JP6848475B2 - Storage control device, server, storage control method and program - Google Patents

Storage control device, server, storage control method and program Download PDF

Info

Publication number
JP6848475B2
JP6848475B2 JP2017010534A JP2017010534A JP6848475B2 JP 6848475 B2 JP6848475 B2 JP 6848475B2 JP 2017010534 A JP2017010534 A JP 2017010534A JP 2017010534 A JP2017010534 A JP 2017010534A JP 6848475 B2 JP6848475 B2 JP 6848475B2
Authority
JP
Japan
Prior art keywords
capacity
measurement timing
voltage
storage battery
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017010534A
Other languages
Japanese (ja)
Other versions
JP2018119839A (en
Inventor
潤一 宮本
潤一 宮本
梶谷 浩司
浩司 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2017010534A priority Critical patent/JP6848475B2/en
Publication of JP2018119839A publication Critical patent/JP2018119839A/en
Application granted granted Critical
Publication of JP6848475B2 publication Critical patent/JP6848475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、蓄電制御装置、サーバ、蓄電制御方法及びプログラムに関する。 The present invention relates to a power storage control device, a server, a power storage control method and a program.

家庭又は産業用に用いられる蓄電池は、充電及び放電(充放電)の繰り返しに伴い、容量が減少するという問題がある。そのため、蓄電池の満容量を見積もる技術が、用いられている。 Storage batteries used for home or industrial use have a problem that their capacities decrease with repeated charging and discharging (charging and discharging). Therefore, a technique for estimating the full capacity of a storage battery is used.

特許文献1に記載の蓄電池の満充電容量検出方法は、蓄電池の無負荷状態である第1の無負荷タイミングにおける蓄電池の第1の無負荷電圧(VOCV1)と、第2の無負荷タイミングにおける蓄電池の第2の無負荷電圧(VOCV2)とを検出する。そして、特許文献1に記載の方法は、検出された第1の無負荷電圧(VOCV1)が所定の電圧範囲に入っているか否かを判定する。そして、第1の無負荷電圧(VOCV1)が所定の電圧範囲に入っている場合、特許文献1に記載の方法は、検出された第1の無負荷電圧(VOCV1)から蓄電池の第1の残容量(SOC1[%])を判定する。そして、特許文献1に記載の方法は、さらに、第2の無負荷電圧(VOCV2)から蓄電池の第2の残容量(SOC2[%])を判定する。そして、特許文献1に記載の方法は、第1の残容量(SOC1[%])と第2の残容量(SOC2[%])との差を基に、残容量(SOC[%])の変化率(δS[%])を演算する。さらに、特許文献1に記載の方法は、第1の無負荷タイミングと第2の無負荷タイミングとの間において、充放電される蓄電池の充電電流と放電電流の積算値を基に、蓄電池の容量変化値(δAh)を演算する。そして、特許文献1に記載の方法は、残容量(SOC[%])の変化率(δS[%])と容量変化値(δAh)とを、数式「Ahf=δAh/(δS/100)」に適用して、蓄電池の満充電容量(Ahf)を演算する。 The method for detecting the full charge capacity of the storage battery described in Patent Document 1 is based on the first no-load voltage ( VOCV1 ) of the storage battery at the first no-load timing, which is the no-load state of the storage battery, and the second no-load timing. The second no-load voltage ( VOCV2 ) of the storage battery is detected. Then, the method described in Patent Document 1 determines whether or not the detected first no-load voltage (VOCV1 ) is within a predetermined voltage range. Then, when the first no-load voltage ( VOCV1 ) is within a predetermined voltage range, the method described in Patent Document 1 is based on the detected first no-load voltage ( VOCV1 ) of the first storage battery. Remaining capacity (SOC1 [%]) is determined. Then, the method described in Patent Document 1 further determines the second remaining capacity (SOC2 [%]) of the storage battery from the second no-load voltage (VOCV2). Then, the method described in Patent Document 1 determines the remaining capacity (SOC [%]) based on the difference between the first remaining capacity (SOC1 [%]) and the second remaining capacity (SOC2 [%]). Calculate the rate of change (δS [%]). Further, the method described in Patent Document 1 is based on the integrated value of the charge current and the discharge current of the storage battery to be charged and discharged between the first no-load timing and the second no-load timing, and the capacity of the storage battery. Calculate the change value (δAh). Then, in the method described in Patent Document 1, the rate of change (δS [%]) of the remaining capacity (SOC [%]) and the capacity change value (δAh) are expressed by the mathematical formula “Ahf = δAh / (δS / 100)”. To calculate the full charge capacity (Ahf) of the storage battery.

