JP6853551B2 - Composite fiber and its manufacturing method, and adsorbent - Google Patents

Composite fiber and its manufacturing method, and adsorbent Download PDF

Info

Publication number
JP6853551B2
JP6853551B2 JP2017191017A JP2017191017A JP6853551B2 JP 6853551 B2 JP6853551 B2 JP 6853551B2 JP 2017191017 A JP2017191017 A JP 2017191017A JP 2017191017 A JP2017191017 A JP 2017191017A JP 6853551 B2 JP6853551 B2 JP 6853551B2
Authority
JP
Japan
Prior art keywords
fiber
chitosan
cellulose
composite fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017191017A
Other languages
Japanese (ja)
Other versions
JP2019065414A (en
Inventor
橋本 賀之
賀之 橋本
武大 北村
武大 北村
太一 後藤
太一 後藤
裕 田村
裕 田村
哲也 古池
哲也 古池
健亮 西田
健亮 西田
ダゥアカモル デチョジャラッシ
ダゥアカモル デチョジャラッシ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS CO. LTD.
Kansai University
Original Assignee
DKS CO. LTD.
Kansai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKS CO. LTD., Kansai University filed Critical DKS CO. LTD.
Priority to JP2017191017A priority Critical patent/JP6853551B2/en
Priority to PCT/JP2018/036274 priority patent/WO2019065974A1/en
Publication of JP2019065414A publication Critical patent/JP2019065414A/en
Application granted granted Critical
Publication of JP6853551B2 publication Critical patent/JP6853551B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/05Cellulose or derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)

Description

本発明は、複合繊維、より詳細にはセルロース繊維を担持したキトサン繊維、及びその製造方法に関する。また、該複合繊維を含む吸着材に関する。 The present invention relates to a composite fiber, more specifically a chitosan fiber supporting a cellulose fiber, and a method for producing the same. It also relates to an adsorbent containing the composite fiber.

従来、キトサン繊維として、キトサンを酸性水溶液に溶解し、得られたキトサン溶液を塩基性の凝固用溶媒中でノズルから湿式紡糸して繊維化したものが知られている(特許文献1参照)。かかるキトサン繊維は水により膨潤しやすいことから、例えばキトサン繊維を担体として用いた吸着材では、強度低下しやすいという課題がある。また、キトサン繊維を用いた吸着材では、アニオン性基を有する誘導体や、酸素酸塩や、酸性化合物や、等電点が生理的pHよりも酸性側にある、あるいは複数のカルボキシル基を持ったアミノ酸を多く含む酸性タンパク質に対する吸着能は高いが、含窒素化合物や、等電点が生理的pHよりも塩基性側にある、あるいは複数のアミノ基を持ったアミノ酸を多く含む塩基性タンパク質に対する吸着能は低いため、親和性を有するリガンドなどを合成化学的に修飾する必要がある。 Conventionally, as chitosan fibers, chitosan is dissolved in an acidic aqueous solution, and the obtained chitosan solution is wet-spun from a nozzle in a basic coagulation solvent to form fibers (see Patent Document 1). Since such chitosan fibers are easily swollen by water, for example, an adsorbent using chitosan fibers as a carrier has a problem that the strength is easily lowered. In addition, the adsorbent using chitosan fiber has a derivative having an anionic group, an oxidate, an acidic compound, an isoelectric point on the acidic side of the physiological pH, or having a plurality of carboxyl groups. Adsorption ability to acidic proteins containing a large amount of amino acids is high, but adsorption to nitrogen-containing compounds and basic proteins having an isoelectric point on the basic side of the physiological pH or containing a large amount of amino acids having multiple amino groups. Since the ability is low, it is necessary to synthetically modify a ligand having an affinity or the like.

ところで、特許文献2には、セルロース繊維の表面をキトサンで被覆したセシウムの吸着材が開示されている。この文献では、酸化剤によるセルロースの酸化的開裂反応により得られるアルデヒド基を、キトサンのアミノ基と反応させることにより、セルロース繊維をキトサンで被覆しており、キトサン繊維にセルロース繊維を被覆または担持することは記載されていない。 By the way, Patent Document 2 discloses an adsorbent for cesium in which the surface of a cellulose fiber is coated with chitosan. In this document, cellulose fibers are coated with chitosan by reacting an aldehyde group obtained by an oxidative cleavage reaction of cellulose with an oxidizing agent with an amino group of chitosan, and the cellulose fibers are coated or supported on the chitosan fibers. That is not stated.

特許文献3には、キトサンと酸化セルロースとを含んでなる創傷包帯用組成物が開示されており、キトサンのアミン基と酸化セルロースのカルボキシレート基との間での化学的複合化が記載されている。しかしながら、該酸化セルロースは、四酸化二窒素や過酸化水素などの酸化剤を用いて、レーヨンなどの再生セルロースを酸化したものであるためI型結晶構造を有していない。また、特許文献3には、キトサンと酸化セルロースとの均質混合物が記載されており、キトサン繊維にセルロース繊維を担持することは記載されていない。 Patent Document 3 discloses a composition for wound dressing comprising chitosan and cellulose oxide, and describes a chemical complex between an amine group of chitosan and a carboxylate group of cellulose oxide. There is. However, the oxidized cellulose does not have an I-type crystal structure because it is obtained by oxidizing regenerated cellulose such as rayon with an oxidizing agent such as dinitrogen tetraoxide or hydrogen peroxide. Further, Patent Document 3 describes a homogeneous mixture of chitosan and oxidized cellulose, and does not describe supporting cellulose fibers on chitosan fibers.

特開2001−031702号公報Japanese Unexamined Patent Publication No. 2001-031702 特開2015−169633号公報Japanese Unexamined Patent Publication No. 2015-169633 特表2006−514843号公報Special Table 2006-514843

本発明の実施形態は、キトサン繊維にI型結晶構造を有するセルロース繊維を複合化することにより、キトサン繊維の水による膨潤を抑えることができ、酸性タンパク質等の酸性物質だけはなく、含窒素化合物や塩基性タンパク質等の塩基性物質に対する吸着能を持つ複合繊維を提供することを目的とする。 In the embodiment of the present invention, by compounding a cellulose fiber having an I-type crystal structure with a chitosan fiber, swelling of the chitosan fiber due to water can be suppressed, and not only an acidic substance such as an acidic protein but also a nitrogen-containing compound can be suppressed. It is an object of the present invention to provide a composite fiber having an ability to adsorb basic substances such as chitosan and basic proteins.

上記課題を解決するため、本発明の実施形態に係る複合繊維は、キトサン繊維の表面に、I型結晶構造を有しかつアニオン性官能基を有するセルロース繊維を担持してなるものである。 In order to solve the above problems, the composite fiber according to the embodiment of the present invention is formed by supporting a cellulose fiber having an I-type crystal structure and an anionic functional group on the surface of the chitosan fiber.

本発明の実施形態に係る複合繊維の製造方法は、該複合繊維を製造する方法であって、キトサン塩水溶液を、セルロース繊維とアルカリを含む凝固液中で紡糸し複合繊維を得る工程を含むものである。 The method for producing a composite fiber according to an embodiment of the present invention is a method for producing the composite fiber, which comprises a step of spinning an aqueous chitosan salt solution in a coagulating solution containing cellulose fibers and an alkali to obtain a composite fiber. ..

