JP6855962B2 - Welded steel pipe - Google Patents

Welded steel pipe Download PDF

Info

Publication number
JP6855962B2
JP6855962B2 JP2017131032A JP2017131032A JP6855962B2 JP 6855962 B2 JP6855962 B2 JP 6855962B2 JP 2017131032 A JP2017131032 A JP 2017131032A JP 2017131032 A JP2017131032 A JP 2017131032A JP 6855962 B2 JP6855962 B2 JP 6855962B2
Authority
JP
Japan
Prior art keywords
welding
bead
weld bead
width
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017131032A
Other languages
Japanese (ja)
Other versions
JP2019013931A (en
Inventor
亮平 篠▲崎▼
亮平 篠▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017131032A priority Critical patent/JP6855962B2/en
Publication of JP2019013931A publication Critical patent/JP2019013931A/en
Application granted granted Critical
Publication of JP6855962B2 publication Critical patent/JP6855962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Description

本発明は、溶接鋼管に関し、例えばUOE鋼管といった溶接鋼管を製造する際に低入熱化により溶接熱影響部の低温靭性が優れ、かつ低入熱化による管端部の高温割れを防止できることから、例えば、永久凍土を有するような寒冷地や深海に敷設されるパイプラインに用いるのに好適な溶接鋼管に関する。 The present invention relates to a welded steel pipe, for example, when manufacturing a welded steel pipe such as a UOE steel pipe, the low temperature toughness of the weld heat affected portion is excellent due to low heat input, and high temperature cracking of the pipe end due to low heat input can be prevented. For example, the present invention relates to a welded steel pipe suitable for use in a pipeline laid in a cold region or a deep sea having permanent frozen soil.

UOE鋼管が石油,天然ガスパイプラインに使用される鋼管として多用される。近年、UOE鋼管は、深海井戸や寒冷地で用いられることが増加している。このため、UOE鋼管の破壊安全性を高めるために、高強度化や厚肉化(肉厚25mm超)が推進されるとともに、溶接熱影響部Heat Affected Zone(以下、「HAZ」という)には優れた低温靱性が求められる。 UOE steel pipes are often used as steel pipes used in oil and natural gas pipelines. In recent years, UOE steel pipes are increasingly used in deep-sea wells and cold regions. Therefore, in order to improve the fracture safety of UOE steel pipes, high strength and thickening (thickness over 25 mm) are promoted, and the weld heat affected zone Heat Affected Zone (hereinafter referred to as "HAZ") is used. Excellent low temperature toughness is required.

しかし、厚肉のUOE鋼管の製造では、溶接の入熱量が不可避的に増加する。このため、HAZの金属組織が粗粒化し、HAZの低温靱性が低下し易くなる。これまでにも、UOE鋼管のHAZの低温靱性を改善する発明が多数提案されている。 However, in the production of thick-walled UOE steel pipes, the amount of heat input in welding inevitably increases. Therefore, the metal structure of HAZ becomes coarse, and the low temperature toughness of HAZ tends to decrease. So far, many inventions for improving the low temperature toughness of HAZ of UOE steel pipe have been proposed.

例えば、特許文献1には、母材の化学組成および溶接割れ感受性指数Pcmを規定した、耐震性能およびHAZの低温靱性に優れた高強度のUOE鋼管が開示され、特許文献2には、母材および溶接金属の化学組成を規定し、580〜750℃で10分間以上加熱した後に1℃/秒以下の冷却速度で冷却する応力除去焼鈍(SR処理)を施した、SR特性に優れた高強度および高靱性のUOE鋼管の製造方法が開示されている。特許文献1,2により開示された発明は、基本的に、母材の化学組成を規定することにより、HAZの低温靱性を改善する。 For example, Patent Document 1 discloses a high-strength UOE steel pipe having excellent seismic performance and low-temperature toughness of HAZ, which defines the chemical composition of the base material and the weld crack susceptibility index Pcm, and Patent Document 2 discloses the base material. And the chemical composition of the weld metal is specified, and after heating at 580 to 750 ° C for 10 minutes or more, stress relief annealing (SR treatment) is performed to cool at a cooling rate of 1 ° C / sec or less, and high strength with excellent SR characteristics. And a method for producing a high toughness UOE steel pipe is disclosed. The inventions disclosed in Patent Documents 1 and 2 basically improve the low temperature toughness of HAZ by defining the chemical composition of the base material.

一方、特許文献3,4には、ガスシールドアーク溶接およびサブマージアーク溶接を複合的に用いて溶接するという、溶接方法を工夫することによりHAZの低温靱性を改善する発明が開示されている。特許文献3,4により開示された方法では、ガスシールドアーク溶接により熱量を鋼板の板厚方向へ深く投入し、その後にサブマージアーク溶接を行うことにより、HAZの金属組織を微細化し、これにより、HAZの低温靱性を改善する。なお、外面溶接を多層溶接化により1パス当たりの入熱を低減する方法も知られるが、この方法は、溶接能率が通常の倍以上に悪化するために製造コストが嵩み、量産の溶接工程としては適用し難い。 On the other hand, Patent Documents 3 and 4 disclose an invention for improving the low temperature toughness of HAZ by devising a welding method of welding by using gas shielded arc welding and submerged arc welding in combination. In the method disclosed in Patent Documents 3 and 4, the amount of heat is applied deeply in the plate thickness direction of the steel plate by gas shielded arc welding, and then submerged arc welding is performed to refine the metal structure of HAZ. Improves low temperature toughness of HAZ. A method of reducing the heat input per pass by multi-layer welding of the outer surface welding is also known, but this method increases the manufacturing cost because the welding efficiency deteriorates more than twice as much as usual, and the mass production welding process. It is difficult to apply as.

さらに、特許文献5には、サブマージアーク溶接部のフュージョンラインを特定の形状に制限することにより、HAZの低温靱性を向上する方法が開示されている。 Further, Patent Document 5 discloses a method for improving the low temperature toughness of HAZ by limiting the fusion line of the submerged arc welded portion to a specific shape.