特許文献1に記載の方法は、第1と第2の無負荷タイミングにおける第1と第2の無負荷電圧を基に、第1と第2の残容量を判定する。そして、特許文献1に記載の方法は、第1と第2の無負荷タイミングとの間において充放電される蓄電池の充電電流と放電電流の積算値を基に、蓄電池の容量変化値を演算する。そして、特許文献1に記載の方法は、第1と第2の無負荷タイミングとの間における残容量の変化率と容量変化値を基に、蓄電池の満充電容量を演算する。 The method described in Patent Document 1 determines the first and second remaining capacities based on the first and second no-load voltages at the first and second no-load timings. Then, the method described in Patent Document 1 calculates the capacity change value of the storage battery based on the integrated value of the charge current and the discharge current of the storage battery charged and discharged between the first and second no-load timings. .. Then, the method described in Patent Document 1 calculates the full charge capacity of the storage battery based on the change rate of the remaining capacity and the capacity change value between the first and second no-load timings.

特許文献2には、第1のタイミングにおける開放電圧から算出したSOC(State Of Charge)と、第2のタイミングにおける開放電圧から算出したSOCとの間の変化量と、充電電流及び放電電流の積算値から算出した容量変化量とに基づき、電池の満充電容量を算出する満充電容量検出方法が開示されている。 Patent Document 2 describes the amount of change between the SOC (State Of Charge) calculated from the open circuit voltage at the first timing and the SOC calculated from the open circuit voltage at the second timing, and the integration of the charge current and the discharge current. A full charge capacity detection method for calculating the full charge capacity of a battery based on the capacity change amount calculated from the value is disclosed.

特許文献3には、充電前後のSOC差と充電電流積算値とに基づき、電池の満充電容量を算出する蓄電システムが開示されている。 Patent Document 3 discloses a power storage system that calculates the full charge capacity of a battery based on the SOC difference before and after charging and the integrated charging current value.

特許第5393956Patent No. 5393956 国際公開第2012/105492号International Publication No. 2012/105492 特開2014−185896号Japanese Unexamined Patent Publication No. 2014-185896

特許文献1乃至3はいずれも、複数の蓄電池を組み合わせた組電池において、組電池の満充電容量を算出する手法を開示していない。そのため、組電池における各蓄電池の状態が異なると、適切に満充電容量を算出することができないという問題があった。 Neither Patent Documents 1 to 3 discloses a method for calculating the full charge capacity of an assembled battery in an assembled battery in which a plurality of storage batteries are combined. Therefore, if the state of each storage battery in the assembled battery is different, there is a problem that the full charge capacity cannot be calculated appropriately.

本発明によれば、
複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に複数の前記二次電池各々の開放電圧を推定するOCV推定手段と、
前記蓄電池の電流値を基に前記蓄電池の積算容量を算出する容量算出手段と、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最小値に基づき算出した第1のSOC(State Of Charge)、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最大値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する制御手段と、
を含む蓄電制御装置が提供される。
According to the present invention
An OCV estimation means that estimates the open circuit voltage of each of the plurality of secondary batteries based on the voltage value of the storage battery, which is an assembled battery in which a plurality of secondary batteries are connected in series.
A capacity calculation means for calculating the integrated capacity of the storage battery based on the current value of the storage battery, and
The first SOC (State Of Charge) calculated based on the minimum value in the open circuit voltage of each of the plurality of secondary batteries at the first measurement timing, and each of the plurality of secondary batteries at the second measurement timing. The full capacity of the storage battery is calculated based on the second SOC calculated based on the maximum value in the open circuit voltage, the integrated capacity at the first measurement timing, and the integrated capacity at the second measurement timing. Control means to
A storage control device including the above is provided.