本発明の実施形態に係る吸着材は、上記複合繊維を含有するものである。 The adsorbent according to the embodiment of the present invention contains the above-mentioned composite fiber.

本発明の実施形態に係る複合繊維であると、キトサン繊維の表面にセルロース繊維を担持することで、水による膨潤を抑えることができ、機械的強度を向上できる。また、キトサン繊維の持つアミノ基とセルロース繊維の持つアニオン性官能基により、酸性タンパク質等の酸性物質だけでなく、含窒素化合物や塩基性タンパク質等の塩基性物質も吸着することができる。 In the composite fiber according to the embodiment of the present invention, by supporting the cellulose fiber on the surface of the chitosan fiber, swelling due to water can be suppressed and the mechanical strength can be improved. Further, not only acidic substances such as acidic proteins but also basic substances such as nitrogen-containing compounds and basic proteins can be adsorbed by the amino group of chitosan fiber and the anionic functional group of cellulose fiber.

また、本発明の実施形態に係る製造方法であると、凝固液中のセルロース繊維、および、アルカリの濃度を調整することにより、複合繊維の繊維径を変化させることが可能である。 Further, according to the production method according to the embodiment of the present invention, it is possible to change the fiber diameter of the composite fiber by adjusting the concentrations of the cellulose fibers and the alkali in the coagulating liquid.

凝固浴中のTOCN濃度と複合繊維の破断強度との関係を示すグラフGraph showing the relationship between the TOCN concentration in the coagulation bath and the breaking strength of the composite fiber 凝固浴中のTOCN濃度と複合繊維の破断伸度との関係を示すグラフGraph showing the relationship between the TOCN concentration in the coagulation bath and the breaking elongation of the composite fiber 凝固浴中のTOCN濃度と複合繊維の膨潤率との関係を示すグラフGraph showing the relationship between the TOCN concentration in the coagulation bath and the swelling rate of the composite fiber

以下、本発明の好ましい実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.

本実施形態に係る複合繊維は、キトサン繊維(A)と、該キトサン繊維の表面に担持したセルロース繊維(B)とを含むものである。 The composite fiber according to the present embodiment includes a chitosan fiber (A) and a cellulose fiber (B) supported on the surface of the chitosan fiber.

[キトサン繊維(A)]
キトサン繊維は、カチオン性多糖であるキトサンからなる繊維である。キトサンは、天然高分子であるキチンの脱アセチル化物であり、脱アセチル化により形成されたアミノ基を有する。キトサン繊維としては、特に限定されないが、例えばキトサン溶液を湿式紡糸して得られたものでもよい。
[Chitosan fiber (A)]
Chitosan fiber is a fiber composed of chitosan, which is a cationic polysaccharide. Chitosan is a deacetylase of chitin, which is a natural polymer, and has an amino group formed by deacetylation. The chitosan fiber is not particularly limited, but may be obtained by wet spinning a chitosan solution, for example.

キトサン繊維の平均繊維径は、特に限定されず、1〜1000μmでもよく、1〜400μmでもよく、1〜200μmでもよい。キトサン繊維の平均繊維径は、光学顕微鏡観察により20本の繊維の繊維径の相加平均により求めることができる。 The average fiber diameter of the chitosan fiber is not particularly limited, and may be 1 to 1000 μm, 1 to 400 μm, or 1 to 200 μm. The average fiber diameter of chitosan fibers can be determined by the arithmetic mean of the fiber diameters of 20 fibers by observation with an optical microscope.

[セルロース繊維(B)]
セルロース繊維としては、I型結晶構造を有しかつアニオン性官能基を有するものが用いられる。
[Cellulose fiber (B)]
As the cellulose fiber, one having an I-type crystal structure and an anionic functional group is used.

セルロースI型結晶は天然セルロースの結晶形であり、I型結晶構造を有することにより、セルロース繊維に水不溶性を持たせて、複合繊維の水に対する膨潤を抑えることができる。またセルロース繊維がI型結晶構造を有することにより、キトサン繊維との複合繊維の機械的強度が向上する効果が得られる。 The cellulose I-type crystal is a crystal form of natural cellulose, and by having the I-type crystal structure, the cellulose fiber can be made water-insoluble and the swelling of the composite fiber with respect to water can be suppressed. Further, since the cellulose fiber has an I-type crystal structure, the effect of improving the mechanical strength of the composite fiber with the chitosan fiber can be obtained.

セルロース繊維がI型結晶構造を有することは、例えば、広角X線回折像測定により得られる回折プロファイルにおいて、2θ=14°〜17°付近と、2θ=22°〜23°付近の2つの位置に典型的なピークをもつことから同定することができる。 The fact that the cellulose fibers have an I-type crystal structure means that, for example, in the diffraction profile obtained by wide-angle X-ray diffraction image measurement, there are two positions, 2θ = 14 ° to 17 ° and 2θ = 22 ° to 23 °. It can be identified by having a typical peak.

セルロース繊維の持つアニオン性官能基としては、例えば、カルボキシル基、リン酸基、スルホン酸基、硝酸基、ホウ酸基、及び硫酸基からなる群から選択される少なくとも1種が挙げられる。本明細書において、カルボキシル基は、酸型(−COOH)だけでなく、塩型、即ちカルボン酸塩基(−COOX、ここでXはカルボン酸と塩を形成する陽イオン)も含む概念である。リン酸基、スルホン酸基、硝酸基、ホウ酸基、及び硫酸基についても、同様に、酸型だけでなく、塩型も含む概念である。 Examples of the anionic functional group contained in the cellulose fiber include at least one selected from the group consisting of a carboxyl group, a phosphoric acid group, a sulfonic acid group, a nitric acid group, a boric acid group, and a sulfate group. In the present specification, the carboxyl group is a concept including not only an acid type (-COOH) but also a salt type, that is, a carboxylic acid base (-COOX, where X is a cation forming a salt with a carboxylic acid). Similarly, the phosphate group, the sulfonic acid group, the nitric acid group, the boric acid group, and the sulfate group are concepts that include not only the acid type but also the salt type.

一実施形態において、アニオン性官能基としてはカルボキシル基が好ましい。カルボキシル基を含有するセルロース繊維としては、例えば、セルロース分子中のグルコースユニットの水酸基を酸化してなる酸化セルロース繊維や、セルロース分子中のグルコースユニットの水酸基をカルボキシメチル化してなるカルボキシメチル化セルロース繊維が挙げられる。 In one embodiment, the anionic functional group is preferably a carboxyl group. Examples of the cellulose fiber containing a carboxyl group include an oxidized cellulose fiber obtained by oxidizing the hydroxyl group of a glucose unit in a cellulose molecule and a carboxymethylated cellulose fiber obtained by carboxymethylating a hydroxyl group of a glucose unit in a cellulose molecule. Can be mentioned.

