JP6857296B1 - Near-infrared absorbing pigment and near-infrared absorbing composition - Google Patents

Near-infrared absorbing pigment and near-infrared absorbing composition Download PDF

Info

Publication number
JP6857296B1
JP6857296B1 JP2020186992A JP2020186992A JP6857296B1 JP 6857296 B1 JP6857296 B1 JP 6857296B1 JP 2020186992 A JP2020186992 A JP 2020186992A JP 2020186992 A JP2020186992 A JP 2020186992A JP 6857296 B1 JP6857296 B1 JP 6857296B1
Authority
JP
Japan
Prior art keywords
infrared absorbing
group
pigment
resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020186992A
Other languages
Japanese (ja)
Other versions
JP2022001632A (en
Inventor
清水 宏明
宏明 清水
昌平 坂本
昌平 坂本
和久 寿男
寿男 和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Toyocolor Co Ltd
Toyo Visual Solutions Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Toyocolor Co Ltd
Toyo Visual Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd, Toyocolor Co Ltd, Toyo Visual Solutions Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Application granted granted Critical
Publication of JP6857296B1 publication Critical patent/JP6857296B1/en
Publication of JP2022001632A publication Critical patent/JP2022001632A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Filters (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】本発明は、可視域に吸収が少なく、近赤外線吸収能に優れ、透明性、分散性が高く、薄膜化、および分散性が良好な近赤外線吸収顔料の提供を目的とする。【解決手段】下記一般式(1)で表される化合物、およびその異性体を含む、近赤外線吸収顔料であって、前記近赤外線吸収顔料の平均一次粒子径は、10〜80nmであり、逆相系液体クロマトグラフィーを用いる近赤外線吸収顔料の分析結果が、移動相としてアセトニトリルと水とを8:2の体積比で混合した混合溶液を用いた条件において、最も長い保持時間において現れるピークのピーク面積の割合が該近赤外線吸収顔料に由来するピークすべてのピーク面積の合計の60〜78%である、近赤外線吸収顔料。【選択図】なしPROBLEM TO BE SOLVED: To provide a near-infrared absorbing pigment having low absorption in the visible region, excellent near-infrared absorbing ability, high transparency, high dispersibility, thinning, and good dispersibility. A near-infrared absorbing pigment containing a compound represented by the following general formula (1) and an isomer thereof, wherein the average primary particle size of the near-infrared absorbing pigment is 10 to 80 nm, which is the reverse. The results of analysis of near-infrared absorbing pigments using phase-based liquid chromatography show the peaks that appear at the longest retention time under the condition that a mixed solution of acetonitrile and water mixed in a volume ratio of 8: 2 is used as the mobile phase. A near-infrared absorbing pigment in which the ratio of the area is 60 to 78% of the total of the peak areas of all the peaks derived from the near-infrared absorbing pigment. [Selection diagram] None

Description

本発明は、近赤外線吸収顔料に関する。 The present invention relates to a near-infrared absorbing pigment.

近赤外線吸収材料は、例えば、熱線を遮断する近赤外線吸収フィルム、近赤外線吸収板、太陽光を選択的利用する農業用近赤外線吸収フィルム、近赤外線の吸収熱を利用する記録媒体、電子機器用近赤外線カットフィルタ、写真用近赤外線フィルタ、保護めがね、サングラス、熱線遮断フィルム、光学記録用色素、光学文字読み取り記録、機密文書複写防止用、電子写真感光体、レーザー融着等幅広い用途で使用されている。 Near-infrared absorbing materials include, for example, a near-infrared absorbing film that blocks heat rays, a near-infrared absorbing plate, an agricultural near-infrared absorbing film that selectively uses sunlight, a recording medium that uses the absorbed heat of near-infrared rays, and an electronic device. Used in a wide range of applications such as near-infrared cut filter, near-infrared filter for photography, protective glasses, sunglasses, heat ray blocking film, dye for optical recording, optical character reading and recording, for preventing copying of confidential documents, electrophotographic photosensitive member, laser fusion, etc. ing.

近赤外線吸収材料は、フタロシアニン系材料、シアニン系材料、ジイモニウム系材料が知られている。フタロシアニン系材料として、置換基を有するフタロシアニン化合物もしくはナフタロシアニン化合物(例えば、特許文献1参照)、アミノ基を有するフタロシアニン化合物(例えば、特許文献2〜6参照)、アリールオキシ基を有するフタロシアニン化合物(例えば、特許文献7参照)、含フッ素フタロシアニン化合物(例えば、特許文献8、9参照)等が開示されている。しかし、これらは可視光領域(400nm〜700nm)にフタロシアニン特有の吸収帯が存在するため、可視光の透明性が不十分である。また、耐熱性や耐光性も不足していた。 As the near-infrared absorbing material, a phthalocyanine-based material, a cyanine-based material, and a diimonium-based material are known. As the phthalocyanine-based material, a phthalocyanine compound or a naphthalocyanine compound having a substituent (for example, see Patent Document 1), a phthalocyanine compound having an amino group (for example, see Patent Documents 2 to 6), and a phthalocyanine compound having an aryloxy group (for example, see Patent Document 1). , Patent Document 7), fluorine-containing phthalocyanine compounds (see, for example, Patent Documents 8 and 9) and the like are disclosed. However, since these have an absorption band peculiar to phthalocyanine in the visible light region (400 nm to 700 nm), the transparency of visible light is insufficient. In addition, heat resistance and light resistance were also insufficient.

また、シアニン系材料、ジイモニウム系材料は、近赤外線吸収能に優れ、かつ可視光の透明性も極めて良好な材料である(例えば、特許文献10〜14参照)。これらの材料は、高い溶解性や相溶性を有している。しかし、化合物自体の安定性が著しく低いため耐熱性や耐光性を満足できていない。 Further, the cyanine-based material and the diimonium-based material are excellent in near-infrared absorbing ability and extremely good in transparency of visible light (see, for example, Patent Documents 10 to 14). These materials have high solubility and compatibility. However, since the stability of the compound itself is extremely low, the heat resistance and light resistance cannot be satisfied.

これに対してスクアリリウム系材料は、可視域に吸収が少なく、近赤外線吸収能に優れ、高耐久性である(例えば、特許文献15〜21参照)。しかし、センサー用途で使用するためには、さらに、高い透明性、薄膜化が必要になる。そこで特許文献15には、耐久性の高い材料が開示されているが、高い透明性、薄膜化、および高い分散性を同時に満たさない。つまり、特許文献15〜21に開示されたた近赤外線吸収顔料は、可視域の少ない吸収、優れた近赤外線吸収能、透明性、高い分散性、薄膜化を全て満たさなかった。 On the other hand, the squarylium-based material has little absorption in the visible region, has excellent near-infrared absorption ability, and has high durability (see, for example, Patent Documents 15 to 21). However, in order to use it for sensor applications, higher transparency and thinning are required. Therefore, Patent Document 15 discloses a material having high durability, but does not satisfy high transparency, thinning, and high dispersibility at the same time. That is, the near-infrared absorbing pigments disclosed in Patent Documents 15 to 21 did not satisfy all of absorption with a small visible region, excellent near-infrared absorbing ability, transparency, high dispersibility, and thinning.

特開平10−78509号公報Japanese Unexamined Patent Publication No. 10-78509 特開2004−18561号公報Japanese Unexamined Patent Publication No. 2004-18561 特開2001−106689号公報Japanese Unexamined Patent Publication No. 2001-106689 特開2000−63691号公報Japanese Unexamined Patent Publication No. 2000-63691 特開平06−025548号公報Japanese Unexamined Patent Publication No. 06-025548 特開2000−026748号公報Japanese Unexamined Patent Publication No. 2000-026748 特開2013−241563号公報Japanese Unexamined Patent Publication No. 2013-241563 特開平05−078364号公報Japanese Unexamined Patent Publication No. 05-078364 特開平06−107663号公報Japanese Unexamined Patent Publication No. 06-107663 特開2007−219114号公報JP-A-2007-219114 特開2010−072575号公報Japanese Unexamined Patent Publication No. 2010-072575 特開平05−247437号公報Japanese Unexamined Patent Publication No. 05-247437 特開2005−325292号公報Japanese Unexamined Patent Publication No. 2005-325292 特開2003−096040号公報Japanese Unexamined Patent Publication No. 2003-096040 特開2011−68847号公報Japanese Unexamined Patent Publication No. 2011-68847 特開2011−132361号公報Japanese Unexamined Patent Publication No. 2011-132361 特開2017−88765号公報JP-A-2017-88765 特開2017−145347号公報Japanese Unexamined Patent Publication No. 2017-145347 特開2018−87939号公報JP-A-2018-87939 特開2018−193516号公報特JP-A-2018-193516 特開2019−211764号公報Japanese Unexamined Patent Publication No. 2019-211764

本発明は、可視域に吸収が少なく、近赤外線吸収能に優れ、透明性が高く、薄膜化可能であり、分散性が良好な近赤外線吸収顔料の提供を目的とする。 An object of the present invention is to provide a near-infrared absorbing pigment that absorbs little in the visible region, has excellent near-infrared absorbing ability, has high transparency, can be thinned, and has good dispersibility.

本発明の近赤外線吸収顔料は、下記一般式(1)で表される化合物、およびその異性体を含み、
前記近赤外線吸収顔料の平均一次粒子径は、10〜80nmであり、
逆相系液体クロマトグラフィーを用いる近赤外線吸収顔料の分析結果が、移動相としてアセトニトリルと水とを8:2の体積比で混合した混合溶液を用いた条件において、最も長い保持時間において現れるピークのピーク面積の割合が該近赤外線吸収顔料に由来するピークすべてのピーク面積の合計の60〜78%である。
The near-infrared absorbing pigment of the present invention contains a compound represented by the following general formula (1) and an isomer thereof.
The average primary particle size of the near-infrared absorbing pigment is 10 to 80 nm.
The analysis result of the near-infrared absorbing pigment using reverse phase liquid chromatography shows the peak that appears at the longest retention time under the condition of using a mixed solution of acetonitrile and water in a volume ratio of 8: 2 as the mobile phase. The ratio of the peak area is 60 to 78% of the total peak area of all the peaks derived from the near-infrared absorbing pigment.

一般式(1)

Figure 0006857296
General formula (1)
Figure 0006857296

(X〜Xはそれぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、アミノ基、置換アミノ基、スルホ基、−SONR、−COOR、−CONR、ニトロ基、シアノ基、ハロゲン原子を表す。R、Rはそれぞれ独立に、水素原子、置換基を有してもよいアルキル基を表す。また、X〜Xは、置換基同士が結合して環を形成してもよい。ただし、X〜Xがすべて水素原子であるものは除く。) (X 1 to X 6 each independently have a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an aryl group which may have a substituent, and a substituent. Aralkyl group which may have, alkoxy group which may have substituent, aryloxy group which may have substituent, amino group, substituted amino group, sulfo group, -SO 2 NR 1 R 2 ,- COOR 1 , -CONR 1 R 2 , represent a nitro group, a cyano group, and a halogen atom. R 1 and R 2 independently represent an alkyl group that may have a hydrogen atom and a substituent. Also, X 1 In ~ X 6 , substituents may be bonded to each other to form a ring, except for those in which X 1 to X 4 are all hydrogen atoms.)

上記の本発明によれば、可視域に吸収が少なく、近赤外線吸収能に優れ、透明性が高く、薄膜化可能であり、分散性が良好な近赤外線吸収顔料、近赤外線吸収性組成物、近赤外線カットフィルタ、および近赤外線透過フィルタを提供できる。 According to the above invention, a near-infrared absorbing pigment, a near-infrared absorbing composition, which absorbs little in the visible region, has excellent near-infrared absorbing ability, has high transparency, can be thinned, and has good dispersibility. A near-infrared cut filter and a near-infrared transmission filter can be provided.

本発明を詳細に説明する。
<近赤外線吸収顔料>
本発明の近赤外線吸収顔料は、下記一般式(1)で表される化合物、およびその異性体を含む。
The present invention will be described in detail.
<Near infrared absorbing pigment>
The near-infrared absorbing pigment of the present invention contains a compound represented by the following general formula (1) and an isomer thereof.

一般式(1)

Figure 0006857296
General formula (1)
Figure 0006857296

〜Xは、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、アミノ基、置換アミノ基、スルホ基、−SONR、−COOR、−CONR、ニトロ基、シアノ基、ハロゲン原子を表す。R、Rはそれぞれ独立に、水素原子、置換基を有してもよいアルキル基を表す。また、X〜Xは、置換基同士が結合して環を形成してもよい。ただし、X〜Xがすべて水素原子であるものは除く。 X 1 to X 6 independently have a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an aryl group which may have a substituent, and a substituent. Aralkyl group which may have, alkoxy group which may have substituent, aryloxy group which may have substituent, amino group, substituted amino group, sulfo group, -SO 2 NR 1 R 2 ,- Represents COOR 1 , -CONR 1 R 2 , nitro group, cyano group, halogen atom. R 1 and R 2 independently represent a hydrogen atom and an alkyl group which may have a substituent. Further, in X 1 to X 6 , the substituents may be bonded to each other to form a ring. However, those in which X 1 to X 4 are all hydrogen atoms are excluded.

〜Xで「置換基を有してもよいアルキル基」は、メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、tert−アミル基、2−エチルヘキシル基、ステアリル基、クロロメチル基、トリクロロメチル基、トリフルオロメチル基、2−メトキシエチル基、2−クロロエチル基、2−ニトロエチル基、シクロペンチル基、シクロヘキシル基、ジメチルシクロヘキシル基等が挙げられる。これらの中でも耐久性が良く合成が容易なメチル基、エチル基、n−プロピル基が好ましく、メチル基がより好ましい。 The "alkyl groups that may have a substituent" in X 1 to X 6 are methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, tert-amyl group, 2-ethylhexyl group and stearyl. Examples thereof include a group, a chloromethyl group, a trichloromethyl group, a trifluoromethyl group, a 2-methoxyethyl group, a 2-chloroethyl group, a 2-nitroethyl group, a cyclopentyl group, a cyclohexyl group and a dimethylcyclohexyl group. Among these, a methyl group, an ethyl group, and an n-propyl group, which have good durability and are easy to synthesize, are preferable, and a methyl group is more preferable.

〜Xで「置換基を有してもよいアルケニル基」は、ビニル基、1−プロペニル基、アリル基、2−ブテニル基、3−ブテニル基、イソプロペニル基、イソブテニル基、1−ペンテニル基、2−ペンテニル基、3−ペンテニル基、4−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、3−ヘキセニル基、4−ヘキセニル基、5−ヘキセニル基等が挙げられる。これらの中でも耐久性が良く合成が容易なビニル基、アリル基が好ましい。 The "alkenyl group which may have a substituent" in X 1 to X 6 is a vinyl group, a 1-propenyl group, an allyl group, a 2-butenyl group, a 3-butenyl group, an isopropenyl group, an isobutenyl group, 1-. Examples thereof include a pentenyl group, a 2-pentenyl group, a 3-pentenyl group, a 4-pentenyl group, a 1-hexenyl group, a 2-hexenyl group, a 3-hexenyl group, a 4-hexenyl group, a 5-hexenyl group and the like. Of these, vinyl groups and allyl groups, which have good durability and are easy to synthesize, are preferable.

〜Xで「置換基を有してもよいアリール基」は、フェニル基、ナフチル基、4−メチルフェニル基、3,5−ジメチルフェニル基、ペンタフルオロフェニル基、4−ブロモフェニル基、2−メトキシフェニル基、4−ジエチルアミノフェニル基、3−ニトロフェ
ニル基、4−シアノフェニル基等が挙げられる。これらの中でも耐久性が良く合成が容易なフェニル基、4−メチルフェニル基が好ましい。
The "aryl groups that may have a substituent" in X 1 to X 6 are phenyl group, naphthyl group, 4-methylphenyl group, 3,5-dimethylphenyl group, pentafluorophenyl group, 4-bromophenyl group. , 2-methoxyphenyl group, 4-diethylaminophenyl group, 3-nitrophenyl group, 4-cyanophenyl group and the like. Among these, a phenyl group and a 4-methylphenyl group, which have good durability and are easy to synthesize, are preferable.

〜Xで「置換基を有してもよいアラルキル基」は、ベンジル基、フェネチル基、フェニルプロピル基、ナフチルメチル基等が挙げられる。これらの中でも耐久性が良く合成が容易なベンジル基が好ましい。 Examples of the "aralkyl group which may have a substituent" in X 1 to X 6 include a benzyl group, a phenethyl group, a phenylpropyl group, a naphthylmethyl group and the like. Among these, a benzyl group having good durability and easy synthesis is preferable.

〜Xで「置換基を有してもアルコキシ基」は、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、n−オクチルオキシ基、2−エチルヘキシルオキシ基、トリフルオロメトキシ基、シクロヘキシルオキシ基、ステアリルオキシ基等が挙げられる。これらの中でも耐久性が良く、合成が容易なメトキシ基、エトキシ基、トリフルオロメトキシ基が好ましい。 In X 1 to X 6 , "alkoxy groups even if they have a substituent" are methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, n-octyloxy group, 2-ethylhexyloxy group. , Trifluoromethoxy group, cyclohexyloxy group, stearyloxy group and the like. Among these, a methoxy group, an ethoxy group, and a trifluoromethoxy group, which have good durability and are easy to synthesize, are preferable.

〜Xで「置換基を有してもよいアリールオキシ基」は、フェノキシ基、ナフチルオキシ基、4−メチルフェニルオキシ基、3,5−クロロフェニルオキシ基、4−クロロ−2−メチルフェニルオキシ基、4−tert−ブチルフェニルオキシ基、4−メトキシ
フェニルオキシ基、4−ジエチルアミノフェニルオキシ基、4−ニトロフェニルオキシ基等が挙げられる。これらの中でも耐久性が良く合成が容易なフェノキシ基、ナフチルオキシ基が好ましい。
In X 1 to X 6 , the "aryloxy group which may have a substituent" is a phenoxy group, a naphthyloxy group, a 4-methylphenyloxy group, a 3,5-chlorophenyloxy group, a 4-chloro-2-methyl group. Examples thereof include a phenyloxy group, a 4-tert-butylphenyloxy group, a 4-methoxyphenyloxy group, a 4-diethylaminophenyloxy group, a 4-nitrophenyloxy group and the like. Of these, phenoxy groups and naphthyloxy groups, which have good durability and are easy to synthesize, are preferable.

〜Xで「置換アミノ基」は、メチルアミノ基、エチルアミノ基、イソプロピルアミノ基、n−ブチルアミノ基、シクロヘキシルアミノ基、ステアリルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、N,N−ジ(2−ヒドロキシエチル)アミノ基、フェニルアミノ基、ナフチルアミノ基、4−tert−ブチルフェニルアミノ基、ジフェニルアミノ基、N−フェニル−N−エチルアミノ基等が挙げられる。これらの中でも耐久性が良く合成が容易なジメチルアミノ基、ジエチルアミノ基が好ましい。 In X 1 to X 6 , the "substituted amino group" is a methylamino group, an ethylamino group, an isopropylamino group, an n-butylamino group, a cyclohexylamino group, a stearylamino group, a dimethylamino group, a diethylamino group, a dibutylamino group, Examples thereof include N, N-di (2-hydroxyethyl) amino group, phenylamino group, naphthylamino group, 4-tert-butylphenylamino group, diphenylamino group, N-phenyl-N-ethylamino group and the like. Of these, dimethylamino groups and diethylamino groups, which have good durability and are easy to synthesize, are preferable.

〜Xで「ハロゲン原子」は、フッ素、臭素、塩素、ヨウ素が挙げられる。 Examples of the "halogen atom" in X 1 to X 6 include fluorine, bromine, chlorine and iodine.

〜Xは、置換基が結合して環を形成してもよい。以下、環を例示する。 Substituents may be bonded to X 1 to X 6 to form a ring. Hereinafter, the ring will be illustrated.

Figure 0006857296
Figure 0006857296

およびRで「置換基を有してもよいアルキル基」は、X〜Xと同様の意義である。 The "alkyl group which may have a substituent" in R 1 and R 2 has the same meaning as X 1 to X 6.

〜Xは、無置換のアルキル基を含むことが好ましく、X、Xの少なくとも一つが無置換のアルキル基であることがより好ましく、Xが無置換のアルキル基であることがさらに好ましい。無置換のアルキル基は、メチル基が好ましい。 X 1 to X 6 preferably contain an unsubstituted alkyl group, more preferably at least one of X 3 and X 4 is an unsubstituted alkyl group, and X 3 is an unsubstituted alkyl group. Is even more preferable. The unsubstituted alkyl group is preferably a methyl group.

なお、X〜Xのいずれかは、水素原子以外の官能基である。 Any one of X 1 to X 4 is a functional group other than a hydrogen atom.

本発明では、一般式(1)で表される化合物を合成すると1以上の異性体を含む近赤外線吸収顔料が生成する。本発明では、合成後に近赤外線吸収顔料を溶剤で処理することで、複数の異性体のうち、最も有機溶剤に対する溶解性の低い異性体を、すべての異性体中、60〜78%に調整することで耐熱性が向上する。加えて異性体を適度に含有することで分散性が向上する。このように本発明の近赤外線吸収顔料は、耐熱性および分散性を両立できる。なお、異性体は、2〜4程度生成する場合がある。
これは、逆相系液体クロマトグラフィーの分析結果が、移動相としてアセトニトリルと水とを8:2の体積比で混合した混合溶液を用いた条件で、最も長い保持時間において現れるピークのピーク面積の割合が当該近赤外線吸収顔料に由来するピークすべてのピーク面積の合計の60〜78%であることで確認される。換言すると前記「60〜78%」は、HLPCで測定したチャート曲線において、近赤外線吸収色素に由来する全ピークをベースラインを基準に積分した面積のうち最も長い保持時間において現れるピーク(最も遅いピーク)の面積である。なお、上記HPLCによる分析方法は次の通りである。まず、近赤外線吸収顔料をテトラヒドロフラン(THF)に溶解させ、1×10−4mol/L以下のTHF溶液を調整する。なお溶媒のTHFは、例えばHPLC用THFが用いられる。また上記THF溶液の調整では、近赤外線吸収顔料が溶解するように、例えばTHF溶液に超音波を30分照射してもよい。
In the present invention, when the compound represented by the general formula (1) is synthesized, a near-infrared absorbing pigment containing one or more isomers is produced. In the present invention, the near-infrared absorbing pigment is treated with a solvent after synthesis to adjust the isomer having the lowest solubility in an organic solvent among a plurality of isomers to 60 to 78% of all the isomers. This improves heat resistance. In addition, the dispersibility is improved by appropriately containing the isomer. As described above, the near-infrared absorbing pigment of the present invention can achieve both heat resistance and dispersibility. In addition, about 2 to 4 isomers may be produced.
This is because the analysis result of reverse phase liquid chromatography shows the peak area of the peak that appears at the longest retention time under the condition that a mixed solution of acetonitrile and water mixed in a volume ratio of 8: 2 is used as the mobile phase. It is confirmed that the ratio is 60 to 78% of the total of the peak areas of all the peaks derived from the near-infrared absorbing pigment. In other words, the above-mentioned "60 to 78%" is the peak (latest peak) that appears at the longest retention time in the area obtained by integrating all the peaks derived from the near-infrared absorbing dye with respect to the baseline in the chart curve measured by HLPC. ) Is the area. The analysis method by HPLC is as follows. First, the near-infrared absorbing pigment is dissolved in tetrahydrofuran (THF) to prepare a THF solution of 1 × 10 -4 mol / L or less. As the solvent THF, for example, THF for HPLC is used. Further, in the preparation of the THF solution, for example, the THF solution may be irradiated with ultrasonic waves for 30 minutes so that the near-infrared absorbing pigment is dissolved.

逆相系液体クロマトグラフィーの分析装置は、例えば、高速液体クロマトグラフィー装置(HPLC装置、製造元:島津製作所、型番:LC−10A)が用いられる。
HPLC用カラムはオクタデシルシリルカラム(ODSカラム)が用いられ、具体的には、例えば製造元:ケムコ社製、商品名:CHEMCOSORB、品番:5−ODS−H、粒度:5μm、内径:4.6mm、長さ:150mmのものが挙げられる。ここで、オクタデシルシリルカラムとは、オクタデシルシリル基で表面が修飾された化学結合型多孔性球状シリカゲルが固定相として充填されているカラムである。
また測定条件は、例えば、カラム温度:45℃、測定サンプルの注入量:10μl、測定サンプルの流量:1ml/min、検出波長:254nm、移動相:アセトニトリルと水との混合溶液(体積比は、アセトニトリル:水=8:2)の条件が挙げられる。
As the analyzer for reverse phase liquid chromatography, for example, a high performance liquid chromatography device (HPLC device, manufacturer: Shimadzu Corporation, model number: LC-10A) is used.
An octadecylsilyl column (ODS column) is used as the column for HPLC. Specifically, for example, the manufacturer: Kemco, trade name: CHEMCOSORB, product number: 5-ODS-H, particle size: 5 μm, inner diameter: 4.6 mm, Length: 150 mm can be mentioned. Here, the octadecylsilyl column is a column packed with chemically bonded porous spherical silica gel whose surface is modified with an octadecylsilyl group as a stationary phase.
The measurement conditions are, for example, column temperature: 45 ° C., injection volume of measurement sample: 10 μl, flow rate of measurement sample: 1 ml / min, detection wavelength: 254 nm, mobile phase: mixed solution of acetonitrile and water (volume ratio is: The condition of acetonitrile: water = 8: 2) can be mentioned.

最も有機溶剤に対する溶解性が低い異性体は、逆相系液体クロマトグラフィーの分析において、移動相としてアセトニトリルと水とを8:2の体積比で混合した混合溶液を用いた条件で、最も長い保持時間においてピークが現れる。この異性体は凝集力が強く、これが高い比率で存在することで結晶としての凝集力も強くなり、耐熱性、耐光性が高くなると推測される。この異性体がすべての異性体中に60%未満の比率で存在した場合、高い耐熱性、耐光性が得られない。 The isomer having the lowest solubility in an organic solvent is retained for the longest time in the analysis of reverse phase liquid chromatography under the condition of using a mixed solution of acetonitrile and water in a volume ratio of 8: 2 as a mobile phase. A peak appears in time. This isomer has a strong cohesive force, and it is presumed that the presence of this isomer in a high ratio also strengthens the cohesive force as a crystal and enhances heat resistance and light resistance. When this isomer is present in all isomers in a ratio of less than 60%, high heat resistance and light resistance cannot be obtained.

一方、この異性体がすべての異性体中に78%を超える比率で存在した場合、後述する分散性が悪くなる。この場合、結晶の凝集力が過剰になり、分散が困難になる。
分散性が悪くなると、高い顔料濃度での分散液の安定性が得られなくなるため、顔料濃度を低くしなければならず、組成物にした際にも顔料の濃度を高く設計しにくい。
薄膜化するためには、より高い顔料濃度の組成物を作製する必要がある。同じ顔料濃度で膜厚を薄くすると、近赤外線の吸収性も低くなるため、膜厚を薄くしながら同じ近赤外線の吸収性を確保するためには、顔料濃度を高くする必要がある。このように、この異性体の比率が多くなりすぎると、分散性が悪くなり、薄膜化が困難になる。
On the other hand, when this isomer is present in all the isomers at a ratio of more than 78%, the dispersibility described later is deteriorated. In this case, the cohesive force of the crystal becomes excessive and it becomes difficult to disperse.
If the dispersibility deteriorates, the stability of the dispersion liquid at a high pigment concentration cannot be obtained. Therefore, the pigment concentration must be lowered, and it is difficult to design the composition with a high pigment concentration.
In order to make the film thinner, it is necessary to prepare a composition having a higher pigment concentration. If the film thickness is reduced at the same pigment concentration, the absorption of near-infrared rays is also reduced. Therefore, in order to secure the same near-infrared absorption while reducing the film thickness, it is necessary to increase the pigment concentration. As described above, if the ratio of this isomer becomes too large, the dispersibility deteriorates and it becomes difficult to make a thin film.

これらの異性体は、実際には一般式(1)中の2つのシクロヘキサン構造が中心に対し、トランス型の配置にあるもの、シス型の配置にあるものが存在していると推測している。特に、トランス型の配置にあるものが有機溶剤への溶解性が悪く、これが高い比率で存在している場合に結晶の凝集力が強くなり、耐熱性、耐光性が高くなると推測する。このトランス型の配置にあるものが、逆相系液体クロマトグラフィーの分析において、移動相としてアセトニトリルと水とを8:2の体積比で混合した混合溶液を用いた条件で、最も長い保持時間においてピークが現れるものと推測している。なお、X〜Xがすべて水素原子である場合、トランス型の配置とシス型の配置は自由に構造変更し得るため、これらの異性体は存在し得ないと推測している。 It is presumed that these isomers actually have two cyclohexane structures in the general formula (1) centered in a trans-type arrangement and a cis-type arrangement. .. In particular, it is presumed that the one in the transformer type arrangement has poor solubility in the organic solvent, and when this is present in a high ratio, the cohesive force of the crystal becomes strong and the heat resistance and light resistance become high. In this trans-type arrangement, in the analysis of reverse phase liquid chromatography, under the condition of using a mixed solution of acetonitrile and water in a volume ratio of 8: 2 as a mobile phase, at the longest holding time. It is speculated that a peak will appear. When all of X 1 to X 4 are hydrogen atoms, the trans-type arrangement and the cis-type arrangement can be freely changed in structure, and it is presumed that these isomers cannot exist.

本発明の近赤外線吸収顔料は、平均一次粒子径が10〜80nmである。平均一次粒子径が80nmを超えると、透明性が悪くなる。これは、顔料粒子が大きくなることで散乱が強くなり透明性が失われるためである。センサー用途では、高い透明性が求められる。一方、平均一次粒子径が10nmより小さいと、後述する分散が困難になる。平均一次粒子径が10〜80nmであることで、高い透明性及び良好な分散性が得られる。 The near-infrared absorbing pigment of the present invention has an average primary particle size of 10 to 80 nm. If the average primary particle size exceeds 80 nm, the transparency deteriorates. This is because the larger the pigment particles, the stronger the scattering and the loss of transparency. High transparency is required for sensor applications. On the other hand, if the average primary particle size is smaller than 10 nm, dispersion described later becomes difficult. When the average primary particle size is 10 to 80 nm, high transparency and good dispersibility can be obtained.