特開2009−235460号公報Japanese Unexamined Patent Publication No. 2009-235460 特開平8−269566号公報Japanese Unexamined Patent Publication No. 8-269566 特許第5521632号公報Japanese Patent No. 5521632 特許第5515850号公報Japanese Patent No. 5515850 特開2016−150364号公報Japanese Unexamined Patent Publication No. 2016-150364

UOE鋼管を製管する際の溶接は、生産効率の観点から通常内外面1パスで行われる。このとき、板厚の厚い母材を溶接(厚肉溶接)して製管する場合には、溶け込み深さを深くする(溶接ビードの高さを高くする)必要がある。厚肉化による溶け込み深さの増加に伴って溶接の入熱量が増加し、結果としてビード形状も大きくなる傾向にある。このため、厚肉溶接では入熱の増加により、HAZの金属組織が粗粒化し、HAZの低温靱性が低下する。 Welding when manufacturing UOE steel pipes is usually performed with one pass on the inner and outer surfaces from the viewpoint of production efficiency. At this time, when a thick base metal is welded (thick-walled welding) to produce a pipe, it is necessary to increase the penetration depth (increase the height of the weld bead). As the penetration depth increases due to the thickening, the amount of heat input to the weld increases, and as a result, the bead shape tends to increase. Therefore, in thick-wall welding, the metal structure of HAZ is coarsened due to the increase in heat input, and the low temperature toughness of HAZ is lowered.

入熱量を低く抑制しながら溶け込み深さ(溶接ビード高さ)を確保するために、溶接ビードを縦長形状に形成して溶接ビードの幅を狭くすることが考えられる。しかし、この手法により溶接ビードを形成すると、溶接ビード形状が縦長になることにより溶接金属に成分偏析が発生し、高温割れ(本明細書では「ホットクラック」ともいう)と呼ばれる溶接割れが発生する。特に高温割れは、内面溶接側で発生し易く、ラインパイプの破断原因になり得る重大な溶接欠陥となる。また、高温割れが発生すると、溶接鋼管の機械的性能も当然著しく低下する。したがって、これまで、この手法によるHAZの低温靱性の改善は実際には行われていない。 In order to secure the penetration depth (weld bead height) while suppressing the amount of heat input low, it is conceivable to form the weld bead into a vertically long shape to narrow the width of the weld bead. However, when a weld bead is formed by this method, component segregation occurs in the weld metal due to the vertically elongated shape of the weld bead, and a weld crack called a high temperature crack (also referred to as “hot crack” in the present specification) occurs. .. In particular, high-temperature cracking is likely to occur on the inner surface welding side, and becomes a serious welding defect that can cause breakage of the line pipe. In addition, when high-temperature cracking occurs, the mechanical performance of the welded steel pipe naturally deteriorates significantly. Therefore, so far, the improvement of the low temperature toughness of HAZ by this method has not been actually performed.

本発明は、従来の技術が有するこの課題に鑑みてなされたものであり、溶接ビードを縦長形状に形成してビード幅を狭くすることにより入熱量を低く抑制しながら溶け込み深さを確保することによりHAZの低温靭性を改善する手法をベースとし、さらに、溶接金属における成分偏析を抑制して高温割れの発生も防止できる、HAZの低温靱性に優れた溶接鋼管を提供することを目的する。 The present invention has been made in view of this problem of the prior art, and secures the penetration depth while suppressing the amount of heat input low by forming the weld bead into a vertically long shape and narrowing the bead width. Based on the method of improving the low temperature toughness of HAZ, it is an object of the present invention to provide a welded steel pipe having excellent low temperature toughness of HAZ, which can suppress component segregation in the weld metal and prevent the occurrence of high temperature cracks.

入熱量を抑制して溶接ビードを母材板厚方向へ縦長形状とすれば、入熱量の抑制によりHAZに与える吸収エネルギーの低下、すなわち靭性の低下を防止できるものの、溶接ビードが縦長形状になることにより溶接金属の内部に成分偏析が発生し、特に内面溶接部に高温割れ(ホットクラック)と呼ばれる溶接割れが発生し易くなる。 If the amount of heat input is suppressed and the weld bead is vertically elongated in the thickness direction of the base metal plate, the amount of heat input can be suppressed to prevent a decrease in absorbed energy given to HAZ, that is, a decrease in toughness, but the weld bead becomes vertically elongated. As a result, component segregation occurs inside the weld metal, and weld cracks called high-temperature cracks (hot cracks) are likely to occur particularly in the inner surface welded portion.

本発明者は、本発明に係る溶接鋼管の溶接ビードの概要を示す説明図である図1に示すように、溶接ビードにおける高温割れ(ホットクラック)が発生する位置の近傍における溶接ビードの形状を特定の形状に変更すること、具体的には、溶接ビードにおける高温割れ(ホットクラック)が発生する位置の近傍の幅を増加させて、いわば縦長形状ビードから寸胴形状ビードに変更することにより、鋼管の内外面からの溶接金属が接触する部分(メタルタッチ部)で互いに溶け込ませる量を増加させることに想到した。 As shown in FIG. 1, which is an explanatory view showing an outline of a weld bead of a welded steel pipe according to the present invention, the present inventor determines the shape of the weld bead in the vicinity of a position where a high temperature crack (hot crack) occurs in the weld bead. By changing to a specific shape, specifically, by increasing the width near the position where high temperature cracks (hot cracks) occur in the weld bead, and changing from a vertically long bead to a barrel-shaped bead, the steel pipe We came up with the idea of increasing the amount of welding metal from the inner and outer surfaces of the steel, which is in contact with each other (metal touch part).

そして、内面溶接条件および開先条件を種々検討し、内面1パスにつき数本の電極で行うサブマージアーク溶接の第1〜3電極の溶接条件を変更し、さらに開先条件を変更することにより、高温割れ(ホットクラック)の母材板厚方向の発生位置の近傍の溶接ビードの幅を拡大することができ、これにより、HAZの低温靱性に優れ、かつ高温割れが発生しない溶接鋼管を得られることを知見し、本発明を完成した。 Then, by examining various inner surface welding conditions and groove conditions, changing the welding conditions of the first to third electrodes of submerged arc welding performed with several electrodes per inner surface pass, and further changing the groove conditions. The width of the weld bead near the position where the high temperature crack (hot crack) occurs in the thickness direction of the base metal plate can be expanded, whereby a welded steel pipe having excellent low temperature toughness of HAZ and no high temperature crack can be obtained. Knowing that, the present invention was completed.

本発明は、以下に記載の条件1〜3を満足することを特徴とする溶接鋼管である。 The present invention is a welded steel pipe characterized in that conditions 1 to 3 described below are satisfied.

(条件1)板厚28mm超の鋼板の上下面の端部に開先部を設け、ルートフェイスを近接させて内外面からサブマージアーク溶接した溶接接合部を有する溶接鋼管である。 (Condition 1) A welded steel pipe having a groove portion at the end of the upper and lower surfaces of a steel plate having a plate thickness of more than 28 mm, and a welded joint portion in which a root face is brought close to each other and submerged arc welded from the inner and outer surfaces.

