を保証するように、ウィンドウシールド16の両端は、スポンジを介してそれぞれ中間熱交換器12と後方熱交換器13に貼り合わせて取り付けられている(これに限定しない)。同時に、スポンジで張り合わせる方法は、ユーザーが熱交換器組立品1を修理或いは交換する必要がある時、ウィンドウシールドを取り外しやすい。勿論、他の実施例において、ウィンドウシールド16は更にネジ締めの方法で中間熱交換器12と後方熱交換器13に取り付けることができ、本設計はこれに限定しない。また、前方熱交換器11と中間熱交換器12の間に比較的大きい隙間が存在する場合でも、両者の間にウィンドウシールド16を増設することで、熱交換器組立品1の隙間に風が入り込むことを避けることができる。 In this embodiment, the front heat exchanger 11, the intermediate heat exchanger 12, and the rear heat exchanger 13 are all provided with two rows of heat exchange tubes in the intake direction. As a result, not only the number of rows of heat exchange tubes is too small to prevent insufficient heat exchange, but also the waste of the structure due to the installation of too many heat exchange tubes is prevented. Of course, in other embodiments, three rows, and thus four rows, of heat exchange tubes can be installed in the intake direction to meet the different heat exchange demands of each heat exchanger. This design is not limited to this. Specifically, the heat exchange pipe of the front heat exchanger 11 includes the first outer row 111 and the first inner row 112, and the heat exchange pipe of the intermediate heat exchanger 12 includes the second outer row 121 and the second inner row 122. The heat exchange pipe of the rear heat exchanger 13 includes the third outer row 131 and the third inner row 132, and the first outer row 111, the second outer row 121, and the third outer row 131 are all main heat exchangers. It is located on the wind side of. The reason why the back tube heat exchanger 14 is added to the wind side of the main heat exchanger is to enhance the heat exchange capacity of the heat exchanger assembly 1, and the generality of the back tube heat exchanger 14 is not lost. To maximize energy efficiency, it is mounted on the wind side of the intermediate heat exchanger 12, which has the largest upwind area. In particular, the existence of a gap between the intermediate heat exchanger 12 and the rear heat exchanger 13 in close proximity to each other should be avoided as much as possible. In this embodiment, since the size is limited to the special equipment casing size of the air conditioner indoor unit, there is a gap between the intermediate heat exchanger 12 and the rear heat exchanger 13 in close proximity to each other, and the air enters through the intake port. In order to prevent the air from entering the once-through fan 4 without passing through the heat exchanger assembly 1, in this embodiment, an additional window is provided between the intermediate heat exchanger 12 and the wind side of the rear heat exchanger 13. The shield 16 is straddled and connected. For example, both ends of the window shield 16 are intermediate heat exchangers via sponges so as to realize the connection between the window shield 16 and the heat exchanger and to guarantee the sealability of the contact portion between the window shield 16 and the heat exchanger. 12 and the rear heat exchanger 13 are attached to each other (not limited to this). At the same time, the sponge bonding method facilitates the removal of the window shield when the user needs to repair or replace the heat exchanger assembly 1. Of course, in another embodiment, the window shield 16 can be further attached to the intermediate heat exchanger 12 and the rear heat exchanger 13 by a screw tightening method, and the present design is not limited to this. Further, even if there is a relatively large gap between the front heat exchanger 11 and the intermediate heat exchanger 12, by adding a window shield 16 between the two, wind can be blown into the gap of the heat exchanger assembly 1. You can avoid getting in.

エアコン熱交換循環システムの中に、室内に位置する熱交換器組立品1以外に、室外機熱交換器、圧縮機などがあることは、理解できる。本実施例では、背管熱交換器14は一端が主体熱交換器とつながり、もう一端が第一冷媒総管24とつながり、第一冷媒総管24は室外熱交換器との接続に用いられる。 It is understandable that there are outdoor unit heat exchangers, compressors, etc. in the air conditioner heat exchange circulation system in addition to the heat exchanger assembly 1 located indoors. In this embodiment, one end of the back tube heat exchanger 14 is connected to the main heat exchanger, the other end is connected to the first refrigerant total pipe 24, and the first refrigerant total pipe 24 is used for connection with the outdoor heat exchanger. ..

本実施例では、図1から図4を参照し、熱交換器組立品1が冷房する時、圧縮機が送り出す冷媒はまず室外熱交換器を経て熱交換を行い、そして第一冷媒総管24を通して背管熱交換器14に入り、背管熱交換器14を経てから第一岐路21、第二岐路22及び第三岐路23に分かれ、第一岐路21、第二岐路22及び第三岐路23は何れも主体熱交換器風上側の熱交換管から風下側の熱交換管に向かって流れる。第一岐路21と第二岐路22は前方熱交換器11と中間熱交換器12の全ての熱交換管を分担し、且つ第一岐路21と第二岐路22の少なくとも一方は前方熱交換器11と中間熱交換器12の熱交換管に跨って設置され、第三岐路23は後方熱交換器13の全ての熱交換管を流れる。第一岐路21、第二岐路22及び第三岐路23は主体熱交換器を流れ出る後に第二冷媒総管25で合流し、圧縮機に戻る。熱交換器組立品1が暖房する時、圧縮機が送り出した冷媒は先ず第二冷媒総管25を通って熱交換器組立品1に入り、それぞれ第一岐路21、第二岐路22及び第三岐路23を経て熱交換を完成させた後、合流して背管熱交換器14を流れ、そして更に第一冷媒総管24を通して室外熱交換器に入り熱交換し、最後に圧縮機に戻る。説明すべきは、本設計はこれに限定しない。他の実施例において、第一岐路21は前方熱交換器11の全ての熱交換管を流れ、一方、第二岐路22と第三岐路23は中間熱交換器12と後方熱交換器13の全ての熱交換管を分担し、しかも第二岐路22と第三岐路23の少なくとも一方は中間熱交換器12と後方熱交換器13の熱交換管に跨って設置されている。一般性を失わず、熱交換器組立品1が冷房する時、冷媒は背管熱交換器14を経てから分配器15を通して上記第一岐路21、第二岐路22及び第三岐路23に分流する。勿論、他の実施例では、冷媒は笛型チューブなどの構造で分流してもよい。本設計はそれに対し制限しない。 In this embodiment, referring to FIGS. 1 to 4, when the heat exchanger assembly 1 is cooled, the refrigerant sent out by the compressor first exchanges heat through the outdoor heat exchanger, and then the first refrigerant total pipe 24 It enters the back tube heat exchanger 14 through the back tube heat exchanger 14, and after passing through the back tube heat exchanger 14, it is divided into the first crossroads 21, the second crossroads 22 and the third crossroads 23, and the first crossroads 21, the second crossroads 22 and the third crossroads 23. Flow from the heat exchange tube on the wind side of the main heat exchanger toward the heat exchange tube on the leeward side. The first crossroads 21 and the second crossroads 22 share all the heat exchanger tubes of the front heat exchanger 11 and the intermediate heat exchanger 12, and at least one of the first crossroads 21 and the second crossroads 22 is the front heat exchanger 11. The third crossroads 23 flow through all the heat exchanger tubes of the rear heat exchanger 13. The first crossroads 21, the second crossroads 22, and the third crossroads 23 flow out of the main heat exchanger, then merge at the second refrigerant total pipe 25, and return to the compressor. When the heat exchanger assembly 1 is heated, the refrigerant sent out by the compressor first enters the heat exchanger assembly 1 through the second refrigerant total pipe 25, and enters the heat exchanger assembly 1, respectively, at the first crossroads 21, the second crossroads 22, and the third. After completing the heat exchange through the crossroads 23, they merge to flow through the back tube heat exchanger 14, and then enter the outdoor heat exchanger through the first refrigerant total pipe 24 to exchange heat, and finally return to the compressor. It should be explained that this design is not limited to this. In another embodiment, the first crossroads 21 flow through all the heat exchanger tubes of the front heat exchanger 11, while the second crossroads 22 and the third crossroads 23 are all of the intermediate heat exchangers 12 and the rear heat exchangers 13. At least one of the second crossroads 22 and the third crossroads 23 is installed so as to straddle the heat exchange pipes of the intermediate heat exchanger 12 and the rear heat exchanger 13. When the heat exchanger assembly 1 cools without losing generality, the refrigerant flows through the back tube heat exchanger 14 and then through the distributor 15 to the first crossroads 21, the second crossroads 22, and the third crossroads 23. .. Of course, in other embodiments, the refrigerant may be split by a structure such as a whistle-shaped tube. The design is not limited to that.

先ず、本実施例における熱交換器組立品1について、理解すべきは、冷房作動条件において、第一岐路21、第二岐路22及び第三岐路23では何れも外側(風上側)の熱交換管から内側(風下側)の熱交換管へと向かう流向原則を採用することで、最大限に熱交換効率を改善するように、熱交換の温度差を向上させる。表1では、熱交換器組立品1の冷房作動条件において外側熱交換管から徐々に内側熱交換管へと入る流路と他の形式の流路との、APF(エネルギー効率比)への影響を比較し分析した。 First, regarding the heat exchanger assembly 1 in this embodiment, it should be understood that under the cooling operating conditions, the heat exchanger pipes on the outside (wind side) of the first crossroads 21, the second crossroads 22, and the third crossroads 23 are all present. By adopting the principle of flow direction from the inside (downwind side) to the heat exchange pipe, the temperature difference of heat exchange is improved so as to improve the heat exchange efficiency to the maximum. In Table 1, under the cooling operating conditions of the heat exchanger assembly 1, the influence of the flow path gradually entering the inner heat exchange tube from the outer heat exchange tube and the flow path of another type on the APF (energy efficiency ratio). Was compared and analyzed.

Figure 0006858268
Figure 0006858268

表1における異なる流路形式とAPFとの対応関係を比較してわかるのは、本実施例が採用した、三つの流路が何れも外側熱交換管から内側熱交換管へ流れる流路形式のエネルギー効率が最も高い。 Comparing the correspondence between the different flow path types and APF in Table 1, the flow path type adopted in this example, in which all three flow paths flow from the outer heat exchange pipe to the inner heat exchange pipe, can be seen. Most energy efficient.