(近赤外線吸収顔料の製造方法)
近赤外線吸収顔料の製造方法は、近赤外線吸収顔料の合成、合成した顔料の溶剤処理、溶剤処理した顔料の微細化の3つの工程を含むことが好ましい。
顔料の溶剤処理は、顔料の異性体中で、最も有機溶剤に対する溶解性が低い異性体を60〜78%にするために行う。また、溶剤処理した顔料の微細化は、平均一次粒子径が10〜80nmにするために行う。
(Manufacturing method of near-infrared absorbing pigment)
The method for producing a near-infrared absorbing pigment preferably includes three steps of synthesizing the near-infrared absorbing pigment, treating the synthesized pigment with a solvent, and refining the solvent-treated pigment.
The solvent treatment of the pigment is carried out in order to make 60 to 78% of the isomers of the pigment having the lowest solubility in an organic solvent. Further, the solvent-treated pigment is miniaturized so that the average primary particle size is 10 to 80 nm.

(近赤外線吸収顔料の合成)
近赤外線吸収顔料の製造方法は、例えば、1,8−ジアミノナフタレンと、下記一般式(2)に示したシクロヘキサノン類とを、触媒とともに溶媒中で加熱還流して縮合させた後、下記式(3)に示した3,4−ジヒドロキシ−3−シクロブテン−1,2−ジオンを
加えてさらに加熱還流させて縮合して、一般式(1)で表される化合物を合成できる。なお、合成法が限定されないことはいうまでもない。
(Synthesis of near-infrared absorbing pigment)
The method for producing a near-infrared absorbing pigment is as follows: For example, 1,8-diaminonaphthalene and cyclohexanones represented by the following general formula (2) are heated under reflux in a solvent together with a catalyst to be condensed, and then the following formula ( The compound represented by the general formula (1) can be synthesized by adding 3,4-dihydroxy-3-cyclobutene-1,2-dione shown in 3) and further heating and refluxing to condense. Needless to say, the synthesis method is not limited.

Figure 0006857296
Figure 0006857296

(近赤外線吸収顔料の溶剤処理)
近赤外線吸収顔料の異性体中で最も有機溶剤に対する溶解性が低い異性体を60〜78%にするためには、溶剤処理が有効な手段である。ここでの溶剤処理とは、合成して得られた顔料を有機溶剤と一定時間混合し、溶解しない成分のみ濾別して取り出す所作を指す。この際、溶解性の高い成分が有機溶剤に溶解し、取り出した溶解しない成分中には、溶解性の低い異性体がある程度多く存在することになる。そのため、上記所作をすることで、最も有機溶剤に対する溶解性が低い異性体の比率をある程度高くすることができる。
(Solvent treatment of near-infrared absorbing pigment)
Solvent treatment is an effective means for making 60 to 78% of the isomers of the near-infrared absorbing pigment having the lowest solubility in an organic solvent. The solvent treatment here refers to the action of mixing the synthetically obtained pigment with an organic solvent for a certain period of time and filtering out only the insoluble components. At this time, the highly soluble component is dissolved in the organic solvent, and among the insoluble components taken out, a certain amount of low-soluble isomers are present. Therefore, by performing the above action, the ratio of the isomer having the lowest solubility in the organic solvent can be increased to some extent.

有機溶剤は、例えば、N−メチルピロリドン、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン等が挙げられる。これらの中でもN−メチルピロリドンが好ましい。 Examples of the organic solvent include N-methylpyrrolidone, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran and the like. Of these, N-methylpyrrolidone is preferable.

前記混合温度は、5〜80℃が好ましく、15〜50℃がより好ましい。適度な温度で混合すると最も有機溶剤に対する溶解性が低い異性体の比率を高めることが容易になる。 The mixing temperature is preferably 5 to 80 ° C, more preferably 15 to 50 ° C. Mixing at an appropriate temperature makes it easy to increase the ratio of isomers having the lowest solubility in organic solvents.

前記混合時間は、1〜72時間が好ましく、4〜48時間がより好ましい。適度な時間で混合すると最も有機溶剤に対する溶解性が低い異性体の比率にばらつきが生じにくい。 The mixing time is preferably 1 to 72 hours, more preferably 4 to 48 hours. When mixed for an appropriate period of time, the ratio of the isomer having the lowest solubility in the organic solvent is unlikely to vary.

(溶剤処理した顔料の微細化)
溶剤処理した顔料は、ソルトミリング処理で微細化することが好ましい。ソルトミリング処理は、顔料と水溶性無機塩と水溶性有機溶剤との混合物を、例えば、ニーダー、2本ロールミル、3本ロールミル、ボールミル、アトライター、サンドミル等の混練機を用いて、加熱しながら機械的に混練した後、水洗により水溶性無機塩と水溶性有機溶剤を除去
する処理である。水溶性無機塩は、破砕助剤として働くものであり、ソルトミリング時に無機塩の硬度の高さを利用して顔料が破砕され、それにより活性面が生じて、結晶成長がおこると考えられている。従って、混練時は顔料の破砕と結晶成長が同時に起こり、混練条件により得られる顔料の一次粒子径が異なる。
(Solvent-treated pigment miniaturization)
The solvent-treated pigment is preferably refined by salt milling treatment. In the salt milling treatment, a mixture of a pigment, a water-soluble inorganic salt and a water-soluble organic solvent is heated while heating using a kneader such as a kneader, a 2-roll mill, a 3-roll mill, a ball mill, an attritor, or a sand mill. After mechanically kneading, the water-soluble inorganic salt and the water-soluble organic solvent are removed by washing with water. The water-soluble inorganic salt acts as a crushing aid, and it is considered that the pigment is crushed by utilizing the high hardness of the inorganic salt during salt milling, which causes an active surface and crystal growth. There is. Therefore, during kneading, crushing of the pigment and crystal growth occur at the same time, and the primary particle size of the pigment obtained differs depending on the kneading conditions.

加熱により結晶成長を促進するには、加熱温度が40〜150℃であることが好ましい。加熱温度が40℃未満の場合は、結晶成長が十分に起こらず、顔料粒子の形状が無定形に近くなるため好ましくない。一方、加熱温度が150℃を越える場合は、結晶成長が
進みすぎ、顔料の一次粒子径が大きくなるため、好ましくない。又、ソルトミリング処理の混練時間は、ソルトミリング処理顔料の一次粒子の粒度分布とソルトミリング処理に要する費用のバランスの点から2〜24時間であることが好ましい。
In order to promote crystal growth by heating, the heating temperature is preferably 40 to 150 ° C. If the heating temperature is less than 40 ° C., crystal growth does not occur sufficiently and the shape of the pigment particles becomes close to amorphous, which is not preferable. On the other hand, when the heating temperature exceeds 150 ° C., the crystal growth progresses too much and the primary particle size of the pigment becomes large, which is not preferable. The kneading time of the salt milling treatment is preferably 2 to 24 hours from the viewpoint of the balance between the particle size distribution of the primary particles of the salt milling treatment pigment and the cost required for the salt milling treatment.

顔料をソルトミリング処理する際の条件を最適化することにより、平均一次粒子径を10〜80nmに調整できる。 By optimizing the conditions for salt milling the pigment, the average primary particle size can be adjusted to 10 to 80 nm.

水溶性無機塩は、例えば、塩化ナトリウム、塩化バリウム、塩化カリウム、硫酸ナトリウム等が挙げられる。価格の点から塩化ナトリウム(食塩)が好ましい。水溶性無機塩の使用量は、処理効率と生産効率の両面から、顔料100質量部に対しての、50〜2000質量部が好ましく、300〜1000質量部がより好ましい。 Examples of the water-soluble inorganic salt include sodium chloride, barium chloride, potassium chloride, sodium sulfate and the like. Sodium chloride (salt) is preferable from the viewpoint of price. The amount of the water-soluble inorganic salt used is preferably 50 to 2000 parts by mass, more preferably 300 to 1000 parts by mass with respect to 100 parts by mass of the pigment, from the viewpoints of both treatment efficiency and production efficiency.

水溶性有機溶剤は、顔料及び水溶性無機塩を湿潤する働きをするものであり、水に溶解( 混和) し、かつ用いる無機塩を実質的に溶解しないものであればよい。ただし、ソルトミリング時に温度が上昇し、溶剤が蒸発し易い状態になるため、安全性の点から、沸点120℃以上の高沸点溶剤が好ましい。
水溶性有機溶剤は、例えば、2−メトキシエタノール、2−ブトキシエタノール、2−(イソペンチルオキシ)エタノール、2−(ヘキシルオキシ)エタノール、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、液状のポリエチレングリコール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、液状のポリプロピレングリコール等が挙げられる。水溶性有機溶剤の使用量は、顔料100質量部に対して、5〜1000質量部が好ましく、50〜500質量部がより好ましい。
The water-soluble organic solvent has a function of wetting the pigment and the water-soluble inorganic salt, and may be any one that dissolves (mixes) in water and does not substantially dissolve the inorganic salt to be used. However, since the temperature rises during salt milling and the solvent easily evaporates, a high boiling point solvent having a boiling point of 120 ° C. or higher is preferable from the viewpoint of safety.
Water-soluble organic solvents include, for example, 2-methoxyethanol, 2-butoxyethanol, 2- (isopentyloxy) ethanol, 2- (hexyloxy) ethanol, diethylene glycol, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol, and the like. Triethylene glycol monomethyl ether, liquid polyethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, liquid polypropylene glycol, etc. Can be mentioned. The amount of the water-soluble organic solvent used is preferably 5 to 1000 parts by mass, more preferably 50 to 500 parts by mass with respect to 100 parts by mass of the pigment.

ソルトミリング処理には、必要に応じて樹脂を添加できる。樹脂の種類は特に限定されず、天然樹脂、変性天然樹脂、合成樹脂、天然樹脂で変性された合成樹脂等を用いることができる。用いられる樹脂は、室温で固体であり、水不溶性であることが好ましく、かつ上記有機溶剤に一部可溶であることが更に好ましい。樹脂の使用量は、顔料100質量部に対して5〜200質量部が好ましい。 Resin can be added to the salt milling treatment as needed. The type of resin is not particularly limited, and a natural resin, a modified natural resin, a synthetic resin, a synthetic resin modified with a natural resin, or the like can be used. The resin used is preferably solid at room temperature, water-insoluble, and more preferably partially soluble in the organic solvent. The amount of the resin used is preferably 5 to 200 parts by mass with respect to 100 parts by mass of the pigment.

なお、近赤外線吸収顔料の平均一次粒子径は、透過型電子顕微鏡(TEM)を使用して、電子顕微鏡写真から一次粒子の大きさを直接計測する方法で測定できる。具体的には、個々の顔料の一次粒子の短軸径と長軸径を計測し、平均をその顔料一次粒子の粒径とした。次に、100個以上の顔料粒子について、それぞれの粒子の体積(重量)を、求めた粒径の立方体と近似して求め、体積平均粒径を平均一次粒子径とする。 The average primary particle size of the near-infrared absorbing pigment can be measured by a method of directly measuring the size of the primary particles from an electron micrograph using a transmission electron microscope (TEM). Specifically, the minor axis diameter and the major axis diameter of the primary particles of each pigment were measured, and the average was taken as the particle size of the pigment primary particles. Next, for 100 or more pigment particles, the volume (weight) of each particle is obtained by approximating it to a cube having the obtained particle size, and the volume average particle size is defined as the average primary particle size.

近赤外線吸収性組成物は、近赤外線吸収顔料、および樹脂型分散剤を含むことが好ましい。近赤外線吸収顔料は、樹脂型分散剤等を使用して分散することで、微細な分散を形成できる。近赤外線吸収性組成物の用途は、例えば、塗工により被膜を形成する塗工用途、および樹脂と混錬して成形体を作成する成形用途が挙げられる。 The near-infrared absorbing composition preferably contains a near-infrared absorbing pigment and a resin-type dispersant. The near-infrared absorbing pigment can form a fine dispersion by dispersing it using a resin-type dispersant or the like. Applications of the near-infrared absorbing composition include, for example, a coating application for forming a film by coating and a molding application for producing a molded product by kneading with a resin.

<塗工用途>
塗工用途で使用する材料を説明する。
(樹脂型分散剤)
樹脂型分散剤は、顔料に吸着する性質を有する顔料親和性部位と、顔料以外の成分と親和性が高く、顔料粒子間を立体反発させる緩和部位とを有する。樹脂型分散剤は、グラフト型(櫛形)、ブロック型等、構造制御された樹脂が好ましく用いられる。
<Application for coating>
The materials used for coating purposes will be described.
(Resin type dispersant)
The resin-type dispersant has a pigment-affinity portion having a property of adsorbing to a pigment and a relaxation portion having a high affinity with a component other than the pigment and causing steric repulsion between pigment particles. As the resin type dispersant, a structurally controlled resin such as a graft type (comb type) or a block type is preferably used.

樹脂型分散剤は、樹脂系でいうと、例えば、ポリウレタン等のウレタン系分散剤、ポリアクリレート等のポリカールボン酸エステル、不飽和ポリアミド、ポリカールボン酸、ポリカールボン酸(部分)アミン塩、ポリカールボン酸アンモニウム塩、ポリカールボン酸アルキルアミン塩、ポリシロキサン、長鎖ポリアミノアマイドリン酸塩、水酸基含有ポリカールボン酸エステルや、これらの変性物;ポリ(低級アルキレンイミン)と遊離のカルボキシル基を有するポリエステルとの反応により形成されたアミドやその塩;(メタ)アクリル酸−スチレン共重合体、(メタ)アクリル酸−(メタ)アクリル酸エステル共重合体、スチレン−マレイン酸共重合体、ポリビニルアルコール、ポリビニルピロリドン等;ポリエステル、変性ポリアクリレート、エチレンオキサイド/プロピレンオキサイド付加化合物、リン酸エステル系等が挙げられる。 In terms of resin type dispersants, for example, urethane dispersants such as polyurethane, polycarbonic acid esters such as polyacrylate, unsaturated polyamides, polycarbonic acid, polycarbonic acid (partial) amine salts, and ammonium polycarbonate salts, Polycarbonic acid alkylamine salts, polysiloxanes, long-chain polyaminoamide phosphates, hydroxyl group-containing polycarbonic acid esters and their modifications; formed by the reaction of poly (lower alkyleneimine) with polyesters having free carboxyl groups. Amides and salts thereof; (meth) acrylic acid-styrene copolymer, (meth) acrylic acid- (meth) acrylic acid ester copolymer, styrene-maleic acid copolymer, polyvinyl alcohol, polyvinylpyrrolidone, etc .; polyester, modified Examples thereof include polyacrylates, ethylene oxide / propylene oxide addition compounds, and phosphoric acid ester-based compounds.

また、樹脂型分散剤は、イオン性でいうと、酸性樹脂型分散剤、塩基性樹脂型分散剤等が挙げられる。 In terms of ionicity, the resin-type dispersant includes an acidic resin-type dispersant, a basic resin-type dispersant, and the like.

塩基性樹脂型分散剤は、窒素原子含有グラフト共重合体や、側鎖に3級アミノ基、4級アンモニウム塩基、含窒素複素環などを含む官能基を有する、窒素原子含有アクリル系ブロック共重合体及びウレタン系高分子分散剤等が挙げられる。
塩基性樹脂型分散剤は、塩基性基をリン酸やスルホン酸で中和して使用できる。
The basic resin type dispersant has a nitrogen atom-containing graft copolymer and a nitrogen atom-containing acrylic block copolymer having a functional group containing a tertiary amino group, a quaternary ammonium base, a nitrogen-containing heterocycle, etc. in the side chain. Examples thereof include coalescing and urethane-based polymer dispersants.
The basic resin type dispersant can be used by neutralizing the basic group with phosphoric acid or sulfonic acid.

本明細書で樹脂型分散剤は、塩基性樹脂型分散剤が好ましく、3級アミノ基や4級アンモニウム塩を色素吸着基として有する樹脂型分散剤がより好ましい。 In the present specification, the resin-type dispersant is preferably a basic resin-type dispersant, and more preferably a resin-type dispersant having a tertiary amino group or a quaternary ammonium salt as a dye adsorbing group.

市販の樹脂型分散剤は、ビックケミー・ジャパン社製のDisperbyk−101、103、107、108、110、111、116、130、140、154、161、162、163、164、165、166、167、168、170、171、174、180、181、182、183、184、185、190、2000、2001、2009、2010、2020、2025、2050、2070、2095、2150、2155、2163、2164またはAnti−Terra−U、203、204、またはBYK−P104、P104S、220S、6919、21116、21324またはLactimon、Lactimon−WSまたはBykumen等、日本ルーブリゾール社製のSOLSPERSE−3000、9000、13000、13240、13650、13940、16000、17000、18000、20000、21000、24000、26000、27000、28000、31845、32000、32500、32550、33500、32600、34750、35100、36600、38500、41000、41090、53095、55000、56000、76500等、BASFジャパン社製のEFKA−46、47、48、452、4008、4009、4010、4015、4020、4047、4050、4055、4060、4080、4400、4401、4402、4403、4406、4408、4300、4310、4320、4330、4340、450、451、453、4540、4550、4560、4800、5010、5065、5066、5070、7500、7554、1101、120、150、1501、1502、1503、等、味の素ファインテクノ社製のアジスパーPA111、PB711、PB821、PB822、PB824等が挙げられる。 Commercially available resin-type dispersants include Disperbyk-101, 103, 107, 108, 110, 111, 116, 130, 140, 154, 161, 162, 163, 164, 165, 166, 167, manufactured by Big Chemie Japan. 168, 170, 171, 174, 180, 181, 182, 183, 184, 185, 190, 2000, 2001, 2009, 2010, 2020, 2025, 2050, 2070, 2095, 2150, 2155, 2163, 2164 or Anti- Terra-U, 203, 204, or BYK-P104, P104S, 220S, 6919, 21116, 21324 or Lactimon, Lactimon-WS or Bykumen, etc. 13940, 16000, 17000, 18000, 20000, 21000, 24000, 26000, 27000, 28000, 31845, 32000, 32500, 32550, 33500, 32600, 34750, 35100, 36600, 38500, 41000, 41090, 53095, 55000, 56000, 76500 et al., EFKA-46, 47, 48, 452, 4008, 4009, 4010, 4015, 4020, 4047, 4050, 4055, 4060, 4080, 4400, 4401, 4402, 4403, 4406, 4408, manufactured by BASF Japan. 4300, 4310, 4320, 4330, 4340, 450, 451, 453, 4540, 4550, 4560, 4800, 5010, 5065, 5066, 5070, 7500, 7554, 1101, 120, 150, 1501, 1502, 1503, etc. Examples thereof include Ajinomoto Fine-Techno's Ajispar PA111, PB711, PB821, PB822, PB824 and the like.

樹脂型分散剤は、単独、または2種類以上を併用して使用できる。 The resin-type dispersant can be used alone or in combination of two or more.

樹脂型分散剤の含有量は、顔料100質量部に対して3〜200質量部が好ましく、5〜100質量部がより好ましい。適量含有すると被膜を形成し易い。 The content of the resin type dispersant is preferably 3 to 200 parts by mass, more preferably 5 to 100 parts by mass with respect to 100 parts by mass of the pigment. When an appropriate amount is contained, a film is easily formed.

(光重合性単量体)
近赤外線吸収性組成物は、光重合性単量体を含有できる。これにより、紫外線や熱などにより硬化する塗膜を形成することができる。
光重合性単量体は、重合性不飽和基を有する化合物でありモノマーおよびオリゴマーを含む。これらを単独で、または2種以上混合して用いることができる。
(Photopolymerizable monomer)
The near-infrared absorbing composition can contain a photopolymerizable monomer. This makes it possible to form a coating film that is cured by ultraviolet rays, heat, or the like.
The photopolymerizable monomer is a compound having a polymerizable unsaturated group and includes a monomer and an oligomer. These can be used alone or in combination of two or more.

紫外線や熱などにより硬化して透明樹脂を生成するモノマー、オリゴマーは、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、β−カルボキシエチル(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、1,6−ヘキサンジオールジグリシジルエーテルジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、ネオペンチルグリコールジグリシジルエーテルジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、エステルアクリレート、メチロール化メラミンの(メタ)アクリル酸エステル、エポキシ(メタ)アクリレート、ウレタンアクリレート等の各種アクリル酸エステルおよびメタクリル酸エステル、(メタ)アクリル酸、スチレン、酢酸ビニル、ヒドロキシエチルビニルエーテル、エチレングリコールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、(メタ)アクリルアミド、N−ヒドロキシメチル(メタ)アクリルアミド、N−ビニルホルムアミド、アクリロニトリル等が挙げられる。 The monomers and oligomers that are cured by ultraviolet rays or heat to produce a transparent resin include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and the like. Cyclohexyl (meth) acrylate, β-carboxyethyl (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate ) Acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, 1,6-hexanediol diglycidyl ether di (meth) acrylate, bisphenol A diglycidyl ether di ( Meta) acrylate, neopentyl glycol diglycidyl ether di (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, tricyclodecanyl (meth) acrylate, ester acrylate, methylolated melamine Various acrylic acid esters such as (meth) acrylic acid ester, epoxy (meth) acrylate, urethane acrylate and methacrylate ester, (meth) acrylic acid, styrene, vinyl acetate, hydroxyethyl vinyl ether, ethylene glycol divinyl ether, pentaerythritol trivinyl ether , (Meta) acrylamide, N-hydroxymethyl (meth) acrylamide, N-vinylformamide, acrylonitrile and the like.

光重合性単量体は、単独、または2種類以上を併用して使用できる。 The photopolymerizable monomer can be used alone or in combination of two or more.

光重合性単量体の含有量は、顔料100質量部に対して、5〜400質量部が好ましく、10〜300質量部がより好ましい。適量含有すると適度な光硬化性が得られる。 The content of the photopolymerizable monomer is preferably 5 to 400 parts by mass, more preferably 10 to 300 parts by mass with respect to 100 parts by mass of the pigment. When an appropriate amount is contained, appropriate photocurability can be obtained.

(光重合開始剤)
近赤外線吸収性組成物は、光重合性単量体を含有する場合、光重合開始剤を含有できる。
(Photopolymerization initiator)
When the near-infrared absorbing composition contains a photopolymerizable monomer, the near-infrared absorbing composition may contain a photopolymerization initiator.

光重合開始剤は、4−フェノキシジクロロアセトフェノン、4−t−ブチル−ジクロロアセトフェノン、ジエトキシアセトフェノン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(
4−モルフォリニル)フェニル]−1−ブタノン、または2−ベンジル−2−ジメチルア
ミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン等のアセトフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、またはベンジルジメチルケタール等のベンゾイン系化合物;ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4−フェニルベンゾフェノ
ン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルサルファイド、または3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン等のベンゾフェノン系化合物;チオキサントン、2−クロルチオキサントン、2−メチルチオキサントン、イソプロピルチオキサントン、2,4−ジイソプロピルチオキサントン、または2,4−ジエチルチオキサントン等のチオキサントン系化合物;2,4,6−トリクロロ−s−トリアジン、2−フェニル−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(p−メトキシフェニル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(p−トリル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−ピペロニル−4,6−ビス(トリクロロメチル)−s−トリアジン、2,4−ビス(トリクロロメチル)−6−スチリル−s−トリアジン、2−(ナフト−1−イル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2,4−トリクロロメチル−(ピペロニル)−6−トリアジン、または2,4−トリクロロメチル−(4’−メトキシスチリル)−6−トリアジン等のトリアジン系化合物;1,2−オクタンジオン,1−〔4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)〕、またはO−(アセチル)−N−(1−フェニル−2−オキソ−2−(4’−メトキシ−ナフチル)エチリデン)ヒドロキシルアミン等のオキシムエステル系化合物;ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド、または2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド等のホスフィン系化合物;9,10−フェナンスレンキノン、カンファーキノン、エチルアントラキノン等のキノン系化合物; ボレート系化合物; カルバゾール系化合物;イミダゾール系化合物;あるいは、チタノセン系化合物等が用いられる。
Photopolymerization initiators are 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1-hydroxy. Cyclohexylphenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4-(
4-morpholinyl) phenyl] -1-butanone, or 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butane-1-one and other acetophenone compounds; benzoin, benzoin methyl ether, benzoin ethyl Benzoyl compounds such as ether, benzoin isopropyl ether, or benzyl dimethyl ketal; benzophenone, benzoyl benzoic acid, methyl benzoyl benzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylicized benzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, Or benzophenone compounds such as 3,3', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone; thioxanthone, 2-chlorthioxanthone, 2-methylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone, or Thioxanthone compounds such as 2,4-diethylthioxanthone; 2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis (trichloromethyl) -s-triazine, 2- (p-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (p-tolyl) -4,6-bis (trichloromethyl) -s-triazine, 2-piperonyl-4,6-bis (trichloromethyl) -S-triazine, 2,4-bis (trichloromethyl) -6-styryl-s-triazine, 2- (naphtho-1-yl) -4,6-bis (trichloromethyl) -s-triazine, 2-( 4-methoxy-naphtho-1-yl) -4,6-bis (trichloromethyl) -s-triazine, 2,4-trichloromethyl- (piperonyl) -6-triazine, or 2,4-trichloromethyl- (4) Triazine compounds such as'-methoxystyryl) -6-triazine; 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], or O- (acetyl) -N -Oxime ester compounds such as (1-phenyl-2-oxo-2- (4'-methoxy-naphthyl) ethylidene) hydroxylamine; bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, or 2,4 , 6-trimethylbenzoyldiphenylphosphine oxide and other phosphine compounds; 9,10-phenanthrene quinone, camphorquinone, ethylanthraquinone and other quinone compounds Compounds; Borate-based compounds; Carbazole-based compounds; Imidazole-based compounds; Alternatively, titanocene-based compounds and the like are used.

光重合性開始剤は、単独、または2種類以上を併用して使用できる。 The photopolymerizable initiator can be used alone or in combination of two or more.

光重合開始剤の含有量は、顔料100質量部に対して、5〜200質量部が好ましく、10〜150質量部がより好ましい。 The content of the photopolymerization initiator is preferably 5 to 200 parts by mass, more preferably 10 to 150 parts by mass with respect to 100 parts by mass of the pigment.

(バインダ樹脂)
近赤外吸収性組成物は、バインダ樹脂を含有できる。
バインダ樹脂は、厚さ2μmの被膜形成時に可視光領域の400〜700nmの全波長領域において分光透過率80%以上が好ましく、95%以上がより好ましい。バインダ樹脂は、硬化性の面でいうと、例えば、熱可塑性樹脂、活性エネルギー線硬化性樹脂等が挙げられる。なお、活性エネルギー線硬化性樹脂は、熱可塑性樹脂に活性エネルギー線反応性官能基を付与した樹脂である。また、バインダ樹脂は、組成物から形成する被膜をフォトリソグラフィ法でパターニングすることができる面でアルカリ可溶性樹脂が好ましい。アルカリ可溶性樹脂は、感光性アルカリ可溶性樹脂が好ましい。なおアルカリ可溶性樹脂は、現像性のため酸性基が必要である。
(Binder resin)
The near-infrared absorbing composition can contain a binder resin.
The binder resin preferably has a spectral transmittance of 80% or more, more preferably 95% or more in the entire wavelength region of 400 to 700 nm in the visible light region when a film having a thickness of 2 μm is formed. In terms of curability, the binder resin includes, for example, a thermoplastic resin, an active energy ray-curable resin, and the like. The active energy ray-curable resin is a resin obtained by imparting an active energy ray-reactive functional group to a thermoplastic resin. Further, the binder resin is preferably an alkali-soluble resin in that a film formed from the composition can be patterned by a photolithography method. The alkali-soluble resin is preferably a photosensitive alkali-soluble resin. The alkali-soluble resin requires an acidic group because of its developability.

バインダ樹脂の重量平均分子量(Mw)は、10,000〜100,000が好ましく、10,000〜80,000がより好ましい。また数平均分子量(Mn)は5,000〜50,000が好ましい。Mw/Mnの値は、10以下が好ましい。 The weight average molecular weight (Mw) of the binder resin is preferably 10,000 to 100,000, more preferably 10,000 to 80,000. The number average molecular weight (Mn) is preferably 5,000 to 50,000. The value of Mw / Mn is preferably 10 or less.

アルカリ可溶性樹脂の酸価は、20〜300mgKOH/gが好ましい。適度な酸価により現像性が向上する。 The acid value of the alkali-soluble resin is preferably 20 to 300 mgKOH / g. Developability is improved by an appropriate acid value.

バインダ樹脂の含有量は、顔料100質量部に対し、30〜500質量部が好ましい。適度に含有すると被膜を形成し易くなる。 The content of the binder resin is preferably 30 to 500 parts by mass with respect to 100 parts by mass of the pigment. When it is contained in an appropriate amount, a film is easily formed.

熱可塑性樹脂は、例えば、アクリル樹脂、ブチラール樹脂、スチレン−マレイン酸共重
合体、塩素化ポリエチレン、塩素化ポリプロピレン、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリウレタン系樹脂、ポリエステル樹脂、ビニル系樹脂、アルキッド樹脂、ポリスチレン樹脂、ポリアミド樹脂、ゴム系樹脂、環化ゴム系樹脂、セルロース類、ポリエチレン、ポリブタジエン、およびポリイミド樹脂等が挙げられる。これらの中でもアクリル樹脂を用いることが好ましい。
The thermoplastic resin is, for example, acrylic resin, butyral resin, styrene-maleic acid copolymer, chlorinated polyethylene, chlorinated polypropylene, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, polyurethane resin, etc. Examples thereof include polyester resin, vinyl resin, alkyd resin, polystyrene resin, polyamide resin, rubber resin, cyclized rubber resin, celluloses, polyethylene, polybutadiene, and polyimide resin. Among these, it is preferable to use an acrylic resin.