(条件2)鋼板の板厚をt(mm)とした場合の、鋼板の1/4t部における溶接線近接の溶接熱影響部における旧オーステナイトの円相当粒径が94μm以下である。 (Condition 2) When the thickness of the steel sheet is t (mm), the circle-equivalent particle size of the former austenite in the heat-affected zone near the welding line in the 1 / 4t portion of the steel sheet is 94 μm or less.

(条件3)溶接により形成された溶接ビードの高さ(母材板厚方向の長さ)をT(mm)とした場合の、内面溶接の溶接ビードの最下部から母材板厚方向へ1/8T離れた位置(1/8T部)での溶接ビードの幅w(mm)が下記(1)式を満足し、最下部から前記母材板厚方向へ1/8T〜3/8T離れた位置(1/8T部〜3/8T部)における溶接ビードの幅x(mm)が(2)式および(3)式を満足する。 (Condition 3) When the height (length in the base plate thickness direction) of the weld bead formed by welding is T (mm), the bottom of the weld bead for inner surface welding is 1 in the base plate thickness direction. The width w (mm) of the weld bead at a position separated by / 8T (1 / 8T portion) satisfies the following equation (1), and is separated from the lowermost portion by 1 / 8T to 3 / 8T in the thickness direction of the base metal plate. The width x (mm) of the weld bead at the position (1 / 8T portion to 3 / 8T portion) satisfies the equations (2) and (3).

x≧8.6mm ・・・・・(1)
x≧(1/0.2234)ln(y/0.3525) ・・・・・(2)
1/8T≦y≦3/8T ・・・・・(3)
ただし、
x:溶接ビードの幅(mm)
y:最下部から母材板厚方向に離れた位置(mm)
T:予盛を含まない溶接ビードの高さ(mm)
である。
x ≧ 8.6 mm ・ ・ ・ ・ ・ (1)
x ≧ (1 / 0.2234) ln (y / 0.3525) ・ ・ ・ ・ ・ (2)
1 / 8T ≤ y ≤ 3 / 8T ... (3)
However,
x: Width of weld bead (mm)
y: Position (mm) away from the bottom in the base metal plate thickness direction
T: Height of weld bead not including pre-filling (mm)
Is.

本発明によれば、HAZの低温靱性に優れ、かつ重篤な溶接欠陥となり得る高温割れの発生を防止できることから、例えば深海井戸や永久凍土を有するような寒冷地でのラインパイプに用いるのに好適な、例えばUOE鋼管等の溶接鋼管を提供できる。 According to the present invention, HAZ has excellent low temperature toughness and can prevent the occurrence of high temperature cracks that can cause serious welding defects. Therefore, it is used for line pipes in cold regions such as deep sea wells and permafrost. Suitable welded steel pipes such as UOE steel pipes can be provided.

図1は、本発明に係る溶接鋼管の溶接ビードの概要を示す説明図である。FIG. 1 is an explanatory view showing an outline of a weld bead of a welded steel pipe according to the present invention. 図2は、本発明に係る溶接鋼管の溶接ビードの母材板厚方向の位置を示す説明図である。FIG. 2 is an explanatory view showing the position of the weld bead of the welded steel pipe according to the present invention in the thickness direction of the base metal plate. 図3は、内面溶接の溶接ビード1/8T部でのビード幅と、管端でのホットクラックの発生率との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the bead width at the weld bead 1 / 8T portion of the inner surface welding and the occurrence rate of hot cracks at the pipe end. 図4は、内面溶接の溶接ビード2/8T部でのビード幅と、管端でのホットクラックの発生率の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the bead width at the weld bead 2 / 8T portion of the inner surface welding and the occurrence rate of hot cracks at the pipe end. 図5は、内面溶接の溶接ビード3/8T部でのビード幅と、管端でのホットクラックの発生率の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the bead width at the weld bead 3 / 8T portion of the inner surface welding and the occurrence rate of hot cracks at the pipe end. 図6は、内面溶接の溶接ビード4/8T部でのビード幅と、管端でのホットクラックの発生率の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the bead width at the weld bead 4 / 8T portion of the inner surface welding and the occurrence rate of hot cracks at the pipe end. 図7は、内面溶接の溶接ビード5/8T部でのビード幅と、管端でのホットクラックの発生率の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the bead width at the weld bead 5 / 8T portion of the inner surface welding and the occurrence rate of hot cracks at the pipe end. 図8は、内面溶接の溶接ビード6/8T部でのビード幅と、管端でのホットクラックの発生率の関係を示すグラフである。FIG. 8 is a graph showing the relationship between the bead width at the welding bead 6 / 8T portion of the inner surface welding and the occurrence rate of hot cracks at the pipe end. 図9は、内面溶接の溶接ビード7/8T部でのビード幅と、管端でのホットクラックの発生率の関係を示すグラフである。FIG. 9 is a graph showing the relationship between the bead width at the weld bead 7 / 8T portion of the inner surface welding and the occurrence rate of hot cracks at the pipe end. 図10は、内面溶接の溶接ビード8/8T部でのビード幅と、管端でのホットクラックの発生率の関係を示すグラフである。FIG. 10 is a graph showing the relationship between the bead width at the weld bead 8 / 8T portion of the inner surface welding and the occurrence rate of hot cracks at the pipe end.

本発明を、添付図面を参照しながら説明する。なお、以降の説明では、溶接鋼管がUOE鋼管である場合を例にとるが、本発明の適用対象は、溶接接合部の欠陥を回避するという本発明の作用効果に照らせば、UOE鋼管に限られるものではなく、鋼板をサブマージアーク溶接して得られる溶接鋼管であれば等しく適用される。 The present invention will be described with reference to the accompanying drawings. In the following description, the case where the welded steel pipe is a UOE steel pipe will be taken as an example, but the application target of the present invention is limited to the UOE steel pipe in light of the action and effect of the present invention of avoiding defects in the welded joint. This does not apply equally to welded steel pipes obtained by submerged arc welding of steel sheets.

本発明に係るUOE鋼管は上述した条件1〜3を具備する。 The UOE steel pipe according to the present invention satisfies the above-mentioned conditions 1 to 3.

(1)条件1
本発明に係るUOE鋼管は、溶接接合部を有する。溶接接合部は、板厚28mm超の鋼板の上下面の端部に開先部を設け、ルートフェイスを近接させて内外面からサブマージアーク溶接することにより、形成される。
(1) Condition 1
The UOE steel pipe according to the present invention has a welded joint. The welded joint is formed by submerged arc welding from the inner and outer surfaces with a groove provided at the end of the upper and lower surfaces of a steel plate having a thickness of more than 28 mm and the root faces approaching each other.

開先部は、通常のように、鋼板の側面からみて三角形に切削して形成される。 The groove portion is formed by cutting into a triangle when viewed from the side surface of the steel plate as usual.