また、本発明によれば、
複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に複数の前記二次電池各々の開放電圧を推定するOCV推定手段と、
前記蓄電池の電流値を基に前記蓄電池の積算容量を算出する容量算出手段と、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の大きい方から順に定めた順位が下位x%(xは0より大100より小)に含まれる開放電圧の統計値に基づき算出した第1のSOC、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の大きい方から順に定めた順位が上位x%に含まれる開放電圧の統計値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する制御手段と、
を含む蓄電制御装置が提供される。
Further, according to the present invention.
An OCV estimation means that estimates the open circuit voltage of each of the plurality of secondary batteries based on the voltage value of the storage battery, which is an assembled battery in which a plurality of secondary batteries are connected in series.
A capacity calculation means for calculating the integrated capacity of the storage battery based on the current value of the storage battery, and
The statistical value of the open circuit voltage included in the lower x% (x is greater than 0 and less than 100) in the order determined from the largest of the open circuit voltages of each of the plurality of secondary batteries at the first measurement timing. Calculated based on the statistical value of the open circuit voltage in which the order determined in order from the largest of the open circuit voltages of each of the plurality of secondary batteries at the first SOC and the second measurement timing is included in the upper x%. A control means for calculating the full capacity of the storage battery based on the second SOC, the integrated capacity at the first measurement timing, and the integrated capacity at the second measurement timing.
A storage control device including the above is provided.

また、本発明によれば、
複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に推定された複数の前記二次電池各々の開放電圧、及び、前記蓄電池の電流値を基に算出された前記蓄電池の積算容量を取得する手段と、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最小値に基づき算出した第1のSOC、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最大値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する手段と、
を含むサーバが提供される。
Further, according to the present invention.
The storage battery calculated based on the open circuit voltage of each of the plurality of secondary batteries estimated based on the voltage value of the storage battery which is an assembled battery in which a plurality of secondary batteries are connected in series, and the current value of the storage battery. Means to obtain the integrated capacity of
The first SOC calculated based on the minimum value in the open circuit voltage of each of the plurality of secondary batteries at the first measurement timing, and the open voltage of each of the plurality of secondary batteries at the second measurement timing. A means for calculating the full capacity of the storage battery based on the second SOC calculated based on the maximum value of, the integrated capacity of the first measurement timing, and the integrated capacity of the second measurement timing.
A server containing is provided.

また、本発明によれば、
複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に推定された複数の前記二次電池各々の開放電圧、及び、前記蓄電池の電流値を基に算出された前記蓄電池の積算容量を取得する手段と、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の大きい方から順に定めた順位が下位x%(xは0より大100より小)に含まれる開放電圧の統計値に基づき算出した第1のSOC、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の大きい方から順に定めた順位が上位x%に含まれる開放電圧の統計値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する手段と、
を含むサーバが提供される。
Further, according to the present invention.
The storage battery calculated based on the open circuit voltage of each of the plurality of secondary batteries estimated based on the voltage value of the storage battery which is an assembled battery in which a plurality of secondary batteries are connected in series, and the current value of the storage battery. Means to obtain the integrated capacity of
The statistical value of the open circuit voltage included in the lower x% (x is greater than 0 and less than 100) in the order determined from the largest of the open circuit voltages of each of the plurality of secondary batteries at the first measurement timing. Calculated based on the statistical value of the open circuit voltage in which the order determined in order from the largest of the open circuit voltages of each of the plurality of secondary batteries at the first SOC and the second measurement timing is included in the upper x%. A means for calculating the full capacity of the storage battery based on the second SOC, the integrated capacity at the first measurement timing, and the integrated capacity at the second measurement timing.
A server containing is provided.