アルカリ可溶性樹脂は、酸性基を有する熱可塑性樹脂が好ましい。酸性基は、例えば、カルボキシル基、スルホン基等が挙げられる。アルカリ可溶性樹脂は、例えば、酸性基を有するアクリル樹脂、α−オレフィン/(無水)マレイン酸共重合体、スチレン/スチレンスルホン酸共重合体、エチレン/(メタ)アクリル酸共重合体、又はイソブチレン/(無水)マレイン酸共重合体等が挙げられる。これらの中でも、現像性、耐熱性、透明性の面で酸性基を有するアクリル樹脂、スチレン/スチレンスルホン酸共重合体が好ましく、酸性基を有するアクリル樹脂がより好ましい。 The alkali-soluble resin is preferably a thermoplastic resin having an acidic group. Examples of the acidic group include a carboxyl group and a sulfone group. The alkali-soluble resin is, for example, an acrylic resin having an acidic group, an α-olefin / (maleic anhydride) maleic anhydride copolymer, a styrene / styrene sulfonic acid copolymer, an ethylene / (meth) acrylic acid copolymer, or an isobutylene /. (Anhydrous) maleic anhydride copolymer and the like can be mentioned. Among these, an acrylic resin having an acidic group and a styrene / styrene sulfonic acid copolymer are preferable in terms of developability, heat resistance, and transparency, and an acrylic resin having an acidic group is more preferable.

感光性アルカリ可溶性樹脂は、例えば、下記(i) や(ii)の方法で合成する樹脂が好
ましい。これにより感光性着色組成物から形成した被膜の光照射による架橋密度がより向上する。
As the photosensitive alkali-soluble resin, for example, a resin synthesized by the following methods (i) and (ii) is preferable. As a result, the crosslink density of the film formed from the photosensitive coloring composition by light irradiation is further improved.

[方法(i)]
方法(i)は、例えば、まず、エポキシ基含有単量体、およびその他単量体の重合体を合成する。次いで、前記重合体のエポキシ基に、モノカルボキシル基含有単量体を付加し、生成した水酸基に、多塩基酸無水物を反応させてアルカリ可溶性樹脂を得る方法が挙げられる。
[Method (i)]
In method (i), for example, first, an epoxy group-containing monomer and a polymer of other monomers are synthesized. Next, a method of adding a monocarboxyl group-containing monomer to the epoxy group of the polymer and reacting the generated hydroxyl group with a polybasic acid anhydride to obtain an alkali-soluble resin can be mentioned.

エポキシ基含有単量体は、例えば、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、2−グリシドキシエチル(メタ)アクリレート、3,4−エポキシブチル(メタ)アクリレート、及び3,4−エポキシシクロヘキシル(メタ)アクリレートが挙げられる。これらの中でも、反応性の観点で、グリシジル(メタ)アクリレートが好ましい。 Epoxy group-containing monomers include, for example, glycidyl (meth) acrylate, methylglycidyl (meth) acrylate, 2-glycidoxyethyl (meth) acrylate, 3,4-epoxybutyl (meth) acrylate, and 3,4-. Epoxy cyclohexyl (meth) acrylate can be mentioned. Among these, glycidyl (meth) acrylate is preferable from the viewpoint of reactivity.

モノカルボキシル基含有単量体は、例えば、(メタ)アクリル酸、クロトン酸、o−、m−、p−ビニル安息香酸、(メタ)アクリル酸のα位ハロアルキル、アルコキシル、ハロゲン、ニトロ、シアノ置換体等のモノカルボン酸等が挙げられる。 The monocarboxyl group-containing monomer is, for example, (meth) acrylic acid, crotonic acid, o-, m-, p-vinylbenzoic acid, α-position haloalkyl of (meth) acrylic acid, alkoxyl, halogen, nitro, cyano substitution. Examples include monocarboxylic acids such as the body.

多塩基酸無水物は、例えば、テトラヒドロ無水フタル酸、無水フタル酸、ヘキサヒドロ無水フタル酸、無水コハク酸、無水マレイン酸等が挙げられる。 Examples of the polybasic acid anhydride include tetrahydrophthalic anhydride, phthalic anhydride, hexahydrophthalic anhydride, succinic anhydride, maleic anhydride and the like.

単量体および多塩基酸無水物は、それぞれ単独または2種類以上を併用して使用できる。 The monomer and the polybasic acid anhydride can be used alone or in combination of two or more.

また、方法(i)に似た方法として、例えば、カルボキシル基含有単量体、およびそれ以外に単量体を合成し重合体を作製する。次いで、前記重合体のカルボキシル基の一部にエポキシ基含有単量体を付加し、感光性アルカリ可溶性樹脂を得る方法が挙げられる。 Further, as a method similar to the method (i), for example, a carboxyl group-containing monomer and a monomer other than the carboxyl group-containing monomer are synthesized to prepare a polymer. Next, a method of adding an epoxy group-containing monomer to a part of the carboxyl groups of the polymer to obtain a photosensitive alkali-soluble resin can be mentioned.

[方法(ii)]
方法(ii)は、例えば、水酸基含有単量体、カルボキシル基含有単量体、およびそれ以外の単量体を合成し重合体を作製する。次いで、前記重合体の水酸基に、イソシアネート基含有単量体のイソシアネート基を反応させる方法が挙げられる。
[Method (ii)]
In method (ii), for example, a hydroxyl group-containing monomer, a carboxyl group-containing monomer, and other monomers are synthesized to prepare a polymer. Next, a method of reacting the hydroxyl group of the polymer with the isocyanate group of the isocyanate group-containing monomer can be mentioned.

水酸基含有単量体は、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−若し
くは3−ヒドロキシプロピル(メタ)アクリレート、2−若しくは3−若しくは4−ヒド
ロキシブチル(メタ)アクリレート、グリセロール(メタ)アクリレート、又はシクロヘキサンジメタノールモノ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類が挙げられる。、また、上記ヒドロキシアルキル(メタ)アクリレートに、エチレンオキシド、プロピレンオキシド、及び/又はブチレンオキシド等を付加重合させたポリエーテルモノ(メタ)アクリレートや、(ポリ)γ−バレロラクトン、(ポリ)ε−カプロラクトン、及び/又は(ポリ)12−ヒドロキシステアリン酸等を付加した(ポリ)エステルモノ(メタ)アクリレートも挙げられる。これらの中でも2−ヒドロキシエチルメタアクリレート、グリセロールモノ(メタ)アクリレートが好ましい。また、光感度の面でグリセロールモノ(メタ)アクリレートが好ましい。
The hydroxyl group-containing monomer is, for example, 2-hydroxyethyl (meth) acrylate, 2- or 3-hydroxypropyl (meth) acrylate, 2- or 3- or 4-hydroxybutyl (meth) acrylate, glycerol (meth) acrylate. , Or hydroxyalkyl (meth) acrylates such as cyclohexanedimethanol mono (meth) acrylate. Further, a polyether mono (meth) acrylate obtained by addition-polymerizing the above hydroxyalkyl (meth) acrylate with ethylene oxide, propylene oxide, and / or butylene oxide, (poly) γ-valerolactone, and (poly) ε- (Poly) ester mono (meth) acrylates to which caprolactone and / or (poly) 12-hydroxystearic acid and the like are added can also be mentioned. Of these, 2-hydroxyethyl methacrylate and glycerol mono (meth) acrylate are preferable. Further, glycerol mono (meth) acrylate is preferable in terms of light sensitivity.

イソシアネート基を有する単量体は、例えば、2−(メタ)アクリロイルエチルイソシアネート、2−(メタ)アクリロイルオキシエチルイソシアネート、又は1,1−ビス〔メタアクリロイルオキシ〕エチルイソシアネート等が挙げられる。 Examples of the monomer having an isocyanate group include 2- (meth) acryloylethyl isocyanate, 2- (meth) acryloyloxyethyl isocyanate, and 1,1-bis [methacryloyloxy] ethyl isocyanate.

(熱硬化性化合物)
近赤外吸収組成物は、熱硬化性化合物を含有できる。加熱工程で架橋密度が向上するため耐熱性が向上する。熱硬化性化合物は、低分子化合物、またはポリマー(熱硬化性樹脂)であり分子量で制限されない。
熱硬化性化合物は、例えば、エポキシ化合物、オキセタン化合物、ベンゾグアナミン化合物、ロジン変性マレイン酸化合物、ロジン変性フマル酸化合物、メラミン化合物、尿素化合物、およびフェノール化合物が挙げられる。これらの中でも、エポキシ化合物、オキセタン化合物が好ましい。
(Thermosetting compound)
The near-infrared absorption composition can contain a thermosetting compound. Since the crosslink density is improved in the heating process, the heat resistance is improved. The thermosetting compound is a low molecular weight compound or a polymer (thermosetting resin) and is not limited by the molecular weight.
Examples of the thermosetting compound include epoxy compounds, oxetane compounds, benzoguanamine compounds, rosin-modified maleic acid compounds, rosin-modified fumaric acid compounds, melamine compounds, urea compounds, and phenol compounds. Among these, epoxy compounds and oxetane compounds are preferable.

(有機溶剤)
近赤外線吸収性組成物は、有機溶剤を含有できる。これにより組成物の粘度調整が容易になるため、表面が平滑な被膜を形成し易い。溶剤は、使用目的に応じて適宜選択し、適量を含有すれば良い。
(Organic solvent)
The near-infrared absorbing composition can contain an organic solvent. As a result, the viscosity of the composition can be easily adjusted, so that a film having a smooth surface can be easily formed. The solvent may be appropriately selected according to the purpose of use and may be contained in an appropriate amount.

有機溶剤は、例えば乳酸エチル、ベンジルアルコール、1,2,3−トリクロロプロパン、1,3−ブタンジオール、1,3−ブチレングリコール、1,3−ブチレングリコールジアセテート、1,4−ジオキサン、2−ヘプタノン、2−メチル−1,3−プロパンジオール、3,5,5−トリメチル−2−シクロヘキセン−1−オン、3,3,5−トリメチルシクロヘキサノン、3−エトキシプロピオン酸エチル、3−メチル−1,3−ブタンジオール、3−メトキシ−3−メチル−1−ブタノール、3−メトキシ−3−メチルブチルアセテート、3−メトキシブタノール、3−メトキシブチルアセテート、4−ヘプタノン、m−キシレン、m−ジエチルベンゼン、m−ジクロロベンゼン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、n−ブチルアルコール、n−ブチルベンゼン、n−プロピルアセテート、o−キシレン、o−クロロトルエン、o−ジエチルベンゼン、o−ジクロロベンゼン、p−クロロトルエン、p−ジエチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン、γ−ブチロラクトン、イソブチルアルコール、イソホロン、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノターシャリーブチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノプロピルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、ジイソブチルケトン、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、シクロヘキサノール、シクロヘキサノールアセテート、シクロヘキサノン、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノメチルエーテル、ダイアセトンアルコール、トリアセチン、トリプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールジアセテート、プロピレングリコールフェニルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルプロピオネート、ベンジルアルコール、メチルイソブチルケトン、メチルシクロヘキサノール、酢酸n−アミル、酢酸n−ブチル、酢酸イソアミル、酢酸イソブチル、酢酸プロピル、二塩基酸エステル等が挙げられる。 The organic solvent is, for example, ethyl lactate, benzyl alcohol, 1,2,3-trichloropropane, 1,3-butanediol, 1,3-butylene glycol, 1,3-butylene glycol diacetate, 1,4-dioxane, 2 -Heptanone, 2-methyl-1,3-propanediol, 3,5,5-trimethyl-2-cyclohexene-1-one, 3,3,5-trimethylcyclohexanone, ethyl 3-ethoxypropionate, 3-methyl- 1,3-Butanol, 3-methoxy-3-methyl-1-butanol, 3-methoxy-3-methylbutyl acetate, 3-methoxybutanol, 3-methoxybutyl acetate, 4-heptanone, m-xylene, m- Diethyl benzene, m-dichlorobenzene, N, N-dimethylacetamide, N, N-dimethylformamide, n-butyl alcohol, n-butylbenzene, n-propyl acetate, o-xylene, o-chlorotoluene, o-diethylbenzene, o -Dichlorobenzene, p-chlorotoluene, p-diethylbenzene, sec-butylbenzene, tert-butylbenzene, γ-butyrolactone, isobutyl alcohol, isophorone, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, ethylene glycol monoisopropyl ether, ethylene glycol Monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monotersial butyl ether, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, ethylene glycol monopropyl ether, ethylene glycol monohexyl ether, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether Acetate, diisobutyl ketone, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol monomethyl ether, cyclohexanol, cyclohexanol acetate, cyclohexanone, dipropylene glycol dimethyl ether, Dipropylene glycol methyl ether acetate, dipropylene glycol monoethyl ether, zip Lopyrene glycol monobutyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monomethyl ether, diacetone alcohol, triacetin, tripropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, propylene glycol diacetate, propylene glycol phenyl ether, propylene glycol monoethyl Ether, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether propionate, benzyl alcohol, methyl isobutyl ketone, methyl cyclohexanol, Examples thereof include n-amyl acetate, n-butyl acetate, isoamyl acetate, isobutyl acetate, propyl acetate, dibasic acid ester and the like.

これらの中でも、乳酸エチル等のアルキルラクテート類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート等のグリコールアセテート類、ベンジルアルコール等の芳香族アルコール類やシクロヘキサノン等のケトン類を用いることが好ましい。 Among these, alkyl lactates such as ethyl lactate, glycol acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate, and aromatic alcohols such as benzyl alcohol. And ketones such as cyclohexanone are preferably used.

有機溶剤は、単独または2種類以上を混合して使用できる。 The organic solvent can be used alone or in combination of two or more.

(増感剤)
近赤外線吸収性組成物が光重合性開始剤を含有する場合、増感剤を含有できる。
増感剤は、例えば、カルコン誘導体、ジベンザルアセトン等に代表される不飽和ケトン類、ベンジルやカンファーキノン等に代表される1,2−ジケトン誘導体、ベンゾイン誘導体、フルオレン誘導体、ナフトキノン誘導体、アントラキノン誘導体、キサンテン誘導体、チオキサンテン誘導体、キサントン誘導体、チオキサントン誘導体、クマリン誘導体、ケトクマリン誘導体、シアニン誘導体、メロシアニン誘導体、オキソノ−ル誘導体等のポリメチン色素、アクリジン誘導体、アジン誘導体、チアジン誘導体、オキサジン誘導体、インドリン誘導体、アズレン誘導体、アズレニウム誘導体、スクアリリウム誘導体、ポルフィリン誘導体、テトラフェニルポルフィリン誘導体、トリアリールメタン誘導体、テトラベンゾポルフィリン誘導体、テトラピラジノポルフィラジン誘導体、フタロシアニン誘導体、テトラアザポルフィラジン誘導体、テトラキノキサリロポルフィラジン誘導体、ナフタロシアニン誘導体、サブフタロシアニン誘導体、ピリリウム誘導体、チオピリリウム誘導体、テトラフィリン誘導体、アヌレン誘導体、スピロピラン誘導体、スピロオキサジン誘導体、チオスピロピラン誘導体、金属アレーン錯体、有機ルテニウム錯体、又はミヒラーケトン誘導体、α−アシロキシエステル、アシルフォスフィンオキサイド、メチルフェニルグリオキシレート、ベンジル、9,10−フェナンスレンキノン、カンファーキノン、エチルアンスラキノン、4,4’−ジエチルイソフタロフェノン、3,3’又は4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン等が挙げられる。
(Sensitizer)
When the near-infrared absorbing composition contains a photopolymerizable initiator, it can contain a sensitizer.
The sensitizer includes, for example, chalcone derivatives, unsaturated ketones such as dibenzalacetone, 1,2-diketone derivatives such as benzyl and camphorquinone, benzoin derivatives, fluorene derivatives, naphthoquinone derivatives, and anthraquinone. Polymethine dyes such as derivatives, xanthene derivatives, thioxanthene derivatives, xanthone derivatives, thioxanthone derivatives, coumarin derivatives, ketocoumarin derivatives, cyanine derivatives, merocyanine derivatives, oxonoal derivatives, aclysine derivatives, azine derivatives, thiazine derivatives, oxazine derivatives, indolin derivatives , Azulene derivative, azulenium derivative, squarylium derivative, porphyrin derivative, tetraphenylporphyrin derivative, triarylmethane derivative, tetrabenzoporphyrin derivative, tetrapyrazinoporphyrazine derivative, phthalocyanine derivative, tetraazaporphyrazine derivative, tetraquinoxalyloporphyrazine Derivatives, naphthalocyanine derivatives, subphthalocyanine derivatives, pyrylium derivatives, thiopyrilium derivatives, tetraphyllin derivatives, anurene derivatives, spiropyrane derivatives, spiroxazine derivatives, thiospiropyrane derivatives, metal arene complexes, organic ruthenium complexes, or Michler ketone derivatives, α-acyloxy Esters, acylphosphine oxides, methylphenylglioxylates, benzyls, 9,10-phenanthrene quinones, camphorquinones, ethyl anthraquinones, 4,4'-diethylisophthalofenones, 3,3'or 4,4' -Tetra (t-butylperoxycarbonyl) benzophenone, 4,4'-bis (diethylamino) benzophenone and the like can be mentioned.

これらの中でもチオキサントン誘導体、ミヒラーケトン誘導体、カルバゾール誘導体が好ましい。具体的には、2,4−ジエチルチオキサントン、2−クロロチオキサントン、2,4−ジクロロチオキサントン、2−イソプロピルチオキサントン、4−イソプロピルチオキサントン、1−クロロ−4−プロポキシチオキサントン、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4
’−ビス(エチルメチルアミノ)ベンゾフェノン、N−エチルカルバゾール、3−ベンゾイル−N−エチルカルバゾール、3,6−ジベンゾイル−N−エチルカルバゾール等がより好ましい。
Among these, thioxanthone derivatives, Michler ketone derivatives, and carbazole derivatives are preferable. Specifically, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-dichlorothioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 1-chloro-4-propoxythioxanthone, 4,4'-bis ( Dimethylamino) benzophenone, 4,4'-bis (diethylamino) benzophenone, 4,4
More preferred are'-bis (ethylmethylamino) benzophenone, N-ethylcarbazole, 3-benzoyl-N-ethylcarbazole, 3,6-dibenzoyl-N-ethylcarbazole and the like.

増感剤の市販品は、「KAYACURE DETX-S」(2,4−ジエチルチオキサントン 日本化薬社製)、「CHEMARK DEABP」(4,4’−ビス(ジエチルアミノ)ベンゾフェノン Chemark Chemical社製)等が挙げられる。 Commercially available sensitizers include "KAYACURE DETX-S" (2,4-diethylthioxanthone manufactured by Nippon Kayaku Co., Ltd.) and "CHEMARK DEABP" (manufactured by 4,4'-bis (diethylamino) benzophenone Chemical). Can be mentioned.

増感剤は、単独または2種類以上を併用して使用できる。 The sensitizer can be used alone or in combination of two or more.

増感剤の含有量は、光重合性開始剤100質量部に対し、3〜60質量部が好ましく、5〜50質量部がより好ましい。適量含有すると光硬化性および現像性がより向上する。 The content of the sensitizer is preferably 3 to 60 parts by mass, more preferably 5 to 50 parts by mass with respect to 100 parts by mass of the photopolymerizable initiator. When an appropriate amount is contained, the photocurability and developability are further improved.

(多官能チオール)
近赤外線吸収性組成物は、連鎖移動剤として多官能チオールを含有できる。
多官能チオールは、チオール基を2個以上有する化合物であればよく、例えば、ヘキサンジチオール、デカンジチオール、1,4−ブタンジオールビスチオプロピオネート、1,4−ブタンジオールビスチオグリコレート、エチレングリコールビスチオグリコレート、エチレングリコールビスチオプロピオネート、トリメチロールプロパントリスチオグリコレート、トリメチロールプロパントリスチオプロピオネート、トリメチロールプロパントリス(3−メルカプトブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ペンタエリスリトールテトラキスチオプロピオネート、トリメルカプトプロピオン酸トリス(2−ヒドロキシエチル)イソシアヌレート、1,4−ジメチルメルカプトベンゼン、2、4、6−トリメルカプト−s−トリアジン、2−(N,N−ジブチルアミノ)−4,6−ジメルカプト−s−トリアジン等が挙げられる。
(Polyfunctional thiol)
The near-infrared absorbing composition can contain a polyfunctional thiol as a chain transfer agent.
The polyfunctional thiol may be a compound having two or more thiol groups, for example, hexanedithiol, decandithiol, 1,4-butanediol bisthiopropionate, 1,4-butanediol bisthioglycolate, ethylene. Glycol bisthioglycolate, ethylene glycol bisthiopropionate, trimethylolpropane tristhioglycolate, trimethylolpropane tristhiopropionate, trimethylolpropane tris (3-mercaptobutyrate), pentaerythritol tetraxthioglycolate, Pentaerythritol tetraxthiopropionate, tris (2-hydroxyethyl) trimercaptopropionate, isocyanurate, 1,4-dimethylmercaptobenzene, 2,4,6-trimercapto-s-triazine, 2- (N, N-) Dibutylamino) -4,6-dimercapto-s-triazine and the like can be mentioned.

多官能チオールは、単独または2種類以上を併用して使用できる。 The polyfunctional thiol can be used alone or in combination of two or more.

多官能チオールの含有量は、近赤外線吸収性組成物の不揮発分中、0.1〜30質量%が好ましく、1〜20質量%がより好ましい。適量含有すると光感度およびパターン形状がより向上する。 The content of the polyfunctional thiol is preferably 0.1 to 30% by mass, more preferably 1 to 20% by mass, based on the non-volatile content of the near-infrared absorbing composition. When an appropriate amount is contained, the light sensitivity and the pattern shape are further improved.

(酸化防止剤)
近赤外線吸収性組成物は、酸化防止剤を含有できる。酸化防止剤は、近赤外線吸収性組成物に含まれる光重合開始剤や熱硬化性化合物が、加熱工程によって酸化し黄変することを防ぐため、被膜の透過率を高くできる。
酸化防止剤は、例えば、ヒンダードフェノール系、ヒンダードアミン系、リン系、イオウ系、ベンゾトリアゾール系、ベンゾフェノン系、ヒドロキシルアミン系、サルチル酸エステル系、およびトリアジン系の化合物等が挙げられる。これらの中でも、塗膜の透過率と感度の両立の観点から、ヒンダードフェノール系、ヒンダードアミン系、リン系、イオウ系が好ましく、ヒンダードフェノール系、ヒンダードアミン系、リン系がより好ましい。
(Antioxidant)
The near-infrared absorbing composition may contain an antioxidant. The antioxidant can increase the transmittance of the coating film because it prevents the photopolymerization initiator and the thermosetting compound contained in the near-infrared absorbing composition from being oxidized and yellowed by the heating step.
Examples of the antioxidant include hindered phenol-based, hindered amine-based, phosphorus-based, sulfur-based, benzotriazole-based, benzophenone-based, hydroxylamine-based, salicylate ester-based, and triazine-based compounds. Among these, hindered phenol-based, hindered amine-based, phosphorus-based, and sulfur-based are preferable, and hindered phenol-based, hindered amine-based, and phosphorus-based are more preferable, from the viewpoint of achieving both the transmittance and sensitivity of the coating film.

酸化防止剤は、単独または2種類以上を混合して使用できる。 The antioxidant can be used alone or in combination of two or more.

酸化防止剤の含有量は、近赤外線吸収性組成物の不揮発分100質量%中、0.5〜5.0質量%が好ましい。これにより透過率、分光特性、及び感度がより向上する。 The content of the antioxidant is preferably 0.5 to 5.0% by mass based on 100% by mass of the non-volatile content of the near-infrared absorbing composition. This further improves the transmittance, spectral characteristics, and sensitivity.

<アミン系化合物>
近赤外線吸収性組成物は、溶存している酸素を還元する働きのあるアミン系化合物を含有できる。アミン系化合物は、例えば、トリエタノールアミン、メチルジエタノールアミ
ン、トリイソプロパノールアミン、4−ジメチルアミノ安息香酸メチル、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミル、安息香酸2−ジメチルアミノエチル、4−ジメチルアミノ安息香酸2−エチルヘキシル、及びN,N−ジメチルパラトルイジン等が挙げられる。
<Amine compounds>
The near-infrared absorbing composition can contain an amine compound having a function of reducing dissolved oxygen. Amine compounds include, for example, triethanolamine, methyldiethanolamine, triisopropanolamine, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 2-dimethylaminoethyl benzoate, Examples thereof include 2-ethylhexyl 4-dimethylaminobenzoate and N, N-dimethylparatoluidine.

<レベリング剤>
近赤外線吸収性組成物は、レベリング剤を含有できる。これにより、被膜形成時の透明基板に対する濡れ性および被膜の乾燥性がより向上する。レベリング剤は、例えば、シリコーン系界面活性剤、フッ素系界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、アニオン性界面活性剤等が挙げられる。
<Leveling agent>
The near-infrared absorbing composition can contain a leveling agent. As a result, the wettability to the transparent substrate and the drying property of the coating film at the time of forming the coating film are further improved. Examples of the leveling agent include silicone-based surfactants, fluorine-based surfactants, nonionic surfactants, cationic surfactants, and anionic surfactants.

レベリング剤は、単独または2種類以上を混合して使用できる。 The leveling agent can be used alone or in combination of two or more.

レベリング剤の含有量は、近赤外線吸収性組成物の不揮発分中、0.001〜2.0質量%が好ましく、0.005〜1.0質量%がより好ましい。この範囲内であることで、感光性着色組成物の塗工性とパターン密着性、透過率のバランスがより向上する。 The content of the leveling agent is preferably 0.001 to 2.0% by mass, more preferably 0.005 to 1.0% by mass, based on the non-volatile content of the near-infrared absorbing composition. Within this range, the balance between the coatability of the photosensitive coloring composition, the pattern adhesion, and the transmittance is further improved.

(硬化剤)
近赤外線吸収性組成物が熱硬化性化合物を含有する場合、熱硬化性化合物の硬化を補助するため、硬化剤を含有できる。硬化剤は、例えば、アミン系化合物、酸無水物、活性エステル、カルボン酸系化合物、スルホン酸系化合物等が挙げられる。
アミン化合物は、(例えば、ジシアンジアミド、ベンジルジメチルアミン、4−(ジメチルアミノ)−N,N−ジメチルベンジルアミン、4−メトキシ−N,N−ジメチルベンジルアミン、4−メチル−N,N−ジメチルベンジルアミン等)、4級アンモニウム塩化合物(例えば、トリエチルベンジルアンモニウムクロリド等)、ブロックイソシアネート化合物(例えば、ジメチルアミン等)、イミダゾール誘導体二環式アミジン化合物及びその塩(例えば、イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、4−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール等)、リン化合物(例えば、トリフェニルホスフィン等)、S−トリアジン誘導体(例えば、2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン、2−ビニル−2,4−ジアミノ−S−トリアジン、2−ビニル−4,6−ジアミノ−S−トリアジン・イソシアヌル酸付加物、2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン・イソシアヌル酸付加物等)等が挙げられる。
(Hardener)
When the near-infrared absorbing composition contains a thermosetting compound, a curing agent can be contained to assist the curing of the thermosetting compound. Examples of the curing agent include amine compounds, acid anhydrides, active esters, carboxylic acid compounds, and sulfonic acid compounds.
Amine compounds include (eg, dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzylamine, 4-methyl-N, N-dimethylbenzylamine). Amines, etc.), quaternary ammonium salt compounds (eg, triethylbenzylammonium chloride, etc.), blocked isocyanate compounds (eg, dimethylamine, etc.), imidazole derivative bicyclic amidin compounds and salts thereof (eg, imidazole, 2-methylimidazole, etc.) 2-Ethyl imidazole, 2-ethyl-4-methyl imidazole, 2-phenyl imidazole, 4-phenyl imidazole, 1-cyanoethyl-2-phenyl imidazole, 1- (2-cyanoethyl) -2-ethyl-4-methyl imidazole, etc. ), Phosphorus compounds (eg, triphenylphosphine, etc.), S-triazine derivatives (eg, 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-2,4-diamino-S-triazine, 2-vinyl-4,6-diamino-S-triazine / isocyanuric acid adduct, 2,4-diamino-6-methacryloyloxyethyl-S-triazine / isocyanuric acid adduct, etc.) and the like.

硬化剤の含有量は、熱硬化性化合物100質量部に対し、0.01〜15質量部が好ましい。 The content of the curing agent is preferably 0.01 to 15 parts by mass with respect to 100 parts by mass of the thermosetting compound.

(その他の近赤外線吸収顔料)
近赤外線吸収性組成物には、本発明の近赤外線吸収顔料以外の近赤外線吸収顔料を含有させることができる。本発明の近赤外線吸収組成物に使用できる近赤外線吸収顔料以外の近赤外線吸収顔料は、例えば、シアニン化合物、スクアリリウム化合物、フタロシアニン化合物、ナフタロシアニン化合物、アミニウム化合物、ジインモニウム化合物、クロコニウム化合物、アゾ化合物、キノイド型錯体化合物、ジチオール金属錯体化合物等が挙げられる。
(Other near-infrared absorbing pigments)
The near-infrared absorbing composition may contain a near-infrared absorbing pigment other than the near-infrared absorbing pigment of the present invention. Near-infrared absorbing pigments other than the near-infrared absorbing pigment that can be used in the near-infrared absorbing composition of the present invention include, for example, cyanine compounds, squarylium compounds, phthalocyanine compounds, naphthalocyanine compounds, aminium compounds, diinmonium compounds, croconium compounds, azo compounds, and the like. Examples thereof include quinoid type complex compounds and dithiol metal complex compounds.

(貯蔵安定剤)
近赤外線吸収性組成物は、組成物の経時粘度を安定化させるために貯蔵安定剤を含有できる。また、透明基板との密着性を高めるためにシランカップリング剤等の密着向上剤を含有させることもできる。
(Storage stabilizer)
The near-infrared absorbing composition may contain a storage stabilizer to stabilize the viscosity of the composition over time. Further, an adhesion improver such as a silane coupling agent can be contained in order to improve the adhesion with the transparent substrate.

貯蔵安定剤は、例えば、ベンジルトリメチルクロライド、ジエチルヒドロキシアミンなどの4級アンモニウムクロライド、乳酸、シュウ酸などの有機酸およびそのメチルエーテル、t−ブチルピロカテコール、テトラエチルホスフィン、テトラフェニルフォスフィンなどの有機ホスフィン、亜リン酸塩等が挙げられる。貯蔵安定剤の含有量は、顔料100質量部に対し、0.1〜10質量部が好ましい。 Storage stabilizers include, for example, quaternary ammonium chlorides such as benzyltrimethyl chloride and diethylhydroxyamine, organic acids such as lactic acid and phosphorous acid and their methyl ethers, organic acids such as t-butylpyrocatechol, tetraethylphosphine and tetraphenylphosphine. Examples include phosphine and phosphite. The content of the storage stabilizer is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the pigment.