セルロース繊維におけるアニオン性官能基の量は、特に限定されず、例えば、0.5〜3.0mmol/gでもよく、1.5〜2.0mmol/gでもよい。アニオン性官能基の量は、例えば、カルボキシル基の場合、乾燥質量を精秤したセルロース試料から0.5〜1質量%スラリーを60mL調製し、0.1mol/Lの塩酸水溶液によってpHを約2.5とした後、0.05mol/Lの水酸化ナトリウム水溶液を滴下して、電気伝導度測定を行い、pHが約11になるまで続け、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(V)から、下記式に従い求めることができる。リン酸基についても、同様の電気伝導度測定により測定することができる。その他のアニオン基についても公知の方法で測定すればよい。
アニオン性官能基量(mmol/g)=V(mL)×〔0.05/セルロース試料質量(g)〕
The amount of the anionic functional group in the cellulose fiber is not particularly limited, and may be, for example, 0.5 to 3.0 mmol / g or 1.5 to 2.0 mmol / g. For the amount of anionic functional groups, for example, in the case of a carboxyl group, 60 mL of a 0.5 to 1 mass% slurry is prepared from a cellulose sample whose dry mass has been precisely weighed, and the pH is adjusted to about 2 with a 0.1 mol / L hydrochloric acid aqueous solution. After setting the pH to 5.5, a 0.05 mol / L aqueous sodium hydroxide solution was added dropwise to measure the electrical conductivity, and the pH was continued until the pH reached about 11, and the neutralization step of the weak acid in which the change in electrical conductivity was gradual. From the amount of sodium hydroxide (V) consumed in, it can be calculated according to the following formula. The phosphoric acid group can also be measured by the same electrical conductivity measurement. Other anion groups may also be measured by a known method.
Anionic functional group amount (mmol / g) = V (mL) x [0.05 / cellulose sample mass (g)]

セルロース繊維は、キトサン繊維の表面に担持するものであるため、キトサン繊維よりも平均繊維径が小さいものを用いることが好ましい。より詳細には、セルロース繊維としては、例えば、平均繊維径が3nm以上500nm以下であるセルロース微細繊維(セルロースナノファイバー)を用いてもよい。セルロース微細繊維の平均繊維径は、より好ましくは3〜100nmであり、更に好ましくは3〜30nmである。 Since the cellulose fiber is supported on the surface of the chitosan fiber, it is preferable to use a cellulose fiber having an average fiber diameter smaller than that of the chitosan fiber. More specifically, as the cellulose fiber, for example, cellulose fine fiber (cellulose nanofiber) having an average fiber diameter of 3 nm or more and 500 nm or less may be used. The average fiber diameter of the cellulose fine fibers is more preferably 3 to 100 nm, still more preferably 3 to 30 nm.

ここで、セルロース微細繊維の平均繊維径は、次のようにして測定することができる。すなわち、固形分率で0.05〜0.1質量%のセルロース微細繊維の水分散体を調製し、その水分散体を、親水化処理済みのカーボン膜被覆グリッド上にキャストして、透過型電子顕微鏡(TEM)の観察用試料とする。なお、大きな繊維径の繊維を含む場合には、ガラス上へキャストした表面の走査型電子顕微鏡(SEM)像を観察してもよい。また、観察用試料は、例えば2%ウラニルアセテートでネガティブ染色してもよい。そして、構成する繊維の大きさに応じて5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。その際に、得られた画像内に縦横任意の画像幅の軸を想定し、その軸に対し、20本以上の繊維が交差するよう、試料および観察条件(倍率等)を調節する。そして、この条件を満たす観察画像を得た後、この画像に対し、1枚の画像当たり縦横2本ずつの無作為な軸を引き、軸に交錯する繊維の繊維径を目視で読み取っていく。このようにして、最低3枚の重複しない表面部分の画像を、電子顕微鏡で撮影し、各々2つの軸に交錯する繊維の繊維径の値を読み取る(したがって、最低20本×2×3=120本の繊維径の情報が得られる)。このようにして得られた繊維径の相加平均を平均繊維径とする。 Here, the average fiber diameter of the cellulose fine fibers can be measured as follows. That is, an aqueous dispersion of cellulose fine fibers having a solid content of 0.05 to 0.1% by mass is prepared, and the aqueous dispersion is cast on a hydrophilized carbon film-coated grid to be a permeation type. It is used as an observation sample of an electron microscope (TEM). When fibers having a large fiber diameter are included, a scanning electron microscope (SEM) image of the surface cast on the glass may be observed. Further, the observation sample may be negatively stained with, for example, 2% uranyl acetate. Then, observation is performed using an electron microscope image at a magnification of 5000 times, 10000 times, or 50,000 times depending on the size of the constituent fibers. At that time, an axis having an arbitrary vertical and horizontal image width is assumed in the obtained image, and the sample and observation conditions (magnification, etc.) are adjusted so that 20 or more fibers intersect the axis. Then, after obtaining an observation image satisfying this condition, two random axes in each of the vertical and horizontal directions are drawn with respect to this image, and the fiber diameters of the fibers intersecting the axes are visually read. In this way, images of at least three non-overlapping surface portions are taken with an electron microscope and the value of the fiber diameter of the fibers intersecting each of the two axes is read (thus, at least 20 fibers × 2 × 3 = 120). Information on the fiber diameter of the book can be obtained). The arithmetic mean of the fiber diameters thus obtained is taken as the average fiber diameter.

セルロース微細繊維の平均アスペクト比は、特に限定されず、例えば10〜1000でもよく、また、50以上でもよく、100以上でもよく、800以下でもよく、500以下でもよい。 The average aspect ratio of the cellulose fine fibers is not particularly limited, and may be, for example, 10 to 1000, 50 or more, 100 or more, 800 or less, or 500 or less.

ここで、セルロース微細繊維の平均アスペクト比は、次のようにして測定することができる。すなわち、先に述べた方法に従い平均繊維径を算出するとともに、同様の観察画像からセルロース微細繊維の平均繊維長を算出し、これらの値を用いて平均アスペクト比を下記式に従い算出する。
平均アスペクト比=平均繊維長(nm)/平均繊維径(nm)
Here, the average aspect ratio of the cellulose fine fibers can be measured as follows. That is, the average fiber diameter is calculated according to the method described above, the average fiber length of the cellulose fine fibers is calculated from the same observation image, and the average aspect ratio is calculated according to the following formula using these values.
Average aspect ratio = average fiber length (nm) / average fiber diameter (nm)

セルロース微細繊維は、解繊処理を行うことにより得られる。解繊処理は、アニオン性官能基を導入してから実施してもよく、導入前に実施してもよい。解繊処理としては、例えば、高速回転下でのホモミキサー、高圧ホモジナイザー、超音波分散処理機、ビーター、ディスク型レファイナー、コニカル型レファイナー、ダブルディスク型レファイナー、グラインダー等を用いて、セルロース繊維の水分散液を処理することにより行うことができ、セルロース微細繊維の水分散液を得ることができる。 Cellulose fine fibers are obtained by performing a defibration treatment. The defibration treatment may be carried out after the anionic functional group is introduced, or may be carried out before the introduction. As the defibration treatment, for example, a homomixer under high-speed rotation, a high-pressure homogenizer, an ultrasonic disperser, a beater, a disc-type refiner, a conical-type refiner, a double-disc type refiner, a grinder, or the like is used to water cellulose fibers. This can be done by treating the dispersion, and an aqueous dispersion of cellulose fine fibers can be obtained.