背景技術の中で言及された「機器ケーシング3の寸法の制限により、前方熱交換器11と中間熱交換器12の熱交換管の数の差が大きく、冷媒がそれぞれ前方熱交換器11と中間熱交換器12に対し熱交換を行うことで、熱交換が不均衡になり、エネルギー効率が低い」という技術問題を解決するために、本実施例における熱交換器12組立品1の流路設計はまた、第一岐路21と第二岐路22が前方熱交換器11と中間熱交換器12の熱交換管を分担し、且つ第一岐路21と第二岐路22の少なくとも一方は前方熱交換器11と中間熱交換器12の熱交換管の間に跨って接続されるように設置されていることを強調した。即ち、流路を前方熱交換器11或いは中間熱交換器12だけを流れるのに限定せず、両者の一部の熱交換管を直列連結する。こうして、前方熱交換器11の熱交換不足を補えるだけでなく、中間熱交換器12の構造の無駄を避けることができる。従って、前方熱交換器11と中間熱交換器12との間の熱交換均衡、及びそれらのエネルギー効率の向上を有効に実現できる。 As mentioned in the background technology, "Due to the limitation of the dimensions of the equipment casing 3, the difference in the number of heat exchanger tubes between the front heat exchanger 11 and the intermediate heat exchanger 12 is large, and the refrigerant is intermediate between the front heat exchanger 11 and the intermediate heat exchanger 11, respectively. In order to solve the technical problem that heat exchange becomes imbalanced and energy efficiency is low by exchanging heat with the heat exchanger 12, the flow path design of the heat exchanger 12 assembly 1 in this embodiment is performed. Also, the first crossroads 21 and the second crossroads 22 share the heat exchangers of the front heat exchanger 11 and the intermediate heat exchanger 12, and at least one of the first crossroads 21 and the second crossroads 22 is the front heat exchanger. It was emphasized that it is installed so as to be connected so as to be straddled between the heat exchange pipes of the intermediate heat exchanger 12 and the intermediate heat exchanger 12. That is, the flow path is not limited to flowing only through the front heat exchanger 11 or the intermediate heat exchanger 12, and some heat exchange tubes of both are connected in series. In this way, not only the lack of heat exchange of the front heat exchanger 11 can be compensated, but also the waste of the structure of the intermediate heat exchanger 12 can be avoided. Therefore, the heat exchange equilibrium between the front heat exchanger 11 and the intermediate heat exchanger 12 and the improvement of their energy efficiency can be effectively realized.

本実施例では、第一岐路21と第二岐路22それぞれが流れる熱交換管の数の差が3より小さい或いは3と等しいように制御する。これにより、両者の間の熱交換エネルギーの差が大きすぎて、前方熱交換器11と中間熱交換器12との間の熱交換均衡性に影響するのを避ける。特に、第一岐路21、第二岐路22及び第三岐路23のそれぞれが流れる熱交換管の数のうち、いずれか二者の差が3より小さい或いは3と等しいように制御することで、前方熱交換器11、中間熱交換器12及び後方熱交換器13の三つの間の熱交換バランスを実現し、熱交換器組立品1全体のエネルギー効率を向上できる。 In this embodiment, the difference in the number of heat exchange tubes flowing through each of the first crossroads 21 and the second crossroads 22 is controlled to be less than or equal to three. This prevents the difference in heat exchange energy between the two from being too large and affecting the heat exchange equilibrium between the front heat exchanger 11 and the intermediate heat exchanger 12. In particular, by controlling the number of heat exchange tubes through which each of the first crossroads 21, the second crossroads 22, and the third crossroads 23 flows so that the difference between the two is less than or equal to 3, the front A heat exchange balance between the heat exchanger 11, the intermediate heat exchanger 12, and the rear heat exchanger 13 can be realized, and the energy efficiency of the entire heat exchanger assembly 1 can be improved.

日常生活において、ユーザーの居住空間の設計の違いにより、多くの場合、壁掛け式エアコン室内機の機器ケーシング3の寸法に関する要求も異なる。本実施例では、機器ケーシング3の前後方向における幅寸法Lは800mmより小さく、機器ケーシング3の上下方向における高さ寸法Hは295mmより小さい。当該機器ケーシング3の寸法に適合する熱交換器組立品1について、主体熱交換器内の熱交換管の総数を18〜22本に設定することで、限りある取付空間内で熱交換器組立品1が比較的高いエネルギー効率に維持されることを保証する。特に、本実施例では、主体熱交換器の熱交換管の数は20である。また、このような寸法範囲の機器ケーシング3内に限定すれば、貫流ファン4のエネルギー効率及び空間占有を総合的に考慮し、貫流ファン4の直径Dを115mm〜125mmに選定し、且つ主体熱交換器の内側面と貫流ファン4の外側面との間の間隔Sを10mmより大きく保つ。主体熱交換器が貫流ファンを半分取り囲んで、より良い熱交換エネルギー効率向上の効果及び結露排水の高信頼設計を達成できるのを保証するために、後方熱交換器13と上下方向との角度が38°〜48°にあり、中間熱交換器12及び前方熱交換器11と上下方向との角度が45°〜55°にあるように保つ。 In daily life, due to differences in the design of the living space of the user, in many cases, the requirements regarding the dimensions of the equipment casing 3 of the wall-mounted air conditioner indoor unit also differ. In this embodiment, the width dimension L in the front-rear direction of the equipment casing 3 is smaller than 800 mm, and the height dimension H in the vertical direction of the equipment casing 3 is smaller than 295 mm. For the heat exchanger assembly 1 that fits the dimensions of the equipment casing 3, the total number of heat exchanger tubes in the main heat exchanger is set to 18 to 22, so that the heat exchanger assembly can be installed in a limited mounting space. Guarantee that 1 is maintained with relatively high energy efficiency. In particular, in this embodiment, the number of heat exchange tubes of the main heat exchanger is 20. Further, if it is limited to the inside of the equipment casing 3 in such a dimension range, the diameter D of the once-through fan 4 is selected to 115 mm to 125 mm, and the main heat is taken into consideration comprehensively considering the energy efficiency and space occupancy of the once-through fan 4. Keep the distance S between the inner surface of the exchanger and the outer surface of the once-through fan 4 greater than 10 mm. The angle between the rear heat exchanger 13 and the vertical direction is set to ensure that the main heat exchanger surrounds the once-through fan in half to achieve a better heat exchange energy efficiency improvement effect and a highly reliable design for dew condensation drainage. It is located at 38 ° to 48 °, and the angle between the intermediate heat exchanger 12 and the front heat exchanger 11 and the vertical direction is maintained at 45 ° to 55 °.

本願技術案の熱交換器組立品1は主体熱交換器と主体熱交換器の風上側に設置されている背管熱交換器14を含み、主体熱交換器は前方熱交換器11、中間熱交換器12及び後方熱交換器13を含む。熱交換器組立品1が冷房する時、背管熱交換器14を通った後、熱交換流路2は第一岐路21、第二岐路22及び第三岐路23に分流し、第一岐路21は前方熱交換器11を流れ、第二岐路22は中間熱交換器12を流れ、第三岐路23は後方熱交換器13を流れる。第一岐路21と第三岐路23の中の一方が中間熱交換器12の熱交換管に跨って設置され、こうして流路を改善した後、前方熱交換器11或いは後方熱交換器13の熱交換管を通った冷媒が、中間熱交換器12の一部の熱交換管を続けて通るようにでき、第一岐路21が前方熱交換器11の熱交換管だけを通過或いは第三岐路23が後方熱交換器13の熱交換管だけを通過することで起こりうる冷媒の熱交換の不十分(前方熱交換器11と後方熱交換器13の熱交換管が比較的少ないので)、及び第二岐路22が中間熱交換器12の熱交換管だけを通過することで起こりうる構造の無駄の問題(中間熱交換器12の熱交換管が比較的多いので)を避けるとともに、前方熱交換器11、後方熱交換器12と中間熱交換器13との間で、熱交換効果をより均衡にし、熱交換器組立品のエネルギー効率を有効に向上させる。 The heat exchanger assembly 1 of the technical proposal of the present application includes a main heat exchanger and a back tube heat exchanger 14 installed on the wind side of the main heat exchanger, and the main heat exchanger is a front heat exchanger 11 and intermediate heat. Includes exchanger 12 and rear heat exchanger 13. When the heat exchanger assembly 1 cools, after passing through the back tube heat exchanger 14, the heat exchange flow path 2 splits into the first crossroads 21, the second crossroads 22, and the third crossroads 23, and the first crossroads 21 Flows through the front heat exchanger 11, the second crossroad 22 flows through the intermediate heat exchanger 12, and the third crossroad 23 flows through the rear heat exchanger 13. One of the first crossroads 21 and the third crossroads 23 is installed straddling the heat exchange pipe of the intermediate heat exchanger 12, and after improving the flow path in this way, the heat of the front heat exchanger 11 or the rear heat exchanger 13 is heated. The refrigerant that has passed through the exchange pipe can be allowed to continuously pass through a part of the heat exchange pipes of the intermediate heat exchanger 12, and the first crossroads 21 pass only through the heat exchange pipes of the front heat exchanger 11 or the third crossroads 23. Insufficient heat exchange of the refrigerant that can occur by passing only through the heat exchange tubes of the rear heat exchanger 13 (because the heat exchange tubes of the front heat exchanger 11 and the rear heat exchanger 13 are relatively small), and While avoiding the problem of structural waste (because there are relatively many heat exchangers in the intermediate heat exchanger 12) that can occur when the bifurcation road 22 passes only through the heat exchanger tube of the intermediate heat exchanger 12, the front heat exchanger 11. The heat exchange effect is more balanced between the rear heat exchanger 12 and the intermediate heat exchanger 13, and the energy efficiency of the heat exchanger assembly is effectively improved.

周知のように、小さい管径の熱交換管とすることで、熱交換管の使用材料が減少し、よって熱交換器組立品1全体のコストを著しく減少できるが、冷媒が小さい管径の熱交換管を通る時、熱交換の抵抗が大きく、圧力の損失が大きいので、冷媒の循環流動には不利である。本実施例では、熱交換器組立品1のコストと冷媒の循環流動効率の問題を総合的に考慮し、背管熱交換器14の熱交換管管径を主体熱交換器の熱交換管管径より大きく設定する。これにより、熱交換器組立品1が冷房する時、冷媒は先ず背管熱交換器14の大管径熱交換管に入り、そして更に分流し主体熱交換器の小管径熱交換管に入る。即ち、冷媒が気態から液態へと変わる過程で、相応に冷媒と熱交換管との接触面積を増やす。熱交換器組立品1が暖房する時、冷媒は先ず分流して主体熱交換器の小管径熱交換管内で熱交換し、そしてまとめて背管熱交換器14の大管径熱交換管に入る。表2では熱交換器組立品1が暖房作動条件にある場合の、異なる管径における冷媒流動方式によるAPFへの影響を比較して分析した。 As is well known, by using a heat exchange tube having a small tube diameter, the material used for the heat exchange tube can be reduced, and thus the cost of the entire heat exchanger assembly 1 can be significantly reduced, but the refrigerant has a small tube diameter. When passing through the exchange pipe, the resistance of heat exchange is large and the pressure loss is large, which is disadvantageous to the circulating flow of the refrigerant. In this embodiment, the cost of the heat exchanger assembly 1 and the problem of the circulation flow efficiency of the refrigerant are comprehensively considered, and the heat exchange pipe diameter of the back pipe heat exchanger 14 is mainly used as the heat exchange pipe of the heat exchanger. Set larger than the diameter. As a result, when the heat exchanger assembly 1 is cooled, the refrigerant first enters the large-diameter heat exchanger of the back tube heat exchanger 14, and then enters the small-diameter heat exchanger of the main heat exchanger. .. That is, in the process of changing the refrigerant from the gas state to the liquid state, the contact area between the refrigerant and the heat exchange pipe is increased accordingly. When the heat exchanger assembly 1 heats, the refrigerant first splits and exchanges heat in the small tube diameter heat exchanger tube of the main heat exchanger, and then collectively into the large tube diameter heat exchanger tube of the back tube heat exchanger 14. enter. In Table 2, when the heat exchanger assembly 1 is in the heating operating condition, the influence of the refrigerant flow method on the APF at different pipe diameters is compared and analyzed.