(密着向上剤)
近赤外線吸収性組成物は、基板との密着性を高めるためにシランカップリング剤等の密着向上剤を含有できる。
密着向上剤は、ビニルトリス(β−メトキシエトキシ)シラン、ビニルエトキシシラン、ビニルトリメトキシシラン等のビニルシラン類、γ−メタクリロキシプロピルトリメトキシシラン等の(メタ)アクリルシラン類、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)メチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)メチルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン等のエポキシシラン類、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジエトキシシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリエトキシシラン等のアミノシラン類、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン等のチオシラン類等のシランカップリング剤が挙げられる。密着向上剤は、の含有量は、顔料100質量部に対し、0.01〜10質量部が好ましく、0.05〜5質量部がより好ましい。
(Adhesion improver)
The near-infrared absorbing composition can contain an adhesion improver such as a silane coupling agent in order to enhance the adhesion to the substrate.
Adhesion improvers include vinylsilanes such as vinyltris (β-methoxyethoxy) silane, vinylethoxysilane and vinyltrimethoxysilane, (meth) acrylic silanes such as γ-methacryloxypropyltrimethoxysilane, and β- (3,4). -Epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) methyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, β- (3,4-epoxycyclohexyl) methyl Epoxysilanes such as triethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) ) Γ-Aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldiethoxysisilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyl Examples thereof include aminosilanes such as trimethoxysilane and N-phenyl-γ-aminopropyltriethoxysilane, and silane coupling agents such as thiosilanes such as γ-mercaptopropyltrimethoxysilane and γ-mercaptopropyltriethoxysilane. The content of the adhesion improver is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the pigment.

(近赤外線吸収性組成物の製造方法)
近赤外線吸収性組成物は、近赤外線吸収顔料を樹脂型分散剤で分散して作製する。近赤外線吸収性組成物の製造は、近赤外線吸収顔料、および樹脂型分散剤、必要に応じて、バインダ樹脂、有機溶剤、その他分散助剤を混合した後、分散処理を行う。次いで、必要に応じて光重合性化合物、および光重合性開始剤を混合して作製できる。なお、各材料を配合するタイミングが任意であることはいうまでもない。
(Manufacturing method of near-infrared absorbing composition)
The near-infrared absorbing composition is prepared by dispersing the near-infrared absorbing pigment with a resin-type dispersant. The near-infrared absorbing composition is produced by mixing a near-infrared absorbing pigment, a resin-type dispersant, and if necessary, a binder resin, an organic solvent, and other dispersion aids, and then performing a dispersion treatment. Then, if necessary, it can be prepared by mixing a photopolymerizable compound and a photopolymerizable initiator. Needless to say, the timing of blending each material is arbitrary.

前記分散処理は、例えば、ニーダー、2本ロールミル、3本ロールミル、ボールミル、横型サンドミル、縦型サンドミル、アニュラー型ビーズミル、又はアトライター等の分散装置を使用できる。 For the dispersion treatment, for example, a disperser such as a kneader, a two-roll mill, a three-roll mill, a ball mill, a horizontal sand mill, a vertical sand mill, an annual bead mill, or an attritor can be used.

(粗大粒子の除去)
本発明の塗工用近赤外線吸収性組成物は、例えば、遠心分離、焼結フィルタ、メンブレンフィルタ等の手段にて、5μm以上の粗大粒子、好ましくは1μm以上の粗大粒子、さらに好ましくは0.5μm以上の粗大粒子および混入した塵の除去を行うことが好ましい。このように着色組成物は、実質的に0.5μm以上の粒子を含まないことが好ましい。より好ましくは0.3μm以下であることが好ましい。
(Removal of coarse particles)
The near-infrared absorbing composition for coating of the present invention has coarse particles of 5 μm or more, preferably coarse particles of 1 μm or more, more preferably 0. It is preferable to remove coarse particles of 5 μm or more and mixed dust. As described above, it is preferable that the coloring composition does not substantially contain particles having a size of 0.5 μm or more. More preferably, it is 0.3 μm or less.

(近赤外線カットフィルタ、および近赤外線透過フィルタの製造方法)
本発明の近赤外線カットフィルタ、および近赤外線透過フィルタは、印刷法またはフォトリソグラフィ法により、製造することができる。印刷法によるフィルタセグメントの形成は、近赤外線吸収性組成物の印刷と乾燥を行うことでパターン化ができるため、フィルタの製造法は、低コストであり、かつ量産性に優れている。さらに、印刷技術の発展により高い寸法精度および平滑度を有する微細パターンの印刷を行うことができる。印刷を行
うためには、印刷の版上にて、あるいはブランケット上にてインキが乾燥、固化しないような組成とすることが好ましい。また、印刷機上でのインキの流動性制御も重要であり、分散剤や体質顔料によってインキ粘度の調整も行うことができる。
(Manufacturing method of near-infrared cut filter and near-infrared transmission filter)
The near-infrared cut filter and the near-infrared transmission filter of the present invention can be manufactured by a printing method or a photolithography method. Since the filter segment can be formed by the printing method by printing and drying the near-infrared absorbing composition, the filter manufacturing method is low cost and excellent in mass productivity. Further, with the development of printing technology, it is possible to print a fine pattern having high dimensional accuracy and smoothness. In order to perform printing, it is preferable that the composition is such that the ink does not dry or solidify on the printing plate or on the blanket. It is also important to control the fluidity of the ink on the printing machine, and the viscosity of the ink can be adjusted by using a dispersant or an extender pigment.

フォトリソグラフィ法によりフィルタセグメントを形成する場合は、溶剤現像型またはアルカリ現像型レジスト材として調製した近赤外線吸収性組成物を、基板上に、スプレーコートやスピンコート、スリットコート、ロールコート等の塗工方法により、乾燥膜厚が0.2〜5μmとなるように塗工する。必要により乾燥された膜には、この膜と接触あるいは非接触状態で設けられた所定のパターンを有するマスクを通して紫外線露光を行う。その後、溶剤またはアルカリ現像液に浸漬するかもしくはスプレーなどにより現像液を噴霧して未硬化部を除去して所望のパターンを形成したのち、同様の操作を他色について繰り返してフィルタを製造することができる。さらに、レジスト材の重合を促進するため、必要に応じて加熱を施すこともできる。フォトリソグラフィ法によれば、上記印刷法より精度の高いフィルタが製造できる。なお、膜は、パターン形成せずに使用しても良い。 When forming a filter segment by a photolithography method, a near-infrared absorbing composition prepared as a solvent-developed or alkali-developed resist material is applied onto a substrate by spray coating, spin coating, slit coating, roll coating, or the like. Depending on the construction method, coating is performed so that the dry film thickness is 0.2 to 5 μm. If necessary, the dried film is exposed to ultraviolet rays through a mask having a predetermined pattern provided in contact with or without contact with the film. Then, after immersing in a solvent or an alkaline developer or spraying the developer with a spray or the like to remove the uncured portion to form a desired pattern, the same operation is repeated for other colors to manufacture a filter. Can be done. Further, in order to promote the polymerization of the resist material, heating can be applied as needed. According to the photolithography method, a filter having higher accuracy than the above printing method can be manufactured. The film may be used without forming a pattern.

基板は特に限定されるのではないが、形状として、シート状、フィルム状又は板状の透明基材を用いることができる。色彩も無色、有色、特に限定されるものではない。透明基材の材質は、透明性が高い素材、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、トリアセチルセルロース(TAC)。メチルメタクリレート系共重合物等のアクリル樹脂、スチレン樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、ポリメタクリルイミド樹脂、ガラス板等が挙げられる。 The substrate is not particularly limited, but a sheet-shaped, film-shaped, or plate-shaped transparent base material can be used as the shape. Colors are also colorless and colored, and are not particularly limited. The material of the transparent base material is a highly transparent material, for example, a polyester resin such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or triacetyl cellulose (TAC). Examples thereof include acrylic resins such as methyl methacrylate-based copolymers, styrene resins, polysulfone resins, polyether sulfone resins, polycarbonate resins, vinyl chloride resins, polymethacrylicimide resins, and glass plates.

現像は、アルカリ現像液として炭酸ナトリウム、水酸化ナトリウム等の水溶液が使用され、ジメチルベンジルアミン、トリエタノールアミン等の有機アルカリを用いることもできる。また、現像液には、消泡剤や界面活性剤を添加することもできる。なお、紫外線露光感度を上げるために、上記着色レジスト材を塗工乾燥後、水溶性あるいはアルカリ水溶性樹脂、例えばポリビニルアルコールや水溶性アクリル樹脂等を塗工乾燥し酸素による重合阻害を防止する膜を形成した後、紫外線露光を行うこともできる。 For development, an aqueous solution of sodium carbonate, sodium hydroxide or the like is used as the alkaline developer, and an organic alkali such as dimethylbenzylamine or triethanolamine can also be used. Further, an antifoaming agent or a surfactant can be added to the developing solution. In order to increase the UV exposure sensitivity, a film that prevents polymerization inhibition by oxygen by coating and drying the above-mentioned colored resist material and then coating and drying a water-soluble or alkaline water-soluble resin such as polyvinyl alcohol or water-soluble acrylic resin. It is also possible to perform ultraviolet exposure after forming the above.

本発明の近赤外線カットフィルタは、上記方法の他に電着法、転写法、インクジェット法などによっても製造できる。 The near-infrared cut filter of the present invention can be manufactured by an electrodeposition method, a transfer method, an inkjet method, or the like in addition to the above methods.

<成形用途>
成形用途で使用する材料を説明する。なお、成形用途とは、成形によりフィルムや三次元体を作製する用途である。近赤外線吸収性組成物を成形用途に使用する場合、近赤外線吸収顔料、および熱可塑性樹脂の溶融混錬物であることが好ましい。
<Molding application>
The materials used for molding purposes will be described. The molding application is an application for producing a film or a three-dimensional body by molding. When the near-infrared absorbing composition is used for molding purposes, it is preferably a melt-kneaded product of a near-infrared absorbing pigment and a thermoplastic resin.

(熱可塑性樹脂)
熱可塑性樹脂は、例えばポリオレフィン樹脂、アクリル樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、シクロオレフィン樹脂、ポリエーテルイミド樹脂などが挙げられる。
(Thermoplastic resin)
Examples of the thermoplastic resin include polyolefin resin, acrylic resin, polystyrene resin, polyester resin, polyamide resin, polycarbonate resin, cycloolefin resin, polyetherimide resin and the like.

(ポリアミド樹脂)
ポリアミド樹脂は、結晶性樹脂であり、例えば、カルボン酸成分と、アミノ基を2個以上有する化合物(Am)とを脱水縮合反応させて合成できる。
(Polyamide resin)
The polyamide resin is a crystalline resin, and can be synthesized, for example, by subjecting a carboxylic acid component and a compound (Am) having two or more amino groups to a dehydration condensation reaction.

カルボン酸成分は、例えば、アジピン酸、セバシン酸、イソフタル酸、テレフタル酸等が挙げられる。なお、カルボン酸成分は、3以上のカルボキシル基を有する化合物を使用
できる。
アミノ基を2個以上有する化合物(Am)は、例えば、公知のものを使用することができ、例えば、エチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、トリエチレンテトラミン等の脂肪族ポリアミン;イソホロンジアミン、ジシクロヘキシルメタン−4,4’−ジアミン等の脂環式ポリアミンを含む脂肪族ポリアミン;フェニレンジアミン、キシリレンジアミン等の芳香族ポリアミン;1,3−ジアミノ−2−プロパノール、1,4−ジアミノ−2−ブタノール、1−アミノ−3−(アミノメチル)−3,5,5−トリメチルシクロヘキサン−1−オール、4−(2−アミノエチル)−4,7,10−トリアザデカン−2−オール、3−(2−ヒドロキシプロピル)−o−キシレン−α,α’−ジアミン等のジアミノアルコールが挙げられる。
ポリアミド樹脂の市販品は、例えば、6ナイロン(東レ社製)、66ナイロン(東レ社製)、610ナイロン等が挙げられる。
Examples of the carboxylic acid component include adipic acid, sebacic acid, isophthalic acid, terephthalic acid and the like. As the carboxylic acid component, a compound having 3 or more carboxyl groups can be used.
As the compound (Am) having two or more amino groups, for example, known ones can be used, for example, ethylenediamine, propylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, triethylene. Aliphatic polyamines such as tetramine; aliphatic polyamines containing alicyclic polyamines such as isophoronediamine and dicyclohexylmethane-4,4'-diamine; aromatic polyamines such as phenylenediamine and xylylenediamine; 1,3-diamino-2 -Propanol, 1,4-diamino-2-butanol, 1-amino-3- (aminomethyl) -3,5,5-trimethylcyclohexane-1-ol, 4- (2-aminoethyl) -4,7, Examples thereof include diaminoalcohols such as 10-triazadecane-2-ol, 3- (2-hydroxypropyl) -o-xylene-α and α'-diamine.
Examples of commercially available polyamide resins include 6 nylon (manufactured by Toray Industries, Inc.), 66 nylon (manufactured by Toray Industries, Inc.), 610 nylon and the like.

(ポリカーボネート樹脂)
ポリカーボネート樹脂は、非晶性樹脂であり、芳香族ジヒドロキシ化合物に、ホスゲン或いは炭酸ジエステル等のカーボネート前駆体を反応させて合成する。ホスゲンを用いる合成反応の場合は、例えば、界面法が好ましい。また、炭酸ジエステルを用いる合成反応の場合、溶融状で反応させるエステル交換法が好ましい。
(Polycarbonate resin)
The polycarbonate resin is an amorphous resin, and is synthesized by reacting an aromatic dihydroxy compound with a carbonate precursor such as phosgene or carbonic acid diester. In the case of a synthetic reaction using phosgene, for example, an interfacial method is preferable. Further, in the case of a synthetic reaction using a carbonic acid diester, a transesterification method in which the reaction is carried out in a molten state is preferable.

芳香族ジヒドロキシ化合物は、例えば、例えば、2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、ビス(4−ヒドロキシフェニル)フェニルメタン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3−t−ブチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−ブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジクロロフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン等のビス(ヒドロキシアリール)シクロアルカン類4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエーテル等のジヒドロキシジアリールエーテル類、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィドのようなジヒドロキシジアリールスルフィド類、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類等が挙げられる。また、ピペラジン、ジピペリジルハイドロキノン、レゾルシン、4,4’−ジヒドロキシジフェニル類を混合して使用してもよい。 Aromatic dihydroxy compounds include, for example, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2 , 2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) Propane, 1,1-bis (4-hydroxy-3-t-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-3, Bis (hydroxyaryl) alkanes such as 5-dibromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 1, Bis (hydroxyaryl) cycloalkanes such as 1-bis (4-hydroxyphenyl) cyclohexane 4,4'-dihydroxydiphenyl ethers, dihydroxydiaryl ethers such as 4,4'-dihydroxy-3,3'-dimethyldiphenyl ethers, 4 , 4'-Dihydroxydiphenylsulfide, 4,4'-dihydroxy-3,3'-Dihydroxydiarylsulfides such as dimethyldiphenylsulfide, 4,4'-dihydroxydiphenylsulfoxide, 4,4'-dihydroxy-3,3 Examples thereof include dihydroxydiaryl sulfoxides such as'-dimethyldiphenyl sulfoxide, dihydroxydiaryl sulfone such as 4,4'-dihydroxydiphenyl sulfone, and 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone. Further, piperazine, dipiperidyl hydroquinone, resorcin, and 4,4'-dihydroxydiphenyls may be mixed and used.

前記カーボネート前駆体は、例えば、例えば、ホスゲン、ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類、ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類等が挙げられる。 Examples of the carbonate precursor include diaryl carbonates such as phosgene, diphenyl carbonate and ditril carbonate, and dialkyl carbonates such as dimethyl carbonate and diethyl carbonate.

ポリカーボネート樹脂の粘度平均分子量は、15,000〜30,000が好ましく、16,000〜27,000がより好ましい。なお、本明細書における粘度平均分子量は、溶媒としてメチレンクロライドを用い、温度25℃で測定された溶液粘度より換算される値である。 The viscosity average molecular weight of the polycarbonate resin is preferably 15,000 to 30,000, more preferably 16,000 to 27,000. The viscosity average molecular weight in the present specification is a value converted from the solution viscosity measured at a temperature of 25 ° C. using methylene chloride as a solvent.

ポリカーボネート樹脂の市販品は、例えば、ユーピロンH−4000(三菱エンジニアリングプラスチック社製、粘度平均分子量16,000)ユーピロンS−3000(三菱エンジニアリングプラスチック社製、粘度平均分子量23,000)、ユーピロンE−2000(三菱エンジニアリングプラスチック社製、粘度平均分子量27,000)等が挙げられる。 Commercially available polycarbonate resin products include, for example, Iupiron H-4000 (manufactured by Mitsubishi Engineering Plastics, viscosity average molecular weight 16,000), Iupiron S-3000 (manufactured by Mitsubishi Engineering Plastics, viscosity average molecular weight 23,000), and Iupiron E-2000. (Manufactured by Mitsubishi Engineering Plastics Co., Ltd., viscosity average molecular weight 27,000) and the like.

(シクロオレフィン樹脂)
シクロオレフィン樹脂は、主鎖および又は側鎖に脂環構造を有する非晶性樹脂である。脂環構造の種類は、例えば、例えば、ノルボルネン重合体、単環の環状オレフィン重合体、環状共役ジエン重合体、およびビニル脂環式炭化水素重合体、ならびにこれらの水素化物等が挙げられる。これらの中でも成形性と透明性に優れることから、ノルボルネン重合体が好ましい。ノルボルネン単量体は、例えば、例えば、ビシクロ[2.2.1]ヘプト−2−エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ−3,7−ジエン(慣用名:ジシクロペンタジエン)、7,8−ベンゾトリシクロ[4.3.0.12,5]デカ−3−エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン(慣用名:テトラシクロドデセン)等が挙げられる。
シクロオレフィン樹脂の市販品は、例えば、トパス(ポリプラスチックス社製)、アペル(三井化学社製)が挙げられる。
(Cycloolefin resin)
The cycloolefin resin is an amorphous resin having an alicyclic structure in the main chain and / or the side chain. Examples of the type of alicyclic structure include norbornene polymer, monocyclic cyclic olefin polymer, cyclic conjugated diene polymer, vinyl alicyclic hydrocarbon polymer, and hydrides thereof. Among these, the norbornene polymer is preferable because it is excellent in moldability and transparency. Norbornene monomers include, for example, bicyclo [2.2.1] hept-2-ene (trivial name: norbornene), tricyclo [4.3.0.12.5] deca-3,7-diene (common name: norbornene). Trivial name: dicyclopentadiene), 7,8-benzotricyclo [4.3.0.12.5] deca-3-ene (trivial name: metanotetrahydrofluorene), tetracyclo [4.4.0.12 5.17, 10] Dodeca-3-ene (trivial name: tetracyclopentadiene) and the like can be mentioned.
Examples of commercially available cycloolefin resins include Topas (manufactured by Polyplastics) and Appel (manufactured by Mitsui Chemicals).

(ポリエーテルイミド樹脂)
ポリエーテルイミド樹脂は、ガラス転移温度が180℃超の非晶性樹脂であり、透明性良好で高強度、高耐熱性、高弾性率および広範な耐薬品性を有している。そのため自動車、遠隔通信、航空宇宙、電気/電子、輸送およびヘルスケアなどの多様な用途で広範に使用されている。
ポリエーテルイミド樹脂の製造プロセスの1つは、ビスフェノールA二ナトリウム塩(BPA・Na)などのジヒドロキシ芳香族化合物のアルカリ金属塩とビス(ハロフタルイミド)との重合によるものである。得られたポリエーテルイミド樹脂の分子量は2つの方法で制御できる。第1の方法は、ジヒドロキシ芳香族化合物のアルカリ金属塩に対して、モル過剰のビス(ハロフタルイミド)を使用することである。第2の方法は、末端キャッピング剤を形成する無水フタル酸などの単官能性化合物の存在下でビス(無水ハロフタル酸)を調製することである。無水フタル酸は、有機ジアミンの一部と反応してモノハロ−ビス(フタルイミド)を形成する。モノハロ−ビス(フタルイミド)は、成長中のポリマー鎖におけるフェノキシド末端基との反応による重合ステップにおいて、末端キャッピング剤として働く。
ポリエーテルイミド樹脂の市販品は、ULTEM(サウジ基礎産業公社製)が挙げられる。
(Polyetherimide resin)
The polyetherimide resin is an amorphous resin having a glass transition temperature of more than 180 ° C., has good transparency, high strength, high heat resistance, high elastic modulus, and a wide range of chemical resistance. Therefore, it is widely used in various applications such as automobiles, telecommunications, aerospace, electrical / electronic, transportation and healthcare.
One of the processes for producing a polyetherimide resin is a polymerization of an alkali metal salt of a dihydroxyaromatic compound such as bisphenol A disodium salt (BPA · Na 2) and bis (halophthalimide). The molecular weight of the obtained polyetherimide resin can be controlled by two methods. The first method is to use a molar excess of bis (halophthalimide) with respect to the alkali metal salt of the dihydroxyaromatic compound. The second method is to prepare bis (phthalic anhydride) in the presence of a monofunctional compound such as phthalic anhydride that forms the terminal capping agent. Phthalic anhydride reacts with some of the organic diamines to form monohalo-bis (phthalimide). Monohalo-bis (phthalimide) acts as a terminal capping agent in the polymerization step by reaction with phenoxide end groups in the growing polymer chain.
Examples of commercially available polyetherimide resins include ULTEM (manufactured by Saudi Basic Industry Corporation).

熱可塑性樹脂は、融点が100〜500℃の結晶性樹脂、もしくはガラス転移温度が60〜300℃の非晶性樹脂が好ましい。なお、融点、ガラス転移温度ともに、示差走査熱量計や熱重量示差熱分析装置等で測定できる。 The thermoplastic resin is preferably a crystalline resin having a melting point of 100 to 500 ° C. or an amorphous resin having a glass transition temperature of 60 to 300 ° C. Both the melting point and the glass transition temperature can be measured with a differential scanning calorimeter, a thermogravimetric differential thermal analyzer, or the like.

近赤外線吸収性組成物は、近赤外線吸収顔料、および熱可塑性樹脂以外に添加剤を含有できる。添加剤は、例えば、紫外線吸収剤、光安定剤、酸化防止剤、着色剤、分散剤等が挙げられる。これらの添加剤は、成形体用途において公知の化合物である。 The near-infrared absorbing composition may contain additives in addition to the near-infrared absorbing pigment and the thermoplastic resin. Examples of the additive include an ultraviolet absorber, a light stabilizer, an antioxidant, a colorant, a dispersant and the like. These additives are compounds known in molded article applications.

紫外線吸収剤は、成形品に紫外線耐性を付与するために使用する。紫外線吸収剤は、例えばベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸エステル系などが挙げられる。紫外線吸収剤の含有量は、組成物100質量%中に0.01〜5質量%が好ましい。 UV absorbers are used to impart UV resistance to articles. Examples of the ultraviolet absorber include benzophenone type, benzotriazole type, triazine type, salicylic acid ester type and the like. The content of the ultraviolet absorber is preferably 0.01 to 5% by mass in 100% by mass of the composition.

光安定剤は、成形品に紫外線耐性を付与するために使用し、紫外線吸収剤と併用することが好ましい。光安定剤は、例えば、ヒンダードアミン光安定剤が好ましい。光安定剤の含有量は、組成物100質量%中に0.01〜5質量%が好ましい。 The light stabilizer is used to impart UV resistance to the molded product, and is preferably used in combination with the UV absorber. As the light stabilizer, for example, a hindered amine light stabilizer is preferable. The content of the light stabilizer is preferably 0.01 to 5% by mass in 100% by mass of the composition.

酸化防止剤は、成形品が自然光又は人口光源を浴びて高温になるときに、成形体の劣化を低減するために使用する。酸化防止剤は、例えばモノフェノール系、ビスフェノール系、高分子型フェノール系、硫黄系、燐酸系などが好ましい。酸化防止剤の含有量は、組成物100質量%中に0.01〜5質量%が好ましい。 Antioxidants are used to reduce the deterioration of an article when the article is exposed to natural light or an artificial light source and becomes hot. As the antioxidant, for example, monophenol type, bisphenol type, polymer type phenol type, sulfur type, phosphoric acid type and the like are preferable. The content of the antioxidant is preferably 0.01 to 5% by mass in 100% by mass of the composition.

分散剤は、成形品に近赤外線吸収顔料をより均一に分散させるために使用する。分散剤は、例えば、ポリオレフィンワックス、脂肪酸ワックス、脂肪酸エステルワックス、部分ケン化脂肪酸エステルワックス、ケン化脂肪酸ワックスなどが好ましい。分散剤の含有量は、近赤外線吸収顔料100質量部に対して、50〜250質量部が好ましい。 Dispersants are used to more evenly disperse the near-infrared absorbing pigment in the molded article. As the dispersant, for example, polyolefin wax, fatty acid wax, fatty acid ester wax, partially saponified fatty acid ester wax, saponified fatty acid wax and the like are preferable. The content of the dispersant is preferably 50 to 250 parts by mass with respect to 100 parts by mass of the near-infrared absorbing pigment.

(近赤外線吸収性組成物の作製)
近赤外線吸収性組成物は、近赤外線吸収顔料、および熱可塑性樹脂を、溶融混錬することでの製造できる。溶融混錬温度は樹脂によって異なるが、230℃以上が好ましく、270℃以上がより好ましい。なお、溶融混錬後、冷却することが好ましい。溶融混錬温度の上限は、熱可塑性樹脂の種類により異なるため限定されない。前記上限は、強いてあげれば500℃以下が好ましく、450℃以下がより好ましい。また、前記上限は、本発明の近赤外線吸収顔料の昇華温度未満、または分解温度未満である必要がある。
(Preparation of near-infrared absorbing composition)
The near-infrared absorbing composition can be produced by melt-kneading a near-infrared absorbing pigment and a thermoplastic resin. The melt-kneading temperature varies depending on the resin, but is preferably 230 ° C. or higher, more preferably 270 ° C. or higher. It is preferable to cool after melt-kneading. The upper limit of the melt kneading temperature is not limited because it differs depending on the type of the thermoplastic resin. The upper limit is preferably 500 ° C. or lower, more preferably 450 ° C. or lower. Further, the upper limit needs to be lower than the sublimation temperature or the decomposition temperature of the near-infrared absorbing pigment of the present invention.

溶融混錬装置は、例えば、例えば、単軸混練押出機、二軸混練押出機、タンデム式二軸混練押出機等が挙げられる。 Examples of the melt kneading apparatus include a single-screw kneading extruder, a twin-screw kneading extruder, a tandem twin-screw kneading extruder, and the like.

樹脂組成物は、いわゆるマスターバッチとして作製することが好ましい。マスターバッチを作製し、次いで、希釈樹脂(熱可塑性樹脂)とともに溶融混錬して成形体を作製すると、マスターバッチを経ず作製した成形体と比較して、本発明の近赤外線吸収顔料を成形体中に均一に分散し易く、該近赤外線吸収顔料の凝集を抑制できる。これにより成形体の透明性が向上する。マスターバッチの作製は、前記溶融混錬後にペレタイザーを使用してペレット状に成形することが好ましい。
マスターバッチとして作製する場合、近赤外線吸収顔料の含有量は、組成物100質量%中に0.01〜20質量%が好ましく、0.05〜2質量%がより好ましい。
The resin composition is preferably prepared as a so-called masterbatch. When a masterbatch is produced and then melt-kneaded together with a diluted resin (thermoplastic resin) to produce a molded product, the near-infrared absorbing pigment of the present invention is molded as compared with a molded product produced without undergoing a masterbatch. It is easy to disperse uniformly throughout the body and can suppress the aggregation of the near-infrared absorbing pigment. This improves the transparency of the molded product. The masterbatch is preferably formed into pellets using a pelletizer after the melt kneading.
When produced as a masterbatch, the content of the near-infrared absorbing pigment is preferably 0.01 to 20% by mass, more preferably 0.05 to 2% by mass in 100% by mass of the composition.

本明細書の成形体は、近赤外線吸収性組成物を成形して作製する。近赤外線吸収性組成物を、そのまま成形して成形体を作製できる。また、近赤外線吸収性組成物がマスターバッチである場合、希釈樹脂(熱可塑性樹脂)とともに溶融混錬し、次いで成形することで成形体を作製できる。マスターバッチ(X)と希釈樹脂(Y)との質量比は、X/Y=1/5〜1/500が好ましい。この範囲にすると成形体は、良好な光特性が得やすい。 The molded product of the present specification is produced by molding a near-infrared absorbing composition. The near-infrared absorbing composition can be molded as it is to prepare a molded product. When the near-infrared absorbing composition is a masterbatch, a molded product can be produced by melt-kneading with a diluted resin (thermoplastic resin) and then molding. The mass ratio of the masterbatch (X) to the diluted resin (Y) is preferably X / Y = 1/5 to 1/500. Within this range, the molded product can easily obtain good optical characteristics.

<近赤外線吸収性組成物の用途>
塗工用途、および成形用途の近赤外線吸収性組成物は、例えば以下の用途に使用できる。
(熱線吸収材)
近赤外線吸収性組成物は、熱線吸収材として使用できる。太陽光には、波長700〜2000nmの近赤外線が含まれており、その中でも特に700〜1000nmの近赤外線の強度が強い。近赤外線は物質の温度を上昇させる性質があり、熱線と言われている。その中でも、特に強度の強い700〜1000nmの近赤外線を吸収し遮断することで、物質の温度上昇を抑えることができる。
建物や車の窓に、近赤外線吸収性組成物から形成した被膜またはフィルムを配置すると太陽光による部屋や車内の温度上昇を抑える効果がある。また、農業用のビニールハウスなどにも上記のフィルムが使用でき、ビニールハウス内の温度上昇を抑える効果がある。また、保護めがね、眼鏡、サングラスについても同様であり、熱線を遮断する効果で使用できる。
<Use of near-infrared absorbing composition>
Near-infrared absorbing compositions for coating and molding applications can be used, for example, for the following applications.
(Heat ray absorber)
The near-infrared absorbing composition can be used as a heat ray absorbing material. Sunlight contains near-infrared rays having a wavelength of 700 to 2000 nm, and among them, the intensity of near-infrared rays having a wavelength of 700 to 1000 nm is particularly strong. Near infrared rays have the property of raising the temperature of a substance and are called heat rays. Among them, by absorbing and blocking near infrared rays having a particularly strong intensity of 700 to 1000 nm, it is possible to suppress an increase in the temperature of the substance.
Placing a film or film formed from a near-infrared absorbing composition on the windows of a building or car has the effect of suppressing the temperature rise inside the room or car due to sunlight. In addition, the above film can be used in agricultural greenhouses and the like, and has the effect of suppressing the temperature rise inside the greenhouse. The same applies to protective goggles, eyeglasses, and sunglasses, which can be used to block heat rays.