好ましい一実施形態に係るセルロース微細繊維としては、セルロース分子中のグルコースユニットのC6位の水酸基が選択的に酸化されてカルボキシル基に変性された酸化セルロース微細繊維が挙げられる。酸化セルロース微細繊維は、木材パルプなどの天然セルロースをN−オキシル化合物の存在下、共酸化剤を用いて酸化させ、解繊(微細化)処理することにより得られる。N−オキシル化合物としては、一般に酸化触媒として用いられるニトロキシラジカルを有する化合物が用いられ、例えばピペリジンニトロキシオキシラジカルであり、特に2,2,6,6−テトラメチルピペリジノオキシラジカル(TEMPO)または4−アセトアミド−TEMPOが好ましい。TEMPOで酸化されたセルロース微細繊維は、一般にTEMPO酸化セルロースナノファイバー(TOCN)と称されており、本実施形態でも使用することができる。なお、酸化セルロース微細繊維は、カルボキシル基とともに、アルデヒド基又はケトン基を有していてもよいが、アルデヒド基及びケトン基を実質的に有していないことが好ましい。 Examples of the cellulose fine fiber according to a preferred embodiment include oxidized cellulose fine fiber in which the hydroxyl group at the C6 position of the glucose unit in the cellulose molecule is selectively oxidized and modified to a carboxyl group. Oxidized cellulose fine fibers are obtained by oxidizing natural cellulose such as wood pulp with a cooxidant in the presence of an N-oxyl compound and defibrating (refining) the fibers. As the N-oxyl compound, a compound having a nitroxy radical generally used as an oxidation catalyst is used, for example, a piperidine nitroxyoxy radical, and particularly 2,2,6,6-tetramethylpiperidinooxy radical (TEMPO). ) Or 4-acetamide-TEMPO is preferred. Cellulose fine fibers oxidized by TEMPO are generally called TEMPO oxidized cellulose nanofibers (TOCN), and can also be used in this embodiment. The cellulose oxide fine fibers may have an aldehyde group or a ketone group together with the carboxyl group, but preferably do not have substantially no aldehyde group and a ketone group.

[複合繊維]
本実施形態に係る複合繊維は、キトサン繊維の表面に上記セルロース繊維を担持してなるものである。
[Composite fiber]
The composite fiber according to the present embodiment is formed by supporting the cellulose fiber on the surface of the chitosan fiber.

なお、本実施形態に係る担持とは、キトサン繊維の表面にセルロース繊維が脱落、飛散なく、全体あるいは一部に付着もしくは被覆している状態、または、細孔や内部に含浸している状態を含み、より具体的には、化学的、物理的または電気的に結合、吸着または固定化している状態などを示す。 The term "support according to the present embodiment" refers to a state in which the cellulose fibers do not fall off or scatter on the surface of the chitosan fibers and adhere to or cover the whole or a part, or a state in which the pores or the inside are impregnated. Including, more specifically, a state of being chemically, physically or electrically bound, adsorbed or immobilized, and the like.

複合繊維におけるキトサン繊維とセルロース繊維の比率は、特に限定されない。例えば、キトサン繊維100質量部に対して、セルロース繊維が0.001〜50質量部でもよく、0.001〜20質量部でもよく、0.001〜10質量部でもよい。 The ratio of chitosan fiber to cellulose fiber in the composite fiber is not particularly limited. For example, the cellulose fiber may be 0.001 to 50 parts by mass, 0.001 to 20 parts by mass, or 0.001 to 10 parts by mass with respect to 100 parts by mass of chitosan fiber.

複合繊維の平均繊維径は10〜1200μmであることが好ましく、より好ましくは20〜500μmであり、更に好ましくは50〜300μmである。複合繊維の平均繊維径は、光学顕微鏡観察により20本の繊維の繊維径の相加平均により求めることができる。 The average fiber diameter of the composite fiber is preferably 10 to 1200 μm, more preferably 20 to 500 μm, and even more preferably 50 to 300 μm. The average fiber diameter of the composite fiber can be determined by the arithmetic mean of the fiber diameters of 20 fibers by observing with an optical microscope.

[複合繊維の製造方法]
一実施形態に係る複合繊維の製造方法は、以下の工程を含む。
(1)キトサン塩水溶液を、セルロース繊維とアルカリを含む凝固液中で紡糸し複合繊維を得る工程、及び、
(2)得られた複合繊維をアルコールに浸漬後、乾燥する工程。
[Manufacturing method of composite fiber]
The method for producing a composite fiber according to an embodiment includes the following steps.
(1) A step of spinning an aqueous chitosan salt solution in a coagulating solution containing cellulose fibers and an alkali to obtain composite fibers, and
(2) A step of immersing the obtained composite fiber in alcohol and then drying it.

詳細には、キトサンを酸性水溶液に溶解してキトサン塩水溶液を調製する(カチオン性高分子であるキトサンは酸との組み合わせにより塩を形成する)。キトサン塩水溶液を紡糸原液(ドープ液)としてノズルから圧力を加えて吐出して、アルカリを含む塩基性の凝固液中で湿式紡糸する。その際、本実施形態では凝固液にアルカリとともにセルロース繊維を分散させておく。これにより、キトサンの凝固に伴い、凝固液中のセルロース繊維とキトサンとの静電相互作用(詳細には、セルロース繊維のアニオン性官能基とキトサンのプロトン化されたアミノ基との相互作用)によりイオンコンプレックスが形成され、キトサン繊維表面にセルロース繊維を担持した複合体が得られる。 Specifically, chitosan is dissolved in an acidic aqueous solution to prepare a chitosan salt aqueous solution (chitosan, which is a cationic polymer, forms a salt in combination with an acid). A chitosan salt aqueous solution is used as a spinning stock solution (dope solution) and is discharged by applying pressure from a nozzle to perform wet spinning in a basic coagulating solution containing an alkali. At that time, in the present embodiment, the cellulose fibers are dispersed together with the alkali in the coagulating liquid. As a result, with the coagulation of chitosan, the electrostatic interaction between the cellulose fibers and chitosan in the coagulating liquid (specifically, the interaction between the anionic functional group of the cellulose fibers and the protonated amino group of chitosan) causes An ion complex is formed, and a complex in which cellulose fibers are supported on the surface of chitosan fibers is obtained.

得られた複合体をアルコール浴に浸漬後、延伸し乾燥することにより、キトサン繊維表面にセルロース繊維を担持した複合繊維が得られる。 The obtained composite is immersed in an alcohol bath, stretched and dried to obtain a composite fiber in which cellulose fibers are supported on the surface of chitosan fibers.

キトサン塩水溶液におけるキトサンの濃度は、キトサン繊維の紡糸が可能であれば特に限定されず、例えば0.1〜10質量%でもよく、1〜5質量%でもよい。 The concentration of chitosan in the chitosan salt aqueous solution is not particularly limited as long as the chitosan fiber can be spun, and may be, for example, 0.1 to 10% by mass or 1 to 5% by mass.

凝固液としては、アルカリを含む塩基性水溶液を用いることができ、溶媒としては、水単独でもよく、水とともに、メタノールやエタノールなどのアルコール、アセトンなどの水混和性有機溶媒を用いてもよい。アルカリとしては、特に限定されず、例えば、NaOH,KOH,NHOH,NaHCO、Ca(OH)、CaCl(OH)、MgCl(OH)等の無機物や水溶性のアミン化合物等が挙げられる。凝固液中のアルカリの濃度は、0.01〜40質量%であることが好ましく、より好ましくは0.5〜20質量%であり、0.5〜10質量%でもよい。 As the coagulation liquid, a basic aqueous solution containing an alkali can be used, and as the solvent, water alone may be used, or an alcohol such as methanol or ethanol, or a water-miscible organic solvent such as acetone may be used together with water. The alkali is not particularly limited, and examples thereof include inorganic substances such as NaOH, KOH, NH 4 OH, NaOHCO 3 , Ca (OH) 2 , CaCl (OH), and MgCl (OH), and water-soluble amine compounds. .. The concentration of alkali in the coagulation liquid is preferably 0.01 to 40% by mass, more preferably 0.5 to 20% by mass, and may be 0.5 to 10% by mass.