Figure 0006858268
Figure 0006858268

表2における異なる流路形式とAPFとの対応関係を比較してわかるのは、本実施例が採用した、暖房作動条件において、冷媒が先ず小さい管径の熱交換管を経て、そして大きい管径の熱交換管を経るようにする流路形式のエネルギー効率が最も高い。一般性を失わず、背管熱交換器14の熱交換管はΦ7の管径を採用し、主体熱交換器の熱交換管はΦ5の管径を採用する。Φ7とΦ5の管径の熱交換管は何れも先行技術で広く使われている熱交換管であることは理解できる。従って、以上二種類の管径の熱交換管を選択することで、熱交換管の取得難易度の減少、熱交換器組立品1の製造コストの減少に役立つ。勿論、他の実施例において、背管熱交換器14や、主体熱交換器それぞれの熱交換管は具体的に他の管径寸法にすることもできる。例えば、背管熱交換器14の熱交換管はΦ6の管径を採用することもできる。本設計はこれに限定しない。ところで、本実施例では熱交換器組立品のエネルギー効率に対する要求と機器ケーシング3の寸法制限を合わせて考慮すると、背管熱交換器14の熱交換管の数は2〜4本であるのが好ましく、更に背管熱交換器14がより良く機器ケーシング3の吸気口に向かって設置されるように、背管熱交換器14を後方熱交換器より前方熱交換器に近いように設置する。 Comparing the correspondence between the different flow path types and APF in Table 2, it can be seen that in the heating operating conditions adopted in this embodiment, the refrigerant first passes through the heat exchange pipe having a small pipe diameter, and then through the heat exchange pipe having a large pipe diameter. The energy efficiency of the flow path type that passes through the heat exchange tube is the highest. Without losing generality, the heat exchange tube of the back tube heat exchanger 14 adopts a tube diameter of Φ7, and the heat exchange tube of the main heat exchanger adopts a tube diameter of Φ5. It can be understood that the heat exchange tubes having a diameter of Φ7 and Φ5 are both heat exchange tubes widely used in the prior art. Therefore, selecting the heat exchange pipes having the above two types of pipe diameters helps to reduce the difficulty of obtaining the heat exchange pipes and the manufacturing cost of the heat exchanger assembly 1. Of course, in other embodiments, the heat exchangers of the back tube heat exchanger 14 and the main heat exchangers may have other tube diameter dimensions. For example, the heat exchange tube of the back tube heat exchanger 14 can adopt a tube diameter of Φ6. This design is not limited to this. By the way, in this embodiment, considering the requirement for energy efficiency of the heat exchanger assembly and the dimensional limitation of the equipment casing 3, the number of heat exchanger tubes of the back tube heat exchanger 14 is 2 to 4. Preferably, the back tube heat exchanger 14 is installed closer to the front heat exchanger than the rear heat exchanger so that the back tube heat exchanger 14 is better installed toward the intake port of the equipment casing 3.

更に、図1から図4を参照し、第二岐路22は中間熱交換器12の一部の熱交換管を流れ、第一岐路21は中間熱交換器12の残りの熱交換管、及び前方熱交換器11の全ての熱交換管を流れる。このように設置することで、第一岐路21と第二岐路22が通過する熱交換管が互いに近い場合に、できるだけ流路の設計を簡略化し、主体熱交換器の製造難易度を下げられる。本設計はこれに限定しない。他の実施例において、第二岐路22は前方熱交換器11と中間熱交換器12の一部の熱交換管を流れ、第一岐路21は前方熱交換器11と中間熱交換器12の残りの熱交換管を流れることは説明すべきである。 Further, referring to FIGS. 1 to 4, the second crossroads 22 flows through a part of the heat exchange pipes of the intermediate heat exchanger 12, and the first crossroads 21 is the remaining heat exchange pipes of the intermediate heat exchanger 12 and the front. It flows through all the heat exchanger tubes of the heat exchanger 11. By installing in this way, when the heat exchange pipes through which the first crossroads 21 and the second crossroads 22 pass are close to each other, the design of the flow path can be simplified as much as possible, and the manufacturing difficulty of the main heat exchanger can be reduced. This design is not limited to this. In another embodiment, the second crossroads 22 flow through some heat exchanger tubes of the front heat exchanger 11 and the intermediate heat exchanger 12, and the first crossroads 21 are the rest of the front heat exchanger 11 and the intermediate heat exchanger 12. It should be explained that it flows through the heat exchange tube of.

以下では、主体熱交換器の具体的な流路設計を紹介する。熱交換器組立品1が冷房作動条件にある場合を例に取ると、本願の第一実施例は以下のとおりである。 In the following, we will introduce the specific flow path design of the main heat exchanger. Taking the case where the heat exchanger assembly 1 is in the cooling operating condition as an example, the first embodiment of the present application is as follows.

図2を参照し、第一岐路21は第二外列121の中部の熱交換管から流れ込み、第二外列121に沿って前方熱交換器11側に向かって流れ、第一ジャンパ管17を経て第一外列111に入り、第一外列111と第一内列112全体を順に流れ、第一内列112から流れ出る。第二岐路22は第二外列121から流れ込み、第二外列121の残りの部分、及び第二内列122全体を流れ、第二内列122から流れ出る。第一岐路21は中間熱交換器12の最も前方熱交換器11に近い熱交換管に流れ、そして第一ジャンパ管17を通して前方熱交換器11に入ることで、第一ジャンパ管17の長さ、及び前方熱交換器11と中間熱交換器12との間の隙間の減少に役立つことは理解できる。具体的に、第一岐路21は第二外列121の二本の熱交換管を経てから第一ジャンパ管17を経て前方熱交換器11に入る。本設計はこれに限定せず、他の実施例において、第一岐路21は第二外列121の他の位置の熱交換管から流れ込んでもいいことは説明すべきである。 With reference to FIG. 2, the first crossroads 21 flow from the heat exchange pipe in the middle of the second outer row 121, flow toward the front heat exchanger 11 side along the second outer row 121, and pass through the first jumper pipe 17. Then, it enters the first outer row 111, flows through the first outer row 111 and the entire first inner row 112 in order, and flows out from the first inner row 112. The second crossroads 22 flow in from the second outer row 121, flow through the rest of the second outer row 121, and the entire second inner row 122, and flow out of the second inner row 122. The first crossroads 21 flow into the heat exchanger tube closest to the front heat exchanger 11 of the intermediate heat exchanger 12 and enter the front heat exchanger 11 through the first jumper tube 17 to reach the length of the first jumper tube 17. , And it is understandable that it helps reduce the gap between the front heat exchanger 11 and the intermediate heat exchanger 12. Specifically, the first crossroads 21 enters the front heat exchanger 11 via the two heat exchange pipes in the second outer row 121 and then through the first jumper pipe 17. It should be explained that the design is not limited to this, and in other embodiments, the first crossroads 21 may flow from heat exchange tubes at other positions in the second outer row 121.

更に、第二岐路22は第二外列121上の第一岐路21が流れ込む熱交換管と隣り合う熱交換管から流れ込み、第二外列121に沿って後方熱交換器13側に向かって流れる。第一岐路21と第二岐路22はそれぞれ第二外列121の二つの反対側に沿って流れることにより、第二外列121の熱交換管を分担する。このように配置することで、第二岐路22が第二外列121の熱交換管をまんべんなく流れるために、その流動方向を変えなければならないことを避ける。即ち、第二岐路22の流向を簡略化することを理解すべきである。具体的に、第二岐路22は第二外列121の三本の熱交換管を経てから第二内列122に入る。本設計はこれに限定せず、他の実施例において、第二岐路22は第二外列121の一番後端の熱交換管から流れ込み、且つ第二外列121に沿って前方熱交換器11側に向かって、第二外列121上の第一岐路21が流れ込む熱交換管と隣り合う熱交換管まで流れることは、説明すべきである。 Further, the second crossroad 22 flows from the heat exchange pipe adjacent to the heat exchange pipe into which the first crossroad 21 on the second outer row 121 flows, and flows toward the rear heat exchanger 13 side along the second outer row 121. .. The first crossroads 21 and the second crossroads 22 flow along the two opposite sides of the second outer row 121, respectively, thereby sharing the heat exchange pipes of the second outer row 121. By arranging in this way, it is possible to avoid having to change the flow direction of the second crossroads 22 in order to flow evenly through the heat exchange pipes of the second outer row 121. That is, it should be understood that the flow direction of the second crossroads 22 is simplified. Specifically, the second crossroads 22 enters the second inner row 122 after passing through the three heat exchange tubes of the second outer row 121. The present design is not limited to this, and in other embodiments, the second crossroads 22 flows from the rearmost heat exchange pipe of the second outer row 121 and is a front heat exchanger along the second outer row 121. It should be explained that the first crossroads 21 on the second outer row 121 flow toward the 11 side to the heat exchange pipe adjacent to the heat exchange pipe into which the first crossroads 21 flow.

更に、第一岐路21は第一ジャンパ管17を経て第一外列111の中間熱交換器12に近い熱交換管に入り、そして第一外列111と第一内列112との全体を順に流れ、更に第一内列112の中間熱交換器12に近い熱交換管から流れ出る。こうして配置することで、第一岐路21は前方熱交換器11の風上側の上端から流れ込み、冷却剤の熱交換をより良く実現させるように、この位置での風量は、第一岐路21内の冷媒のこの時点の比較的高いエネルギーに適合する。第一岐路21が上から下へと第一外列111全体を流れ、そして下から上へと第一内列112全体を流れる方法により、前方熱交換器11の中の流路設計を簡略化したことを理解すべきである。本設計はこれに限定せず、他の実施例において、第一岐路21は第一外列111の他の熱交換管から前方熱交換器11に入るか、第一内列112の他の熱交換管にて前方熱交換器11から排出されてもいいことは説明すべきである。 Further, the first crossroads 21 enters the heat exchanger tube close to the intermediate heat exchanger 12 of the first outer row 111 via the first jumper pipe 17, and the entire first outer row 111 and the first inner row 112 are sequentially arranged. It flows out from the heat exchange tube near the intermediate heat exchanger 12 in the first inner row 112. By arranging in this way, the first crossroads 21 flows from the upper end of the windward side of the front heat exchanger 11, and the air volume at this position is in the first crossroads 21 so as to better realize the heat exchange of the coolant. Suitable for the relatively high energy of the refrigerant at this point. The flow path design in the front heat exchanger 11 is simplified by a method in which the first crossroads 21 flow through the entire first outer row 111 from top to bottom and then through the entire first inner row 112 from bottom to top. You should understand what you did. The design is not limited to this, and in other embodiments, the first crossroads 21 enters the front heat exchanger 11 from another heat exchanger tube in the first outer row 111 or other heat in the first inner row 112. It should be explained that the exchange pipe may be discharged from the front heat exchanger 11.