(光記録媒体)
近赤外線吸収性組成物は、光記録媒体として使用できる。近赤外線吸収性組成物から形成した被膜または成形体に近赤外線を照射すると、色素の結晶状態が変化し、被膜または成形体の屈折率が変わる。この原理は、光ディスクなどの記録媒体に用いられている。
(Optical recording medium)
The near-infrared absorbing composition can be used as an optical recording medium. When the film or molded body formed from the near-infrared absorbing composition is irradiated with near-infrared rays, the crystal state of the dye changes and the refractive index of the film or molded body changes. This principle is used in recording media such as optical discs.

(レーザー溶着材・レーザーマーキング材)
近赤外線吸収性組成物は、レーザー溶着材またはレーザーマーキング材として使用できる。
近赤外線吸収性組成物から形成した被膜または成形体に、近赤外線吸収顔料が吸収する波長のレーザーを照射すると、色素がレーザー光を吸収し発熱することで熱可塑性樹脂が溶融・炭化する。溶融する場合に、他の樹脂と溶着させることができ、この原理を用いたのがレーザー溶着である。また、炭化して黒くなることを用いたのが、レーザーマーキングである。
レーザー溶着の場合、通常はカーボン等を含有させて溶着を行うが、近赤外線吸収顔料の場合、近赤外線のレーザーを照射することで、近赤外線吸収顔料が発熱し、熱可塑性樹脂同士が溶着する。レーザーマーキングも同様に、近赤外線吸収顔料が発熱し、熱可塑性樹脂が溶融・炭化することでマーキングできる。
(Laser welding material / laser marking material)
The near-infrared absorbing composition can be used as a laser welding material or a laser marking material.
When a film or molded body formed from a near-infrared absorbing composition is irradiated with a laser having a wavelength absorbed by a near-infrared absorbing pigment, the dye absorbs the laser beam and generates heat, so that the thermoplastic resin melts and carbonizes. When it melts, it can be welded to other resins, and laser welding uses this principle. Laser marking uses carbonization to turn black.
In the case of laser welding, carbon or the like is usually included in the welding, but in the case of a near-infrared absorbing pigment, the near-infrared absorbing pigment generates heat and the thermoplastic resins are welded to each other by irradiating the near-infrared laser. .. Similarly, laser marking can be performed by generating heat from the near-infrared absorbing pigment and melting and carbonizing the thermoplastic resin.

(光学フィルタ)
近赤外線吸収性組成物は、光学フィルタとして使用できる。例えば、デジタルカメラは、撮像する際に受光する光を赤、緑、青のフィルタで分解し、光を電気信号に変えるフォトダイオードに送ることで、色を認識する。しかしながら、フォトダイオードは近赤外線にも反応して電気信号に変えてしまうので、これを遮断するフィルタが必要である。近赤外線吸収性組成物から形成した被膜または成形体は、この近赤外線を遮断するフィルタとして使用できる。近赤外線を遮断するフィルタは、可視領域に吸収が少ないことが重要である。可視領域に吸収が多いと受光する光に色がついてしまい、フォトダイオードの色の認識に悪影響が出る。本発明の近赤外線吸収顔料は可視領域に吸収が少なく不可視性が高いため、フォトダイオードの色の認識に対する悪影響が少ない。
(Optical filter)
The near-infrared absorbing composition can be used as an optical filter. For example, a digital camera recognizes colors by decomposing the light received during imaging with red, green, and blue filters and sending it to a photodiode that converts the light into an electrical signal. However, the photodiode also reacts with near infrared rays and converts it into an electric signal, so a filter that blocks this is required. A coating or molded product formed from the near-infrared absorbing composition can be used as a filter that blocks the near-infrared rays. It is important that the filter that blocks near infrared rays absorbs little in the visible region. If there is a lot of absorption in the visible region, the received light will be colored, which will adversely affect the color recognition of the photodiode. Since the near-infrared absorbing pigment of the present invention absorbs little in the visible region and has high invisibility, it has little adverse effect on the color recognition of the photodiode.

(生体認証センサー)
近赤外線吸収性組成物は、生体認証(指紋認証や静脈認証)用のセンサー、あるいはそのセンサーが組み込まれたタッチセンサー、タッチパネルに使用できる。
例えば、スマートフォン、タブレットパソコン等、他には銀行ATM、マルチメディア端末等にはセキュリティ保護のため指紋認証、手指静脈認証等の生体認証機能が搭載されている。特にスマートフォン、タブレットパソコンに用いる指紋認証技術の発展は目まぐるしく、フォトダイオードが無機系から有機系に代わるのに伴い、認証範囲が画面サイズに増大(フルスクリーン化)し、有機ELディスプレイ、液晶ディスプレイ等にディスプレイ内蔵型指紋認証センサーが開発されている。
しかし、ディスプレイ内蔵型指紋センサーはディスプレイ内に設置された各種光源を指紋に照射して、その反射光をセンシングするという光学方式が多いため、外部の不正な光(太陽光やLED照明のような広範囲の波長を持ち、且つ、強い光)がセンサーに入射されると、撮像時のノイズになる問題があり、屋外での使用には精度面でやや不安が残る。銀行ATM、マルチメディア端末用途での手指静脈認証も同様で、照明の強い店舗や陽当たりのいい店舗では外光カットのためにカバーを被せる等の対策とられている。
本発明の近赤外線吸収性組成物を使用した被膜や成形体は、外部の不正な光のセンサーへの入射を吸収、防ぎこれらの課題に対し効果がある。
例えばスマートフォン、タブレットパソコンに使用する場合、パネル前面にセットする場合、意匠性も兼ね備える必要があるが、本発明の塗工用近赤外線吸収性組成物を用いた材料、塗工して得た塗膜、もしくは成形用近赤外線吸収性組成物を用いて得た成形品においては、可視領域に吸収がなく不可視性、即ち透明性が高いため好適に使用できる利点がある。また、本発明の近赤外線吸収性組成物は耐熱性に優れているため、センサー、あるいはそのセンサーが組み込まれたタッチセンサー、タッチパネルを製造する上での工程面においても好ましく使用できる。
また、生体認証用途でノイズとなる外光は、生体を透過する650nm〜1000nmの光であり、特に650nm〜800nmの光は生活空間に溢れているため、この波長領域の光をカットすることが生体認証の精度をより高める。青色色素や緑色色素は可視光の領域である650nm〜700nmにも吸収がある場合が多く、青色色素や緑色色素と近赤外線吸収顔料を組み合わせることで、不可視性は低下するが生体認証の精度をより高めることができる。
(Biometric sensor)
The near-infrared absorbing composition can be used for a sensor for biometric authentication (fingerprint authentication or vein authentication), or a touch sensor or touch panel incorporating the sensor.
For example, smartphones, tablet PCs, etc., as well as bank ATMs, multimedia terminals, etc., are equipped with biometric authentication functions such as fingerprint authentication and finger vein authentication for security protection. In particular, the development of fingerprint authentication technology used for smartphones and tablet PCs is rapid, and as photodiodes change from inorganic to organic, the authentication range has increased to screen size (full screen), and organic EL displays, liquid crystal displays, etc. A fingerprint authentication sensor with a built-in display has been developed.
However, since many fingerprint sensors with a built-in display irradiate the fingerprint with various light sources installed in the display and sense the reflected light, illegal external light (such as sunlight or LED lighting) is used. When the sensor has a wide range of wavelengths and strong light) is incident on the sensor, there is a problem that it becomes noise at the time of imaging, and there remains some concern in terms of accuracy when using it outdoors. The same applies to finger vein recognition for bank ATMs and multimedia terminals, and measures such as covering the stores with strong lighting and sunny stores to block outside light are taken.
The coating film or molded product using the near-infrared absorbing composition of the present invention is effective in solving these problems by absorbing and preventing the incident of illegal external light on the sensor.
For example, when used for smartphones and tablet PCs, when set on the front surface of the panel, it is necessary to have designability as well, but a material using the near-infrared absorbing composition for coating of the present invention, a coating obtained by coating. A molded product obtained by using a film or a near-infrared absorbing composition for molding has an advantage that it can be suitably used because it has no absorption in the visible region and is invisible, that is, has high transparency. Further, since the near-infrared absorbing composition of the present invention has excellent heat resistance, it can be preferably used in terms of a process for manufacturing a sensor, a touch sensor incorporating the sensor, and a touch panel.
Further, the external light that becomes noise in biometric authentication applications is light of 650 nm to 1000 nm that passes through the living body, and in particular, light of 650 nm to 800 nm overflows in the living space, so that light in this wavelength region can be cut. Increase the accuracy of biometric authentication. Blue pigments and green pigments often absorb in the visible light region of 650 nm to 700 nm, and by combining blue pigments and green pigments with near-infrared absorbing pigments, invisibility is reduced, but the accuracy of biometric authentication is improved. Can be enhanced.

青色色素は、例えば、C.I.ピグメントブルー15:6、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:1等が挙げられる。緑色色素は、例えば、C.I.ピグメントグリーン36、C.I.ピグメントグリーン58、C.I.ピグメントグリーン62、C.I.ピグメントグリーン63が挙げられる。なお、C.I.は、カラーインデックス(C.I.)を意味する。 The blue pigment is, for example, C.I. I. Pigment Blue 15: 6, C.I. I. Pigment Blue 15: 3, C.I. I. Pigment blue 15: 1 and the like. The green pigment is, for example, C.I. I. Pigment Green 36, C.I. I. Pigment Green 58, C.I. I. Pigment Green 62, C.I. I. Pigment Green 63 can be mentioned. In addition, C.I. I. Means the color index (CI).

(ディスプレイ)
近赤外線吸収性組成物から形成した被膜または成形体は、ディスプレイに組み込むこともできる。具体的には、電子黒板のようなタッチパネル機能付き液晶ディスプレイが挙げられる。このタッチパネル機能付き液晶ディスプレイは、表示・書き込み・保存の3つの機能が備わっており、これに内蔵されるタッチパネルにおいても、赤外性走査方式や赤外線投影方式などの光学方式が採用されており、前述した外光によるノイズが問題であった。タッチパネル機能付き液晶ディスプレイは、学校等での用途も多いため精度およびタッチに対する反応の良さは重要である。本発明の塗工用近赤外線吸収性組成物を塗工して得た塗膜、もしくは成形用近赤外線吸収性組成物を用いて得た成形品をディスプレイに組み込むことでノイズとなる外光をカットできるため好ましいものである。
また、前記被膜または前記成形体は、液晶や有機EL、Mini−LED、Micro−LEDを用いた各種ディスプレイの反射防止膜としても好ましく使用できる。可視光のみならず近赤外領域の光の反射も抑えることによって、ディスプレイでの黒表示がより黒くできるメリットがある。本発明の近赤外線吸収性組成物は耐熱性に優れているため、ディスプレイ製造において必要とされる工程の耐性についても好ましく使用できる。
(display)
A coating or molded product formed from the near-infrared absorbing composition can also be incorporated into the display. Specifically, a liquid crystal display with a touch panel function such as an electronic blackboard can be mentioned. This liquid crystal display with a touch panel function has three functions of display, writing, and saving, and the built-in touch panel also employs optical methods such as infrared scanning method and infrared projection method. The above-mentioned noise due to external light was a problem. Liquid crystal displays with a touch panel function are often used in schools, etc., so accuracy and good response to touch are important. By incorporating a coating film obtained by coating the near-infrared absorbing composition for coating of the present invention or a molded product obtained by using the near-infrared absorbing composition for molding into a display, external light that becomes noise is emitted. It is preferable because it can be cut.
Further, the coating film or the molded product can be preferably used as an antireflection film for various displays using a liquid crystal, an organic EL, a Mini-LED, or a Micro-LED. By suppressing the reflection of not only visible light but also light in the near infrared region, there is an advantage that the black display on the display can be made blacker. Since the near-infrared absorbing composition of the present invention has excellent heat resistance, it can also be preferably used for resistance to processes required in display manufacturing.

(近赤外線透過フィルタ)
波長850nmや870nm、900nm、940nm等の波長のLEDが普及し、自動運転における距離測定や生体認証(指紋認証、虹彩認証、顔認証、静脈認証等、または、それらの併用)、さまざまなセンサーにおける光検出に使用されている。しかし、大気中には紫外線、可視光、近赤外線等あらゆる波長の光線が存在するため、検出する波長の光以外を遮断するフィルタが必要になる。そのため700〜1000nmの光を吸収する近赤外線吸収顔料と可視光を吸収する色素、紫外線吸収剤等と組み合わせることにより、近赤外線吸収顔料の吸収波長より長波長の光のみ透過させ、それより短波長の光は遮断させることができる。具体的に、近赤外線吸収顔料に青色色素と黄色色素、赤色もしくは紫
色の色素を組合せるのが好ましい。 塗工用途で、青色色素はC.I.ピグメントブルー
15:3もしくはC.I.ピグメントブルー15:6、黄色色素はC.I.ピグメントイエロー139、赤色色素はC.I.ピグメントレッド254、C.I.アシッドレッド5
2もしくはC.I.アシッドレッド289、紫色色素はC.I.ピグメントバイオレット23を用いることが好ましい。また成形用途で、青色顔料はC.I.ピグメントブルー15:3もしくはC.I.ピグメントブルー15:6、黄色色素はC.I.ピグメントイエロー147、赤色色素はC.I.ソルベントレッド52が好ましい。
(Near infrared transmission filter)
LEDs with wavelengths of 850 nm, 870 nm, 900 nm, 940 nm, etc. have become widespread, and in various sensors such as distance measurement and biometric authentication (fingerprint authentication, iris recognition, face recognition, vein recognition, etc., or a combination thereof) in automatic driving. Used for light detection. However, since light rays of all wavelengths such as ultraviolet rays, visible light, and near infrared rays exist in the atmosphere, a filter that blocks light other than the light of the wavelength to be detected is required. Therefore, by combining a near-infrared absorbing pigment that absorbs light of 700 to 1000 nm with a dye that absorbs visible light, an ultraviolet absorber, etc., only light having a wavelength longer than the absorption wavelength of the near-infrared absorbing pigment is transmitted, and a wavelength shorter than that is transmitted. Light can be blocked. Specifically, it is preferable to combine the near-infrared absorbing pigment with a blue pigment, a yellow pigment, and a red or purple pigment. For coating applications, the blue pigment is C.I. I. Pigment Blue 15: 3 or C.I. I. Pigment blue 15: 6, yellow pigment is C.I. I. Pigment Yellow 139, red pigment is C.I. I. Pigment Red 254, C.I. I. Acid Red 5
2 or C.I. I. Acid Red 289, purple pigment is C.I. I. Pigment Violet 23 is preferably used. For molding applications, the blue pigment is C.I. I. Pigment Blue 15: 3 or C.I. I. Pigment blue 15: 6, yellow pigment is C.I. I. Pigment Yellow 147, red pigment is C.I. I. Solvent red 52 is preferred.

なお、上述したように、近赤外線吸収性組成物を使用した光学フィルタには、近赤外線カットフィルタ及び近赤外線透過フィルタがある。近赤外線カットフィルタは、おもに近赤外線吸収色素により構成され、近赤外線を遮断し可視光を透過させる役割を持つ。一方、近赤外線透過フィルタは、近赤外線吸収色素の他に可視光を吸収する青色、赤色、黄色などの色素により構成し、可視光と該近赤外線吸収色素が吸収する波長領域の近赤外線を遮断し、さらにそれより長波長の近赤外線を透過させる役割を持つ。 As described above, the optical filter using the near-infrared absorbing composition includes a near-infrared cut filter and a near-infrared transmitting filter. The near-infrared cut filter is mainly composed of a near-infrared absorbing dye, and has a role of blocking near-infrared rays and transmitting visible light. On the other hand, the near-infrared transmitting filter is composed of dyes such as blue, red, and yellow that absorb visible light in addition to the near-infrared absorbing dye, and blocks visible light and near-infrared rays in the wavelength range absorbed by the near-infrared absorbing dye. In addition, it has the role of transmitting near-infrared rays with longer wavelengths.

以下、実施例により本発明をより具体的に説明するが、以下の実施例に限定されるものではない。なお、「部」は「質量部」、「%」は「質量%」を意味する。表中の配合量は質量部である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. In addition, "part" means "part by mass", and "%" means "mass%". The blending amount in the table is a mass part.

実施例において「PGMAc」はプロピレングリコールモノメチルエーテルアセテートを、「アロニックスM−402」)はジペンタエリスリトールヘキサアクリレートを、「OXE−02」)はエタノン,1−[9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル]−,1−(0−アセチルオキシム)を意味する。 In the examples, "PGMAc" is propylene glycol monomethyl ether acetate, "Aronix M-402") is dipentaerythritol hexaacrylate, "OXE-02") is etanone, 1- [9-ethyl-6- (2-). Methylbenzoyl) -9H-carbazole-3-yl]-, 1- (0-acetyloxime).

(近赤外線吸収顔料の同定方法)
本発明に用いた近赤外線吸収顔料の同定には、MALDI TOF−MSスペクトルを用いた。MALDI TOF−MSスペクトルは、ブルカー・ダルトニクス社製MALDI質量分析装置autoflexIIIを用い、得られたマススペクトラムの分子イオンピ
ークと、計算によって得られる質量数との一致をもって、得られた化合物の同定を行った。
(Method of identifying near-infrared absorbing pigment)
The MALDI TOF-MS spectrum was used to identify the near-infrared absorbing pigment used in the present invention. For the MALDI TOF-MS spectrum, the obtained compound was identified by matching the molecular ion peak of the obtained mass spectrum with the mass number obtained by calculation using the MALDI mass spectrometer autoflex III manufactured by Bruker Daltonics. It was.

(樹脂型分散剤およびバインダ樹脂の酸価)
樹脂型分散剤およびバインダ樹脂の酸価は、0.1Nの水酸化カリウム・エタノール溶液を用い、電位差滴定法によって求めた。樹脂および樹脂型分散剤の酸価は、不揮発分の酸価を示す。
(Acid value of resin type dispersant and binder resin)
The acid value of the resin type dispersant and the binder resin was determined by a potentiometric titration method using a 0.1 N potassium hydroxide / ethanol solution. The acid value of the resin and the resin type dispersant indicates the acid value of the non-volatile component.

(樹脂型分散剤およびバインダ樹脂の重量平均分子量(Mw))
樹脂型分散剤およびバインダ樹脂の重量平均分子量(Mw)は、TSKgelカラム(東ソー社製)を用い、RI検出器を装備したGPC(東ソー社製、HLC−8120GPC)で、展開溶媒にTHFを用いて測定したポリスチレン換算の重量平均分子量(Mw)である。
(Weight average molecular weight (Mw) of resin-type dispersant and binder resin)
The weight average molecular weight (Mw) of the resin type dispersant and the binder resin is a TSKgel column (manufactured by Tosoh Corporation), a GPC equipped with an RI detector (manufactured by Tosoh Corporation, HLC-8120 GPC), and THF is used as a developing solvent. It is the polystyrene-equivalent weight average molecular weight (Mw) measured in the above.

(樹脂型分散剤のアミン価)
樹脂型分散剤のアミン価は、0.1Nの塩酸水溶液を用い、電位差滴定法によって求めた後、水酸化カリウムの当量に換算した。樹脂型分散剤のアミン価は、不揮発分のアミン価を示す。
(Amine value of resin type dispersant)
The amine value of the resin-type dispersant was determined by the potentiometric titration method using a 0.1 N aqueous hydrochloric acid solution, and then converted to the equivalent of potassium hydroxide. The amine value of the resin type dispersant indicates the amine value of the non-volatile component.

(樹脂型分散剤の4級アンモニウム塩価)
樹脂型分散剤の4級アンモニウム塩価は、5%クロム酸カリウム水溶液を指示薬として、0.1Nの硝酸銀水溶液で滴定して求めた後、水酸化カリウムの当量に換算した。下記樹脂型分散剤の4級アンモニウム塩価は、不揮発分の4級アンモニウム塩価を示す。
(Quaternary ammonium salt value of resin type dispersant)
The quaternary ammonium salt value of the resin-type dispersant was determined by titrating with a 0.1 N silver nitrate aqueous solution using a 5% potassium chromate aqueous solution as an indicator, and then converted to an equivalent amount of potassium hydroxide. The quaternary ammonium salt value of the resin type dispersant below indicates the quaternary ammonium salt value of the non-volatile component.

<近赤外線吸収顔料の製造方法>
本発明の近赤外線吸収顔料は、顔料の合成、合成して得られた顔料の溶剤処理、溶剤処理した顔料の微細化によって得られる。
<Manufacturing method of near-infrared absorbing pigment>
The near-infrared absorbing pigment of the present invention is obtained by synthesizing a pigment, treating the synthetically obtained pigment with a solvent, and refining the solvent-treated pigment.

(近赤外線吸収顔料(A−1)の合成)
トルエン400部に、1,8−ジアミノナフタレン40.0部、2,6−ジメチルシクロヘキサノン32.2部、p−トルエンスルホン酸一水和物0.087部を混合し、窒素ガスの雰囲気中で加熱攪拌し、3時間還流させた。反応中に生成した水は共沸蒸留により系中から除去した。
反応終了後、トルエンを蒸留して得られた暗茶色固体をアセトンで抽出し、アセトンとエタノールの混合溶媒から再結晶することにより精製した。得られた茶色固体を、トルエン240部とn−ブタノール160部の混合溶媒に溶解させ、3,4−ジヒドロキシ−3−シクロブテン−1,2−ジオン13.8部を加えて、窒素ガスの雰囲気中で加熱撹拌し、
8時間還流反応させた。反応中に生成した水は共沸蒸留により系中から除去した。
反応終了後、溶媒を蒸留し、得られた反応混合物を攪拌しながら、ヘキサン200部を加えた。得られた黒茶色沈殿物を濾別した後、順次ヘキサン、エタノールおよびアセトンで洗浄を行い、減圧下で乾燥させ、近赤外線吸収顔料(A−1)71.9部(収率:97%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収顔料(A−1)であることを同定した。
(Synthesis of near-infrared absorbing pigment (A-1))
400 parts of toluene is mixed with 40.0 parts of 1,8-diaminonaphthalene, 32.2 parts of 2,6-dimethylcyclohexanone, and 0.087 parts of p-toluenesulfonic acid monohydrate in an atmosphere of nitrogen gas. The mixture was heated and stirred and refluxed for 3 hours. The water produced during the reaction was removed from the system by azeotropic distillation.
After completion of the reaction, the dark brown solid obtained by distilling toluene was extracted with acetone and purified by recrystallization from a mixed solvent of acetone and ethanol. The obtained brown solid was dissolved in a mixed solvent of 240 parts of toluene and 160 parts of n-butanol, and 13.8 parts of 3,4-dihydroxy-3-cyclobutene-1,2-dione was added to create an atmosphere of nitrogen gas. Heat and stir in
The reflux reaction was carried out for 8 hours. The water produced during the reaction was removed from the system by azeotropic distillation.
After completion of the reaction, the solvent was distilled and 200 parts of hexane was added while stirring the obtained reaction mixture. The obtained black-brown precipitate was filtered off, washed successively with hexane, ethanol and acetone, dried under reduced pressure, and 71.9 parts of near-infrared absorbing pigment (A-1) (yield: 97%). Got As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing pigment (A-1).

近赤外線吸収顔料(A−1)

Figure 0006857296
Near infrared absorbing pigment (A-1)
Figure 0006857296

(近赤外線吸収顔料(A−2)の合成)
近赤外線吸収顔料(A−1)の合成で使用した2,6−ジメチルシクロヘキサノン32.2部の代わりに、3,5−ジメチルシクロヘキサノン32.2部を使用した以外は、近赤外線吸収顔料(A−1)の合成と同様の操作を行い、近赤外線吸収顔料(A−2)72.6部(収率:98%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収顔料(A−2)であることを同定した。
(Synthesis of near-infrared absorbing pigment (A-2))
Near-infrared absorbing pigment (A) except that 3,5-dimethylcyclohexanone 32.2 parts was used instead of 2,6-dimethylcyclohexanone 32.2 parts used in the synthesis of the near-infrared absorbing pigment (A-1). The same operation as in the synthesis of -1) was carried out to obtain 72.6 parts (yield: 98%) of the near-infrared absorbing pigment (A-2). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing pigment (A-2).

近赤外線吸収顔料(A−2)

Figure 0006857296
Near infrared absorbing pigment (A-2)
Figure 0006857296

(近赤外線吸収顔料(A−3)の合成)
近赤外線吸収顔料(A−1)の合成で使用した2,6−ジメチルシクロヘキサノン32.2部の代わりに、3,5−ジエチルシクロヘキサノン39.4部を使用した以外は、近赤外線吸収顔料(A−1)の合成と同様の操作を行い、近赤外線吸収顔料(A−3)76.9部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収顔料(A−3)であることを同定した。
(Synthesis of near-infrared absorbing pigment (A-3))
Near-infrared absorbing pigment (A) except that 39.4 parts of 3,5-diethylcyclohexanone was used instead of 32.2 parts of 2,6-dimethylcyclohexanone used in the synthesis of the near-infrared absorbing pigment (A-1). The same operation as in the synthesis of -1) was carried out to obtain 76.9 parts (yield: 95%) of the near-infrared absorbing pigment (A-3). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing pigment (A-3).

近赤外線吸収顔料(A−3)

Figure 0006857296
Near infrared absorbing pigment (A-3)
Figure 0006857296

(近赤外線吸収顔料(A−4)の合成)
近赤外線吸収顔料(A−1)の合成で使用した2,6−ジメチルシクロヘキサノン32.2部の代わりに、3,5−ジ(トリフルオロメチル)シクロヘキサノン59.8部を使用した以外は、近赤外線吸収顔料(A−1)の合成と同様の操作を行い、近赤外線吸収顔料(A−4)93.3部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収顔料(A−4)であることを同定した。
(Synthesis of near-infrared absorbing pigment (A-4))
Near-infrared absorbing pigment (A-1), except that 59.8 parts of 3,5-di (trifluoromethyl) cyclohexanone was used instead of 32.2 parts of 2,6-dimethylcyclohexanone used in the synthesis. The same operation as the synthesis of the infrared absorbing pigment (A-1) was carried out to obtain 93.3 parts (yield: 93%) of the near infrared absorbing pigment (A-4). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing pigment (A-4).

近赤外線吸収顔料(A−4)

Figure 0006857296
Near infrared absorbing pigment (A-4)
Figure 0006857296

(近赤外線吸収顔料(A−5)の合成)
近赤外線吸収顔料(A−1)の合成で使用した2,6−ジメチルシクロヘキサノン32.2部の代わりに、2,6−ジ(トリフルオロメトキシ)シクロヘキサノン68.0部を使用した以外は、近赤外線吸収顔料(A−1)の合成と同様の操作を行い、近赤外線吸収顔料(A−5)100.5部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収顔料(A−5)であることを同定した。
(Synthesis of near-infrared absorbing pigment (A-5))
Near infrared absorbing pigment (A-1), except that 68.0 parts of 2,6-di (trifluoromethoxy) cyclohexanone was used instead of 32.2 parts of 2,6-dimethylcyclohexanone used in the synthesis. The same operation as the synthesis of the infrared absorbing pigment (A-1) was carried out to obtain 100.5 parts (yield: 93%) of the near infrared absorbing pigment (A-5). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing pigment (A-5).

近赤外線吸収顔料(A−5)

Figure 0006857296
Near infrared absorbing pigment (A-5)
Figure 0006857296

(近赤外線吸収顔料(A−6)の合成)
近赤外線吸収顔料(A−1)の合成で使用した2,6−ジメチルシクロヘキサノン32.2部の代わりに、3,5−ジフルオロシクロヘキサノン34.3部を使用した以外は、近赤外線吸収顔料(A−1)の合成と同様の操作を行い、近赤外線吸収顔料(A−6)70.7部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収顔料(A−6)であることを同定した。
(Synthesis of near-infrared absorbing pigment (A-6))
Near-infrared absorbing pigment (A) except that 34.3 parts of 3,5-difluorocyclohexanone was used instead of 32.2 parts of 2,6-dimethylcyclohexanone used in the synthesis of near-infrared absorbing pigment (A-1). The same operation as in the synthesis of -1) was carried out to obtain 70.7 parts (yield: 93%) of the near-infrared absorbing pigment (A-6). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing pigment (A-6).