凝固液中のセルロース繊維の濃度は、0.001〜0.4質量%であることが好ましく、より好ましくは0.005〜0.3質量%であり、0.005〜0.1質量%でもよい。 The concentration of cellulose fibers in the coagulation liquid is preferably 0.001 to 0.4% by mass, more preferably 0.005 to 0.3% by mass, and even 0.005 to 0.1% by mass. Good.

紡糸後に浸漬するアルコールとしては、例えばメタノールやエタノールなどが挙げられる。複合繊維はアルコール浴に浸漬することにより洗浄され、その際、複合繊維が中性(即ち、pH7)になるまで洗浄してもよい。 Examples of the alcohol to be immersed after spinning include methanol and ethanol. The composite fibers are washed by immersing them in an alcohol bath, which may be done until the composite fibers are neutral (ie, pH 7).

[作用効果]
本実施形態によれば、カチオン性のキトサン繊維とアニオン性のセルロース繊維とのイオンコンプレックス形成により、キトサン繊維表面にセルロース繊維を担持した複合繊維が得られる。このようにセルロース繊維を担持することで、セルロース繊維が有するI型結晶構造により、キトサン繊維の水に対する膨潤を抑えることができ、機械的強度を向上できる。また、複合繊維化により機械的特性を向上することができるため、複合繊維の巻取りや組紐化が可能になる。
[Action effect]
According to the present embodiment, a composite fiber in which the cellulose fiber is supported on the surface of the chitosan fiber can be obtained by forming an ion complex of the cationic chitosan fiber and the anionic cellulose fiber. By supporting the cellulose fibers in this way, the swelling of the chitosan fibers with respect to water can be suppressed due to the type I crystal structure of the cellulose fibers, and the mechanical strength can be improved. Further, since the mechanical properties can be improved by making the composite fiber, the composite fiber can be wound and braided.

また、凝固液中のセルロース繊維、および、アルカリの濃度を調整することにより、複合繊維の繊維径を変化させることが可能である。 Further, the fiber diameter of the composite fiber can be changed by adjusting the concentrations of the cellulose fibers and the alkali in the coagulating liquid.

また、該複合繊維はキトサン繊維を含み、キトサンはそれ自身が抗菌活性を有するため、セルロース繊維単体の場合に比べてカビの発生や腐敗を抑制することができる。 Further, since the composite fiber contains chitosan fiber and chitosan itself has antibacterial activity, it is possible to suppress the generation of mold and putrefaction as compared with the case of the cellulose fiber alone.

また、キトサンは、アミノ基を含有するカチオン性の化合物であり、カルボン酸、リン酸、スルホン酸などのアニオン性基を有する誘導体や、硫酸エステル、リン酸エステル、ホウ酸エステルなどの酸素酸塩や、等電点が生理的pHよりも酸性側にある、あるいは複数のカルボキシル基を持ったアミノ酸を多く含む酸性タンパク質と、イオン結合を形成するため、アニオン性誘導体や酸素酸塩や酸性タンパク質との吸着能は高い。しかし、キトサンが、カチオン性の化合物であるため、含窒素化合物や、その他のカチオン性の化合物、等電点が生理的pHよりも塩基性側にある、あるいは複数のアミノ基を持ったアミノ酸を多く含む塩基性タンパク質とは、イオン結合を生じにくい。よって、キトサンを吸着材として用いる場合、吸着される物質のイオン性や等電点や電荷により吸着能が低い課題があった。 In addition, chitosan is a cationic compound containing an amino group, and is a derivative having an anionic group such as a carboxylic acid, a phosphoric acid, or a sulfonic acid, or an oxygen acid salt such as a sulfate ester, a phosphoric acid ester, or a borate ester. Or, because the isoelectric point is on the acidic side of the physiological pH, or an acidic protein containing many amino acids having multiple carboxyl groups, and an anionic derivative, an oxidate, or an acidic protein to form an ionic bond. Has a high adsorption capacity. However, since chitosan is a cationic compound, nitrogen-containing compounds, other cationic compounds, amino acids whose isoelectric point is on the basic side of the physiological pH, or amino acids having a plurality of amino groups can be used. Ionic bonds are unlikely to occur with basic proteins containing a large amount. Therefore, when chitosan is used as an adsorbent, there is a problem that the adsorption ability is low due to the ionicity, isoelectric point and electric charge of the adsorbed substance.

これに対し、本実施形態に係る複合繊維は、上記イオンコンプレックス形成に使用されていない両天然高分子由来の両性の官能基(即ち、キトサン繊維のカチオン性のアミノ基と、セルロース繊維のアニオン性官能基)を有する。そのため、アニオン性基を有する誘導体や、酸素酸塩や、等電点が生理的pHよりも酸性側にある、あるいは複数のカルボキシル基を持ったアミノ酸を多く含む酸性タンパク質などの酸性物質だけでなく、含窒素化合物や、等電点が生理的pHよりも酸性側にある、あるいは複数のアミノ基を持ったアミノ酸を多く含む塩基性タンパク質等の塩基性物質も吸着することができ、生理活性物質や含窒素化合物に対する吸着材として用いることができる。 On the other hand, the composite fiber according to the present embodiment has an amphoteric functional group derived from both natural polymers not used for forming the ion complex (that is, a cationic amino group of the chitosan fiber and an anionic group of the cellulose fiber). It has a functional group). Therefore, not only acidic substances such as derivatives having anionic groups, oxidates, and acidic proteins having an isoelectric point on the acidic side of the physiological pH or containing many amino acids having a plurality of carboxyl groups. , Nitrogen-containing compounds and basic substances such as basic proteins whose isoelectric point is on the acidic side of the physiological pH or which contains many amino acids having multiple amino groups can also be adsorbed and are physiologically active substances. It can be used as an adsorbent for nitrogen-containing compounds.

ここで、本実施形態に係る生理的pHとは、ヒト体液内で通常生ずる比較的狭い範囲、一般的には、7.0〜7.5の範囲にあるpHを言う。 Here, the physiological pH according to the present embodiment refers to a pH in a relatively narrow range that usually occurs in human body fluids, generally in the range of 7.0 to 7.5.

本実施形態に係る複合繊維であると、抗菌性を有する吸着材及びその担体として、例えば、飲料水や魚介類の成魚や稚魚の養殖における水浄化、生体分子の精製と分離材料、アンモニアなどの人体に有害な生理活性物質、タンパク質、細菌、ウイルス、有機物、無機物の除去材料として利用できる。吸着材の形態としては、特に限定されず、例えばフィルター、組紐化したメッシュ、ろ布、網状のろ過剤、膜などの形態や、複合繊維を裁断や粉砕してペレットや粒子として得られるものをカラムに充填しカラムクロマトグラフィーとして利用する形態が挙げられる。 In the composite fiber according to the present embodiment, as an adsorbent having antibacterial activity and its carrier, for example, water purification in drinking water and aquaculture of adult and juvenile fish, biomolecule purification and separation material, ammonia and the like. It can be used as a material for removing physiologically active substances, proteins, bacteria, viruses, organic substances, and inorganic substances that are harmful to the human body. The form of the adsorbent is not particularly limited, and for example, a form such as a filter, a braided mesh, a filter cloth, a net-like filter medium, a membrane, or a material obtained by cutting or crushing a composite fiber into pellets or particles can be used. Examples thereof include a form in which a column is filled and used as column chromatography.