また、本発明によれば、
コンピュータが、
複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に複数の前記二次電池各々の開放電圧を推定するOCV推定工程と、
前記蓄電池の電流値を基に前記蓄電池の積算容量を算出する容量算出工程と、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最小値に基づき算出した第1のSOC(State Of Charge)、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最大値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する制御工程と、
を実行する蓄電制御方法が提供される。
Further, according to the present invention.
The computer
An OCV estimation process that estimates the open circuit voltage of each of the plurality of secondary batteries based on the voltage value of a storage battery that is an assembled battery in which a plurality of secondary batteries are connected in series.
A capacity calculation step of calculating the integrated capacity of the storage battery based on the current value of the storage battery, and
The first SOC (State Of Charge) calculated based on the minimum value in the open circuit voltage of each of the plurality of secondary batteries at the first measurement timing, and each of the plurality of secondary batteries at the second measurement timing. The full capacity of the storage battery is calculated based on the second SOC calculated based on the maximum value in the open circuit voltage, the integrated capacity at the first measurement timing, and the integrated capacity at the second measurement timing. Control process and
A storage control method for executing the above is provided.

また、本発明によれば、
コンピュータを、
複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に複数の前記二次電池各々の開放電圧を推定するOCV推定手段、
前記蓄電池の電流値を基に前記蓄電池の積算容量を算出する容量算出手段、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最小値に基づき算出した第1のSOC(State Of Charge)、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最大値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する制御手段、
として機能させるプログラムが提供される。
Further, according to the present invention.
Computer,
An OCV estimation means that estimates the open circuit voltage of each of the plurality of secondary batteries based on the voltage value of a storage battery that is an assembled battery in which a plurality of secondary batteries are connected in series.
A capacity calculation means for calculating the integrated capacity of the storage battery based on the current value of the storage battery,
The first SOC (State Of Charge) calculated based on the minimum value in the open circuit voltage of each of the plurality of secondary batteries at the first measurement timing, and each of the plurality of secondary batteries at the second measurement timing. The full capacity of the storage battery is calculated based on the second SOC calculated based on the maximum value in the open circuit voltage, the integrated capacity at the first measurement timing, and the integrated capacity at the second measurement timing. Control means,
A program is provided that functions as.

本発明によれば、適切に満充電容量を算出できる。 According to the present invention, the full charge capacity can be appropriately calculated.