近赤外線吸収顔料(A−6)

Figure 0006857296
Near infrared absorbing pigment (A-6)
Figure 0006857296

<近赤外線吸収顔料の製造>
(実施例1)
(溶剤処理工程)
近赤外線吸収顔料(A−1)50部をN−メチルピロリドン250部に混合し、23℃で24時間攪拌した。その後、濾過を行い、メタノール150部で洗浄した後に取り出し、80℃で一昼夜乾燥させ、粉体25部を得た。
(微細化工程)
得られた粉体10部、塩化ナトリウム100部、エチレングリコール12.5部をステンレス製ガロンニーダー(井上製作所製)中に仕込み、60℃ で12時間混練した。次に
、混練した混合物を温水に投入し、約80℃ に加熱しながら1 時間攪拌してスラリー状として、濾過および水洗をして食塩およびジエチレングリコールを除いた後、80℃で一昼夜乾燥させ粉砕することにより、9.4部の近赤外線吸収顔料1を得た。
(平均粒子径)
顔料の平均一次粒子径は、電子顕微鏡写真から一次粒子の大きさを直接計測する方法で測定した。具体的には、個々の顔料の一次粒子の短軸径と長軸径を計測し、平均をその顔料粒子の粒径とした。次に、100個以上の顔料粒子について、それぞれの粒子の体積(
重量) を、求めた粒径の立方体と近似して求め、体積平均粒径を平均一次粒子径とした
。なお、電子顕微鏡は透過型(TEM)を用いた。
この方法で測定した結果、平均一次粒子径は50nmであった。
(成分比率)
5.0mgの近赤外線吸収顔料1を100mlのメスフラスコに入れ、HPLC用THFを加えて超音波を30分照射して溶解させ、100mlのTHF溶液を調整した。この溶液を用いて、上記装置及び上記条件により近赤外線吸収顔料1のHPLC測定を行った。
HPLC測定は、移動相としてアセトニトリルと水とを8:2の体積比で混合した混合溶液を用いた条件において逆相系液体クロマトグラフィーにより分析した。
その結果、複数のピークが示された。
具体的には、保持時間が12±1分に現れるピーク(ピーク1)、保持時間が42±1分に現れるピーク(ピーク2)、保持時間が46±2分に現れるピーク(ピーク3)、保持時間が50±2分に現れるピーク(ピーク4)、及び保持時間が57±2分に現れるピーク(ピーク5)によって構成されている。
ピーク5の面積は、ピーク1〜5の面積の合計に対し、70%であった。
<Manufacturing of near-infrared absorbing pigment>
(Example 1)
(Solvent treatment process)
50 parts of the near-infrared absorbing pigment (A-1) was mixed with 250 parts of N-methylpyrrolidone, and the mixture was stirred at 23 ° C. for 24 hours. Then, the mixture was filtered, washed with 150 parts of methanol, taken out, and dried at 80 ° C. for 24 hours to obtain 25 parts of powder.
(Miniaturization process)
10 parts of the obtained powder, 100 parts of sodium chloride, and 12.5 parts of ethylene glycol were charged in a stainless steel gallon kneader (manufactured by Inoue Seisakusho) and kneaded at 60 ° C. for 12 hours. Next, the kneaded mixture is put into warm water, stirred for 1 hour while heating at about 80 ° C. to form a slurry, filtered and washed with water to remove salt and diethylene glycol, and then dried at 80 ° C. for 24 hours and pulverized. As a result, 9.4 parts of the near-infrared absorbing pigment 1 was obtained.
(Average particle size)
The average primary particle size of the pigment was measured by a method of directly measuring the size of the primary particles from an electron micrograph. Specifically, the minor axis diameter and the major axis diameter of the primary particles of each pigment were measured, and the average was taken as the particle size of the pigment particles. Next, for 100 or more pigment particles, the volume of each particle (
Weight) was calculated by approximating a cube with the obtained particle size, and the volume average particle size was taken as the average primary particle size. A transmission type (TEM) was used as the electron microscope.
As a result of measurement by this method, the average primary particle size was 50 nm.
(Component ratio)
5.0 mg of near-infrared absorbing pigment 1 was placed in a 100 ml volumetric flask, THF for HPLC was added, and ultrasonic waves were irradiated for 30 minutes to dissolve the solution, and a 100 ml THF solution was prepared. Using this solution, HPLC measurement of the near-infrared absorbing pigment 1 was carried out by the above-mentioned apparatus and the above-mentioned conditions.
The HPLC measurement was analyzed by reverse phase liquid chromatography under the condition that a mixed solution of acetonitrile and water in a volume ratio of 8: 2 was used as the mobile phase.
As a result, multiple peaks were shown.
Specifically, a peak with a retention time of 12 ± 1 minute (peak 1), a peak with a retention time of 42 ± 1 minute (peak 2), and a peak with a retention time of 46 ± 2 minutes (peak 3). It is composed of a peak with a retention time of 50 ± 2 minutes (peak 4) and a peak with a retention time of 57 ± 2 minutes (peak 5).
The area of peak 5 was 70% of the total area of peaks 1-5.

(実施例2〜12、比較例1〜11)
近赤外線吸収顔料1の製造をもとに、表1に示す条件で近赤外線吸収顔料2〜11、比較近赤外線吸収顔料1〜11を製造した。なお、比較例1、8〜11では溶剤処理は行わなかった。
(Examples 2 to 12, Comparative Examples 1 to 11)
Based on the production of the near-infrared absorbing pigment 1, the near-infrared absorbing pigments 2 to 11 and the comparative near-infrared absorbing pigments 1 to 11 were produced under the conditions shown in Table 1. In Comparative Examples 1 and 8 to 11, no solvent treatment was performed.

Figure 0006857296
Figure 0006857296

<バインダ樹脂溶液の製造方法>
(バインダ樹脂溶液の調整):ランダム共重合体
セパラブル4口フラスコに温度計、冷却管、窒素ガス導入管、撹拌装置を取り付けた反
応容器にシクロヘキサノン70.0部を仕込み、80℃に昇温し、反応容器内を窒素置換した後、滴下管よりn−ブチルメタクリレート13.3部、2−ヒドロキシエチルメタクリレート4.6部、メタクリル酸4.3部、パラクミルフェノールエチレンオキサイド変性アクリレート(東亞合成株式会社製「アロニックスM110」)7.4部、2,2’−アゾビスイソブチロニトリル0.4部の混合物を2時間かけて滴下した。滴下終了後、更に3時間反応を継続し、重量平均分子量(Mw)26000のアクリル樹脂の溶液を得た。室温まで冷却した後、樹脂溶液約2gをサンプリングして180℃、20分加熱乾燥して不揮発分を測定し、先に合成した樹脂溶液に不揮発分が20質量%になるようにプロピレングリコールモノエチルエーテルアセテートを添加してバインダ樹脂溶液を調製した。
<Manufacturing method of binder resin solution>
(Adjustment of binder resin solution): 70.0 parts of cyclohexanone was charged in a reaction vessel equipped with a thermometer, a cooling tube, a nitrogen gas introduction tube, and a stirrer in a random copolymer separable 4-neck flask, and the temperature was raised to 80 ° C. After substituting nitrogen in the reaction vessel, 13.3 parts of n-butyl methacrylate, 4.6 parts of 2-hydroxyethyl methacrylate, 4.3 parts of methacrylic acid, and paracumylphenol ethylene oxide-modified acrylate (Toa Synthetic Co., Ltd.) A mixture of 7.4 parts of "Aronix M110" manufactured by the company and 0.4 parts of 2,2'-azobisisobutyronitrile was added dropwise over 2 hours. After completion of the dropping, the reaction was continued for another 3 hours to obtain a solution of an acrylic resin having a weight average molecular weight (Mw) of 26000. After cooling to room temperature, about 2 g of the resin solution is sampled and dried by heating at 180 ° C. for 20 minutes to measure the non-volatile content. Propylene glycol monoethyl is prepared so that the non-volatile content is 20% by mass in the previously synthesized resin solution. Ether acetate was added to prepare a binder resin solution.

<樹脂型分散剤の製造方法>
(樹脂型分散剤1溶液):ブロック共重合体
[エチレン性不飽和単量体(b−5)の合成]
攪拌機、温度計を備えた反応容器に、メタクリル酸2−イソシアナトエチル60部、3−(ジメチルアミノ)プロピルアミン29部、THF120部を仕込み、室温で5時間撹拌した。FT−IRで反応が完結していることを確認したのち、ロータリーエバポレーターで溶媒を留去し、淡黄色透明の液体として、下記エチレン性不飽和単量体(b−5)を73部得た(収率82%)。得られた化合物の同定は、1H−NMRで実施した。
<Manufacturing method of resin type dispersant>
(Resin-type dispersant 1 solution): Block copolymer [Synthesis of ethylenically unsaturated monomer (b-5)]
60 parts of 2-isocyanatoethyl methacrylate, 29 parts of 3- (dimethylamino) propylamine, and 120 parts of THF were charged in a reaction vessel equipped with a stirrer and a thermometer, and the mixture was stirred at room temperature for 5 hours. After confirming that the reaction was completed by FT-IR, the solvent was distilled off by a rotary evaporator to obtain 73 parts of the following ethylenically unsaturated monomer (b-5) as a pale yellow transparent liquid. (Yield 82%). Identification of the obtained compound was carried out by 1H-NMR.

エチレン性不飽和単量体(b−5) Ethylene unsaturated monomer (b-5)

Figure 0006857296
Figure 0006857296


[エチレン性不飽和単量体(b−9)の合成]
攪拌機、温度計を備えた反応容器に、上記エチレン性不飽和単量体(b−5)の合成で得られた、エチレン性不飽和単量体(b−5)6.6部、イオン交換水5部を仕込み、室温で撹拌したのち、35%塩酸水溶液8部を滴下した。アミン価測定で反応が完結していることを確認し、淡黄色透明液体として、エチレン性不飽和単量体(b−9)水溶液を20部得た。得られた化合物の同定は、1H−NMRで実施した。
[Synthesis of ethylenically unsaturated monomer (b-9)]
In a reaction vessel equipped with a stirrer and a thermometer, 6.6 parts of the ethylenically unsaturated monomer (b-5) obtained by the synthesis of the above ethylenically unsaturated monomer (b-5), ion exchange. After charging 5 parts of water and stirring at room temperature, 8 parts of a 35% aqueous hydrochloric acid solution was added dropwise. It was confirmed by the amine value measurement that the reaction was completed, and 20 parts of an aqueous ethylenically unsaturated monomer (b-9) solution was obtained as a pale yellow transparent liquid. Identification of the obtained compound was carried out by 1H-NMR.

エチレン性不飽和単量体(b−9) Ethylene unsaturated monomer (b-9)

Figure 0006857296
Figure 0006857296


ガス導入管、コンデンサー、攪拌翼、及び温度計を備え付けた反応槽に、メチルメタクリレート17.7部、n−ブチルメタクリレート53.2部、テトラメチルエチレンジアミン13.2部を仕込み、窒素を流しながら50℃で1時間撹拌し、系内を窒素置換した。次に、ブロモイソ酪酸エチル2.6部、塩化第一銅5.6部、PGMAc100部を仕込み、窒素気流下で、110℃まで昇温して第一ブロックの重合を開始した。4時間重合後、重合溶液をサンプリングして不揮発分測定を行い、不揮発分から換算して重合転化率が98%以上であることを確認した。
次に、この反応槽に、PGMAc20部、第二ブロックモノマーとしてエチレン性不飽和単量体(b−5)21.2部、エチレン性不飽和単量体(b−9)水溶液27部(不揮発分38%)を投入し、110℃・窒素雰囲気下を保持したまま撹拌し、反応を継続した。2時間後、重合溶液をサンプリングして不揮発分測定を行い、不揮発分から換算して第二ブロックの重合転化率が98%以上であることを確認し、反応溶液を室温まで冷却して重合を停止した。
先に合成したブロック共重合体溶液に不揮発分が40質量%になるようにPGMAcを添加した。このようにして、不揮発分当たりのアミン価が50mgKOH/g、4級アンモニウム塩価が20mgKOH/g、重量平均分子量(Mw)9,800、不揮発分が40質量%の樹脂型分散剤1溶液を得た。
In a reaction vessel equipped with a gas introduction tube, a condenser, a stirring blade, and a thermometer, 17.7 parts of methyl methacrylate, 53.2 parts of n-butyl methacrylate, and 13.2 parts of tetramethylethylenediamine were charged, and 50 parts were flowed with nitrogen. The mixture was stirred at ° C. for 1 hour, and the inside of the system was replaced with nitrogen. Next, 2.6 parts of ethyl bromoisobutyrate, 5.6 parts of cuprous chloride, and 100 parts of PGMAc were charged, and the temperature was raised to 110 ° C. under a nitrogen stream to initiate polymerization of the first block. After polymerization for 4 hours, the polymerization solution was sampled and the non-volatile content was measured, and it was confirmed that the polymerization conversion rate was 98% or more in terms of the non-volatile content.
Next, in this reaction vessel, 20 parts of PGMAc, 21.2 parts of an ethylenically unsaturated monomer (b-5) as a second block monomer, and 27 parts of an aqueous solution of an ethylenically unsaturated monomer (b-9) (nonvolatile). 38%) was added, and the mixture was stirred while maintaining an atmosphere of 110 ° C. and a nitrogen, and the reaction was continued. After 2 hours, the polymerization solution was sampled and the non-volatile content was measured, and it was confirmed that the polymerization conversion rate of the second block was 98% or more in terms of the non-volatile content, and the reaction solution was cooled to room temperature to stop the polymerization. did.
PGMAc was added to the previously synthesized block copolymer solution so that the non-volatile content was 40% by mass. In this way, one solution of a resin-type dispersant having an amine value of 50 mgKOH / g per non-volatile content, a quaternary ammonium salt value of 20 mgKOH / g, a weight average molecular weight (Mw) of 9,800, and a non-volatile content of 40% by mass is prepared. Obtained.

(樹脂型分散剤2溶液):ブロック共重合体
ガス導入管、コンデンサー、攪拌翼、及び温度計を備え付けた反応装置に、メチルメタクリレート60部、nーブチルメタクリレート20部、テトラメチルエチレンジアミン13.2部を仕込み、窒素を流しながら50℃で1時間撹拌し、系内を窒素置換した。次に、ブロモイソ酪酸エチル9.3部、塩化第一銅5.6部、PGMAc133部を仕込み、窒素気流下で、110℃まで昇温して第一ブロックの重合を開始した。4時間重合後、重合溶液をサンプリングして不揮発分測定を行い、不揮発分から換算して重合転化率が98%以上であることを確認した。
次に、この反応装置に、PGMAc61部、第二ブロックモノマーとしてジメチルアミノエチルメタクリレート20部(以下、DMという)を投入し、110℃・窒素雰囲気下を保持したまま撹拌し、反応を継続した。ジメチルアミノエチルメタクリレート投入から2時間後、重合溶液をサンプリングして不揮発分測定を行い、不揮発分から換算して第二ブロックの重合転化率が98%以上であることを確認し、反応溶液を室温まで冷却して重合を停止した。
先に合成したブロック共重合体溶液に不揮発分が40質量%になるようにPGMAcを添加した。このようにして、不揮発分当たりのアミン価が71.4mgKOH/g、重量平均分子量9900(Mw)、不揮発分が40質量%のポリ(メタ)アクリレート骨格であ
り、3級アミノ基を有する樹脂型分散剤2溶液を得た。
(Resin-type dispersant 2 solution): 60 parts of methyl methacrylate, 20 parts of n-butyl methacrylate, 13.2 parts of tetramethylethylenediamine in a reaction device equipped with a block copolymer gas introduction tube, a condenser, a stirring blade, and a thermometer. The part was charged, and the mixture was stirred at 50 ° C. for 1 hour while flowing nitrogen to replace the inside of the system with nitrogen. Next, 9.3 parts of ethyl bromoisobutyrate, 5.6 parts of cuprous chloride, and 133 parts of PGMAc were charged, and the temperature was raised to 110 ° C. under a nitrogen stream to initiate polymerization of the first block. After polymerization for 4 hours, the polymerization solution was sampled and the non-volatile content was measured, and it was confirmed that the polymerization conversion rate was 98% or more in terms of the non-volatile content.
Next, 61 parts of PGMAc and 20 parts of dimethylaminoethyl methacrylate (hereinafter referred to as DM) as a second block monomer were added to this reactor, and the mixture was stirred while maintaining a nitrogen atmosphere at 110 ° C. to continue the reaction. Two hours after the addition of dimethylaminoethyl methacrylate, the polymerization solution was sampled and the non-volatile content was measured. It was confirmed that the polymerization conversion rate of the second block was 98% or more in terms of the non-volatile content, and the reaction solution was brought to room temperature. It was cooled to stop the polymerization.
PGMAc was added to the previously synthesized block copolymer solution so that the non-volatile content was 40% by mass. In this way, it is a poly (meth) acrylate skeleton having an amine value per non-volatile content of 71.4 mgKOH / g, a weight average molecular weight of 9900 (Mw), and a non-volatile content of 40% by mass, and is a resin type having a tertiary amino group. Two dispersant solutions were obtained.

(樹脂型分散剤3溶液):ブロック共重合体
ガス導入管、コンデンサー、攪拌翼、及び温度計を備え付けた反応装置に、メチルメタクリレート60部、nーブチルメタクリレート20部、テトラメチルエチレンジアミン13.2部を仕込み、窒素を流しながら50℃で1時間撹拌し、系内を窒素置換した。次に、ブロモイソ酪酸エチル9.3部、塩化第一銅5.6部、PGMAc133部を仕込み、窒素気流下で、110℃まで昇温して第一ブロックの重合を開始した。4時間重合後、重合溶液をサンプリングして不揮発分測定を行い、不揮発分から換算して重合転化率が98%以上であることを確認した。
次に、この反応装置に、PGMAc61部、第二ブロックモノマーとしてメタクリロイルオキシエチルトリメチルアンモニウムクロライド水溶液25.6部(三菱レイヨン社製「アクリエステルDMC78」)を投入し、110℃・窒素雰囲気下を保持したまま撹拌し、反応を継続した。メタクリロイルオキシエチルトリメチルアンモニウムクロライド投入から2時間後、重合溶液をサンプリングして不揮発分測定を行い、不揮発分から換算して第二ブロックの重合転化率が98%以上であることを確認し、反応溶液を室温まで冷却して重合を停止した。
先に合成したブロック共重合体溶液に不揮発分が40質量%になるようにPGMAcを添加した。このようにして、不揮発分当たりのアミン価が29.4mgKOH/g、重量平均分子量9800(Mw)、不揮発分が40質量%のポリ(メタ)アクリレート骨格であり、4級アンモニウム塩基を有する樹脂型分散剤3溶液を得た。
(Resin-type dispersant 3 solution): 60 parts of methyl methacrylate, 20 parts of n-butyl methacrylate, 13.2 parts of tetramethylethylenediamine in a reaction apparatus equipped with a block copolymer gas introduction tube, a condenser, a stirring blade, and a thermometer. The part was charged, and the mixture was stirred at 50 ° C. for 1 hour while flowing nitrogen to replace the inside of the system with nitrogen. Next, 9.3 parts of ethyl bromoisobutyrate, 5.6 parts of cuprous chloride, and 133 parts of PGMAc were charged, and the temperature was raised to 110 ° C. under a nitrogen stream to initiate polymerization of the first block. After polymerization for 4 hours, the polymerization solution was sampled and the non-volatile content was measured, and it was confirmed that the polymerization conversion rate was 98% or more in terms of the non-volatile content.
Next, 61 parts of PGMAc and 25.6 parts of an aqueous solution of methacryloyloxyethyltrimethylammonium chloride as a second block monomer (“Acryester DMC78” manufactured by Mitsubishi Rayon Co., Ltd.) were added to this reactor, and the temperature was maintained at 110 ° C. under a nitrogen atmosphere. The reaction was continued with stirring. Two hours after the addition of methacryloyloxyethyltrimethylammonium chloride, the polymerization solution was sampled and the non-volatile content was measured. It was confirmed that the polymerization conversion rate of the second block was 98% or more in terms of the non-volatile content, and the reaction solution was prepared. The polymerization was stopped by cooling to room temperature.
PGMAc was added to the previously synthesized block copolymer solution so that the non-volatile content was 40% by mass. In this way, a resin type having a poly (meth) acrylate skeleton having an amine value per non-volatile content of 29.4 mgKOH / g, a weight average molecular weight of 9800 (Mw), and a non-volatile content of 40% by mass and having a quaternary ammonium base. A dispersant 3 solution was obtained.

(樹脂型分散剤4溶液):ブロック共重合体
攪拌機、温度計を備えた反応容器に、4−ジメチルアミノ−1,2−エポキシブタン55部、テトラヒドロフラン(THF)120部を仕込み、70℃で加熱撹拌し、メタクリル酸35部を60分かけて滴下した。滴下完了後、70℃でさらに2時間加熱撹拌しH−NMRで反応が完結していることを確認したのち、室温に放冷した。反応溶液を、イオン交換水300部、飽和炭酸水素ナトリウム200部、飽和食塩水200部で順次洗浄後、有機層に硫酸マグネシウム20gを加え、撹拌後、ろ過を行った。得られた溶液の溶媒をロータリーエバポレーターで留去し、淡黄色透明の液体として、下記の構造を有するエチレン性不飽和単量体(b−1)を31部得た(収率42%。得られた化合物の同定は、H−NMRで実施した。
(Resin type dispersant 4 solution): Block copolymer
55 parts of 4-dimethylamino-1,2-epoxybutane and 120 parts of tetrahydrofuran (THF) were charged in a reaction vessel equipped with a stirrer and a thermometer, heated and stirred at 70 ° C., and 35 parts of methacrylic acid was added over 60 minutes. Dropped. After the dropping was completed, the mixture was further heated and stirred at 70 ° C. for 2 hours , and after confirming that the reaction was completed by 1 1 H-NMR, the mixture was allowed to cool to room temperature. The reaction solution was washed successively with 300 parts of ion-exchanged water, 200 parts of saturated sodium hydrogen carbonate, and 200 parts of saturated brine, 20 g of magnesium sulfate was added to the organic layer, and the mixture was stirred and then filtered. The solvent of the obtained solution was distilled off with a rotary evaporator to obtain 31 parts of an ethylenically unsaturated monomer (b-1) having the following structure as a pale yellow transparent liquid (yield 42%). The identified compounds were identified by 1 H-NMR.

エチレン性不飽和単量体(b−1)

Figure 0006857296


Ethylene unsaturated monomer (b-1)
Figure 0006857296


ガス導入管、コンデンサー、攪拌翼、及び温度計を備え付けた反応槽に、メチルメタクリレート17.6部、n−ブチルメタクリレート52.8部、テトラメチルエチレンジアミ
ン13.2部を仕込み、窒素を流しながら50℃で1時間撹拌し、系内を窒素置換した。次に、ブロモイソ酪酸エチル2.6部、塩化第一銅5.6部、プロピレングリコールモノメチルエーテルアセテート100部を仕込み、窒素気流下で、110℃まで昇温して第一ブロックの重合を開始した。4時間重合後、重合溶液をサンプリングして不揮発分測定を行い、不揮発分から換算して重合転化率が98%以上であることを確認した。
次に、この反応槽に、PGMAc25部、第二ブロックモノマーとして、エチレン性不飽和単量体(b−1)25.1部を投入し、110℃・窒素雰囲気下を保持したまま撹拌し、反応を継続した。エチレン性不飽和単量体(b−1)投入から2時間後、重合溶液をサンプリングして不揮発分測定を行い、不揮発分から換算して第二ブロックの重合転化率が98%以上であることを確認した。
さらに、この反応装置に、ベンジルクロライド4.5部を投入し、110℃・窒素雰囲気下を保持したまま3時間撹拌し、その後冷却した。
先に合成したブロック共重合体溶液に不揮発分が40質量%になるようにPGMAcを添加した。このようにして、不揮発分当たりのアミン価が50mgKOH/g、4級アンモニウム塩価が20mgKOH/g、重量平均分子量(Mw)9,800、不揮発分が40質量%の樹脂型分散剤4溶液を得た。
In a reaction vessel equipped with a gas introduction tube, a condenser, a stirring blade, and a thermometer, 17.6 parts of methyl methacrylate, 52.8 parts of n-butyl methacrylate, and 13.2 parts of tetramethylethylenediamine were charged, and 50 parts were flowed with nitrogen. The mixture was stirred at ° C. for 1 hour, and the inside of the system was replaced with nitrogen. Next, 2.6 parts of ethyl bromoisobutyrate, 5.6 parts of cuprous chloride, and 100 parts of propylene glycol monomethyl ether acetate were charged, and the temperature was raised to 110 ° C. under a nitrogen stream to initiate polymerization of the first block. .. After polymerization for 4 hours, the polymerization solution was sampled and the non-volatile content was measured, and it was confirmed that the polymerization conversion rate was 98% or more in terms of the non-volatile content.
Next, 25 parts of PGMAc and 25.1 parts of an ethylenically unsaturated monomer (b-1) as a second block monomer were added to this reaction vessel, and the mixture was stirred while maintaining a nitrogen atmosphere at 110 ° C. The reaction was continued. Two hours after the addition of the ethylenically unsaturated monomer (b-1), the polymerization solution was sampled and the non-volatile content was measured. confirmed.
Further, 4.5 parts of benzyl chloride was added to this reactor, stirred for 3 hours while maintaining a nitrogen atmosphere at 110 ° C., and then cooled.
PGMAc was added to the previously synthesized block copolymer solution so that the non-volatile content was 40% by mass. In this way, four solutions of resin-type dispersants having an amine value of 50 mgKOH / g per non-volatile content, a quaternary ammonium salt value of 20 mgKOH / g, a weight average molecular weight (Mw) of 9,800, and a non-volatile content of 40% by mass are prepared. Obtained.

(樹脂型分散剤5溶液)
ガス導入管、温度計、コンデンサー、攪拌機を備えた反応容器に、メチルメタクリレート50部、n−ブチルメタクリレート50部、PGMAc45.4部を仕込み、窒素ガスで置換した。反応容器内を70℃に加熱して、3−メルカプト−1,2−プロパンジオール6部を添加して、さらにAIBN(アゾビスイソブチロニトリル)0.12部を加え、12時間反応した。不揮発分測定により95%が反応したことを確認した。次に、ピロメリット酸無水物9.7部、PGMAc70.3部、触媒としてDBU(1,8−ジアザビシクロ−[5.4.0]−7−ウンデセン)0.20部を追加し、120℃で7時間反応させた。酸価の測定で98%以上の酸無水物がハーフエステル化していることを確認し反応を終了した。PGMAcを加えて不揮発分50%に調整した。このようにして、酸価43、重量平均分子量9000、ポリ(メタ)アクリレート骨格であり、芳香族カルボキシル基を有する樹脂型分散剤5溶液を得た。
(5 solutions of resin type dispersant)
A reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer was charged with 50 parts of methyl methacrylate, 50 parts of n-butyl methacrylate, and 45.4 parts of PGMAc, and replaced with nitrogen gas. The inside of the reaction vessel was heated to 70 ° C., 6 parts of 3-mercapto-1,2-propanediol was added, and 0.12 parts of AIBN (azobisisobutyronitrile) was further added, and the reaction was carried out for 12 hours. It was confirmed by measuring the non-volatile content that 95% had reacted. Next, 9.7 parts of pyromellitic anhydride, 70.3 parts of PGMAc, and 0.20 parts of DBU (1,8-diazabicyclo- [5.4.0] -7-undecene) as a catalyst were added, and the temperature was 120 ° C. Was reacted for 7 hours. By measuring the acid value, it was confirmed that 98% or more of the acid anhydride was half-esterified, and the reaction was terminated. PGMAc was added to adjust the non-volatile content to 50%. In this way, a resin-type dispersant 5 solution having an acid value of 43, a weight average molecular weight of 9000, a poly (meth) acrylate skeleton, and an aromatic carboxyl group was obtained.

(樹脂型分散剤6溶液)
ガス導入管、温度計、コンデンサー、攪拌機を備えた反応容器に、3−メルカプト−1,2−プロパンジオール6部、ピロメリット酸無水物9.7部、モノブチルスズオキシド0.01部、PGMAc88.9部を仕込み、窒素ガスで置換した。反応容器内を100℃に加熱して、7時間反応させた。酸価の測定で98%以上の酸無水物がハーフエステル化していることを確認した後、系内の温度を70℃に冷却し、メチルメタクリレート50部とn−ブチルメタクリレート30部と、ヒドロキシメチルメタクリレート20部を仕込み、AIBN0.12部とPGMAc26.8部を添加して、10時間反応した。不揮発分測定により重合が95%進行したことを確認し反応を終了した。PGMAcを加えて不揮発分50%に調整し、酸価43、重量平均分子量9000、ポリ(メタ)アクリレート骨格であり、芳香族カルボキシル基を有する樹脂型分散剤6溶液を得た。
(6 solutions of resin type dispersant)
In a reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer, 6 parts of 3-mercapto-1,2-propanediol, 9.7 parts of pyromellitic anhydride, 0.01 parts of monobutyltin oxide, and PGMAc88. Nine parts were charged and replaced with nitrogen gas. The inside of the reaction vessel was heated to 100 ° C. and reacted for 7 hours. After confirming that 98% or more of the acid anhydride was half-esterified by measuring the acid value, the temperature in the system was cooled to 70 ° C., 50 parts of methyl methacrylate, 30 parts of n-butyl methacrylate, and hydroxymethyl. 20 parts of methacrylate was charged, 0.12 part of AIBN and 26.8 parts of PGMAc were added, and the reaction was carried out for 10 hours. The reaction was terminated after confirming that the polymerization had proceeded by 95% by measuring the non-volatile content. PGMAc was added to adjust the non-volatile content to 50% to obtain 6 solutions of a resin-type dispersant having an acid value of 43, a weight average molecular weight of 9000, a poly (meth) acrylate skeleton, and an aromatic carboxyl group.

(樹脂型分散剤7溶液)
BYK−P104 (ビックケミー・ジャパン製:不揮発分50%)
(7 solutions of resin type dispersant)
BYK-P104 (manufactured by Big Chemie Japan: 50% non-volatile content)

(樹脂型分散剤8溶液)
Disperbyk−171 (ビックケミー・ジャパン製:不揮発分39.5%)
(8 solutions of resin type dispersant)
Disperbyk-171 (manufactured by Big Chemie Japan: non-volatile content 39.5%)

(樹脂型分散剤9溶液)
Disperbyk−142 (ビックケミー・ジャパン製:不揮発分60%)
(9 solutions of resin type dispersant)
Disperbyk-142 (manufactured by Big Chemie Japan: 60% non-volatile content)

(樹脂型分散剤10溶液)
下記共重合体の不揮発分20%PGMAc溶液

Figure 0006857296
(10 solutions of resin type dispersant)
Non-volatile content 20% PGMAc solution of the following copolymer
Figure 0006857296

<塗工用近赤外吸収性組成物の製造>
(実施例13)
下記の組成の混合物を均一に撹拌混合した後、直径0.5mmのジルコニアビーズを用いて、アイガーミルで3時間分散した後、0.5μmのフィルタで濾過し、近赤外線吸収性組成物を作製した。
近赤外線吸収顔料1 :10.0部
樹脂型分散剤2溶液 : 7.5部
バインダ樹脂溶液 :35.0部
PGMAc :47.5部
<Manufacturing of near-infrared absorbing composition for coating>
(Example 13)
The mixture having the following composition was uniformly stirred and mixed, dispersed with an Eiger mill for 3 hours using zirconia beads having a diameter of 0.5 mm, and then filtered through a filter of 0.5 μm to prepare a near-infrared absorbing composition. ..
Near-infrared absorbing pigment 1: 10.0 parts Resin type dispersant 2 solution: 7.5 parts Binder resin solution: 35.0 parts PGMAc: 47.5 parts

(実施例14〜 41、比較例12〜22)
以下、近赤外線吸収顔料、樹脂型分散剤溶液、バインダ樹脂溶液、溶剤を表2に示す組成、量に変更した以外は近赤外線吸収性組成物(D−1)と同様にして、近赤外線吸収性組成物(D−2)〜(D−40)を調整した。
なお、青色色素として、C.I.ピグメントブルー15:6、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:1、緑色色素として、C.I.ピグメントグリーン36、C.I.ピグメントグリーン58、C.I.ピグメントグリーン62、C.I.ピグメントグリーン63を用いた。
(Examples 14 to 41, Comparative Examples 12 to 22)
Hereinafter, near-infrared absorbing pigment, resin-type dispersant solution, binder resin solution, and solvent are absorbed in the same manner as the near-infrared absorbing composition (D-1) except that the composition and amount shown in Table 2 are changed. The sex compositions (D-2) to (D-40) were prepared.
As a blue pigment, C.I. I. Pigment Blue 15: 6, C.I. I. Pigment Blue 15: 3, C.I. I. Pigment Blue 15: 1, as a green pigment, C.I. I. Pigment Green 36, C.I. I. Pigment Green 58, C.I. I. Pigment Green 62, C.I. I. Pigment Green 63 was used.