以下、実施例により更に詳細に説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

[複合繊維の調製1]
キトサン10g(甲陽ケミカル株式会社製、FM−80)と1質量%酢酸240mLを6時間、130rpmで混合し、4質量%のキトサン酢酸塩水溶液を調製した。得られたキトサン塩水溶液をカラムに注入し、カラムの先端に紡糸ノズルを装着した。紡糸ノズルは、直径0.2mmの紡糸穴を30穴持つものである。
[Preparation of composite fiber 1]
10 g of chitosan (FM-80, manufactured by Koyo Chemical Co., Ltd.) and 240 mL of 1 mass% acetic acid were mixed for 6 hours at 130 rpm to prepare a 4 mass% chitosan acetate aqueous solution. The obtained chitosan salt aqueous solution was injected into the column, and a spinning nozzle was attached to the tip of the column. The spinning nozzle has 30 spinning holes with a diameter of 0.2 mm.

下記表1に示す濃度となるようにNaOH水溶液にTOCNを加えた凝固浴に、紡糸ノズルを入れ、キトサン塩水溶液の入ったカラムを0.03MPaで加圧することによりキトサン塩水溶液を凝固浴に押し出し、凝固させることでTOCNがキトサン繊維に担持した複合繊維を得た。得られた複合繊維を、続いてメタノール浴に浸漬させて洗浄した後、延伸ローラにて延伸し、巻取りロールにて巻取りを行い、その後乾燥した。これにより複合繊維を製造した。ここで、凝固浴の長さは100cm、メタノール浴の長さは50cmとし、延伸ローラの引き取り速度は、上流側:6.4m/分、下流側:7.0m/分とし、延伸倍率を1.1倍とした。また、乾燥は、風乾にて行い、平衡水分率は約13質量%であった。 A spinning nozzle is placed in a coagulation bath in which TOCN is added to a NaOH aqueous solution so as to have the concentration shown in Table 1 below, and the column containing the chitosan salt aqueous solution is pressurized at 0.03 MPa to extrude the chitosan salt aqueous solution into the coagulation bath. By coagulation, a composite fiber in which TOCN was carried on the chitosan fiber was obtained. The obtained composite fiber was subsequently immersed in a methanol bath for washing, then stretched with a stretching roller, wound with a winding roll, and then dried. This produced a composite fiber. Here, the length of the coagulation bath is 100 cm, the length of the methanol bath is 50 cm, the take-up speed of the stretching roller is 6.4 m / min on the upstream side, 7.0 m / min on the downstream side, and the stretching ratio is 1. .1 times. Further, the drying was carried out by air drying, and the equilibrium moisture content was about 13% by mass.

TOCNとしては、第一工業製薬(株)製「レオクリスタI−2SP」(セルロースI型結晶構造を有するTEMPO酸化セルロースナノファイバー、数平均繊維径=4nm、平均アスペクト比=280、アニオン性官能基量(カルボキシル基量)=1.9mmol/g)を用いた。 As TOCN, "Leocrysta I-2SP" manufactured by Daiichi Kogyo Seiyaku Co., Ltd. (TEMPO oxidized cellulose nanofiber having cellulose type I crystal structure, number average fiber diameter = 4 nm, average aspect ratio = 280, amount of anionic functional groups (Amount of carboxyl group) = 1.9 mmol / g) was used.

得られた複合繊維について、光学顕微鏡観察を行い、20本の繊維の繊維径の相加平均から平均繊維径を求めた。結果は表1に示す通りであり、凝固浴のNaOH濃度を固定して比較したところ、TOCNの濃度増加に伴い、繊維直径の増加が確認された(但し、0.0075質量%程度で飽和)。このことから、凝固浴のTOCNの濃度が高いほど、TOCNの担持量が多くなり、TOCN比率の高い複合繊維が得られることが分かる。 The obtained composite fiber was observed with an optical microscope, and the average fiber diameter was obtained from the arithmetic mean of the fiber diameters of 20 fibers. The results are shown in Table 1. When the NaOH concentration in the coagulation bath was fixed and compared, it was confirmed that the fiber diameter increased as the TOCN concentration increased (however, it was saturated at about 0.0075% by mass). .. From this, it can be seen that the higher the concentration of TOCN in the coagulation bath, the larger the amount of TOCN supported, and the higher the TOCN ratio, the more composite fibers can be obtained.

Figure 0006853551
Figure 0006853551

[複合繊維の調製2]
凝固浴中におけるNaOH濃度とTOCN濃度を下記表2に示す通りに変更し、その他は上記[複合繊維の調製1]と同様にして複合繊維を製造した。得られた複合繊維について、光学顕微鏡観察を行い、20本の繊維の繊維径の相加平均から平均繊維径を求めた。
[Preparation of composite fiber 2]
The NaOH concentration and the TOCN concentration in the coagulation bath were changed as shown in Table 2 below, and the composite fibers were produced in the same manner as in the above [Preparation of composite fibers 1]. The obtained composite fiber was observed with an optical microscope, and the average fiber diameter was obtained from the arithmetic mean of the fiber diameters of 20 fibers.

結果は表2に示す通りであり、凝固浴のTOCN濃度を固定して比較したところ、NaOHの濃度増加に伴い、繊維直径の増加が確認された(但し、4質量%程度で飽和)。このことから、凝固浴のNaOHの濃度が高いほど、TOCNの担持量が多くなり、TOCN比率の高い複合繊維が得られることが分かる。 The results are shown in Table 2. When the TOCN concentration of the coagulation bath was fixed and compared, it was confirmed that the fiber diameter increased as the NaOH concentration increased (however, it was saturated at about 4% by mass). From this, it can be seen that the higher the concentration of NaOH in the coagulation bath, the larger the amount of TOCN supported, and the higher the TOCN ratio, the more composite fibers can be obtained.

Figure 0006853551
Figure 0006853551

[複合繊維の機械的特性]
比較例1及び実施例1,3,4で得られた複合繊維の機械的特性として、破断強度と破断伸度を測定した。詳細には、乾燥した繊維20本を1つの束にして、卓上型万能材料試験機(エー・アンド・ディ株式会社製)により、破断強度と破断伸度を測定した。
[Mechanical properties of composite fibers]
The breaking strength and breaking elongation were measured as the mechanical properties of the composite fibers obtained in Comparative Example 1 and Examples 1, 3 and 4. Specifically, 20 dried fibers were bundled into one bundle, and the breaking strength and breaking elongation were measured by a tabletop universal material testing machine (manufactured by A & D Co., Ltd.).