更に、第二岐路22は第二外列121から第二内列122の後方熱交換器13に近い熱交換管に入り、そして第二内列122に沿って前方熱交換器11側に向かって流れ、更に第二内列122の前方熱交換器11に近い熱交換管から流れ出る。こうして配置することで、第二岐路22はいつも前に向かって流れるように保たれればよいので、流向の設計が簡単で、中間熱交換器12の加工難易度の低下に役立つことを理解すべきである。本設計はこれに限定せず、他の実施例において、第二岐路22は第二外列121から第二内列122の他の熱交換管に流れ込み、あるいは、第二内列122の他の熱交換管にて中間熱交換器11から流れ出てもいいことは説明すべきである。 Further, the second crossroads 22 enters the heat exchanger tube from the second outer row 121 to the second inner row 122 near the rear heat exchanger 13, and is directed toward the front heat exchanger 11 side along the second inner row 122. It flows out from the heat exchange tube near the front heat exchanger 11 in the second inner row 122. By arranging in this way, it is sufficient to keep the second crossroads 22 flowing forward at all times, so that it is easy to design the flow direction, and it is understood that it helps to reduce the processing difficulty of the intermediate heat exchanger 12. Should be. The present design is not limited to this, and in other embodiments, the second crossroads 22 flow from the second outer row 121 to another heat exchange tube in the second inner row 122, or other in the second inner row 122. It should be explained that the heat exchanger can flow out of the intermediate heat exchanger 11.

更に、第三岐路23は第三外列131の中間熱交換器12に近い熱交換管から流れ込み、そして第三外列131と第三内列132との全体を順に流れ、更に第三内列132の中間熱交換器12に近い熱交換管から流れ出る。こうして配置することで、第三岐路23は後方熱交換器13の風上側の上端から流れ込み、冷却剤の熱交換をより良く実現させるように、この位置での風量は、第三岐路23内の冷媒のこの時点の比較的高いエネルギーに適合する。第三岐路23が上から下へと第三外列131全体を流れ、そして下から上へと第三内列132全体を流れる方法により、後方熱交換器13の中の流路設計を簡略化したことを理解すべきである。本設計はこれに限定せず、他の実施例において、第三岐路23は第三外列131の他の熱交換管から後方熱交換器13に入るか、第三内列132の他の熱交換管にて後方熱交換器13から排出されてもいいことは説明すべきである。 Further, the third crossroads 23 flow from the heat exchange pipe near the intermediate heat exchanger 12 of the third outer row 131, and flow through the entire third outer row 131 and the third inner row 132 in order, and further flow through the entire third inner row 131. It flows out of the heat exchange tube near the intermediate heat exchanger 12 of 132. By arranging in this way, the third crossroads 23 flows from the upper end of the windward side of the rear heat exchanger 13, and the air volume at this position is in the third crossroads 23 so as to better realize the heat exchange of the coolant. Suitable for the relatively high energy of the refrigerant at this point. The flow path design in the rear heat exchanger 13 is simplified by a method in which the third crossroads 23 flow through the entire third outer row 131 from top to bottom and then through the entire third inner row 132 from bottom to top. You should understand what you did. The present design is not limited to this, and in other embodiments, the third crossroads 23 enters the rear heat exchanger 13 from another heat exchanger tube in the third outer row 131 or other heat in the third inner row 132. It should be explained that the rear heat exchanger 13 may be discharged through the exchange tube.

以上の本実施例での主体熱交換器の具体的流路設計に基づき、表3では三つの岐路における熱交換管の本数の配分方式の、APFへの影響を比較して分析する。 Based on the specific flow path design of the main heat exchanger in this embodiment, Table 3 compares and analyzes the influence of the distribution method of the number of heat exchange tubes at the three crossroads on APF.

Figure 0006858268
Figure 0006858268

表3における熱交換管本数の配分方式とAPFとの対応関係を比較してわかるように、第一岐路21が6本の熱交換管、第二岐路22が7本の熱交換管、第三岐路23が7本の熱交換管を通過する案を採用することで、熱交換器組立品1のエネルギー効率を最高にするのが好ましい。このように配置することで、第一岐路21と第二岐路22との、通過する熱交換管の本数の差は1、第一岐路21と第三岐路23との、通過する熱交換管の本数の差は1、第二岐路22と第三岐路23との、通過する熱交換管の本数の差は0になる。これは前記の、熱交換器組立品1のエネルギー効率を向上させるために、何れか二つの岐路の間での、通過する熱交換管の数の差に対してなされた、3より小さいか3に等しいという限定に一致することは、明らかである。 As can be seen by comparing the correspondence between the number of heat exchange pipes and the APF in Table 3, the first crossroads 21 have 6 heat exchange pipes, the second crossroads 22 have 7 heat exchange pipes, and the third It is preferable to maximize the energy efficiency of the heat exchanger assembly 1 by adopting the idea that the crossroads 23 pass through seven heat exchanger tubes. By arranging in this way, the difference in the number of heat exchange pipes passing through the first crossroads 21 and the second crossroads 22 is 1, and the heat exchange pipes passing through the first crossroads 21 and the third crossroads 23 The difference in the number of pipes is 1, and the difference in the number of heat exchange pipes passing between the second crossroads 22 and the third crossroads 23 is zero. This was done for the difference in the number of heat exchanger tubes passing between any two crossroads to improve the energy efficiency of the heat exchanger assembly 1 described above, less than 3 or 3 It is clear that it agrees with the limitation of being equal to.

本願の第二実施例において、図3を参照し、第一岐路21は第二外列121の前方熱交換器11に近い熱交換管から流れ込み、第二外列121に沿って前方熱交換器11側に向かって流れ、第一ジャンパ管17を経て第一外列111に入り、第一外列111と第一内列112との全体を順に流れ、更に第二ジャンパ管18を経て第二内列122に入り、第二内列122から流れ出る。第二岐路22は第二外列121から流れ込み、第二外列121と第二内列122の残りの部分を流れ、第二内列122から流れ出る。第一岐路21は中間熱交換器12の最も前方熱交換器11に近い熱交換管に流れ、そして第一ジャンパ管17を通して前方熱交換器11に入ることで、第一ジャンパ管17の長さ、及び前方熱交換器11と中間熱交換器12との間の隙間の減少に役立つことは理解できる。具体的に、第一岐路21は第二外列121の一本の熱交換管を経てから第一ジャンパ管17を経て前方熱交換器11に入る。本設計はこれに限定せず、他の実施例において、第一岐路21は第二外列121の他の位置の熱交換管から流れ込んでもいいことは説明すべきである。 In the second embodiment of the present application, with reference to FIG. 3, the first crossroads 21 flow from the heat exchanger tube near the front heat exchanger 11 in the second outer row 121, and the front heat exchanger along the second outer row 121. It flows toward the 11 side, enters the first outer row 111 through the first jumper pipe 17, flows through the entire first outer row 111 and the first inner row 112 in order, and further passes through the second jumper pipe 18 to the second. It enters the inner row 122 and flows out from the second inner row 122. The second crossroads 22 flow from the second outer row 121, flow through the rest of the second outer row 121 and the second inner row 122, and flow out from the second inner row 122. The first crossroads 21 flow into the heat exchanger tube closest to the front heat exchanger 11 of the intermediate heat exchanger 12 and enter the front heat exchanger 11 through the first jumper tube 17 to reach the length of the first jumper tube 17. , And it is understandable that it helps reduce the gap between the front heat exchanger 11 and the intermediate heat exchanger 12. Specifically, the first crossroads 21 enters the front heat exchanger 11 via one heat exchange pipe in the second outer row 121 and then through the first jumper pipe 17. It should be explained that the design is not limited to this, and in other embodiments, the first crossroads 21 may flow from heat exchange tubes at other positions in the second outer row 121.

更に、第二岐路22は第二外列121上の第一岐路21が流れ込む熱交換管と隣り合う熱交換管から流れ込み、第二外列121に沿って後方熱交換器13に向かって流れる。第一岐路21と第二岐路22はそれぞれ第二外列121の二つの反対側に沿って流れることにより、第二外列121の熱交換管を分担する。このように配置することで、第二岐路22が第二外列121の熱交換管をまんべんなく流れるために、その流動方向を変えなければならないことを避ける。即ち、第二岐路22の流向を簡略化することを理解すべきである。具体的に、第二岐路22は第二外列121の四本の熱交換管を経てから第二内列122に入る。本設計はこれに限定せず、他の実施例において、第二岐路22は第二外列121の一番後端の熱交換管から流れ込み、且つ第二外列121に沿って前方熱交換器11側に向かって、第二外列121上の第一岐路21が流れ込む熱交換管と隣り合う熱交換管まで流れることは、説明すべきである。 Further, the second crossroad 22 flows from the heat exchange pipe adjacent to the heat exchange pipe into which the first crossroad 21 on the second outer row 121 flows, and flows toward the rear heat exchanger 13 along the second outer row 121. The first crossroads 21 and the second crossroads 22 flow along the two opposite sides of the second outer row 121, respectively, thereby sharing the heat exchange pipes of the second outer row 121. By arranging in this way, it is possible to avoid having to change the flow direction of the second crossroads 22 in order to flow evenly through the heat exchange pipes of the second outer row 121. That is, it should be understood that the flow direction of the second crossroads 22 is simplified. Specifically, the second crossroads 22 enters the second inner row 122 after passing through the four heat exchange tubes of the second outer row 121. The present design is not limited to this, and in other embodiments, the second crossroads 22 flows from the rearmost heat exchange pipe of the second outer row 121 and is a front heat exchanger along the second outer row 121. It should be explained that the first crossroads 21 on the second outer row 121 flow toward the 11 side to the heat exchange pipe adjacent to the heat exchange pipe into which the first crossroads 21 flow.

更に、第一岐路21は第一ジャンパ管17を経て第一外列111の中間熱交換器12に近い熱交換管に入り、そして第一外列111と第一内列112との全体を順に流れ、更に第一内列112の中間熱交換器12に近い熱交換管に到達し、そして第二ジャンパ管18を経て第二内列122に入る。こうして配置することで、第一岐路21は前方熱交換器11の風上側の上端から流れ込み、冷媒の熱交換をより良く実現させるように、この位置での風量は、第一岐路21内の冷媒のこの時点の比較的高いエネルギーに適合する。第一岐路21が上から下へと第一外列111全体を流れ、そして下から上へと第一内列112全体を流れる方法により、前方熱交換器11の中の流路設計を簡略化した。それに、第一岐路21が前方熱交換器11の中間熱交換器12に近い熱交換管から第二ジャンパ管18を通して中間熱交換器12に入ることは、第二ジャンパ管18の長さ、及び前方熱交換器11と中間熱交換器12との間の隙間の減少にも役立つことを理解すべきである。本設計はこれに限定せず、他の実施例において、第一岐路21は第一外列111の他の熱交換管から前方熱交換器11に入るか、第一内列112の他の熱交換管から第二ジャンパ管18を経て中間熱交換器12に入ってもいいことは説明すべきである。 Further, the first crossroads 21 enters the heat exchanger tube close to the intermediate heat exchanger 12 of the first outer row 111 via the first jumper pipe 17, and the entire first outer row 111 and the first inner row 112 are sequentially arranged. The flow further reaches the heat exchanger tube close to the intermediate heat exchanger 12 in the first inner row 112, and enters the second inner row 122 via the second jumper tube 18. By arranging in this way, the first crossroads 21 flows from the upper end of the windward side of the front heat exchanger 11, and the air volume at this position is the refrigerant in the first crossroads 21 so as to better realize the heat exchange of the refrigerant. Suitable for the relatively high energy at this point in time. The flow path design in the front heat exchanger 11 is simplified by a method in which the first crossroads 21 flow through the entire first outer row 111 from top to bottom and then through the entire first inner row 112 from bottom to top. did. In addition, the fact that the first crossroads 21 enters the intermediate heat exchanger 12 from the heat exchanger tube close to the intermediate heat exchanger 12 of the front heat exchanger 11 through the second jumper tube 18 means that the length of the second jumper tube 18 and It should be understood that it also helps reduce the gap between the front heat exchanger 11 and the intermediate heat exchanger 12. The design is not limited to this, and in other embodiments, the first crossroads 21 enter the front heat exchanger 11 from another heat exchanger tube in the first outer row 111 or other heat in the first inner row 112. It should be explained that the intermediate heat exchanger 12 may be entered from the exchange tube via the second jumper tube 18.