鋼板を筒状にして内外面からサブマージアーク溶接を行う際には、通常、内面溶接を行った後に外面溶接を行う。このとき、内面溶接により形成された溶接ビード(内面ビード)にかかるように外面溶接により溶接ビード(外面ビード)が形成され、溶接接合部となる。 When submerged arc welding is performed from the inner and outer surfaces of a steel plate in a tubular shape, the outer surface welding is usually performed after the inner surface welding. At this time, the weld bead (outer surface bead) is formed by the outer surface welding so as to cover the weld bead (inner surface bead) formed by the inner surface welding, and becomes a welded joint.

内面ビードの部位であって、さらに外面溶接により重複されて形成された部位(内外面から溶接により形成された溶接ビードの重複部)を一定量確保することにより、UOE鋼管の信頼性が向上するだけでなく、内面溶接により生じた成分偏析を一部解消できる。内面ビードおよび外面ビードの重複部の厚さを、板厚方向へ2〜4mm確保することが好ましい。 The reliability of the UOE steel pipe is improved by securing a certain amount of the parts of the inner bead that are overlapped by the outer surface welding (the overlapping part of the weld bead formed by welding from the inner and outer surfaces). Not only that, it is possible to partially eliminate the component segregation caused by the inner surface welding. It is preferable to secure the thickness of the overlapping portion of the inner surface bead and the outer surface bead by 2 to 4 mm in the plate thickness direction.

ここで、板厚28mm超の鋼板を素材とする理由を説明する。すなわち、板厚が厚くなると、厚肉化による溶け込み深さの増加に伴って入熱が増大し、溶接ビードの形状も大きくなる傾向にある。このため、厚肉溶接では入熱の増加により母材のHAZの結晶粒が粗大化し、HAZの低温靱性が低下する。特に、28mm超の鋼板ではHAZの低温靱性の低下が顕著になる。このため、鋼板の板厚は28mm超とする。板厚の上限は特に限定はしないが、実際に製造可能な範囲を考慮すると鋼板の板厚は40mm以下である。 Here, the reason for using a steel plate having a plate thickness of more than 28 mm as a material will be described. That is, as the plate thickness increases, the heat input tends to increase as the penetration depth increases due to the thickening, and the shape of the weld bead also tends to increase. Therefore, in thick-wall welding, the crystal grains of HAZ, which is the base material, become coarse due to the increase in heat input, and the low temperature toughness of HAZ decreases. In particular, the low temperature toughness of HAZ is significantly reduced in a steel sheet having a thickness of more than 28 mm. Therefore, the thickness of the steel plate is set to more than 28 mm. The upper limit of the plate thickness is not particularly limited, but the plate thickness of the steel plate is 40 mm or less in consideration of the actually manufacturable range.

(2)条件2
鋼板の板厚をt(mm)とした場合の、鋼板の1/4t部における溶接線近接の溶接熱影響部における旧オーステナイトの円相当粒径が94μm以下である。
(2) Condition 2
When the thickness of the steel sheet is t (mm), the particle size equivalent to the circle of the old austenite in the heat-affected zone near the welding line in the 1 / 4t portion of the steel sheet is 94 μm or less.

一般的には、母材の板厚が厚いほど入熱量を増大させてサブマージアーク溶接を行う。このとき、入熱量が大きいほど、HAZはより高温に達し、変態生成するオーステナイトの粒径はより大きくなる。溶接後、HAZは冷却され相変態することになるが、HAZ組織の結晶粒は生成したオーステナイトの粒径(旧オーステナイト粒径)に概ね依存する。 Generally, the thicker the base metal is, the more heat is input to perform submerged arc welding. At this time, the larger the amount of heat input, the higher the temperature of HAZ, and the larger the particle size of the transformed austenite. After welding, the HAZ is cooled and undergoes a phase transformation, but the crystal grains of the HAZ structure largely depend on the grain size of the produced austenite (former austenite grain size).

本発明では、入熱量の抑制によりHAZの低温靭性の低下を防止することを前提として、通常よりも低い入熱量で溶接する。鋼板の化学組成や板厚等にもよるが、概ね、内面溶接:5.6kJ/mm以下の入熱量(通常6.5〜6.9kJ/mm程度)、外面溶接:5.4kJ/mm以下の入熱量(通常6.3〜6.7kJ/mm程度)で溶接したときのHAZの調査結果によれば、入熱の影響を最も受けると考えられる1/4t部(板厚表面から1/4t離れた部位)の溶接線近接のHAZにおける旧オーステナイト(溶接線に接する旧オーステナイト粒)の円相当粒径が94μm以下であることにより、HAZの低温靭性は低下しない。したがって、鋼板の1/4t部における溶接線近接のHAZにおける旧オーステナイトの円相当粒径は94μm以下である。 In the present invention, welding is performed with a lower heat input amount than usual on the premise that the decrease in low temperature toughness of HAZ is prevented by suppressing the heat input amount. Although it depends on the chemical composition and thickness of the steel plate, the inner surface welding: 5.6 kJ / mm or less heat input (usually about 6.5 to 6.9 kJ / mm), the outer surface welding: 5.4 kJ / mm or less. According to the HAZ survey results when welding with the amount of heat input (usually about 6.3 to 6.7 kJ / mm), the 1 / 4t part (1 / from the plate thickness surface) that is considered to be most affected by the heat input. Since the circle-equivalent particle size of the former austenite (former austenite grains in contact with the welding line) in the HAZ near the welding line at a distance of 4 tons is 94 μm or less, the low temperature toughness of the HAZ does not decrease. Therefore, the circle-equivalent particle size of the former austenite in the HAZ near the weld line at the 1/4 t portion of the steel sheet is 94 μm or less.

なお、UOE鋼管の内外面および溶接ビード(内面ビードおよび外面ビード)を挟んで左右のいずれかの旧オーステナイトの円相当粒径が94μm超であるとその部分でHAZの低温靭性が低下する。このため、表裏面(鋼管内外面)および溶接ビードを挟んで左右について、溶接線の近接のHAZにおける旧オーステナイトの円相当粒径は94μm以下である。また、旧オーステナイトの円相当粒径が小さいほどHAZの低温靭性は向上するため、旧オーステナイトの円相当粒径の下限は特に規定しないが、通常は40μm以上である。 If the circle-equivalent particle size of either the left or right austenite with the inner / outer surface of the UOE steel pipe and the weld bead (inner surface bead and outer surface bead) is greater than 94 μm, the low temperature toughness of HAZ is lowered at that portion. Therefore, the circle-equivalent particle size of the former austenite in HAZ near the welding line is 94 μm or less on the front and back surfaces (inner and outer surfaces of the steel pipe) and on the left and right sides of the welding bead. Further, the smaller the circle-equivalent particle size of the former austenite, the higher the low-temperature toughness of HAZ. Therefore, the lower limit of the circle-equivalent particle size of the former austenite is not particularly specified, but is usually 40 μm or more.