Figure 0006857296
Figure 0006857296

<塗工用近赤外線吸収性組成物の評価>
実施例および比較例で得られた近赤外線吸収性組成物(D−1〜40)について、分散安定性、分光特性、耐性(耐光性、耐熱性)に関する試験を下記の方法で行った。なお、◎は非常に良好なレベル、〇+、○は良好なレベル、△は実用レベル、×は実用には適さないレベルである。結果を表3に示す。
<Evaluation of near-infrared absorbing composition for coating>
The near-infrared absorbing compositions (D-1 to 40) obtained in Examples and Comparative Examples were tested for dispersion stability, spectral characteristics, and resistance (light resistance, heat resistance) by the following methods. ⊚ is a very good level, 〇 + and ◯ are good levels, Δ is a practical level, and × is a level unsuitable for practical use. The results are shown in Table 3.

(分散安定性の評価)
得られた近赤外線吸収性組成物の粘度を測定し、初期粘度とした。さらに、40℃で7日間の促進試験を行い、経時促進粘度を測定した。
促進による変化率として、
促進経時粘度/初期粘度
を算出し、下記基準で評価した。
◎ :1.05未満
○ :1.05以上、1.10未満
△ :1.10以上、1.3未満
× :1.3以上
(Evaluation of dispersion stability)
The viscosity of the obtained near-infrared absorbing composition was measured and used as the initial viscosity. Further, an accelerated test was conducted at 40 ° C. for 7 days, and the accelerated viscosity with time was measured.
As a rate of change due to promotion
The accelerated aging viscosity / initial viscosity was calculated and evaluated according to the following criteria.
⊚: less than 1.05 ○: 1.05 or more, less than 1.10 Δ: 1.10 or more, less than 1.3 ×: 1.3 or more

(分光特性の評価1)
得られた近赤外線吸収性組成物を1.1mm厚のガラス基板上にスピンコーターを用いて、膜厚1.0μmになるようにスピンコートし、60℃で5分乾燥した後、230℃で5分加熱し、基板を作製した。得られた基板の分光を分光光度計(U−4100 日立ハイテクノロジーズ社製)を用いて300〜900nmの波長範囲の吸収スペクトルを測定した。極大吸収波長の吸光度を1とした時の、「400〜700nmの平均吸光度」について、下記基準で評価した。なお、本発明の近赤外線吸収顔料[A]塗膜の極大吸収波長
は、 近赤外領域(700〜1000nm)に存在する。この吸光度を1としたときに、400〜700nmの吸光度が小さいほど、近赤外領域の吸収能に優れ、急峻な分光を有していると言える。
◎ :0.05以下
○+ :0.05以上、0.075未満
〇 :0.075以上、0.1未満
△ :0.1以上、0.4未満
× :0.4以上
(Evaluation of spectral characteristics 1)
The obtained near-infrared absorbing composition was spin-coated on a glass substrate having a thickness of 1.1 mm using a spin coater so as to have a film thickness of 1.0 μm, dried at 60 ° C. for 5 minutes, and then dried at 230 ° C. The substrate was prepared by heating for 5 minutes. The spectrum of the obtained substrate was measured using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation) to measure the absorption spectrum in the wavelength range of 300 to 900 nm. The "average absorbance at 400 to 700 nm" when the absorbance at the maximum absorption wavelength was set to 1 was evaluated according to the following criteria. The maximum absorption wavelength of the near-infrared absorbing pigment [A] coating film of the present invention exists in the near-infrared region (700 to 1000 nm). When this absorbance is 1, it can be said that the smaller the absorbance at 400 to 700 nm, the better the absorption capacity in the near infrared region and the steeper the spectroscopy.
⊚: 0.05 or less ○ +: 0.05 or more and less than 0.075 〇: 0.075 or more and less than 0.1 Δ: 0.1 or more and less than 0.4 ×: 0.4 or more

(分光評価2)
上記で得られた基板について、650nm〜800nmの吸光度の最小値を1とした時の、400nm〜650nmの吸光度の最小値について、下記基準で評価した。
なお、650nm〜800nmは生体を透過する光の波長領域であり、生体認証においてノイズとなり、かつ生活空間に溢れているため、この領域で吸光度が最小となる波長は、ノイズになる光が最も透過する波長となる。センシングに用いる光は400nm〜650nmの波長領域にあり、この領域で吸光度が最小となる波長は、センシングに用いる光が最も透過する波長となる。そのため、上記基準は、いかにセンシングする光を透過させノイズをカットするかの指標となる。
◎ :0.05以下
○ :0.05以上、0.1未満
△ :0.1以上、0.4未満
× :0.4以上
(Spectroscopic evaluation 2)
With respect to the substrate obtained above, the minimum value of the absorbance at 400 nm to 650 nm was evaluated according to the following criteria when the minimum value of the absorbance at 650 nm to 800 nm was 1.
It should be noted that 650 nm to 800 nm is a wavelength region of light transmitted through a living body, which causes noise in biometric authentication and overflows in the living space. Therefore, the wavelength at which the absorbance is minimized in this region is the most transmitted wavelength of light that becomes noise. It becomes the wavelength to be used. The light used for sensing is in the wavelength region of 400 nm to 650 nm, and the wavelength at which the absorbance is minimized in this region is the wavelength at which the light used for sensing is most transmitted. Therefore, the above standard is an index of how to transmit the light to be sensed and cut noise.
⊚: 0.05 or less ○: 0.05 or more and less than 0.1 Δ: 0.1 or more and less than 0.4 ×: 0.4 or more

(耐光性試験)
分光特性評価と同じ手順で試験用基板を作製し、耐光性試験機(TOYOSEIKI社製「SUNTEST CPS+」)に入れ、24時間放置した。近赤外線吸収膜の分光極
大吸収波長における吸光度を測定し、光照射前のそれに対する残存比を求め、耐光性を、下記基準で評価した。なお、残存率の算出は、以下の式を用いて算出した。
残存率=(照射後の吸光度)÷(照射前の吸光度)×100
◎ :残存率 が95%以上
○ :残存率 が90%以上、95%未満
× :残存率 が90%未満
(Light resistance test)
A test substrate was prepared by the same procedure as the spectral characterization, placed in a light resistance tester (“SUNTEST CPS +” manufactured by TOYOSEIKI), and left to stand for 24 hours. The absorbance of the near-infrared absorbing film at the spectroscopic maximum absorption wavelength was measured, the residual ratio to that before light irradiation was determined, and the light resistance was evaluated according to the following criteria. The survival rate was calculated using the following formula.
Residual rate = (absorbance after irradiation) ÷ (absorbance before irradiation) × 100
◎: Residual rate is 95% or more ○: Residual rate is 90% or more and less than 95% ×: Residual rate is less than 90%

(耐熱性試験)
分光特性評価と同じ手順で試験用基板を作製し、耐熱性試験として210℃で20分追加加熱した。近赤外線吸収膜の分光極大吸収波長における吸光度を測定し、耐熱性試験前のそれに対する残存比を求め、耐熱性を、下記基準で評価した。なお、残存率の算出は、以下の式を用いて算出した。
残存率=(耐熱性試験後の吸光度)÷(耐熱性試験前の吸光度)×100
◎ :残存率 が95%以上
○ :残存率 が90%以上、95%未満
× :残存率 が90%未満
(Heat resistance test)
A test substrate was prepared by the same procedure as the spectral characterization, and was additionally heated at 210 ° C. for 20 minutes as a heat resistance test. The absorbance of the near-infrared absorbing film at the spectroscopic maximum absorption wavelength was measured, the residual ratio to that before the heat resistance test was determined, and the heat resistance was evaluated according to the following criteria. The survival rate was calculated using the following formula.
Residual rate = (absorbance after heat resistance test) ÷ (absorbance before heat resistance test) x 100
◎: Residual rate is 95% or more ○: Residual rate is 90% or more and less than 95% ×: Residual rate is less than 90%

Figure 0006857296
Figure 0006857296

近赤外線吸収顔料の平均一次粒子径が10〜80nmである場合、分散安定性と耐光性、耐熱性のバランスが良好となった。また、適切な溶剤処理を行った場合も、分散安定性と耐光性、耐熱性のバランスが良好となった。適切な溶剤処理をすることで、逆相系液体クロマトグラフィーの分析結果が、移動相としてアセトニトリルと水とを8:2の体積比で混合した混合溶液を用いた条件において、最も長い保持時間において現れるピークのピーク面積の割合が近赤外線吸収顔料に由来するピークすべてのピーク面積の合計の60〜7
8%となる。
平均一次粒子径が10〜80nmで、かつ上記逆相系液体クロマトグラフィーの分析結果を満たす場合、分散安定性と分光特性、耐光性、耐熱性がいずれも良好となった。
また、近赤外線吸収顔料と青色色素もしくは緑色色素を併用した場合、生体認証においてノイズとなる650nm〜800nmの光はより遮蔽され、センシングに用いられる400nm〜650nmの光はより透過することが確認された。
When the average primary particle size of the near-infrared absorbing pigment was 10 to 80 nm, the balance between dispersion stability, light resistance, and heat resistance was good. Moreover, even when an appropriate solvent treatment was performed, the balance between dispersion stability, light resistance, and heat resistance was good. With proper solvent treatment, the results of reverse phase liquid chromatography show that in the longest retention time under the condition of using a mixed solution of acetonitrile and water in a volume ratio of 8: 2 as the mobile phase. The ratio of the peak area of the appearing peak is 60 to 7 of the sum of the peak areas of all the peaks derived from the near-infrared absorbing pigment.
It will be 8%.
When the average primary particle size is 10 to 80 nm and the analysis result of the reverse phase liquid chromatography is satisfied, the dispersion stability, the spectral characteristics, the light resistance, and the heat resistance are all good.
It was also confirmed that when the near-infrared absorbing pigment and the blue dye or the green dye are used in combination, the light of 650 nm to 800 nm, which is a noise in biometric authentication, is more blocked, and the light of 400 nm to 650 nm used for sensing is more transmitted. It was.

<感光性近赤外線吸収性組成物の製造>
(実施例42)
下記の混合物を均一になるように攪拌混合した後、1 .0μmのフィルタで濾過して、感光性近赤外線吸収性組成物(R−1)を得た。
近赤外線吸収性組成物(D−4) :50.0部
バインダ樹脂溶液 : 7.5部
光重合性単量体( 東亞合成社製「アロニックスM−402 」) : 2.0部
光重合開始剤( BASFジャパン社製「OXE−02」) : 1.5部
PGMAc :39.0部
<Manufacturing of photosensitive near-infrared absorbing composition>
(Example 42)
After stirring and mixing the following mixture so as to be uniform, 1. Filtration with a 0 μm filter gave a photosensitive near-infrared absorbing composition (R-1).
Near-infrared absorbing composition (D-4): 50.0 parts binder resin solution: 7.5 parts Photopolymerizable monomer ("Aronix M-402" manufactured by Toagosei Co., Ltd.): 2.0 parts Photopolymerization started Agent (BASF Japan "OXE-02"): 1.5 parts PGMAc: 39.0 parts

(実施例43〜47および比較例23〜25)
以下、近赤外線吸収性組成物を表3に示す近赤外線吸収性組成物の種類に変更した以外は感光性近赤外線吸収性組成物(R−1)と同様にして感光性近赤外線吸収性組成物(R−2)〜(R−9)を得た。
(Examples 43 to 47 and Comparative Examples 23 to 25)
Hereinafter, the photosensitive near-infrared absorbing composition is the same as that of the photosensitive near-infrared absorbing composition (R-1) except that the near-infrared absorbing composition is changed to the type of the near-infrared absorbing composition shown in Table 3. Objects (R-2) to (R-9) were obtained.

<感光性近赤外線吸収性組成物の評価>
実施例および比較例で得られた感光性近赤外線吸収性組成物(R−1〜8)について、分散安定性、分光特性、耐性(耐熱性、耐光性、)に関する試験を下記の方法で行った。なお、◎は非常に良好なレベル、〇+、○は良好なレベル、△は実用可能レベル、×は実用には適さないレベルである。結果を表4に示す。
<Evaluation of photosensitive near-infrared absorbing composition>
The photosensitive near-infrared absorbing compositions (R-1 to 8) obtained in Examples and Comparative Examples were tested for dispersion stability, spectral characteristics, and resistance (heat resistance, light resistance) by the following methods. It was. ⊚ is a very good level, 〇 + and ◯ are good levels, Δ is a practical level, and × is a level unsuitable for practical use. The results are shown in Table 4.

(分散安定性の評価)
得られた感光性近赤外線吸収性組成物の粘度を測定し、初期粘度とした。さらに、40℃で7日間の促進試験を行い、経時促進粘度を測定した。
促進による変化率として、促進経時粘度/初期粘度 を算出し、下記基準で評価した。◎ :1.05未満
○ :1.05以上、1.10未満
△ :1.10以上、1.3未満
× :1.3以上
(Evaluation of dispersion stability)
The viscosity of the obtained photosensitive near-infrared absorbing composition was measured and used as the initial viscosity. Further, an accelerated test was conducted at 40 ° C. for 7 days, and the accelerated viscosity with time was measured.
As the rate of change due to acceleration, the viscosity with time for acceleration / initial viscosity was calculated and evaluated according to the following criteria. ⊚: less than 1.05 ○: 1.05 or more, less than 1.10 Δ: 1.10 or more, less than 1.3 ×: 1.3 or more

(分光特性評価1)
得られた感光性近赤外線吸収性組成物を100mm×100mm、1.1mm厚のガラス基板上に、スピンコーターを用いて膜厚1.0μmになるように塗工し、次に70℃で20分乾燥し、超高圧水銀ランプを用いて、積算光量150mJ/cm2で紫外線露光を行い、23℃のアルカリ現像液で現像を行い、塗膜基板を得た。ついで210℃で5分間加熱、放冷後、得られた基板の分光を分光光度計U−4100(日立ハイテクノロジーズ社製)を用いて300−900nmの波長範囲の吸収スペクトルを測定した。極大吸収波長の吸光度を1とした時の、「400〜700nmの平均吸光度」について、下記基準で評価した。なお、本発明の近赤外線吸収顔料[A]塗膜の極大吸収波長は、 近赤外領域(700〜1000nm)に存在する。この吸光度を1としたときに、400〜700nmの吸光度が小さいほど、近赤外領域の吸収能に優れ、急峻な分光を有している。
◎ :0.05以下
○+ :0.05以上、0.075未満
〇 :0.075以上、0.1未満
△ :0.1以上、0.4未満
× :0.4以上
(Spectroscopic characterization 1)
The obtained photosensitive near-infrared absorbing composition was coated on a glass substrate having a thickness of 100 mm × 100 mm and 1.1 mm using a spin coater so as to have a thickness of 1.0 μm, and then 20 at 70 ° C. It was dried for a minute, exposed to ultraviolet rays with an integrated light amount of 150 mJ / cm2 using an ultra-high pressure mercury lamp, and developed with an alkaline developer at 23 ° C. to obtain a coated substrate. Then, after heating and allowing to cool at 210 ° C. for 5 minutes, the absorption spectrum of the obtained substrate was measured using a spectrophotometer U-4100 (manufactured by Hitachi High-Technologies Corporation) in the wavelength range of 300-900 nm. The "average absorbance at 400 to 700 nm" when the absorbance at the maximum absorption wavelength was set to 1 was evaluated according to the following criteria. The maximum absorption wavelength of the near-infrared absorbing pigment [A] coating film of the present invention exists in the near-infrared region (700 to 1000 nm). When this absorbance is 1, the smaller the absorbance at 400 to 700 nm, the better the absorption capacity in the near infrared region, and the steeper the spectrum.
⊚: 0.05 or less ○ +: 0.05 or more and less than 0.075 〇: 0.075 or more and less than 0.1 Δ: 0.1 or more and less than 0.4 ×: 0.4 or more

(分光特性評価2)
上記で得られた基板について、650nm〜800nmの吸光度の最小値を1とした時の、400nm〜650nmの吸光度の最小値について、下記基準で評価した。
なお、650nm〜800nmは生体を透過する光の波長領域であり、生体認証においてノイズとなり、かつ生活空間に溢れているため、この領域で吸光度が最小となる波長は、ノイズになる光が最も透過する波長となる。センシングに用いる光は400nm〜650nmの波長領域にあり、この領域で吸光度が最小となる波長は、センシングに用いる光が最も透過する波長となる。そのため、上記基準は、いかにセンシングする光を透過させノイズをカットするかの指標となる。
◎ :0.05以下
○ :0.05以上、0.1未満
△ :0.1以上、0.4未満
× :0.4以上
(Spectroscopic characterization 2)
With respect to the substrate obtained above, the minimum value of the absorbance at 400 nm to 650 nm was evaluated according to the following criteria when the minimum value of the absorbance at 650 nm to 800 nm was 1.
It should be noted that 650 nm to 800 nm is a wavelength region of light transmitted through a living body, which causes noise in biometric authentication and overflows in the living space. Therefore, the wavelength at which the absorbance is minimized in this region is the most transmitted wavelength of light that becomes noise. It becomes the wavelength to be used. The light used for sensing is in the wavelength region of 400 nm to 650 nm, and the wavelength at which the absorbance is minimized in this region is the wavelength at which the light used for sensing is most transmitted. Therefore, the above standard is an index of how to transmit the light to be sensed and cut noise.
⊚: 0.05 or less ○: 0.05 or more and less than 0.1 Δ: 0.1 or more and less than 0.4 ×: 0.4 or more

(耐光性試験)
分光特性評価と同じ手順で試験用基板を作製し、耐光性試験機(TOYOSEIKI社製「SUNTEST CPS+」)に入れ、24時間放置した。近赤外線吸収膜の分光極
大吸収波長における吸光度を測定し、光照射前のそれに対する残存比を求め、耐光性を下記基準で評価した。なお、残存率の算出は、以下の式を用いて算出した。
残存率=(照射後の吸光度)÷(照射前の吸光度)×100
◎ :残存率 が95%以上
○ :残存率 が90%以上、95%未満
× :残存率 が90%未満
(Light resistance test)
A test substrate was prepared by the same procedure as the spectral characterization, placed in a light resistance tester (“SUNTEST CPS +” manufactured by TOYOSEIKI), and left to stand for 24 hours. The absorbance of the near-infrared absorbing film at the spectroscopic maximum absorption wavelength was measured, the residual ratio to that before light irradiation was determined, and the light resistance was evaluated according to the following criteria. The survival rate was calculated using the following formula.
Residual rate = (absorbance after irradiation) ÷ (absorbance before irradiation) × 100
◎: Residual rate is 95% or more ○: Residual rate is 90% or more and less than 95% ×: Residual rate is less than 90%

(耐熱性試験)
分光特性評価と同じ手順で試験用基板を作製し、耐熱性試験として210℃で20分追加加熱した。近赤外線吸収膜の分光極大吸収波長における吸光度を測定し、耐熱性試験前のそれに対する残存比を求め、耐熱性を下記基準で評価した。なお、残存率の算出は、以下の式を用いて算出した。
残存率=(耐熱性試験後の吸光度)÷(耐熱性試験前の吸光度)×100
◎ :残存率 が95%以上
○ :残存率 が90%以上、95%未満
× :残存率 が90%未満
(Heat resistance test)
A test substrate was prepared by the same procedure as the spectral characterization, and was additionally heated at 210 ° C. for 20 minutes as a heat resistance test. The absorbance of the near-infrared absorbing film at the spectroscopic maximum absorption wavelength was measured, the residual ratio to that before the heat resistance test was determined, and the heat resistance was evaluated according to the following criteria. The survival rate was calculated using the following formula.
Residual rate = (absorbance after heat resistance test) ÷ (absorbance before heat resistance test) x 100
◎: Residual rate is 95% or more ○: Residual rate is 90% or more and less than 95% ×: Residual rate is less than 90%

Figure 0006857296
Figure 0006857296

感光性近赤外線吸収性組成物の場合も近赤外線吸収性組成物と結果は同様で、近赤外線吸収顔料を色素吸着基のある樹脂型分散剤を用いて分散することで作製された感光性近赤外線吸収組成物は、非常に分光特性に優れていた。とくに、可視域(400nm〜700nm)に吸収が少なく、かつ近赤外線吸収能に優れており分光特性が良好であり、更には耐光性、耐熱性に優れている。
近赤外線吸収顔料の平均一次粒子径が10〜80nmであり、かつ適切な溶剤処理をすることで、逆相系液体クロマトグラフィーの分析結果が、移動相としてアセトニトリルと水とを8:2の体積比で混合した混合溶液を用いた条件において、最も長い保持時間において現れるピークのピーク面積の割合が近赤外線吸収顔料に由来するピークすべてのピーク面積の合計の60〜78%となる場合、分散安定性と分光特性、耐光性、耐熱性がいずれも良好となった。
また、近赤外線吸収顔料と青色色素もしくは緑色色素を併用した場合、生体認証においてノイズとなる650nm〜800nmの光はより遮蔽され、センシングに用いられる400nm〜650nmの光はより透過することが確認された。
The results of the photosensitive near-infrared absorbing composition are the same as those of the near-infrared absorbing composition, and the photosensitive near-infrared absorbing pigment is prepared by dispersing the near-infrared absorbing pigment using a resin-type dispersant having a dye-adsorbing group. The infrared absorbing composition was very excellent in spectral characteristics. In particular, it absorbs little in the visible region (400 nm to 700 nm), has excellent near-infrared absorption ability, has good spectral characteristics, and is also excellent in light resistance and heat resistance.
The average primary particle size of the near-infrared absorbing pigment is 10 to 80 nm, and by applying an appropriate solvent treatment, the analysis result of the reverse phase liquid chromatography shows that acetonitrile and water are used as mobile phases in a volume of 8: 2. When the ratio of the peak area of the peak appearing at the longest retention time is 60 to 78% of the total peak area of all the peaks derived from the near-infrared absorbing pigment under the condition of using the mixed solution mixed by the ratio, the dispersion is stable. The properties, spectral characteristics, light resistance, and heat resistance were all good.
It was also confirmed that when the near-infrared absorbing pigment and the blue dye or the green dye are used in combination, the light of 650 nm to 800 nm, which is a noise in biometric authentication, is more blocked, and the light of 400 nm to 650 nm used for sensing is more transmitted. It was.

<近赤外線カットフィルタの製造>
[実施例48〜51]
本発明の感光性近赤外線吸収性組成物(R−1)を1.1mm厚のガラス基板上に、スピンコーターで塗工し、プリベイクとして、100℃のホットプレートで1分加熱処理した。
次いで、超高圧水銀灯USH-200DP(ウシオ電機(株)製)を使用して、100μ
m四方の近赤外吸収カットフィルタを形成するためフォトマスクを通して露光量1000mJ/cmにてパターン露光を行った。
露光後の塗膜を0.2質量%炭酸ナトリウム水溶液を現像液として用い、現像液圧0.1mPaでシャワー現像法にて塗膜の未硬化部分を除去して400μm×400μmのパターンを形成させた。その後、100℃で120分ポストベークした。熱処理後の近赤外吸収カットフィルタ(F−1)の膜厚は1.0μmであった。
本発明の感光性近赤外線吸収性組成物(R−2、3、6)についても、近赤外吸収カットフィルタ(F−1)と同様にして近赤外線カットフィルタ(F−2、3、6)を得た。
<Manufacturing of near infrared cut filter>
[Examples 48 to 51]
The photosensitive near-infrared absorbing composition (R-1) of the present invention was coated on a glass substrate having a thickness of 1.1 mm with a spin coater, and heat-treated on a hot plate at 100 ° C. for 1 minute as a prebake.
Then, using an ultra-high pressure mercury lamp USH-200DP (manufactured by Ushio, Inc.), 100 μ
In order to form an m-square near-infrared absorption cut filter, pattern exposure was performed with an exposure amount of 1000 mJ / cm 2 through a photomask.
The exposed coating film was used as a developer using a 0.2 mass% sodium carbonate aqueous solution, and the uncured portion of the coating film was removed by a shower development method at a developer pressure of 0.1 mPa to form a pattern of 400 μm × 400 μm. It was. Then, it was post-baked at 100 ° C. for 120 minutes. The film thickness of the near-infrared absorption cut filter (F-1) after the heat treatment was 1.0 μm.
The photosensitive near-infrared absorbing composition (R-2, 3, 6) of the present invention is also a near-infrared cut filter (F-2, 3, 6) in the same manner as the near-infrared absorbing cut filter (F-1). ) Was obtained.

<近赤外線カットフィルタの評価>
近赤外線カットフィルタ(F−1〜4)について、分光特性、耐久性(耐熱性、耐光性)について感光性近赤外線吸収性組成物評価と同様に試験した。結果を表5に示す。
<Evaluation of near infrared cut filter>
The near-infrared cut filters (F-1 to 4) were tested for spectral characteristics and durability (heat resistance, light resistance) in the same manner as in the evaluation of the photosensitive near-infrared absorbing composition. The results are shown in Table 5.

Figure 0006857296
Figure 0006857296

このようにして作製された近赤外線カットフィルタは、非常に分光特性に優れていた。特に、可視域(400nm〜700nm)に吸収が少なく近赤外線吸収能に優れており分光特性が良好であった。更には耐光性、耐熱性に優れたものであり、そのため、近赤外線カットフィルタとして優れた性能を有していると言える。
また、近赤外線吸収顔料と青色色素もしくは緑色色素を併用した場合、生体認証においてノイズとなる650nm〜800nmの光はより遮蔽され、センシングに用いられる40
0nm〜650nmの光はより透過することが確認され、生体認証用の近赤外線カットフィルタとして優れた性能を有していると言える。
The near-infrared cut filter produced in this way was extremely excellent in spectral characteristics. In particular, there was little absorption in the visible region (400 nm to 700 nm), the near-infrared absorbing ability was excellent, and the spectral characteristics were good. Furthermore, it is excellent in light resistance and heat resistance, and therefore, it can be said that it has excellent performance as a near-infrared cut filter.
Further, when the near-infrared absorbing pigment and the blue pigment or the green pigment are used in combination, the light of 650 nm to 800 nm, which becomes noise in biometric authentication, is further blocked and used for sensing 40.
It has been confirmed that light of 0 nm to 650 nm is more transmitted, and it can be said that it has excellent performance as a near-infrared cut filter for biometric authentication.

<感光性近赤外線透過性組成物の製造>
(青色着色組成物)
下記の組成の混合物を均一に撹拌混合した後、直径0.5mmのジルコニアビーズを用いて、アイガーミルで3時間分散した後、0.5μmのフィルタで濾過し、青色着色組成物を作製した。
C.I.ピグメントブルー PB15:6 :10.0部
樹脂型分散剤2溶液 : 7.5部
バインダ樹脂溶液 :35.0部
PGMAc :47.5部
<Manufacturing of photosensitive near-infrared transmissive composition>
(Blue coloring composition)
The mixture having the following composition was uniformly stirred and mixed, dispersed with an Eiger mill for 3 hours using zirconia beads having a diameter of 0.5 mm, and then filtered through a filter of 0.5 μm to prepare a blue coloring composition.
C. I. Pigment Blue PB15: 6: 10.0 parts Resin-type dispersant 2 solution: 7.5 parts Binder resin solution: 35.0 parts PGMAc: 47.5 parts

(紫色着色組成物)
下記の組成の混合物を均一に撹拌混合した後、直径0.5mmのジルコニアビーズを用いて、アイガーミルで3時間分散した後、0.5μmのフィルタで濾過し、紫色着色組成物を作製した。
C.I.ピグメントバイオレット PV23 :10.0部
樹脂型分散剤2溶液 : 7.5部
バインダ樹脂溶液 :35.0部
PGMAc :47.5部
(Purple coloring composition)
The mixture having the following composition was uniformly stirred and mixed, dispersed with an Eiger mill for 3 hours using zirconia beads having a diameter of 0.5 mm, and then filtered through a filter of 0.5 μm to prepare a purple colored composition.
C. I. Pigment Violet PV23: 10.0 parts Resin type dispersant 2 solution: 7.5 parts Binder resin solution: 35.0 parts PGMAc: 47.5 parts

(黄色着色組成物)
下記の組成の混合物を均一に撹拌混合した後、直径0.5mmのジルコニアビーズを用いて、アイガーミルで3時間分散した後、0.5μmのフィルタで濾過し、黄色着色組成物を作製した。
C.I.ピグメントイエロー PY139 :10.0部
樹脂型分散剤2溶液 : 7.5部
バインダ樹脂溶液 :35.0部
PGMAc :47.5部
(Yellow coloring composition)
The mixture having the following composition was uniformly stirred and mixed, dispersed with an Eiger mill for 3 hours using zirconia beads having a diameter of 0.5 mm, and then filtered through a filter of 0.5 μm to prepare a yellow colored composition.
C. I. Pigment Yellow PY139: 10.0 parts Resin type dispersant 2 solution: 7.5 parts Binder resin solution: 35.0 parts PGMAc: 47.5 parts

(実施例52)
下記の混合物を均一になるように攪拌混合した後、1 .0μmのフィルタで濾過して、感光性近赤外線透過性組成物(P−1)を得た。
近赤外線吸収性組成物(D−4) :10.0部
青色顔料組成物 :20.0部
紫色顔料組成物 :10.0部
黄色顔料組成物 :10.0部
バインダ樹脂溶液 : 7.5部
光重合性単量体( 東亞合成社製「アロニックスM−402 」) : 2.0部
光重合開始剤( BASFジャパン社製「OXE−02」) : 1.5部
PGMAc :39.0部
(Example 52)
After stirring and mixing the following mixture so as to be uniform, 1. Filtration with a 0 μm filter gave a photosensitive near-infrared transmissive composition (P-1).
Near-infrared absorbing composition (D-4): 10.0 parts blue pigment composition: 20.0 parts purple pigment composition: 10.0 parts yellow pigment composition: 10.0 parts binder resin solution: 7.5 parts Part photopolymerizable monomer (“Aronix M-402” manufactured by Toa Synthetic Co., Ltd.): 2.0 parts Photopolymerization initiator (“OXE-02” manufactured by BASF Japan): 1.5 parts PGMAc: 39.0 parts

(実施例53〜56および比較例26〜28)
以下、感光性近赤外線透過性組成物を表6に示す感光性近赤外線透過性組成物の種類に変更した以外は感光性近赤外線透過性組成物(P−1)と同様にして感光性近赤外線透過性組成物(P−2)〜(P−8)を得た。
(Examples 53 to 56 and Comparative Examples 26 to 28)
Hereinafter, the photosensitive near-infrared transmissive composition is changed to the type of the photosensitive near-infrared transmissive composition shown in Table 6, and the same as that of the photosensitive near-infrared transmissive composition (P-1) is obtained. Infrared transmissive compositions (P-2) to (P-8) were obtained.