更に、第一岐路21は第二ジャンパ管18を経て第二内列122の前方熱交換器11に近い熱交換管に入り、そして第二内列122に沿って後方熱交換器13側に向かって流れ、更に第二内列122中部の熱交換管から流れ出る。このように配置することで、第一岐路21は第二内列122の前方熱交換器11に近い熱交換管から入ることにより、第二ジャンパ管18の長さ、及び前方熱交換器11と中間熱交換器12との間の隙間の減少に役立つことは理解できる。具体的に、第一岐路21は第二内列122の二本の熱交換管を経てから中間熱交換器12から排出される。本設計はこれに限定せず、他の実施例において、第一岐路21は第二内列122の他の熱交換管から中間熱交換器12に入るか、第二内列122の他の熱交換管にて中間熱交換器12から排出されてもいいことは説明すべきである。 Further, the first crossroads 21 enters the heat exchanger tube near the front heat exchanger 11 of the second inner row 122 via the second jumper pipe 18 and heads toward the rear heat exchanger 13 side along the second inner row 122. And then flows out of the heat exchange tube in the middle of the second inner row 122. By arranging in this way, the first crossroads 21 can enter from the heat exchange pipe close to the front heat exchanger 11 in the second inner row 122, thereby increasing the length of the second jumper pipe 18 and the front heat exchanger 11. It is understandable that it helps reduce the gap between the intermediate heat exchanger 12 and the intermediate heat exchanger 12. Specifically, the first crossroads 21 are discharged from the intermediate heat exchanger 12 after passing through the two heat exchange pipes in the second inner row 122. The present design is not limited to this, and in other embodiments, the first crossroads 21 enters the intermediate heat exchanger 12 from another heat exchanger tube in the second inner row 122 or other heat in the second inner row 122. It should be explained that the exchange pipe may be discharged from the intermediate heat exchanger 12.

更に、第二岐路22は第二外列121から第二内列122の後方熱交換器13に近い熱交換管に入り、そして第二内列122に沿って前方熱交換器11側に向かって流れ、更に第一岐路21が流れ出る熱交換管に隣り合う熱交換管から流れ出る。こうして配置することで、第二岐路22は第二内列122に入ってからいつも前に向かって流れるように保たれればよいので、流向の設計が簡単で、中間熱交換器12の加工難易度の低下に役立つことを理解すべきである。本設計はこれに限定せず、他の実施例において、第二岐路22は第二外列121から第二内列122の他の熱交換管に流れ込み、あるいは、第二内列122の他の熱交換管にて中間熱交換器11から流れ出てもいいことは説明すべきである。 Further, the second crossroads 22 enters the heat exchanger tube from the second outer row 121 to the second inner row 122 near the rear heat exchanger 13, and is directed toward the front heat exchanger 11 side along the second inner row 122. It flows out from the heat exchange pipe adjacent to the heat exchange pipe from which the first crossroads 21 flow out. By arranging in this way, the second crossroads 22 need only be kept flowing forward after entering the second inner row 122, so that the design of the flow direction is easy and the intermediate heat exchanger 12 is difficult to process. It should be understood that it helps to reduce the degree. The present design is not limited to this, and in other embodiments, the second crossroads 22 flow from the second outer row 121 to another heat exchange tube in the second inner row 122, or other in the second inner row 122. It should be explained that the heat exchanger can flow out of the intermediate heat exchanger 11.

更に、第三岐路23は第三外列131の中間熱交換器12に近い熱交換管から流れ込み、そして第三外列131と第三内列132との全体を順に流れ、更に第三内列132の中間熱交換器12に近い熱交換管から流れ出る。こうして配置することで、第三岐路23は後方熱交換器13の風上側の上端から流れ込み、冷媒の熱交換をより良く実現させるように、この位置での風量は、第三岐路23内の冷媒のこの時点の比較的高いエネルギーに適合する。第三岐路23が上から下へと第三外列131全体を流れ、そして下から上へと第三内列132全体を流れる方法により、後方熱交換器13の中の流路設計を簡略化したことを理解すべきである。本設計はこれに限定せず、他の実施例において、第三岐路23は第三外列131の他の熱交換管から後方熱交換器13に入るか、第三内列132の他の熱交換管にて後方熱交換器13から排出されてもいいことは説明すべきである。 Further, the third crossroads 23 flow from the heat exchange pipe near the intermediate heat exchanger 12 of the third outer row 131, and flow through the entire third outer row 131 and the third inner row 132 in order, and further flow through the entire third inner row 131. It flows out of the heat exchange tube near the intermediate heat exchanger 12 of 132. By arranging in this way, the third crossroads 23 flows from the upper end of the windward side of the rear heat exchanger 13, and the air volume at this position is the refrigerant in the third crossroads 23 so as to better realize the heat exchange of the refrigerant. Suitable for the relatively high energy at this point in time. The flow path design in the rear heat exchanger 13 is simplified by a method in which the third crossroads 23 flow through the entire third outer row 131 from top to bottom and then through the entire third inner row 132 from bottom to top. You should understand what you did. The present design is not limited to this, and in other embodiments, the third crossroads 23 enters the rear heat exchanger 13 from another heat exchanger tube in the third outer row 131 or other heat in the third inner row 132. It should be explained that the rear heat exchanger 13 may be discharged through the exchange tube.

以上の本実施例での主体熱交換器の具体的流路設計に基づき、表4では三つの岐路における熱交換管の本数の分配方式の、APFへの影響を対照して分析する。 Based on the specific flow path design of the main heat exchanger in this embodiment, Table 4 analyzes the influence of the distribution method of the number of heat exchange tubes at the three crossroads on APF.

Figure 0006858268
Figure 0006858268

表4における熱交換管の本数の分配方式とAPFとの対応関係を比較してわかるように、第一岐路21が8本の熱交換管、第二岐路22が6本の熱交換管、第三岐路23が7本の熱交換管を通過する案を採用することで、熱交換器組立品1のエネルギー効率を最高にするのが好ましい。このように配置することで、第一岐路21と第二岐路22との、通過する熱交換管の本数の差は2、第一岐路21と第三岐路23との、通過する熱交換管の本数の差は1、第二岐路22と第三岐路23との、通過する熱交換管の本数の差は1になる。これは前記の、熱交換器組立品1のエネルギー効率を向上させるために、何れか二つの岐路の間の、通過する熱交換管の数の差に対してなされた、3より小さいか3に等しいという限定に一致することは、明らかである。 As can be seen by comparing the correspondence between the distribution method of the number of heat exchange pipes and APF in Table 4, the first crossroads 21 are eight heat exchange pipes, the second crossroads 22 are six heat exchange pipes, and the first It is preferable to maximize the energy efficiency of the heat exchanger assembly 1 by adopting the idea that the three crossroads 23 pass through seven heat exchanger tubes. By arranging in this way, the difference in the number of heat exchange pipes passing through the first crossroads 21 and the second crossroads 22 is 2, and the heat exchange pipes passing through the first crossroads 21 and the third crossroads 23 The difference in the number of lines is 1, and the difference in the number of heat exchange tubes passing between the second crossroads 22 and the third crossroads 23 is 1. This was done for the difference in the number of heat exchanger tubes passing between any two crossroads to improve the energy efficiency of the heat exchanger assembly 1 described above, less than or 3 It is clear that it agrees with the limitation of equality.

本願の第三実施例において、図4を参照し、第一岐路21は第一外列111の中間熱交換器12に近い熱交換管から流れ込み、第一外列111と第一内列112との全体を順に流れ、第一内列112の中間熱交換器12に近い熱交換管に到達し、更に第二ジャンパ管18を経て第二内列122に入り、第二内列122から流れ出る。第二岐路22は第二外列121から流れ込み、第二外列121全体と第二内列122の残りの部分を流れ、第二内列122から流れ出る。こうして配置することで、第一岐路21は前方熱交換器11の風上側の上端から流れ込み、冷媒の熱交換をより良く実現させるように、この位置での風量は、第一岐路21内の冷媒のこの時点の比較的高いエネルギーに適合する。第一岐路21が上から下へと第一外列111全体を流れ、そして下から上へと第一内列112全体を流れる方法により前方熱交換器11の中の流路設計を簡略化した。また、第二岐路22について、跨って前方熱交換器11内に入る必要はなく、その流路設計の難易度の低減に役立つことを理解すべきである。本設計はこれに限定せず、他の実施例において、第一岐路21は第一外列111の他の熱交換管から流れ込むか、あるいは第一内列112の他の熱交換管から第二ジャンパ管18を通して第二内列122に入ってもいいことは説明すべきである。 In the third embodiment of the present application, referring to FIG. 4, the first crossroads 21 flow from the heat exchange pipe near the intermediate heat exchanger 12 in the first outer row 111, and the first outer row 111 and the first inner row 112 In order, it reaches the heat exchange pipe near the intermediate heat exchanger 12 in the first inner row 112, further enters the second inner row 122 through the second jumper pipe 18, and flows out from the second inner row 122. The second crossroads 22 flow from the second outer row 121, flow through the entire second outer row 121 and the rest of the second inner row 122, and flow out of the second inner row 122. By arranging in this way, the first crossroads 21 flows from the upper end of the windward side of the front heat exchanger 11, and the air volume at this position is the refrigerant in the first crossroads 21 so as to better realize the heat exchange of the refrigerant. Suitable for the relatively high energy at this point in time. The flow path design in the front heat exchanger 11 has been simplified by a method in which the first crossroads 21 flow through the entire first outer row 111 from top to bottom and then through the entire first inner row 112 from bottom to top. .. Further, it should be understood that the second crossroads 22 do not need to straddle and enter the front heat exchanger 11, which helps reduce the difficulty of designing the flow path. The present design is not limited to this, and in other embodiments, the first crossroads 21 either flow from another heat exchange tube in the first outer row 111 or second from another heat exchange tube in the first inner row 112. It should be explained that the second inner row 122 may be entered through the jumper pipe 18.

更に、第二岐路22は第二外列121の前方熱交換器11に近い熱交換管から流れ込み、且つ第二外列121に沿って第二外列121の後方熱交換器13に近い熱交換管まで流れ、更に第二内列122に流れ込む。こうして配置することで、第二岐路22は第二外列121を流れる時流向を変えることなく、第二外列121全体の熱交換管を流れることができ、流路の設計が簡単で、中間熱交換器12の加工難易度の低減に役立つことを理解すべきである。本設計はこれに限定せず、他の実施例において、第二岐路22は第二外列121の後方熱交換器13に近い熱交換管から流れ込み、且つ第二外列121に沿って第二外列121の前方熱交換器11に近い熱交換管まで流れ、更に第二内列122に流れ込むことは説明すべきである。 Further, the second crossroads 22 flow from the heat exchange pipe near the front heat exchanger 11 of the second outer row 121, and heat exchange along the second outer row 121 near the rear heat exchanger 13 of the second outer row 121. It flows to the pipe and then into the second inner row 122. By arranging in this way, the second crossroads 22 can flow through the heat exchange pipe of the entire second outer row 121 without changing the flow direction when flowing through the second outer row 121, and the flow path can be easily designed and intermediate. It should be understood that it helps reduce the processing difficulty of the heat exchanger 12. The present design is not limited to this, and in other embodiments, the second crossroads 22 flow from a heat exchanger tube close to the rear heat exchanger 13 in the second outer row 121 and second along the second outer row 121. It should be explained that it flows to the heat exchange tube near the front heat exchanger 11 in the outer row 121 and then into the second inner row 122.