(3)条件3
溶接により形成された溶接ビードの高さ(母材板厚方向の長さ)をT(mm)とした場合の、内面溶接の溶接ビードの最下部から母材板厚方向へ1/8T離れた位置での溶接ビードの幅w(mm)が下記(1)式を満足し、前記最下部から母材板厚方向へ1/8T〜3/8T離れた位置y(mm)における溶接ビードの幅x(mm)が(2)式および(3)式を満足する。
(3) Condition 3
When the height of the weld bead formed by welding (length in the base plate thickness direction) is T (mm), it is 1/8 T away from the bottom of the weld bead for inner surface welding in the base plate thickness direction. The width w (mm) of the weld bead at the position satisfies the following equation (1), and the width of the weld bead at the position y (mm) separated from the lowermost portion in the base plate thickness direction by 1/8 T to 3/8 T. x (mm) satisfies Eqs. (2) and (3).

w≧8.6mm ・・・・・(1)
x≧(1/0.2234)ln(y/0.3525) ・・・・・(2)
1/8T≦y≦3/8T ・・・・・(3)
ただし、xは溶接ビードの幅(mm)、yは最下部から母材板厚方向へ離れた位置(mm)、Tは予盛を含まない溶接ビードの高さ(mm)である。
w ≧ 8.6 mm ・ ・ ・ ・ ・ (1)
x ≧ (1 / 0.2234) ln (y / 0.3525) ・ ・ ・ ・ ・ (2)
1 / 8T ≤ y ≤ 3 / 8T ... (3)
However, x is the width of the weld bead (mm), y is the position away from the bottom in the base metal plate thickness direction (mm), and T is the height of the weld bead not including the prefill (mm).

高温割れは、内面溶接または外面溶接の両方で発生し得るが、より発生し易いのは内面溶接である。このため、内面ビードでの成分偏析を抑制して高温割れを防止するために、内面ビードのビード幅に着目する。少なくとも外面溶接金属の溶接線のプロフィールも内面溶接金属の溶接線のプロフィールと同等になれば、内外面から溶接した溶接線全体として高温割れを防止することができると考えられる。 Hot cracks can occur in both inner and outer surface welds, but more likely to occur in inner surface welds. Therefore, in order to suppress component segregation on the inner bead and prevent high temperature cracking, attention is paid to the bead width of the inner bead. If at least the profile of the weld line of the outer surface weld metal becomes the same as the profile of the weld line of the inner surface weld metal, it is considered that high temperature cracking can be prevented for the entire weld line welded from the inner and outer surfaces.

図2は、本発明に係るUOE鋼管の溶接ビードの母材板厚方向の溶け込み位置を示す説明図である。 FIG. 2 is an explanatory view showing a penetration position in the base metal plate thickness direction of the weld bead of the UOE steel pipe according to the present invention.

様々に溶接条件(板厚、開先形状、入熱量、溶接速度)を変化させ、内面ビードの溶接線(溶接ビードの幅)のプロフィールを調査した。より具体的には、採取したサンプルについては、内面ビードの最下部から母材板厚方向へ離れた位置8箇所(1/8T部〜8/8T部)の溶接ビードの幅と管端でのホットクラックの発生率との相関を調査した。 Welding conditions (plate thickness, groove shape, heat input, welding speed) were changed in various ways, and the profile of the welding line (width of the weld bead) of the inner bead was investigated. More specifically, for the collected sample, the width of the weld bead and the pipe end at eight positions (1 / 8T part to 8 / 8T part) separated from the bottom of the inner bead in the base metal plate thickness direction. The correlation with the incidence of hot cracks was investigated.

図3〜10は、それぞれ、内面ビードの1/8T〜8/8T部での溶接ビードの幅と、管端でのホットクラックの発生率との関係の調査結果を示すグラフである。 FIGS. 3 to 10 are graphs showing the results of investigation of the relationship between the width of the weld bead at the 1 / 8T to 8 / 8T portion of the inner bead and the occurrence rate of hot cracks at the pipe end, respectively.

図3〜5のグラフに示すように、1/8T〜3/8T部での溶接ビードの幅が増加するにつれて、管端でのホットクラックの発生率は低減される傾向にある。これに対し、図6〜10のグラフに示すように、4/8T〜8/8T部(溶接ビードの表層側)での溶接ビードの幅の増加と、管端でのホットクラックの発生率とには関連性は認められない。 As shown in the graphs of FIGS. 3 to 5, as the width of the weld bead at the 1 / 8T to 3 / 8T portion increases, the occurrence rate of hot cracks at the pipe end tends to decrease. On the other hand, as shown in the graphs of FIGS. 6 to 10, the increase in the width of the weld bead at the 4 / 8T to 8 / 8T portion (the surface layer side of the weld bead) and the occurrence rate of hot cracks at the pipe end. No relevance is found in.

図3〜10のグラフに示す結果から、1/8T部〜3/8T部の溶接ビードの幅とホットクラックとの間には相関関係があり、溶接ビードの幅が太いほどホットクラックの発生が抑制される傾向にある。1/8T部での溶接ビードの幅w≧8.6mm、2/8T部での溶接ビードの幅≧11.2mmかつ3/8T部の溶接ビードの幅≧12.6mmの条件を充足すると、高温割れが生じない。これに対し、図6〜10のグラフに示すように、4/8T部〜8/8T部での溶接ビードの幅とホットクラックとの間には相関関係は認められない。 From the results shown in the graphs of FIGS. 3 to 10, there is a correlation between the width of the weld bead in the 1 / 8T portion to the 3 / 8T portion and the hot crack, and the thicker the width of the weld bead, the more hot crack occurs. It tends to be suppressed. When the conditions of the welding bead width w ≧ 8.6 mm at the 1 / 8T part and the welding bead width ≧ 11.2 mm at the 2 / 8T part and the welding bead width ≧ 12.6 mm at the 3 / 8T part are satisfied. No high temperature cracking occurs. On the other hand, as shown in the graphs of FIGS. 6 to 10, no correlation is observed between the width of the weld bead and the hot crack in the 4 / 8T portion to the 8 / 8T portion.