結果を表3及び図1,2に示す。比較例1は、TOCNを含まない凝固液で紡糸した、キトサンのみからなる繊維であり、実施例1,3,4は、凝固液中のTOCN濃度をそれぞれ0.001、0.0075及び0.01質量%に設定して得られた複合繊維である。かかる実施例の複合繊維であると、比較例1のキトサン単独繊維に比べて、引張り強度が高く、TOCN濃度の上昇とともに増大した。特に、TOCN濃度が0.01質量%である実施例4であると、キトサン単独繊維である比較例1に比べ、破断強度が約40%増大し、破断伸度は2倍以上増大した。このように、キトサン繊維表面にセルロース繊維を担持した複合繊維は優れた繊維物性を示すことがわかった。 The results are shown in Table 3 and FIGS. Comparative Example 1 is a fiber composed only of chitosan spun with a coagulation liquid containing no TOCN, and Examples 1, 3 and 4 have TOCN concentrations of 0.001, 0.0075 and 0. It is a composite fiber obtained by setting it to 01% by mass. The composite fiber of this example had a higher tensile strength than the chitosan single fiber of Comparative Example 1, and increased as the TOCN concentration increased. In particular, in Example 4 in which the TOCN concentration was 0.01% by mass, the breaking strength was increased by about 40% and the breaking elongation was increased more than twice as compared with Comparative Example 1 which was a chitosan single fiber. As described above, it was found that the composite fiber in which the cellulose fiber is supported on the surface of the chitosan fiber exhibits excellent fiber physical characteristics.

Figure 0006853551
Figure 0006853551

[複合繊維のタンパク質とアンモニアの吸着性評価]
比較例1及び実施例1,3,4で得られた複合繊維について、酸性タンパク質であるウシ血清アルブミン(BSA)、塩基性タンパク質であるシトクロムc、及び、アンモニアに対する吸着率を評価した。
[Evaluation of adsorbability of protein and ammonia in composite fibers]
The composite fibers obtained in Comparative Example 1 and Examples 1, 3 and 4 were evaluated for their adsorption rates to the acidic protein bovine serum albumin (BSA), the basic protein cytochrome c, and ammonia.

(1)BSAの吸着試験
複合繊維50mgと214mg/Lのウシ血清アルブミン(BSA)のリン酸緩衝生理食塩水(PBS)25mLを、密閉容器内で60分、25℃、195rpmで撹拌した。撹拌した液をろ過し、ろ液の可視・紫外分光光度計により280nmでの吸光度を測定し、別途測定して得られたPBS中のBSA量と吸光度との関係を示す検量線により、ろ液のBSA量(mg/L)を算出した。BSAの複合繊維への吸着量(%)は、初期のBSA量(mg/L)からろ液中のBSA量(mg/L)を差し引きし、初期のBSA量(mg/L)で割り算した比率により表記した。結果を下記表4に示す。
(1) BSA Adsorption Test 25 mL of phosphate buffered saline (PBS) of 50 mg of composite fiber and 214 mg / L bovine serum albumin (BSA) was stirred in a closed container for 60 minutes at 25 ° C. and 195 rpm. The stirred solution is filtered, the absorbance of the filtrate at 280 nm is measured with a visible / ultraviolet spectrophotometer, and the filtrate is obtained by measuring separately and using a calibration curve showing the relationship between the amount of BSA in PBS and the absorbance. BSA amount (mg / L) was calculated. The amount of BSA adsorbed on the composite fiber (%) was calculated by subtracting the amount of BSA in the filtrate (mg / L) from the initial amount of BSA (mg / L) and dividing by the initial amount of BSA (mg / L). Notated by ratio. The results are shown in Table 4 below.

(2)シトクロムcの吸着試験
複合繊維50mgと1.256μg/mLのシトクロムcのリン酸緩衝生理食塩水(PBS)25mLを、密閉容器内で60分、25℃、195rpmで撹拌した。撹拌した液をろ過し、ろ液の可視・紫外分光光度計により409nmでの吸光度を測定し、別途測定して得られたPBS中のシトクロムc量と吸光度との関係を示す検量線により、ろ液のシトクロムc量(mg/L)を算出した。シトクロムcの複合繊維への吸着量(%)は、初期のシトクロムc量(mg/L)からろ液中のシトクロムc量(mg/L)を差し引きし、初期のシトクロムc量(mg/L)で割り算した比率により表記した。結果を下記表4に示す。
(2) Adsorption test of cytochrome c 25 mL of phosphate buffered saline (PBS) of 50 mg of composite fiber and 1.256 μg / mL of cytochrome c was stirred in a closed container for 60 minutes at 25 ° C. and 195 rpm. The stirred solution is filtered, the absorbance at 409 nm of the filtrate is measured by a visible / ultraviolet spectrophotometer, and the filtrate is measured by a calibration curve showing the relationship between the amount of cytochrome c in PBS and the absorbance. The amount of cytochrome c (mg / L) in the solution was calculated. The amount of cytochrome c adsorbed on the composite fiber (%) is obtained by subtracting the amount of cytochrome c in the filtrate (mg / L) from the initial amount of cytochrome c (mg / L) and the initial amount of cytochrome c (mg / L). ) Divided by the ratio. The results are shown in Table 4 below.

(3)アンモニアの吸着試験
複合繊維50mgと9.7mg/Lのアンモニア水溶液100mLを、密閉容器内で60分、25℃、195rpmで撹拌した。撹拌した液をろ過し、ろ液を0.01mol/L塩酸を用いて滴定することにより、ろ液中のアンモニア量(mg/L)を定量した。アンモニアの複合繊維への吸着量(%)は、初期のアンモニア量(mg/L)からろ液中のアンモニア量(mg/L)を差し引きし、初期のアンモニア量(mg/L)で割り算した比率により標記した。結果を下記表4に示す。
(3) Ammonia adsorption test 50 mg of composite fiber and 100 mL of an aqueous ammonia solution of 9.7 mg / L were stirred in a closed container for 60 minutes at 25 ° C. and 195 rpm. The stirred solution was filtered, and the filtrate was titrated with 0.01 mol / L hydrochloric acid to quantify the amount of ammonia (mg / L) in the filtrate. The amount of ammonia adsorbed on the composite fiber (%) was calculated by subtracting the amount of ammonia in the filtrate (mg / L) from the initial amount of ammonia (mg / L) and dividing by the initial amount of ammonia (mg / L). Marked by ratio. The results are shown in Table 4 below.

表4に示すように、実施例に係る複合繊維であると、イオンコンプレックス形成に使用されなかった両天然高分子由来の官能基(カルボシキル基およびアミノ基)による吸着効果が認められた。吸着効果は、複合繊維を調製する際の凝固浴のTOCNの濃度増加に伴い、大きくなっていた。 As shown in Table 4, in the case of the composite fiber according to the example, the adsorption effect by the functional groups (carbocyclyl group and amino group) derived from both natural polymers that were not used for forming the ion complex was observed. The adsorption effect increased as the concentration of TOCN in the coagulation bath increased when the composite fiber was prepared.

Figure 0006853551
Figure 0006853551

[複合繊維の膨潤度]
比較例1及び実施例1,3,4で得られた複合繊維について、水に対する膨潤率を測定した。膨潤率は、水に浸漬したときの重量増加率を測定することにより評価した。試験方法は以下の通りである。
(1)複合繊維を室温で24時間減圧乾燥し、初期重量を測定し、Wdとした。
(2)上記(1)の試料を、蒸留水に1または5日間浸漬後、試料表面の水分をふき取り、重量を測定し、Wwとした。
(3)重量増加率(膨潤率)は以下の式により算出した。
膨潤率(%)=(Ww−Wd)/Wd×100
[Swelling degree of composite fiber]
The swelling rate with respect to water was measured for the composite fibers obtained in Comparative Example 1 and Examples 1, 3 and 4. The swelling rate was evaluated by measuring the weight increase rate when immersed in water. The test method is as follows.
(1) The composite fiber was dried under reduced pressure at room temperature for 24 hours, and the initial weight was measured to obtain Wd.
(2) The sample of (1) above was immersed in distilled water for 1 or 5 days, the water on the surface of the sample was wiped off, and the weight was measured to obtain Ww.
(3) The weight increase rate (swelling rate) was calculated by the following formula.
Swelling rate (%) = (Ww-Wd) / Wd × 100

結果は下記表5及び図3に示すとおりであり、TOCNの複合化の度合いを高めるほど、水に対する膨潤度を抑制できることが分かった。 The results are shown in Table 5 and FIG. 3 below, and it was found that the higher the degree of TOCN compounding, the more the degree of swelling with water can be suppressed.