更に、第一岐路21は第二ジャンパ管18を経て第二内列122の前方熱交換器11に近い熱交換管に入り、そして第二内列122に沿って後方熱交換器13側に向かって流れ、更に第二内列122中部の熱交換管から流れ出る。このように配置することで、第一岐路21は第二内列122の前方熱交換器11に近い熱交換管から入ることにより、第二ジャンパ管18の長さ、及び前方熱交換器11と中間熱交換器12との間の隙間の減少に役立つことは理解できる。具体的に、第一岐路21は第二内列122の二本の熱交換管を経てから中間熱交換器12から排出される。本設計はこれに限定せず、他の実施例において、第一岐路21は第二内列122の他の熱交換管から中間熱交換器12に入るか、あるいは第二内列122の他の熱交換管にて中間熱交換器12から排出されてもいいことは説明すべきである。 Further, the first crossroads 21 enters the heat exchanger tube near the front heat exchanger 11 of the second inner row 122 via the second jumper pipe 18 and heads toward the rear heat exchanger 13 side along the second inner row 122. And then flows out of the heat exchange tube in the middle of the second inner row 122. By arranging in this way, the first crossroads 21 can enter from the heat exchange pipe close to the front heat exchanger 11 in the second inner row 122, thereby increasing the length of the second jumper pipe 18 and the front heat exchanger 11. It is understandable that it helps reduce the gap between the intermediate heat exchanger 12 and the intermediate heat exchanger 12. Specifically, the first crossroads 21 are discharged from the intermediate heat exchanger 12 after passing through the two heat exchange pipes in the second inner row 122. The present design is not limited to this, and in other embodiments, the first crossroads 21 enters the intermediate heat exchanger 12 from another heat exchanger tube in the second inner row 122, or another in the second inner row 122. It should be explained that the heat exchanger tube may be discharged from the intermediate heat exchanger 12.

更に、第二岐路22は第二外列121から第二内列122の後方熱交換器13に近い熱交換管に入り、そして第二内列122に沿って前方熱交換管側に向かって流れ、更に第一岐路21の流れ出る熱交換管に隣り合う熱交換管から流れ出る。第二岐路22は第二内列122に入ってからいつも前に向かって流れるように保たれればよいので、流向の設計が簡単で、中間熱交換器12の加工難易度の低下に役立つ。本設計はこれに限定せず、他の実施例において、第二岐路22は第二外列121から第二内列122の他の熱交換管に流れ込み、あるいは、第二内列122の他の熱交換管にて中間熱交換器11から流れ出てもいいことは説明すべきである。 Further, the second crossroads 22 enters the heat exchanger tube from the second outer row 121 to the rear heat exchanger 13 of the second inner row 122, and flows along the second inner row 122 toward the front heat exchanger tube side. Further, it flows out from the heat exchange pipe adjacent to the heat exchange pipe that flows out from the first crossroads 21. Since the second crossroads 22 need only be kept flowing forward after entering the second inner row 122, the flow direction can be easily designed, which helps to reduce the processing difficulty of the intermediate heat exchanger 12. The present design is not limited to this, and in other embodiments, the second crossroads 22 flow from the second outer row 121 to another heat exchange tube in the second inner row 122, or other in the second inner row 122. It should be explained that the heat exchanger can flow out of the intermediate heat exchanger 11.

更に、第三岐路23は第三外列131の中間熱交換器12に近い熱交換管から流れ込み、そして第三外列131と第三内列132との全体を順に流れ、更に第三内列132の中間熱交換器12に近い熱交換管から流れ出る。こうして配置することで、第三岐路23は後方熱交換器13の風上側の上端から流れ込み、冷媒の熱交換をより良く実現させるように、この位置での風量は、第三岐路23内の冷媒のこの時点の比較的高いエネルギーに適合する。第三岐路23が上から下へと第三外列131全体を流れ、そして下から上へと第三内列132全体を流れる方法により、後方熱交換器13の中の流路設計を簡略化したことを理解すべきである。本設計はこれに限定せず、他の実施例において、第三岐路23は第三外列131の他の熱交換管から後方熱交換器13に入るか、あるいは第三内列132の他の熱交換管にて後方熱交換器13から排出されてもいいことは説明すべきである。 Further, the third crossroads 23 flow from the heat exchange pipe near the intermediate heat exchanger 12 of the third outer row 131, and flow through the entire third outer row 131 and the third inner row 132 in order, and further flow through the entire third inner row 131. It flows out of the heat exchange tube near the intermediate heat exchanger 12 of 132. By arranging in this way, the third crossroads 23 flows from the upper end of the windward side of the rear heat exchanger 13, and the air volume at this position is the refrigerant in the third crossroads 23 so as to better realize the heat exchange of the refrigerant. Suitable for the relatively high energy at this point in time. The flow path design in the rear heat exchanger 13 is simplified by a method in which the third crossroads 23 flow through the entire third outer row 131 from top to bottom and then through the entire third inner row 132 from bottom to top. You should understand what you did. The present design is not limited to this, and in other embodiments, the third crossroads 23 enters the rear heat exchanger 13 from another heat exchanger tube in the third outer row 131, or another in the third inner row 132. It should be explained that the heat exchanger can be discharged from the rear heat exchanger 13.

以上の本実施例での主体熱交換器の具体的流路設計に基づき、表5では三つの岐路における熱交換管の本数の分配方式の、APFへの影響を比較して分析する。 Based on the specific flow path design of the main heat exchanger in this embodiment, Table 5 compares and analyzes the influence of the distribution method of the number of heat exchange tubes at the three crossroads on APF.

Figure 0006858268
Figure 0006858268

表5における熱交換管の本数の分配方式とAPFとの対応関係を比較してわかるように、第一岐路21が7本の熱交換管、第二岐路22が7本の熱交換管、第三岐路23が7本の熱交換管を通過する案を採用することで、熱交換器組立品1のエネルギー効率を最高にするのが好ましい。このように配置することで、第一岐路21と第二岐路22との、通過する熱交換管の本数の差は0、第一岐路21と第三岐路23との、通過する熱交換管の本数の差は0、第二岐路22と第三岐路23との、通過する熱交換管の本数の差は0になる。これは前記の、熱交換器組立品1のエネルギー効率を向上させるために、何れか二つの岐路の間の通過する熱交換管の数の差に対してなされた、3より小さいか3に等しいという限定に一致することは、明らかである。 As can be seen by comparing the correspondence between the distribution method of the number of heat exchange pipes and APF in Table 5, the first crossroads 21 has seven heat exchange pipes, the second crossroads 22 has seven heat exchange pipes, and the first It is preferable to maximize the energy efficiency of the heat exchanger assembly 1 by adopting the idea that the three crossroads 23 pass through seven heat exchanger tubes. By arranging in this way, the difference in the number of heat exchange pipes passing through the first crossroads 21 and the second crossroads 22 is 0, and the heat exchange pipes passing through the first crossroads 21 and the third crossroads 23 The difference in the number of heat exchange pipes is 0, and the difference in the number of heat exchange pipes passing between the second crossroads 22 and the third crossroads 23 is 0. This is less than or equal to 3 made for the difference in the number of heat exchange tubes passing between any two crossroads in order to improve the energy efficiency of the heat exchanger assembly 1 described above. It is clear that this is consistent with the limitation.

本願は更に、エアコン室外機とエアコン室内機を含むエアコンを提案した。当該エアコン室内機の具体的な構造については、前記実施例を参照されたい。本エアコン室内機は上記全ての実施の全ての技術案を採用したので、少なくとも上記実施例の技術案がもたらす全ての有益な効果を有し、ここでは逐一贅言しない。 The present application further proposed an air conditioner including an air conditioner outdoor unit and an air conditioner indoor unit. For the specific structure of the air conditioner indoor unit, refer to the above embodiment. Since this air conditioner indoor unit has adopted all the technical proposals of all the above-mentioned implementations, it has at least all the beneficial effects brought about by the technical proposals of the above-mentioned examples, and is not verbose here one by one.

以上に述べたことは本願の好ましい実施例にすぎず、それによって本願の特許の範囲を制限するわけではない。本願の出願構想の下で、本願の明細書及び添付図面の内容を利用してなされた等価構造変換、或いは他の関連する技術分野への直接/間接的な応用は、何れも本願の特許の保護範囲に含まれる。 The above is merely a preferred embodiment of the present application and does not limit the scope of the present application. Equivalent structural transformations made using the contents of the specification and accompanying drawings of the present application under the application concept of the present application, or direct / indirect applications to other related technical fields are all patents of the present application. Included in the scope of protection.

1 熱交換器組立品
11 前方熱交換器
111 第一外列
112 第一内列
12 中間熱交換器
121 第二外列
122 第二内列
13 後方熱交換器
131 第三外列
132 第三内列
14 背管熱交換器
15 分配器
16 ウィンドウシールド
17 第一ジャンパ管
18 第二ジャンパ管
2 熱交換流路
21 第一岐路
22 第二岐路
23 第三岐路
24 第一冷媒総管
25 第二冷媒総管
3 機器ケーシング
4 貫流ファン
1 Heat exchanger assembly 11 Front heat exchanger 111 First outer row 112 First inner row 12 Intermediate heat exchanger 121 Second outer row 122 Second inner row 13 Rear heat exchanger 131 Third outer row 132 Third inner Row 14 Back pipe heat exchanger 15 Distributor 16 Window shield 17 1st jumper pipe 18 2nd jumper pipe 2 Heat exchange flow path 21 1st crossroads 22 2nd crossroads 23 3rd crossroads 24 1st total refrigerant pipe 25 2nd refrigerant Total pipe 3 Equipment casing 4 once-through fan

Claims (19)