1/8T部の溶接ビードの幅w≧8.6mm、2/8T部の溶接ビードの幅≧11.2mm、3/8T部の溶接ビードの幅≧12.6mmの条件を満足することにより高温割れが生じない理由は、成分偏析が発生し易い溶接金属の底面部における溶接ビードの幅を増加させることにより、溶接金属内での偏析がその分散および緩和され、内面ビードの偏析が緩和され、これにより、高温割れの発生が抑制されると推定される。また、内面ビードの幅自体を溶接金属の底面部の近傍から広く確保することにより、溶接金属自体の締結力を増大することもできる。 High temperature by satisfying the condition of 1 / 8T portion welding bead width w ≧ 8.6mm, 2 / 8T portion welding bead width ≧ 11.2mm, and 3 / 8T portion welding bead width ≧ 12.6mm. The reason why cracks do not occur is that by increasing the width of the weld bead at the bottom surface of the weld metal where component segregation is likely to occur, the segregation in the weld metal is dispersed and alleviated, and the segregation of the inner bead is alleviated. It is presumed that this suppresses the occurrence of high temperature cracking. Further, by securing the width of the inner bead itself widely from the vicinity of the bottom surface portion of the weld metal, the fastening force of the weld metal itself can be increased.

そこで、内面溶接の溶接ビードの最下部から母材板厚方向へ1/8T〜3/8T離れた位置(1/8T〜3/8T部)の溶接ビードの幅に着目する。 Therefore, attention is paid to the width of the weld bead at a position (1 / 8T to 3 / 8T portion) separated from the lowermost portion of the welding bead for inner surface welding in the base metal plate thickness direction by 1/8 T to 3/8 T.

溶接ビードの高さT、すなわち溶接ビードの肉厚は、UOE鋼管に用いる鋼板の板厚や溶接条件などによる。このため、様々な板厚でUOE鋼管を製造し、高温割れの発生が5%以下であった溶接ビードの1/8T〜3/8T部における溶接ビードの幅を調査して溶接ビードの位置と溶接ビードの幅の関係を整理および一般化した。 The height T of the weld bead, that is, the wall thickness of the weld bead depends on the thickness of the steel plate used for the UOE steel pipe, the welding conditions, and the like. For this reason, UOE steel pipes with various plate thicknesses were manufactured, and the width of the weld bead in the 1 / 8T to 3 / 8T part of the weld bead where the occurrence of high temperature cracking was 5% or less was investigated to determine the position of the weld bead. The relationship between weld bead widths was organized and generalized.

その結果、1/8T部〜3/8T部(1/8T≦y≦3/8T)での溶接ビードの幅xが、x≧(1/0.2234)ln(y/0.3525)を満たすビード形状であるときに、高温割れの発生率を低減されることが判明した。ただし、yは最下部から母材板厚方向へ離れた位置(溶接ビードの深さ位置)である。 As a result, the width x of the weld bead in the 1 / 8T portion to the 3 / 8T portion (1 / 8T ≦ y ≦ 3 / 8T) is x ≧ (1 / 0.2234) ln (y / 0.3525). It has been found that the incidence of high temperature cracking is reduced when the bead shape is satisfied. However, y is a position separated from the lowermost portion in the thickness direction of the base metal plate (the depth position of the weld bead).

また、この式を満足しても、溶接ビードの形状を溶接ビードの底面部から幅広にしておくことが必要である。前述の板厚28.5mmの鋼板による調査から28mm超の鋼板を用いる場合は、溶け込み位置1/8T部での溶接ビードの幅wは8.6mm以上である。 Further, even if this equation is satisfied, it is necessary to make the shape of the weld bead wider from the bottom surface of the weld bead. When a steel plate having a thickness of more than 28 mm is used from the above-mentioned investigation using a steel plate having a thickness of 28.5 mm, the width w of the weld bead at the penetration position 1/8 T portion is 8.6 mm or more.

なお、溶接ビードの幅w、xが大きいほど成分偏析を低減できるため、溶接ビードの幅w、xの上限は規定しない。しかし、溶接効率などを考えると、1/8T〜3/8T部での溶接ビードの幅xは通常20mm以下である。特に通常1/8T部での溶接ビードの幅wは15mm以下である。 Since the component segregation can be reduced as the widths w and x of the weld beads are larger, the upper limits of the widths w and x of the weld beads are not specified. However, considering the welding efficiency and the like, the width x of the welding bead in the 1 / 8T to 3 / 8T portion is usually 20 mm or less. In particular, the width w of the weld bead at the 1 / 8T portion is usually 15 mm or less.

炭素当量Ceqが0.41質量%である0.06質量%Cの厚鋼板(板厚28.5〜40mm)を用意し、UOE鋼管の製造を想定して、厚鋼板の上下面に対象に開先を切削し、上下面からサブマージアーク溶接を行った。 Prepare a thick steel plate (plate thickness 28.5-40 mm) of 0.06 mass% C with a carbon equivalent Ceq of 0.41 mass%, and apply it to the upper and lower surfaces of the thick steel plate assuming the production of UOE steel pipes. The groove was cut and submerged arc welding was performed from the upper and lower surfaces.

溶接ワイヤには、各電極にソリッドワイヤ(日鐵住金溶接工業株式会社製)を用い、フラックスには溶融型フラックス(同社製)を用いた。溶接ワイヤの組み合わせを表1に示す。 For the welding wire, a solid wire (manufactured by Nippon Steel & Sumitomo Metal Welding Industry Co., Ltd.) was used for each electrode, and a molten flux (manufactured by the same company) was used for the flux. Table 1 shows the combinations of welding wires.

また、表2に示す溶接条件により、開先および内面溶接側(先に溶接した側)の溶接金属の形状(溶接ビード形状)を種々変化させて溶接継手を製造した。なお、外面溶接側(後に溶接した側)に関しては入熱量を5.2〜5.4kJ/mmとほぼ固定して溶接を行った。 Further, a welded joint was manufactured by variously changing the shape (welding bead shape) of the weld metal on the groove and the inner surface welding side (the side welded first) according to the welding conditions shown in Table 2. Regarding the outer surface welding side (the side welded later), the amount of heat input was substantially fixed at 5.2 to 5.4 kJ / mm, and welding was performed.

Figure 0006855962
Figure 0006855962

Figure 0006855962
Figure 0006855962

溶接した後の継手部のビード形状についてマクロサンプル採取を行い、サンプルをエッチングし、内面溶接側の溶接ビード(内面ビード)の高さTを測定するとともに、母材板厚方向に8段階に分割し、最下部から1/8T,2/8T,3/8T離れた各位置(1/8T部,2/8T部,3/8T部)の内面ビードの幅を測定した(図2も参照)。 A macro sample is taken for the bead shape of the joint after welding, the sample is etched, the height T of the weld bead (inner bead) on the inner surface welding side is measured, and it is divided into 8 stages in the base metal plate thickness direction. Then, the width of the inner bead at each position (1 / 8T part, 2 / 8T part, 3 / 8T part) separated from the bottom by 1 / 8T, 2 / 8T, and 3 / 8T was measured (see also FIG. 2). ..