得られた近赤外線吸収性組成物を1.1mm厚のガラス基板上にスピンコーターを用いて、膜厚2.0μmになるようにスピンコートし、60℃で5分乾燥した後、230℃で5分加熱し、基板を作製した。
フィルタの機能は、例えば、近赤外線の透過が可能か否か、およびそれ以外の波長領域の光線をカットできるか否かである。
以下、900nm、および940nmの透過率、ならびに400〜800nmの波長域の吸収性を評価した。
The obtained near-infrared absorbing composition was spin-coated on a glass substrate having a thickness of 1.1 mm using a spin coater so as to have a film thickness of 2.0 μm, dried at 60 ° C. for 5 minutes, and then dried at 230 ° C. The substrate was prepared by heating for 5 minutes.
The function of the filter is, for example, whether or not near-infrared rays can be transmitted and whether or not light rays in other wavelength regions can be cut.
Hereinafter, the transmittance at 900 nm and 940 nm and the absorbency in the wavelength range of 400 to 800 nm were evaluated.

(400〜800nm吸収性)
得られた基板に対し、分光光度計(U−4100 日立ハイテクノロジーズ社製)を用いて400〜800nmの波長範囲の透過スペクトルを測定した。
○:400〜800nm全領域において、透過率が2%未満
△:400〜800nmの一部領域において、透過率が2%以上
×:400〜800nm全領域において、透過率が2%以上
(Absorbability of 400 to 800 nm)
A transmission spectrum in the wavelength range of 400 to 800 nm was measured on the obtained substrate using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation).
◯: Transmittance is less than 2% in the entire region of 400 to 800 nm Δ: Transmittance is 2% or more in some regions of 400 to 800 nm ×: Transmittance is 2% or more in the entire region of 400 to 800 nm

(900nm透過性)
得られた基板に対し、分光光度計(U−4100 日立ハイテクノロジーズ社製)を用いて900nmの透過率を測定した。
○ :80%以上
△ :40%以上80%未満
× :40%未満
(900nm transparency)
The transmittance of 900 nm was measured on the obtained substrate using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation).
◯: 80% or more Δ: 40% or more and less than 80% ×: less than 40%

(940nm透過性)
得られた基板に対し、分光光度計(U−4100 日立ハイテクノロジーズ社製)を用いて940nmの透過率を測定した。
○ :80%以上
△ :40%以上80%未満
× :40%未満
(940 nm transparency)
The transmittance of the obtained substrate was measured at 940 nm using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation).
◯: 80% or more Δ: 40% or more and less than 80% ×: less than 40%

(耐光性試験)
得られた基板を、耐光性試験機(TOYOSEIKI社製「SUNTEST CPS+
」)に入れ、24時間放置した。この際、放射照度47mW/cm2、300〜800nmの広帯の光にて試験を実施した。その後、分光光度計(U−4100 日立ハイテクノロジーズ社製)を用いて400〜800nmの波長範囲の透過スペクトルを測定した。
○:400〜800nm全領域において、透過率が2%未満
△:400〜800nmの一部領域において、透過率が2%以上
×:400〜800nm全領域において、透過率が2%以上
(耐熱性試験)
得られた基板を、耐熱性試験として210℃で20分追加加熱した。その後、分光光度計(U−4100 日立ハイテクノロジーズ社製)を用いて400〜800nmの波長範囲の透過スペクトルを測定した。
○:400〜800nm全領域において、透過率が2%未満
△:400〜800nmの一部領域において、透過率が2%以上
×:400〜800nm全領域において、透過率が2%以上
(Light resistance test)
The obtained substrate was used as a light resistance tester (“SUNTEST CPS +” manufactured by TOYOSEIKI).
") And left for 24 hours. At this time, the test was carried out with a wide band light having an irradiance of 47 mW / cm2 and 300 to 800 nm. Then, a transmission spectrum in the wavelength range of 400 to 800 nm was measured using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation).
◯: Transmittance is less than 2% in the entire region of 400 to 800 nm Δ: Transmittance is 2% or more in some regions of 400 to 800 nm ×: Transmittance is 2% or more in the entire region of 400 to 800 nm (heat resistance) test)
The obtained substrate was additionally heated at 210 ° C. for 20 minutes as a heat resistance test. Then, a transmission spectrum in the wavelength range of 400 to 800 nm was measured using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation).
◯: Transmittance is less than 2% in the entire region of 400 to 800 nm Δ: Transmittance is 2% or more in some regions of 400 to 800 nm ×: Transmittance is 2% or more in the entire region of 400 to 800 nm

Figure 0006857296
Figure 0006857296

近赤外線吸収顔料と400〜700nmの可視光に吸収のある色素を共に含むことで、400〜800nm全領域の光を吸収し、900nm及び940nmの近赤外線を透過させることが確認された。
特に、近赤外線吸収顔料の平均一次粒子径が10〜80nmであり、かつ適切な溶剤処理をすることで、逆相系液体クロマトグラフィーの分析結果が、移動相としてアセトニトリルと水とを8:2の体積比で混合した混合溶液を用いた条件において、最も長い保持時間において現れるピークのピーク面積の割合が近赤外線吸収顔料に由来するピークすべてのピーク面積の合計の60〜78%となる場合、400〜800nmの吸収性、900nm及び940nmの透過性、耐光性、耐熱性がいずれも良好となった。
It was confirmed that by containing both the near-infrared absorbing pigment and the dye that absorbs visible light of 400 to 700 nm, the light in the entire region of 400 to 800 nm is absorbed and the near infrared rays of 900 nm and 940 nm are transmitted.
In particular, the average primary particle size of the near-infrared absorbing pigment is 10 to 80 nm, and by appropriately treating with a solvent, the analysis result of the reverse phase liquid chromatography shows that acetonitrile and water are used as mobile phases at 8: 2. When the ratio of the peak area of the peak appearing in the longest holding time is 60 to 78% of the total peak area of all the peaks derived from the near-infrared absorbing pigment under the condition of using the mixed solution mixed in the volume ratio of. Absorption at 400 to 800 nm, transparency at 900 nm and 940 nm, light resistance, and heat resistance were all good.

<成形用近赤外線吸収性組成物の製造>
<熱可塑性樹脂(B)>
(B−1)ポリエステルMA−2101M(ポリエステル樹脂、ユニチカ社製、結晶性樹脂、融点264℃)
(B−2)アミランCM3001−N(ポリアミド樹脂、東レ社製、結晶性樹脂、融点265℃)
(B−3)ユーピロンS−3000(ポリカーボネート樹脂、三菱エンジニアリングプラスチック社製、非晶性樹脂、ガラス転移温度145℃)
(B−4)トパス(シクロオレフィン樹脂、ポリプラスチックス社製、非晶性樹脂、ガラス転移温度78℃)
(B−5)アペル(シクロオレフィン樹脂、三井化学社製、非晶性樹脂、ガラス転移温度135℃)
(B−6)ULTEM(ポリエーテルイミド樹脂、サウジ基礎産業公社製、非晶性樹脂、ガラス転移温度217℃)
<Manufacturing of near-infrared absorbing composition for molding>
<Thermoplastic resin (B)>
(B-1) Polyester MA-2101M (polyester resin, manufactured by Unitika Ltd., crystalline resin, melting point 264 ° C.)
(B-2) Amylan CM3001-N (polyamide resin, manufactured by Toray Industries, Inc., crystalline resin, melting point 265 ° C.)
(B-3) Iupiron S-3000 (polycarbonate resin, manufactured by Mitsubishi Engineering Plastics, amorphous resin, glass transition temperature 145 ° C)
(B-4) Topas (cycloolefin resin, manufactured by Polyplastics, amorphous resin, glass transition temperature 78 ° C)
(B-5) Apel (cycloolefin resin, manufactured by Mitsui Chemicals, amorphous resin, glass transition temperature 135 ° C)
(B-6) ULTEM (polyetherimide resin, manufactured by Saudi Basic Industry Corporation, amorphous resin, glass transition temperature 217 ° C)

(実施例57)
<マスターバッチの製造>
近赤外線吸収顔料1を1部と、熱可塑性樹脂(B−3)99部とを同じ供給口からスクリュー径30mmの二軸押出機(日本製鋼所社製)に投入し、300℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングしてマスターバッチ(D−1)を作製した。
(Example 57)
<Manufacturing of masterbatch>
One part of the near-infrared absorbing pigment 1 and 99 parts of the thermoplastic resin (B-3) are put into a twin-screw extruder (manufactured by Japan Steel Works, Ltd.) with a screw diameter of 30 mm from the same supply port, and melt-mixed at 300 ° C. After smelting, it was cut into pellets using a pelletizer to prepare a master batch (D-1).

<フィルム成形>
希釈樹脂の熱可塑性樹脂(B−3)95部に対して、得られたマスターバッチ(D−1)5部を混合し、T−ダイ成形機(東洋精機製)を用いて、温度300℃で溶融混合し、厚さ250μmのフィルム(X−1)を成形した。
<Film molding>
5 parts of the obtained masterbatch (D-1) was mixed with 95 parts of the thermoplastic resin (B-3) of the diluted resin, and the temperature was 300 ° C. using a T-die molding machine (manufactured by Toyo Seiki). A film (X-1) having a thickness of 250 μm was formed by melting and mixing with.

(実施例58〜73、比較例29〜31)
実施例57と同様に、表7記載の材料を用いて、厚さ250μmのフィルム(X−2)〜(X−17)、(XY−1)〜(XY−3)を成形した。なお、下記化合物を用いた。
(Examples 58 to 73, Comparative Examples 29 to 31)
Similar to Example 57, films (X-2) to (X-17) and (XY-1) to (XY-3) having a thickness of 250 μm were molded using the materials shown in Table 7. The following compounds were used.

(近赤外線吸収性)
得られたフィルムに対し、分光光度計(U−4100 日立ハイテクノロジーズ社製)を用いて400〜1000nmの波長範囲の吸収スペクトルを測定し、700〜1000nmの極大吸収波長における吸光度により、近赤外線吸収能を下記基準で評価した。
○ :極大吸収波長における吸光度が1.0以上 良好
△ :極大吸収波長における吸光度が0.5以上、1.0未満 実用域
× :極大吸収波長における吸光度が0.5未満、0.1以上 実用不可
××:極大吸収波長における吸光度が0.1未満 実用不可
なお、〇〜××の結果について実用域、実用不可の上記判定は、以下同様に適用する。
(Near infrared absorption)
For the obtained film, the absorption spectrum in the wavelength range of 400 to 1000 nm was measured using a spectrophotometer (U-4100 manufactured by Hitachi High-Technologies Corporation), and near-infrared absorption was performed by the absorbance at the maximum absorption wavelength of 700 to 1000 nm. The ability was evaluated according to the following criteria.
◯: Absorbance at maximum absorption wavelength is 1.0 or more Good Δ: Absorbance at maximum absorption wavelength is 0.5 or more and less than 1.0 Practical range ×: Absorbance at maximum absorption wavelength is less than 0.5, 0.1 or more Practical use Impossible XX: Absorbance at the maximum absorption wavelength is less than 0.1 Practical impracticality The above judgments in the practical range and impracticality for the results of 〇 to XX are applied in the same manner below.

(不可視性)
前記近赤外線吸収性試験で得られた400〜1000nmの波長範囲の吸収スペクトルを使用して、700〜1000nmの極大吸収波長の吸光度を1に規格化した際の、「400〜700nmの平均吸光度」により、不可視性を下記基準で評価した。
○ :0.05未満
△ :0.05以上、0.1未満
× :0.1以上
(Invisibility)
"Average absorbance at 400 to 700 nm" when the absorbance at the maximum absorption wavelength of 700 to 1000 nm is standardized to 1 using the absorption spectrum in the wavelength range of 400 to 1000 nm obtained in the near infrared absorption test. Invisibility was evaluated according to the following criteria.
◯: Less than 0.05 Δ: 0.05 or more, less than 0.1 ×: 0.1 or more

<透明性>
得られたフィルムの透明性を目視で評価した。
〇: 全く濁りが認められない。
△: 若干濁りが認められる。
×: 明らかに濁りが認められる。
<Transparency>
The transparency of the obtained film was visually evaluated.
〇: No turbidity is observed.
Δ: Some turbidity is observed.
X: Clearly turbidity is observed.

<耐光性>
近赤外線吸収性評価と同じ手順で試験用フィルムを作製し、耐光性試験機(TOYOSEIKI社製「SUNTEST CPS+」)に入れ、放射照度47mW/cm、30
0〜800nmの広帯の光を照射し、24時間放置した。次いで、試験用フィルムを取り出し、当該試験用フィルムの極大吸収波長における吸光度を測定し、光照射前の前記吸光度に対する残存比を求め、耐光性を、下記基準で評価した。なお、残存率の算出は、以下の式を用いて算出した。
残存率=(照射後の吸光度)÷(照射前の吸光度)×100
○ :残存率 が90%以上
△ :残存率 が85%以上90%未満
× :残存率 が85%未満、
<Light resistance>
A test film was prepared by the same procedure as the near-infrared absorption evaluation, placed in a light resistance tester (“SUNTEST CPS +” manufactured by TOYOSEIKI), and the irradiance was 47 mW / cm 2 , 30.
It was irradiated with a wide band of light of 0 to 800 nm and left for 24 hours. Next, the test film was taken out, the absorbance of the test film at the maximum absorption wavelength was measured, the residual ratio to the absorbance before light irradiation was determined, and the light resistance was evaluated according to the following criteria. The survival rate was calculated using the following formula.
Residual rate = (absorbance after irradiation) ÷ (absorbance before irradiation) × 100
◯: Residual rate is 90% or more Δ: Residual rate is 85% or more and less than 90% ×: Residual rate is less than 85%,

Figure 0006857296
Figure 0006857296

近赤外線吸収顔料の平均一次粒子径が10〜80nmであり、かつ適切な溶剤処理をすることで、逆相系液体クロマトグラフィーの分析結果が、移動相としてアセトニトリルと水とを8:2の体積比で混合した混合溶液を用いた条件において、最も長い保持時間におい
て現れるピークのピーク面積の割合が近赤外線吸収顔料に由来するピークすべてのピーク面積の合計の60〜78%となる場合、近赤外線吸収性、不可視性、透明性、耐光性がいずれも良好となった。
The average primary particle size of the near-infrared absorbing pigment is 10 to 80 nm, and by applying an appropriate solvent treatment, the analysis result of the reverse phase liquid chromatography shows that acetonitrile and water are used as mobile phases in a volume of 8: 2. When the ratio of the peak area of the peak appearing in the longest holding time is 60 to 78% of the total peak area of all the peaks derived from the near-infrared absorbing pigment under the condition of using the mixed solution mixed by the ratio, the near-infrared ray is used. Absorption, invisibility, transparency, and light resistance were all good.

<成形用近赤外線透過性組成物の製造>
(実施例74)
<マスターバッチの製造>
近赤外線吸収顔料2を1部、ピグメントブルー15:3を1部、ピグメントイエロー147を1部、ソルベントレッド52を1部、熱可塑性樹脂(B−1)96部とを同じ供給口からスクリュー径30mmの二軸押出機(日本製鋼所社製)に投入し、300℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングしてマスターバッチ(DD−1)を作製した。
<Manufacturing of near-infrared transmissive composition for molding>
(Example 74)
<Manufacturing of masterbatch>
1 part of near-infrared absorbing pigment 2, 1 part of pigment blue 15: 3, 1 part of pigment yellow 147, 1 part of solvent red 52, 96 parts of thermoplastic resin (B-1) from the same supply port screw diameter It was put into a 30 mm twin-screw extruder (manufactured by Japan Steel Works, Ltd.), melt-kneaded at 300 ° C., and then cut into pellets using a pelletizer to prepare a master batch (DD-1).

<フィルム成形>
希釈樹脂の熱可塑性樹脂(B−1)95部に対して、得られたマスターバッチ(DD−1)5部を混合し、T−ダイ成形機(東洋精機製)を用いて、温度300℃で溶融混合し、厚さ250μmのフィルム(XX−1)を成形した。
<Film molding>
5 parts of the obtained masterbatch (DD-1) was mixed with 95 parts of the thermoplastic resin (B-1) of the diluted resin, and the temperature was 300 ° C. using a T-die molding machine (manufactured by Toyo Seiki). A film (XX-1) having a thickness of 250 μm was formed by melting and mixing with.

(実施例75〜79、比較例32〜34)
実施例74と同様に、表7記載の材料を用いて、厚さ250μmのフィルム(XX−2)〜(XX−6)、(XXY−1)〜(XXY−3)を成形した。
(Examples 75 to 79, Comparative Examples 32 to 34)
In the same manner as in Example 74, films (XX-2) to (XX-6) and (XXX-1) to (XXY-3) having a thickness of 250 μm were formed using the materials shown in Table 7.

得られたフィルムに対し、近赤外線フィルタの適性有無を評価した。フィルタの機能は、例えば、近赤外線の透過が可能か否か、およびそれ以外の波長領域の光線をカットできるか否かである。
以下、900nm、および940nmの透過率、ならびに400〜800nmの波長域の吸収性を評価した。
The suitability of the near-infrared filter was evaluated for the obtained film. The function of the filter is, for example, whether or not near-infrared rays can be transmitted and whether or not light rays in other wavelength regions can be cut.
Hereinafter, the transmittance at 900 nm and 940 nm and the absorbency in the wavelength range of 400 to 800 nm were evaluated.

(400〜800nm吸収性)
得られたフィルムに対し、分光光度計(U−4100 日立ハイテクノロジーズ社製)を用いて400〜800nmの波長範囲の透過スペクトルを測定した。
○:400〜800nm全領域において、透過率が2%未満
△:400〜800nmの一部領域において、透過率が2%以上
×:400〜800nm全領域において、透過率が2%以上
(Absorbability of 400 to 800 nm)
The transmission spectrum of the obtained film in the wavelength range of 400 to 800 nm was measured using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation).
◯: Transmittance is less than 2% in the entire region of 400 to 800 nm Δ: Transmittance is 2% or more in some regions of 400 to 800 nm ×: Transmittance is 2% or more in the entire region of 400 to 800 nm

(900nm透過性)
得られたフィルムに対し、分光光度計(U−4100 日立ハイテクノロジーズ社製)を用いて900nmの透過率を測定した。
○ :80%以上
△ :40%以上80%未満
× :40%未満
(900nm transparency)
The transmittance of the obtained film was measured at 900 nm using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation).
◯: 80% or more Δ: 40% or more and less than 80% ×: less than 40%

(940nm透過性)
得られたフィルムに対し、分光光度計(U−4100 日立ハイテクノロジーズ社製)を用いて940nmの透過率を測定した。
○ :80%以上
△ :40%以上80%未満
× :40%未満
(940 nm transparency)
The transmittance of the obtained film was measured at 940 nm using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation).
◯: 80% or more Δ: 40% or more and less than 80% ×: less than 40%

(透明性)
得られたフィルムの透明性を目視で評価した。
〇: 全く濁りが認められない。
△: 若干濁りが認められる。
×: 明らかに濁りが認められる。
(transparency)
The transparency of the obtained film was visually evaluated.
〇: No turbidity is observed.
Δ: Some turbidity is observed.
X: Clearly turbidity is observed.

(耐光性)
得られたフィルムを、耐光性試験機(TOYOSEIKI社製「SUNTEST CP
S+」)に入れ、24時間放置した。この際、放射照度47mW/cm2、300〜800nmの広帯の光にて試験を実施した。その後、分光光度計(U−4100 日立ハイテクノロジーズ社製)を用いて400〜800nmの波長範囲の透過スペクトルを測定した。
○:400〜800nm全領域において、透過率が2%未満
△:400〜800nmの一部領域において、透過率が2%以上
×:400〜800nm全領域において、透過率が2%以上
(Light resistance)
The obtained film is used as a light resistance tester (“SUNTEST CP” manufactured by TOYOSEIKI).
It was placed in S + ”) and left for 24 hours. At this time, the test was carried out with a wide band light having an irradiance of 47 mW / cm2 and 300 to 800 nm. Then, a transmission spectrum in the wavelength range of 400 to 800 nm was measured using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation).
◯: Transmittance is less than 2% in the entire region of 400 to 800 nm Δ: Transmittance is 2% or more in some regions of 400 to 800 nm ×: Transmittance is 2% or more in the entire region of 400 to 800 nm

Figure 0006857296
Figure 0006857296

表8の結果から近赤外線吸収顔料と400〜700nmの可視光に吸収のある色素を共に含むことで、400〜800nm全領域の光を吸収し、900nm及び940nmの近赤外線を透過させることが確認された。
近赤外線吸収顔料の平均一次粒子径が10〜80nmであり、かつ適切な溶剤処理をすることで、逆相系液体クロマトグラフィーの分析結果が、移動相としてアセトニトリルと水とを8:2の体積比で混合した混合溶液を用いた条件において、最も長い保持時間において現れるピークのピーク面積の割合が近赤外線吸収顔料に由来するピークすべてのピーク面積の合計の60〜78%となる場合、近赤外線吸収性、不可視性、透明性、耐光性がいずれも良好となった。
From the results in Table 8, it was confirmed that by containing both the near-infrared absorbing pigment and the dye that absorbs visible light at 400 to 700 nm, it absorbs light in the entire 400 to 800 nm region and transmits near infrared rays at 900 nm and 940 nm. Was done.
The average primary particle size of the near-infrared absorbing pigment is 10 to 80 nm, and by applying an appropriate solvent treatment, the analysis result of the reverse phase liquid chromatography shows that acetonitrile and water are used as mobile phases in a volume of 8: 2. When the ratio of the peak area of the peak appearing in the longest holding time is 60 to 78% of the total peak area of all the peaks derived from the near-infrared absorbing pigment under the condition of using the mixed solution mixed by the ratio, the near-infrared ray is used. Absorption, invisibility, transparency, and light resistance were all good.

Claims (6)

下記一般式(1)で表される化合物、およびその異性体を含む、近赤外線吸収顔料であって、
前記近赤外線吸収顔料の平均一次粒子径は、10〜80nmであり、
逆相系液体クロマトグラフィーを用いる近赤外線吸収顔料の分析結果が、移動相としてアセトニトリルと水とを8:2の体積比で混合した混合溶液を用いた条件において、最も長い保持時間において現れるピークのピーク面積の割合が該近赤外線吸収顔料に由来するピークすべてのピーク面積の合計の60〜78%である、近赤外線吸収顔料。
一般式(1)
Figure 0006857296



(X〜Xはそれぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、アミノ基、置換アミノ基、スルホ基、−SONR、−COOR、−CONR、ニトロ基、シアノ基、ハロゲン原子を表す。R、Rはそれぞれ独立に、水素原子、置換基を有してもよいアルキル基を表す。また、X〜Xは、置換基同士が結合して環を形成してもよい。ただし、X〜Xがすべて水素原子であるものは除く。)
A near-infrared absorbing pigment containing a compound represented by the following general formula (1) and an isomer thereof.
The average primary particle size of the near-infrared absorbing pigment is 10 to 80 nm.
The analysis result of the near-infrared absorbing pigment using reverse phase liquid chromatography shows the peak that appears at the longest retention time under the condition of using a mixed solution of acetonitrile and water in a volume ratio of 8: 2 as the mobile phase. A near-infrared absorbing pigment in which the ratio of the peak area is 60 to 78% of the total of the peak areas of all the peaks derived from the near-infrared absorbing pigment.
General formula (1)
Figure 0006857296



(X 1 to X 6 each independently have a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an aryl group which may have a substituent, and a substituent. Aralkyl group which may have, alkoxy group which may have substituent, aryloxy group which may have substituent, amino group, substituted amino group, sulfo group, -SO 2 NR 1 R 2 ,- COOR 1 , -CONR 1 R 2 , represent a nitro group, a cyano group, and a halogen atom. R 1 and R 2 independently represent an alkyl group that may have a hydrogen atom and a substituent. Also, X 1 In ~ X 6 , substituents may be bonded to each other to form a ring, except for those in which X 1 to X 4 are all hydrogen atoms.)
請求項1記載の近赤外線吸収顔料、および樹脂型分散剤を含む、近赤外線吸収性組成物。 A near-infrared absorbing composition comprising the near-infrared absorbing pigment according to claim 1 and a resin-type dispersant. さらに、光重合性単量体を含む、請求項2に記載の近赤外線吸収性組成物。 The near-infrared absorbing composition according to claim 2, further comprising a photopolymerizable monomer. 請求項1記載の近赤外線吸収顔料、および熱可塑性樹脂の溶融混錬物である、近赤外線吸収性組成物。 A near-infrared absorbing composition according to claim 1, which is a melt-kneaded product of the near-infrared absorbing pigment and a thermoplastic resin. 請求項2〜4いずれか1項に記載の近赤外線吸収性組成物から形成されてなる、近赤外線カットフィルタ。 A near-infrared cut filter formed from the near-infrared absorbing composition according to any one of claims 2 to 4. 請求項2〜4いずれか1項に記載の近赤外線吸収性組成物から形成されてなる、近赤外線透過フィルタ。 A near-infrared ray transmitting filter formed from the near-infrared ray absorbing composition according to any one of claims 2 to 4.
JP2020186992A 2020-04-10 2020-11-10 Near-infrared absorbing pigment and near-infrared absorbing composition Active JP6857296B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020070963 2020-04-10
JP2020070963 2020-04-10
JP2020112697 2020-06-30
JP2020112697 2020-06-30

Publications (2)

Publication Number Publication Date
JP6857296B1 true JP6857296B1 (en) 2021-04-14
JP2022001632A JP2022001632A (en) 2022-01-06

Family

ID=75378130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020186992A Active JP6857296B1 (en) 2020-04-10 2020-11-10 Near-infrared absorbing pigment and near-infrared absorbing composition

Country Status (1)

Country Link
JP (1) JP6857296B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526764B2 (en) * 2009-08-24 2014-06-18 富士ゼロックス株式会社 Image forming material, dye-containing composition, and production method thereof
JP5799607B2 (en) * 2011-06-23 2015-10-28 富士ゼロックス株式会社 Perimidine-based squarylium dye, dye-containing composition, and image forming material
JP2015091923A (en) * 2013-10-01 2015-05-14 富士ゼロックス株式会社 Resin composition, thiopyran-based squarylium compound and image forming material
CN108474885B (en) * 2016-01-15 2021-04-13 东洋油墨Sc控股株式会社 Near-infrared absorbing composition for solid-state imaging element, filter, and solid-state imaging element

Also Published As

Publication number Publication date
JP2022001632A (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP5573724B2 (en) Coloring composition, color filter and display element
JP6160061B2 (en) Coloring composition for color filter
JP7255335B2 (en) Near-infrared absorbing composition and near-infrared cut filter
JP6740765B2 (en) Coloring composition for color filter, method for producing the same and color filter
JP7476760B2 (en) Near infrared absorbing dye, near infrared absorbing composition, and near infrared cut filter
JP7182049B2 (en) Near-infrared absorbing dye, near-infrared absorbing composition, and optical filter
JP6511898B2 (en) Photosensitive coloring composition for solid-state imaging device, color filter for solid-state imaging device, and solid-state imaging device
JP6089877B2 (en) Quinophthalone compound and coloring composition containing the same
JP2015172652A (en) Triarylmethane dye, and use thereof
JP6857296B1 (en) Near-infrared absorbing pigment and near-infrared absorbing composition
JP2022022070A (en) Near-infrared absorbing dye and near-infrared absorbing composition
JP2022067588A (en) Near-infrared absorbent pigment, near-infrared absorbent composition, and near-infrared cut filter
JP6911604B2 (en) Colorants for color filters, coloring compositions for color filters, and color filters
JP6651798B2 (en) Near infrared absorbing dyes and their uses
JP5693016B2 (en) Blue coloring composition for color filter, and color filter
JP6724354B2 (en) Near infrared absorbing dye and its use
WO2022172980A1 (en) Near-infrared absorbing pigment, near-infrared absorbing composition, and optical filter
JP6753087B2 (en) Near-infrared absorbing pigments and their uses
JP2022091099A (en) Near-infrared absorptive dye, near-infrared absorptive composition and optical filter
JP2023176615A (en) Novel compounds, near-infrared-absorbing compositions, and optical filters
JP2023080975A (en) Near infrared radiation absorbing dye, near infrared radiation absorbing composition, and optical filter
JP2017115001A (en) Near infrared ray-absorbing composition and filter
JP2023073064A (en) Novel compounds, near-infrared absorbing dyes, near-infrared absorbing compositions, and optical filters
JP2022184710A (en) Novel compound, near-infrared absorbing dye, near-infrared absorbing composition, and optical filter
JP2023085680A (en) Near-infrared absorbing composition and optical filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201124

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210119

R151 Written notification of patent or utility model registration

Ref document number: 6857296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350