エアコン室内機に利用される熱交換器組立品であって、
半包囲状をなすように設置されている主体熱交換器であって、前方熱交換器、中間熱交換器及び後方熱交換器を含み、前記前方熱交換器、中間熱交換器及び後方熱交換器には吸気方向においてそれぞれ少なくとも二列の熱交換管が設置され、前記中間熱交換器の熱交換管の数は前記前方熱交換器及び後方熱交換器より大きい前記主体熱交換器と、
前記主体熱交換器の風上側に設置されている背管熱交換器とを含み、
前記熱交換器組立品が冷房する時、前記熱交換器組立品の熱交換流路は前記背管熱交換器を経てから第一岐路、第二岐路及び第三岐路に分かれ、前記第一岐路、第二岐路及び第三岐路は何れも前記主体熱交換器の風上側の熱交換管から風下側の熱交換管に向かって流れ、前記第一岐路は前記前方熱交換器の熱交換管を流れ、前記第二岐路は前記中間熱交換器の熱交換管を流れ、前記第三岐路は前記後方熱交換器の熱交換管を流れ、且つ前記第一岐路と第三岐路の少なくとも一方は前記中間熱交換器の熱交換管に跨って設置されていて、
前記第三岐路は前記後方熱交換器の全ての熱交換管を流れ、前記第二岐路は前記中間熱交換器の一部の熱交換管を流れ、前記第一岐路は前記中間熱交換器の残りの熱交換管及び前記前方熱交換器の全ての熱交換管を流れる、
熱交換器組立品。
It is a heat exchanger assembly used for air conditioner indoor units.
A main heat exchanger installed in a semi-enclosed shape, including a front heat exchanger, an intermediate heat exchanger and a rear heat exchanger, the front heat exchanger, the intermediate heat exchanger and the rear heat exchange. At least two rows of heat exchangers are installed in each in the intake direction, and the number of heat exchangers of the intermediate heat exchanger is larger than that of the front heat exchanger and the rear heat exchanger.
Including the back tube heat exchanger installed on the windward side of the main heat exchanger,
When the heat exchanger assembly is cooled, the heat exchange flow path of the heat exchanger assembly is divided into a first crossroad, a second crossroad and a third crossroad after passing through the back tube heat exchanger, and the first crossroads. , The second crossroads and the third crossroads both flow from the heat exchange pipe on the wind side of the main heat exchanger toward the heat exchange pipe on the leeward side, and the first crossroads pass through the heat exchange pipe of the front heat exchanger. Flow, the second crossroads flow through the heat exchange tubes of the intermediate heat exchanger, the third crossroads flow through the heat exchange tubes of the rear heat exchanger, and at least one of the first and third crossroads is said. It is installed across the heat exchange tube of the intermediate heat exchanger ,
The third crossroads flow through all the heat exchanger tubes of the rear heat exchanger, the second crossroads flow through some heat exchange tubes of the intermediate heat exchanger, and the first crossroads flow through the intermediate heat exchangers. Flow through the remaining heat exchange tubes and all heat exchange tubes of the front heat exchanger.
Heat exchanger assembly.
前記第一岐路、第二岐路及び第三岐路がそれぞれ流れる熱交換管の数のうちいずれか二者の差が3より小さいか3に等しい請求項1に記載の熱交換器組立品。 The heat exchanger assembly according to claim 1, wherein the difference between the number of heat exchanger tubes through which the first crossroads, the second crossroads, and the third crossroads flow is less than or equal to 3. 前記前方熱交換器、中間熱交換器及び後方熱交換器は何れも二列の熱交換管が設置され、前記主体熱交換器の熱交換管の総数は18〜22本である請求項2に記載の熱交換器組立品。 The front heat exchanger, the intermediate heat exchanger, and the rear heat exchanger are all provided with two rows of heat exchanger tubes, and the total number of heat exchanger tubes of the main heat exchanger is 18 to 22 according to claim 2. The heat exchanger assembly described. 前記前方熱交換器の熱交換管は第一外列と第一内列を含み、前記中間熱交換器の熱交換管は第二外列と第二内列を含み、前記第一外列と第二外列は前記主体熱交換器の風上側に位置し、
前記熱交換器組立品が冷房する時、前記第一岐路は前記第二外列から流れ込み、前記第二外列に沿って流れ第一ジャンパ管を経て前記第一外列に入り、前記第一外列と第一内列との全体を順に流れ、且つ前記第一内列から流れ出、前記第二岐路は前記第二外列から流れ込み、前記第二外列の残りの部分、及び第二内列全体を流れ、且つ前記第二内列から流れ出る請求項に記載の熱交換器組立品。
The heat exchange tube of the front heat exchanger includes a first outer row and a first inner row, and the heat exchange tube of the intermediate heat exchanger includes a second outer row and a second inner row, and includes the first outer row and the first inner row. The second outer row is located on the wind side of the main heat exchanger and is located on the wind side.
When the heat exchanger assembly cools, the first crossroads flow from the second outer row, flow along the second outer row, enter the first outer row via the first jumper pipe, and enter the first outer row. The entire outer row and first inner row flow in sequence and flow out of the first inner row, the second crossroads flow in from the second outer row, the rest of the second outer row, and the second inner row. The heat exchanger assembly according to claim 1 , which flows through the entire row and flows out of the second inner row.
前記第一岐路は前記第二外列中部の熱交換管から流れ込み、且つ前記第二外列に沿って前記前方熱交換器側に向かって流れ、更に前記第一ジャンパ管を経て前記第一外列の前記中間熱交換器に近い熱交換管に入り、前記第一外列と第一内列との全体を順に流れ、更に前記第一内列の前記中間熱交換器に近い熱交換管から流れ出る請求項に記載の熱交換器組立品。 The first crossroads flow from the heat exchange pipe in the middle of the second outer row, flow toward the front heat exchanger side along the second outer row, and further pass through the first jumper pipe to the first outer row. Enter the heat exchange tube close to the intermediate heat exchanger in the row, flow through the entire first outer row and first inner row in order, and further from the heat exchange tube close to the intermediate heat exchanger in the first inner row. The heat exchanger assembly according to claim 4, which flows out. 前記第二岐路は前記第二外列上の第一岐路が流れ込む熱交換管と隣り合う熱交換管から流れ込み、前記第二外列に沿って前記後方熱交換器側に向かって流れ、そして前記第二外列から前記第二内列の前記後方熱交換器に近い熱交換管に流れ込み、前記第二内列に沿って前記前方熱交換器側に向かって流れ、更に前記第二内列の前記前方熱交換器に近い熱交換管から流れ出る請求項に記載の熱交換器組立品。 The second crossroads flow from a heat exchange tube adjacent to the heat exchange tube into which the first crossroads on the second outer row flow, flow along the second outer row toward the rear heat exchanger side, and said. It flows from the second outer row into the heat exchange tube near the rear heat exchanger in the second inner row, flows toward the front heat exchanger side along the second inner row, and further flows in the second inner row. The heat exchanger assembly according to claim 5, which flows out of a heat exchanger tube close to the front heat exchanger. 前記後方熱交換器は第三内列と第三外列を含み、前記第三外列は前記主体熱交換器の風上側に位置し、
前記第三岐路は前記第三外列の前記中間熱交換器に近い熱交換管から流れ込み、そして前記第三外列と第三内列との全体を順に流れ、更に前記第三内列の前記中間熱交換器に近い熱交換管から流れ出る請求項に記載の熱交換器組立品。
The rear heat exchanger includes a third inner row and a third outer row, the third outer row being located on the windward side of the main heat exchanger.
The third crossroads flow from a heat exchange tube near the intermediate heat exchanger in the third outer row, then flow through the entire third outer row and third inner row in order, and further flow through the third inner row. The heat exchanger assembly according to claim 1 , wherein the heat exchanger assembly flows out of a heat exchanger tube close to the intermediate heat exchanger.
前記前方熱交換器の熱交換管は第一外列と第一内列を含み、前記中間熱交換器の熱交換管は第二外列と第二内列を含み、前記後方熱交換器の熱交換管は第三外列と第三内列を含み、前記第一外列、第二外列及び第三外列は、何れも前記主体熱交換器の風上側と近接して設置され、
前記熱交換器組立品が冷房する時、前記第一岐路は前記第一外列から流れ込み、前記第一外列と第一内列との全体を順に流れ、更に第一ジャンパ管を経て前記第二内列に入り、且つ前記第二内列から流れ出、前記第二岐路は前記第二外列から流れ込み、前記第二外列全体、及び前記第二内列の残りの部分を順に流れ、且つ前記第二内列から流れ出、前記第三岐路は前記第三外列から流れ込み、前記第三外列と第三内列との全体を順に流れ、且つ前記第三内列から流れ出る請求項1に記載の熱交換器組立品。
The heat exchange tube of the front heat exchanger includes a first outer row and a first inner row, and the heat exchange tube of the intermediate heat exchanger includes a second outer row and a second inner row of the rear heat exchanger. The heat exchange pipe includes a third outer row and a third inner row, and the first outer row, the second outer row, and the third outer row are all installed close to the wind side of the main heat exchanger.
When the heat exchanger assembly is cooled, the first crossroads flow from the first outer row, flow through the entire first outer row and the first inner row in order, and further pass through the first jumper pipe to the first. Entering the second inner row and flowing out of the second inner row, the second crossroads flow in from the second outer row, flow through the entire second outer row and the rest of the second inner row in order, and According to claim 1, the third crossroads flow out from the second inner row, flow from the third outer row, flow through the entire third outer row and the third inner row in order, and flow out from the third inner row. The heat exchanger assembly described.
前記第一岐路は前記第一外列の前記中間熱交換器に近い熱交換管から入り、前記第一外列と第一内列との全体を順に流れ、前記第一内列の前記中間熱交換器に近い熱交換管に到達し、更に前記第一ジャンパ管を経て前記第二内列に入る請求項に記載の熱交換器組立品。 The first crossroads enter from a heat exchange tube close to the intermediate heat exchanger in the first outer row, flow through the entire first outer row and the first inner row in order, and the intermediate heat in the first inner row. The heat exchanger assembly according to claim 8 , wherein the heat exchanger assembly reaches the heat exchanger tube close to the exchanger and further enters the second inner row via the first jumper tube. 前記前方熱交換器の熱交換管は第一外列と第一内列を含み、前記中間熱交換器の熱交換管は第二外列と第二内列を含み、前記後方熱交換器の熱交換管は第三外列と第三内列を含み、前記第一外列、第二外列及び第三外列は何れも前記主体熱交換器の風上側と近接して設置され、
前記熱交換器組立品が冷房する時、前記第一岐路は前記第二外列から流れ込み、前記第二外列に沿って流れ且つ第一ジャンパ管を経て前記第一外列に入り、そして前記第一外列と第一内列との全体を順に流れ、更に第二ジャンパ管を経て前記第二内列に入り、前記第二内列から流れ出、前記第二岐路は前記第二外列から流れ込み、前記第二外列と前記第二内列の残りの部分を順に流れ、且つ前記第二内列から流れ出、前記第三岐路は前記第三外列から流れ込み、前記第三外列と第三内列との全体を順に流れ、且つ前記第三内列から流れ出る請求項1に記載の熱交換器組立品。
The heat exchange tube of the front heat exchanger includes a first outer row and a first inner row, and the heat exchange tube of the intermediate heat exchanger includes a second outer row and a second inner row of the rear heat exchanger. The heat exchange pipe includes a third outer row and a third inner row, and the first outer row, the second outer row, and the third outer row are all installed close to the wind side of the main heat exchanger.
When the heat exchanger assembly cools, the first crossroads flow from the second outer row, flow along the second outer row and enter the first outer row via the first jumper tube, and said. It flows through the entire first outer row and the first inner row in order, then enters the second inner row through the second jumper pipe, flows out from the second inner row, and the second crossroads is from the second outer row. It flows in, flows through the second outer row and the rest of the second inner row in order, and flows out of the second inner row, the third crossroads flow in from the third outer row, and the third outer row and the first. (3) The heat exchanger assembly according to claim 1, which flows in order with the entire inner row and flows out from the third inner row.
前記背管熱交換器の熱交換管の管径が前記主体熱交換器の熱交換管の管径より大きい請求項1に記載の熱交換器組立品。 The heat exchanger assembly according to claim 1, wherein the diameter of the heat exchanger of the back tube heat exchanger is larger than the diameter of the heat exchanger of the main heat exchanger. 前記背管熱交換器は前記中間熱交換器の風上側に取り付けられている請求項11に記載の熱交換器組立品。 The heat exchanger assembly according to claim 11 , wherein the back tube heat exchanger is attached to the windward side of the intermediate heat exchanger. 前記背管熱交換器は前記後方熱交換器よりも前記前方熱交換器に近接して設置されている請求項12に記載の熱交換器組立品。 The heat exchanger assembly according to claim 12 , wherein the back tube heat exchanger is installed closer to the front heat exchanger than the rear heat exchanger. 前記背管熱交換器の熱交換管の数は2〜4本である請求項11に記載の熱交換器組立品。 The heat exchanger assembly according to claim 11 , wherein the number of heat exchanger tubes of the back tube heat exchanger is 2 to 4. 熱交換器組立品、及び前記熱交換器組立品を収容するように設置されている機器ケーシングを含むエアコン室内機であって、前記熱交換器組立品は、
半包囲状をなすように設置されている主体熱交換器であって、前方熱交換器、中間熱交換器及び後方熱交換器を含み、前記前方熱交換器、中間熱交換器及び後方熱交換器には吸気方向においてそれぞれ少なくとも二列の熱交換管が設置され、前記中間熱交換器の熱交換管の数は前記前方熱交換器及び後方熱交換器より大きい前記主体熱交換器と、
前記主体熱交換器の風上側に取り付けられている背管熱交換器とを含み、
前記熱交換器組立品が冷房する時、前記熱交換器組立品の熱交換流路は前記背管熱交換器を経てから第一岐路、第二岐路及び第三岐路に分かれ、前記第一岐路、第二岐路及び第三岐路は何れも前記主体熱交換器の風上側の熱交換管から風下側の熱交換管に向かって流れ、前記第一岐路は前記前方熱交換器の熱交換管を流れ、前記第二岐路は前記中間熱交換器の熱交換管を流れ、前記第三岐路は前記後方熱交換器の熱交換管を流れ、且つ前記第一岐路と第三岐路の少なくとも一方は前記中間熱交換器の熱交換管に跨って設置されていて、
前記第三岐路は前記後方熱交換器の全ての熱交換管を流れ、前記第二岐路は前記中間熱交換器の一部の熱交換管を流れ、前記第一岐路は前記中間熱交換器の残りの熱交換管及び前記前方熱交換器の全ての熱交換管を流れる、
エアコン室内機。
An air conditioner indoor unit including a heat exchanger assembly and an equipment casing installed to accommodate the heat exchanger assembly, wherein the heat exchanger assembly is.
A main heat exchanger installed in a semi-enclosed shape, including a front heat exchanger, an intermediate heat exchanger and a rear heat exchanger, the front heat exchanger, the intermediate heat exchanger and the rear heat exchange. At least two rows of heat exchangers are installed in each in the intake direction, and the number of heat exchangers of the intermediate heat exchanger is larger than that of the front heat exchanger and the rear heat exchanger.
Including the back tube heat exchanger mounted on the windward side of the main heat exchanger.
When the heat exchanger assembly is cooled, the heat exchange flow path of the heat exchanger assembly is divided into a first crossroad, a second crossroad and a third crossroad after passing through the back tube heat exchanger, and the first crossroads. , The second crossroads and the third crossroads both flow from the heat exchange pipe on the wind side of the main heat exchanger toward the heat exchange pipe on the leeward side, and the first crossroads pass through the heat exchange pipe of the front heat exchanger. Flow, the second crossroads flow through the heat exchange tubes of the intermediate heat exchanger, the third crossroads flow through the heat exchange tubes of the rear heat exchanger, and at least one of the first and third crossroads is said. It is installed across the heat exchange tube of the intermediate heat exchanger ,
The third crossroads flow through all the heat exchanger tubes of the rear heat exchanger, the second crossroads flow through some heat exchange tubes of the intermediate heat exchanger, and the first crossroads flow through the intermediate heat exchangers. Flow through the remaining heat exchange tubes and all heat exchange tubes of the front heat exchanger.
Air conditioner indoor unit.
前記機器ケーシングの前後方向に沿う幅寸法は800mmより小さく、前記機器ケーシングの上下方向に沿う高さ寸法は295mmより小さい請求項15に記載のエアコン室内機。 The air conditioner indoor unit according to claim 15 , wherein the width dimension along the front-rear direction of the equipment casing is smaller than 800 mm, and the height dimension along the vertical direction of the equipment casing is smaller than 295 mm. 前記熱交換器組立品が前記機器ケーシング内に設けられた時、前記後方熱交換器の配置方向と上下方向との角度範囲は38°〜48°である請求項15に記載のエアコン室内機。 The air conditioner indoor unit according to claim 15 , wherein when the heat exchanger assembly is provided in the equipment casing, the angle range between the arrangement direction and the vertical direction of the rear heat exchanger is 38 ° to 48 °. 前記熱交換器組立品が前記機器ケーシング内に設けられた時、前記中間熱交換器及び前方熱交換器の配置方向と上下方向との角度範囲は45°〜55°である請求項15に記載のエアコン室内機。 The fifteenth aspect of claim 15, wherein when the heat exchanger assembly is provided in the equipment casing, the angle range between the arrangement direction and the vertical direction of the intermediate heat exchanger and the front heat exchanger is 45 ° to 55 °. Air conditioner indoor unit. 前記中間熱交換器と後方熱交換器の互いに近接する端部は互いに当接され、或いは
前記中間熱交換器と後方熱交換器の互いに近接する端部の間に隙間が存在しており、前記エアコン室内機は更に前記中間熱交換器と後方熱交換器の互いに近接する端部の風上側の間に跨って接続されているウィンドウシールドを含む請求項15に記載のエアコン室内機。
The adjacent ends of the intermediate heat exchanger and the rear heat exchanger are in contact with each other, or there is a gap between the adjacent ends of the intermediate heat exchanger and the rear heat exchanger. The air conditioner indoor unit according to claim 15 , wherein the air conditioner indoor unit further includes a window shield connected so as to straddle between the wind side of the ends of the intermediate heat exchanger and the rear heat exchanger that are close to each other.
JP2019546860A 2018-09-03 2018-09-29 Heat exchanger assembly and air conditioner indoor unit Active JP6858268B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
CN201811028543.9 2018-09-03
CN201821443587.3 2018-09-03
CN201821444281.XU CN209042730U (en) 2018-09-03 2018-09-03 Heat exchanger assembly, air conditioner indoor unit and conditioner
CN201821443587.3U CN209042727U (en) 2018-09-03 2018-09-03 Heat exchanger assembly, air conditioner indoor unit and conditioner
CN201811028543.9A CN109269071B (en) 2018-09-03 2018-09-03 Machine in heat exchanger subassembly and air conditioning
CN201821444281.X 2018-09-03
PCT/CN2018/108820 WO2020047927A1 (en) 2018-09-03 2018-09-29 Heat exchanger assembly and air conditioner indoor unit