また、溶接部を超音波探傷試験およびX線撮影を行うことにより高温割れの有無を確認した。ここで、高温割れの有無は、超音波探傷試験およびX線撮影の両方で高温割れがないことを基準に判定した。 In addition, the presence or absence of high-temperature cracks was confirmed by performing an ultrasonic flaw detection test and X-ray photography on the welded portion. Here, the presence or absence of high-temperature cracking was determined based on the absence of high-temperature cracking in both the ultrasonic flaw detection test and the X-ray imaging.

さらに、継手部の母材1/4t部の場所からミクロ組織観察用試料を採取し、板厚方向断面を鏡面研磨およびエッチングした後に光学顕微鏡で写真撮影を行い、得られた画像解析により溶接線の近接のHAZにおける旧オーステナイトの円相当粒径を算出した。ここで、旧オーステナイトの円相当粒径は、母材表裏面および溶接ビードを挟んで左右の溶接線の母材1/4t部における溶接線の近接の旧オーステナイト粒10個(計40個)について測定を行い、その平均値を旧オーステナイトの円相当粒径とした。 Furthermore, a sample for microstructure observation is taken from the location of the base material 1 / 4t of the joint, the cross section in the thickness direction is mirror-polished and etched, and then a photograph is taken with an optical microscope. The circle-equivalent particle size of the old austenite in the HAZ in the vicinity of was calculated. Here, the circle-equivalent particle size of the old austenite is about 10 old austenite grains (40 in total) in the vicinity of the welding line at the base material 1 / 4t portion of the left and right welding lines with the front and back surfaces of the base material and the welding bead sandwiched. The measurement was performed, and the average value was taken as the circle-equivalent particle size of the old austenite.

表3に、製造した溶接継手の余盛りを含まない内面ビードの高さ、内面ビードの幅、HAZにおける旧オーステナイト円相当粒径および高温割れ発生率を示す。なお、同じ条件で製造した溶接継手でも内面溶接ビードの溶け込み深さ、溶接ビードの幅にはばらつきがあったため、表3中には同じ条件で製造した溶接継手の測定平均値を示し、特に高温割れ(表3中の高温割れ発生率)に関しては、同条件で製造したUOE鋼管の全数に対する高温割れが発生した本数割合を示した。表3における下線は、本発明の範囲外であること、HAZの低温靱性が良好でないこと、または高温割れが発生したことを示す。 Table 3 shows the height of the inner bead, the width of the inner bead, the particle size equivalent to the old austenite circle in HAZ, and the occurrence rate of high-temperature cracking, which does not include the surplus of the manufactured welded joint. Since there were variations in the penetration depth of the inner surface weld bead and the width of the weld bead even in the welded joint manufactured under the same conditions, Table 3 shows the measured average values of the welded joint manufactured under the same conditions, and the temperature is particularly high. Regarding cracks (high temperature crack occurrence rate in Table 3), the ratio of the number of high temperature cracks to the total number of UOE steel pipes manufactured under the same conditions is shown. The underline in Table 3 indicates that it is out of the scope of the present invention, the low temperature toughness of HAZ is not good, or high temperature cracking has occurred.

Figure 0006855962
Figure 0006855962

なお、外面ビードについてもビード高さおよびビード幅に関しても、同様の測定を行ったが、母材板厚が同じ実施例(No.1〜14)のサンプルについてほぼ固定して外面溶接を行い、似たようなプロフィールを有する外面ビードが形成されたため、代表的なサンプルのみを測定するに留めた。また、母材板厚が35mm以上の実施例(No.15,16)のサンプルについては特に測定はしなかった。測定を行った実施例(No.1〜14)のサンプルについての外面ビードの高さTは19.5〜19.8mmであり、1/8T部の外面ビードの幅は10.78〜10.85mmであり、2/8T部の外面ビードの幅は13.09〜13.18mmであり、3/8T部の外面ビードの幅は14.32〜14.45mmであった。 The same measurement was performed for the outer bead, the bead height and the bead width, but the samples of Examples (No. 1 to 14) having the same base metal plate thickness were substantially fixed and the outer surface was welded. Due to the formation of exterior beads with similar profiles, only representative samples were measured. Further, no particular measurement was performed on the samples of Examples (No. 15 and 16) having a base material plate thickness of 35 mm or more. The height T of the outer surface bead for the sample of Examples (No. 1 to 14) in which the measurement was performed was 19.5 to 19.8 mm, and the width of the outer surface bead of the 1 / 8T portion was 10.78 to 10. It was 85 mm, the width of the outer bead of the 2 / 8T portion was 13.09 to 13.18 mm, and the width of the outer bead of the 3 / 8T portion was 14.32 to 14.45 mm.

表3に示すように、本発明の規定を全て満足する本発明例(No.11,No.15およびNo.16)は、高温割れ発生率が0%であった。 As shown in Table 3, in the examples of the present invention (No. 11, No. 15 and No. 16) satisfying all the provisions of the present invention, the high temperature crack occurrence rate was 0%.

一方、本発明の規定を満足しない比較例(No.1〜10,12〜13)は、高温割れの発生率が高かった。また、特にNo.14は、高温割れ発生率はゼロであったものの、HAZにおける旧オーステナイト円相当粒径が100μmを超え、HAZの低温靭性の低下が懸念されたことから、No.14も含め数点のサンプルについて、内面溶接側の母材の1/4t部の溶接線位置における−20℃における吸収エネルギーを測定した。その結果、No.14は吸収エネルギーの値が83J(3点平均)しかなく、HAZの低温靭性が不足した。 On the other hand, in the comparative examples (Nos. 1 to 10, 12 to 13) that did not satisfy the provisions of the present invention, the occurrence rate of high temperature cracking was high. In particular, No. In No. 14, although the high temperature crack occurrence rate was zero, the particle size equivalent to the old austenite circle in HAZ exceeded 100 μm, and there was a concern that the low temperature toughness of HAZ would decrease. For several samples including 14, the absorbed energy at −20 ° C. at the welding line position of 1 / 4t portion of the base metal on the inner surface welding side was measured. As a result, No. In No. 14, the absorbed energy value was only 83J (3-point average), and the low temperature toughness of HAZ was insufficient.

一方、本発明例(No.11,No.15およびNo.16)は、吸収エネルギーの値がいずれも200J以上(各サンプルの3点平均)となり、HAZの低温靭性も良好であった。 On the other hand, in the examples of the present invention (No. 11, No. 15 and No. 16), the absorbed energy values were all 200 J or more (3-point average of each sample), and the low temperature toughness of HAZ was also good.