Figure 0006853551
Figure 0006853551

以上、本発明のいくつかの実施形態を説明したが、これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその省略、置き換え、変更などは、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments, omissions, replacements, changes, etc. thereof are included in the scope and gist of the invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.

Claims (6)

キトサン繊維の表面に、I型結晶構造を有しかつアニオン性官能基を有するセルロース繊維を担持してなる、複合繊維。 A composite fiber in which a cellulose fiber having an I-type crystal structure and an anionic functional group is supported on the surface of the chitosan fiber. 平均繊維径が10μm以上1200μm以下である、請求項1に記載の複合繊維。 The composite fiber according to claim 1, wherein the average fiber diameter is 10 μm or more and 1200 μm or less. 請求項1又は2に記載の複合繊維を製造する方法であって、
キトサン塩水溶液を、セルロース繊維とアルカリを含む凝固液中で紡糸し複合繊維を得る工程を含む、複合繊維の製造方法。
The method for producing a composite fiber according to claim 1 or 2.
A method for producing a composite fiber, which comprises a step of spinning an aqueous chitosan salt solution in a coagulating solution containing a cellulose fiber and an alkali to obtain a composite fiber.
前記凝固液中のセルロース繊維の濃度が0.001質量%以上0.4質量%以下である、請求項3に記載の複合繊維の製造方法。 The method for producing a composite fiber according to claim 3, wherein the concentration of the cellulose fiber in the coagulating liquid is 0.001% by mass or more and 0.4% by mass or less. 前記凝固液中のアルカリの濃度が0.01質量%以上40質量%以下である、請求項3又は4に記載の複合繊維の製造方法。 The method for producing a composite fiber according to claim 3 or 4, wherein the concentration of alkali in the coagulating liquid is 0.01% by mass or more and 40% by mass or less. 請求項1又は2に記載の複合繊維を含有する、吸着材。 An adsorbent containing the composite fiber according to claim 1 or 2.
JP2017191017A 2017-09-29 2017-09-29 Composite fiber and its manufacturing method, and adsorbent Active JP6853551B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017191017A JP6853551B2 (en) 2017-09-29 2017-09-29 Composite fiber and its manufacturing method, and adsorbent
PCT/JP2018/036274 WO2019065974A1 (en) 2017-09-29 2018-09-28 Composite fiber and method for producing same, and adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017191017A JP6853551B2 (en) 2017-09-29 2017-09-29 Composite fiber and its manufacturing method, and adsorbent

Publications (2)

Publication Number Publication Date
JP2019065414A JP2019065414A (en) 2019-04-25
JP6853551B2 true JP6853551B2 (en) 2021-03-31

Family

ID=65902989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017191017A Active JP6853551B2 (en) 2017-09-29 2017-09-29 Composite fiber and its manufacturing method, and adsorbent

Country Status (2)

Country Link
JP (1) JP6853551B2 (en)
WO (1) WO2019065974A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021074671A (en) * 2019-11-08 2021-05-20 国立大学法人 岡山大学 Protein adsorbent and method for producing the same
KR102366564B1 (en) * 2020-03-12 2022-02-23 한국화학연구원 Chitosan nanofiber-based bioadhesive composition and preparation method thereof
CN114405485B (en) * 2022-02-24 2023-11-21 福建工程学院 Acid-resistant chitosan/nanocellulose composite film material, and preparation method and application thereof
CN115924899A (en) * 2022-11-19 2023-04-07 河北麦森钛白粉有限公司 Preparation method of lithium iron phosphate/graphene oxide composite material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4063913B2 (en) * 1997-04-01 2008-03-19 日本曹達株式会社 Spinning composition comprising chitosan and anionic polysaccharide aqueous solution and its fiber
EP1533366A1 (en) * 2002-06-28 2005-05-25 Chemical Biology Institute Chitosan/acidic biopolymer hybrid fiber and culture base for animal cells

Also Published As

Publication number Publication date
WO2019065974A1 (en) 2019-04-04
JP2019065414A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP6853551B2 (en) Composite fiber and its manufacturing method, and adsorbent
HPS et al. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications
Toivonen et al. Water-resistant, transparent hybrid nanopaper by physical cross-linking with chitosan
JP6388911B2 (en) Polysaccharide fiber having increased fibrillation ability and process for the production of said polysaccharide fiber
Chaker et al. Cationic nanofibrillar cellulose with high antibacterial properties
CN112334492B (en) Nanoflibrillar cellulose product and method for producing the same
Petroudy et al. Eco-friendly superabsorbent polymers based on carboxymethyl cellulose strengthened by TEMPO-mediated oxidation wheat straw cellulose nanofiber
JP5623875B2 (en) COMPOSITE PARTICLE, TOBACCO FILTER, ITS MANUFACTURING METHOD, AND TOBACCO
Petroudy et al. Environmentally friendly superabsorbent fibers based on electrospun cellulose nanofibers extracted from wheat straw
EP3254706B1 (en) Deodorant and method for manufacturing same
JP4959342B2 (en) Tobacco filter material and tobacco filter
Vellora Thekkae Padil et al. Fabrication, characterization, and antibacterial properties of electrospun membrane composed of gum karaya, polyvinyl alcohol, and silver nanoparticles
CZ304651B6 (en) Process for preparing microfibers, process for preparing wound covers, wound covers per se and apparatus for preparing polysachharide fibers
JP2014502678A (en) Hyaluronan fiber, its preparation method and use
JPWO2006082748A1 (en) Tobacco filter material and tobacco filter
KR20170115505A (en) Metal oxide cellulose nanofibers dispersion and production method thereof
US20180133359A1 (en) Antibacterial nanofibres
Wu et al. Nanocellulose-lysozyme colloidal gels via electrostatic complexation
Ullah et al. Functionalized bacterial cellulose microparticles for drug delivery in biomedical applications
Amiri et al. Optimization of chitosan-gelatin nanofibers production: Investigating the effect of solution properties and working parameters on fibers diameter
Zhang et al. Antimicrobial cellulose hydrogels preparation with RIF loading from bamboo parenchyma cells: A green approach towards wound healing
Serag et al. Electrospun non-wovens potential wound dressing material based on polyacrylonitrile/chicken feathers keratin nanofiber
Mohammadkazemi et al. Development of organic–inorganic oxidized bacterial cellulose nanobiocomposites: ternary complexes
CN113425884B (en) A Cu-containing nano-particles 2 Preparation method of O three-dimensional nanofiber antibacterial dressing
JP2008048650A (en) Cigarette filter material composed of polysaccharide containing amino group and silica gel and cigarette filter produced by using the same

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20171024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210304

R150 Certificate of patent or registration of utility model

Ref document number: 6853551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250