Publications (2)

Publication Number Publication Date
JP2020535368A JP2020535368A (en) 2020-12-03
JP6858268B2 true JP6858268B2 (en) 2021-04-14

Family

ID=69722168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019546860A Active JP6858268B2 (en) 2018-09-03 2018-09-29 Heat exchanger assembly and air conditioner indoor unit

Country Status (2)

Country Link
JP (1) JP6858268B2 (en)
WO (1) WO2020047927A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868568A (en) * 1994-08-29 1996-03-12 Toshiba Corp Air conditioner
JP2010230208A (en) * 2009-03-26 2010-10-14 Sharp Corp Indoor unit for air conditioner
CN103090518B (en) * 2011-10-31 2015-11-04 珠海格力电器股份有限公司 Heat exchanger and wall-mounted air conditioner using same
JP5316668B1 (en) * 2012-04-16 2013-10-16 ダイキン工業株式会社 Air conditioner
JP5772787B2 (en) * 2012-10-31 2015-09-02 ダイキン工業株式会社 Air heat exchanger
CN103134355B (en) * 2013-03-08 2016-04-06 Tcl空调器(中山)有限公司 Ultrathin heat exchanger and adopt the wall-hanging air conditioner indoor unit of this ultrathin heat exchanger
JP6400378B2 (en) * 2014-08-07 2018-10-03 東芝ライフスタイル株式会社 Air conditioner
CN104848515B (en) * 2015-04-29 2017-11-21 广东美的制冷设备有限公司 Air-conditioning heat exchanger and wall hanging type air conditioner indoor unit
JP6639865B2 (en) * 2015-10-30 2020-02-05 東芝キヤリア株式会社 Indoor unit of air conditioner
JP2017096588A (en) * 2015-11-27 2017-06-01 パナソニックIpマネジメント株式会社 Air conditioner
CN107843029B (en) * 2017-11-22 2024-04-30 广东美的制冷设备有限公司 Indoor heat exchanger, air conditioner indoor unit and air conditioner
CN107830658B (en) * 2017-11-22 2024-05-28 广东美的制冷设备有限公司 Heat exchanger, indoor unit and air conditioner

Also Published As

Publication number Publication date
JP2020535368A (en) 2020-12-03
WO2020047927A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
JP2011112303A (en) Outdoor unit of air conditioner
CN107990758A (en) Heat exchanger and heat pump system
JP6223596B2 (en) Air conditioner indoor unit
JP6857747B2 (en) Heat exchanger assembly and air conditioner indoor unit
CN109269071B (en) Machine in heat exchanger subassembly and air conditioning
JP6370399B2 (en) Air conditioner indoor unit
WO2021103827A1 (en) Heat exchanger assembly and air conditioner indoor unit having same
CN202973670U (en) Evaporator of floor-standing air conditioner indoor unit and floor-standing air conditioner indoor unit
JP6858268B2 (en) Heat exchanger assembly and air conditioner indoor unit
JP2014228223A (en) Air conditioner
CN208936504U (en) Heat exchanger assembly and air conditioner indoor unit
CN106802027A (en) A kind of composite wind-cooled fin-tube type heat exchanger structure
JP2010107130A (en) Heat exchanger unit and indoor unit of air conditioner using the same
CN204787173U (en) Heat exchanger, air conditioning system and collecting pipe
CN209042727U (en) Heat exchanger assembly, air conditioner indoor unit and conditioner
JP2023024930A (en) Heat exchanger assembly and indoor unit of air conditioner including the same
CN209042729U (en) Heat exchanger assembly, air conditioner indoor unit and conditioner
CN105091412A (en) Micro-channel heat exchanger assembly and air conditioner
JP2014029221A (en) Air conditioner
CN207438947U (en) Indoor heat exchanger, air conditioner indoor unit and air conditioner
CN201281443Y (en) Splicing structure for air-conditioner heat exchanger
CN104930687A (en) Heat exchanger, air conditioning system and collecting pipe
JP2018189330A (en) Outdoor unit of air conditioner
CN204830593U (en) Air conditioner condenser
CN209042728U (en) Heat exchanger assembly, air conditioner indoor unit and conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210323

R150 Certificate of patent or registration of utility model

Ref document number: 6858268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250