Claims (1)

板厚28mm超の鋼板の上下面の端部に開先部を設け、ルートフェイスを近接させて内外面からサブマージアーク溶接した溶接接合部を有する溶接鋼管であって、
鋼板の板厚をt(mm)、溶接により形成された溶接ビードの高さをT(mm)とした場合、
鋼板の板厚表面から1/4t離れた部位である1/4t部における溶接線近接の溶接熱影響部における旧オーステナイトの円相当粒径が94μm以下であり、
内面溶接の溶接ビードの最下部から母材板厚方向へ1/8T離れた位置での溶接ビードの幅w(mm)が下記(1)式を満足し、前記最下部から母材板厚方向へ1/8T〜3/8T離れた位置y(mm)における溶接ビードの幅x(mm)が(2)式および(3)式を満足する、溶接鋼管。
w≧8.6mm ・・・・・(1)
x≧(1/0.2234)ln(y/0.3525) ・・・・・(2)
1/8T≦y≦3/8T ・・・・・(3)
ただし、
x:溶接ビードの幅(mm)
y:最下部から母材板厚方向へ離れた位置(mm)
T:予盛を含まない溶接ビードの高さ(mm)
A welded steel pipe having a welded joint in which a groove is provided at the end of the upper and lower surfaces of a steel plate having a thickness of more than 28 mm and submerged arc welding is performed from the inner and outer surfaces with the root face close to each other.
When the thickness of the steel plate is t (mm) and the height of the weld bead formed by welding is T (mm),
The circle-equivalent particle size of the former austenite in the heat-affected zone near the welding line at the 1 / 4t portion, which is 1 / 4t away from the thickness surface of the steel sheet, is 94 μm or less.
The width w (mm) of the weld bead at a position 1 / 8T away from the bottom of the welding bead for inner surface welding in the base plate thickness direction satisfies the following equation (1), and the base plate thickness direction from the bottom. A welded steel pipe in which the width x (mm) of the weld bead at a position y (mm) separated from 1 / 8T to 3 / 8T satisfies the equations (2) and (3).
w ≧ 8.6 mm ・ ・ ・ ・ ・ (1)
x ≧ (1 / 0.2234) ln (y / 0.3525) ・ ・ ・ ・ ・ (2)
1 / 8T ≤ y ≤ 3 / 8T ... (3)
However,
x: Width of weld bead (mm)
y: Position (mm) away from the bottom in the base metal plate thickness direction
T: Height of weld bead not including pre-filling (mm)
JP2017131032A 2017-07-04 2017-07-04 Welded steel pipe Active JP6855962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017131032A JP6855962B2 (en) 2017-07-04 2017-07-04 Welded steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017131032A JP6855962B2 (en) 2017-07-04 2017-07-04 Welded steel pipe

Publications (2)

Publication Number Publication Date
JP2019013931A JP2019013931A (en) 2019-01-31
JP6855962B2 true JP6855962B2 (en) 2021-04-07

Family

ID=65357943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017131032A Active JP6855962B2 (en) 2017-07-04 2017-07-04 Welded steel pipe

Country Status (1)

Country Link
JP (1) JP6855962B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968011B2 (en) * 2002-05-27 2007-08-29 新日本製鐵株式会社 High strength steel excellent in low temperature toughness and weld heat affected zone toughness, method for producing the same and method for producing high strength steel pipe
JP5217773B2 (en) * 2007-09-19 2013-06-19 Jfeスチール株式会社 High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same
JP5176591B2 (en) * 2008-02-26 2013-04-03 Jfeスチール株式会社 Welded steel pipe with excellent weld heat-affected zone toughness
JP2009214127A (en) * 2008-03-10 2009-09-24 Jfe Steel Corp Submerged arc welding method for steel material
JP5742091B2 (en) * 2009-05-27 2015-07-01 Jfeスチール株式会社 Submerged arc welding method for steel with excellent toughness of weld heat affected zone
KR101607213B1 (en) * 2009-12-30 2016-03-29 주식회사 포스코 Method of Manufacturing the pipe for Excellent High HAZ Toughness
JP5811591B2 (en) * 2011-05-24 2015-11-11 Jfeスチール株式会社 High strength line pipe excellent in crush resistance and weld heat-affected zone toughness and method for producing the same

Also Published As

Publication number Publication date
JP2019013931A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
KR101410588B1 (en) Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
WO2013051249A1 (en) Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same
JP5061483B2 (en) Manufacturing method of ultra high strength welded steel pipe
JP6587041B1 (en) ERW steel pipe for line pipe
JP5693279B2 (en) Laser-arc hybrid welding method for high-strength steel sheet and high-strength steel sheet weld metal obtained thereby
JP5176591B2 (en) Welded steel pipe with excellent weld heat-affected zone toughness
JP6201803B2 (en) Submerged arc welds with excellent low temperature toughness
JP4995066B2 (en) Butt multipass weld joint and welded structure with excellent brittle crack propagation characteristics
JP3702216B2 (en) Manufacturing method for inner and outer surface submerged arc welded steel pipes with excellent seam weld toughness
EP3162489B1 (en) Method of butt welding steel plates and butt weld joint of steel plates
JP6855962B2 (en) Welded steel pipe
JP3896031B2 (en) Manufacturing method of high strength UOE steel pipe
JP5000148B2 (en) Manufacturing method of welded steel pipe
JP6693688B2 (en) Welded steel pipe for line pipe excellent in low temperature toughness and method of manufacturing the same
JP6241310B2 (en) Submerged arc welds with excellent low temperature toughness
JP5742091B2 (en) Submerged arc welding method for steel with excellent toughness of weld heat affected zone
JP2008183619A (en) Multipass butt-welded joint having excellent brittle crack propagation resistance, and welded structure
JP6579249B2 (en) Welded steel pipe for line pipe excellent in low temperature toughness and its manufacturing method
JP6720825B2 (en) Thermal processing control type 590 MPa class H-section steel
JP5753429B2 (en) Welding material and method for manufacturing welded joint
JP5742090B2 (en) Submerged arc welding method for steel with excellent toughness of weld heat affected zone
JP2014155949A (en) Welded steel pipe for line pipe with excellent low-temperature toughness, and method of manufacturing the same
JP3465639B2 (en) High-strength welded steel pipe for pipelines with excellent fracture resistance
JP6455210B2 (en) UOE steel pipe with excellent low temperature toughness
JP4482355B2 (en) Seam welding method for high strength UO steel pipe with excellent transverse cracking resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R151 Written notification of patent or utility model registration

Ref document number: 6855962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151