図1は、本発明における第1の実施形態に係る蓄電制御装置の構成に一例を示すブロック図である。FIG. 1 is a block diagram showing an example of the configuration of the power storage control device according to the first embodiment of the present invention. 図2は、第1の実施形態に係る蓄電制御装置の信号の流れの一例を示す図である。FIG. 2 is a diagram showing an example of a signal flow of the power storage control device according to the first embodiment. 図3は、第1の実施形態における開放電圧OCVに対する残容量SOCの関係の一例を示す図である。FIG. 3 is a diagram showing an example of the relationship of the remaining capacity SOC with respect to the open circuit voltage OCV in the first embodiment. 図4は、第1の実施形態に係る蓄電制御装置の動作を説明するための図である。FIG. 4 is a diagram for explaining the operation of the power storage control device according to the first embodiment. 図5は、第1の実施形態における蓄電池の二次電池間の残容量SOCがずれている場合の開放電圧OCVと残容量SOCの関係の一例を表した図である。FIG. 5 is a diagram showing an example of the relationship between the open circuit voltage OCV and the remaining capacity SOC when the remaining capacity SOC between the secondary batteries of the storage battery in the first embodiment is deviated. 図6は、第1の実施形態における蓄電池の二次電池間の残容量SOCがずれている場合に測定範囲を変えて算出した満容量の充放電可能満容量に対する容量比の一例を表した図である。FIG. 6 is a diagram showing an example of the capacity ratio of the full capacity to the rechargeable full capacity calculated by changing the measurement range when the remaining capacity SOC between the secondary batteries of the storage battery in the first embodiment is deviated. Is. 図7は、第1の実施形態における蓄電池の二次電池間の残容量SOCと容量維持率SOHがずれている場合の開放電圧OCVと残容量SOCの関係の一例を表した図である。FIG. 7 is a diagram showing an example of the relationship between the open circuit voltage OCV and the remaining capacity SOC when the remaining capacity SOC and the capacity retention rate SOH between the secondary batteries of the storage battery in the first embodiment deviate from each other. 図8は、第1の実施形態における蓄電池の二次電池間の残容量SOCと容量維持率SOHがずれている場合に測定範囲を変えて算出した満容量の充放電可能満容量に対する容量比の一例を表した図である。FIG. 8 shows the capacity ratio of the full capacity to the rechargeable full capacity calculated by changing the measurement range when the remaining capacity SOC and the capacity retention rate SOH between the secondary batteries of the storage battery in the first embodiment deviate from each other. It is a figure showing an example. 図9は、第1の実施形態における蓄電池の二次電池間の残容量SOCと容量維持率SOHがずれている場合の開放電圧OCVと残容量SOCの関係の一例を表した図である。FIG. 9 is a diagram showing an example of the relationship between the open circuit voltage OCV and the remaining capacity SOC when the remaining capacity SOC and the capacity retention rate SOH between the secondary batteries of the storage battery in the first embodiment deviate from each other. 図10は、第1の実施形態における蓄電池の二次電池間の残容量SOCと容量維持率SOHがずれている場合に測定範囲を変えて算出した満容量の充放電可能満容量に対する容量比の一例を表した図である。FIG. 10 shows the capacity ratio of the full capacity to the chargeable full capacity calculated by changing the measurement range when the remaining capacity SOC and the capacity retention rate SOH between the secondary batteries of the storage battery in the first embodiment deviate from each other. It is a figure showing an example. 図11は、第1の実施形態における蓄電池の二次電池間の残容量SOCと容量維持率SOHがずれている場合の開放電圧OCVと残容量SOCの関係の一例を表した図である。FIG. 11 is a diagram showing an example of the relationship between the open circuit voltage OCV and the remaining capacity SOC when the remaining capacity SOC and the capacity retention rate SOH between the secondary batteries of the storage battery in the first embodiment deviate from each other. 図12は、第2の実施形態に係る蓄電制御装置の動作を説明するための図である。FIG. 12 is a diagram for explaining the operation of the power storage control device according to the second embodiment. 図13は、第3の実施形態に係る蓄電制御装置の動作を説明するための図である。FIG. 13 is a diagram for explaining the operation of the power storage control device according to the third embodiment. 図14は、第1乃至第3の実施形態に係る蓄電制御装置のハードウエア構成を例示するための図である。FIG. 14 is a diagram for exemplifying the hardware configuration of the power storage control device according to the first to third embodiments.

次に、本発明の実施形態について図面を参照して説明する。なお、各図面は、本発明の実施形態を説明するものである。ただし、本発明は、以下の各図面の記載に限られるわけではない。また、各図面の同様の構成には、同じ番号を付し、その繰り返しの説明を、省略する場合がある。また、以下の説明に用いる図面において、本発明の説明に関係しない部分の構成については、記載を省略し、図示しない場合もある。 Next, an embodiment of the present invention will be described with reference to the drawings. It should be noted that each drawing describes an embodiment of the present invention. However, the present invention is not limited to the description of each of the following drawings. Further, similar configurations of the drawings may be given the same number, and the repeated description thereof may be omitted. Further, in the drawings used in the following description, the description of the structure of the portion not related to the description of the present invention may be omitted and not shown.

まず、以下の説明で用いる用語及び変数をまとめておく。
「開放電圧(OCV:Open Circuit Voltage)」とは、蓄電池もしくは二次電池に負荷を接続しない状態での蓄電池もしくは二次電池両端の電圧である。
「残容量(SOC:State Of Charge)」とは、蓄電池もしくは二次電池の充電率であり、満充電に対する現在の充電状態(充電容量)の比率である。SOCは、通常、パーセンテージを用いるため「SOC[%]」と表現する場合もある。
「容量維持率(SOH:State Of Health)」とは、蓄電池もしくは二次電池の容量維持率であり、初期の満容量に対する現在の満容量の比率である。SOHは、通常、パーセンテージを用いるため「SOH[%]」と表現する場合もある。
「積算容量(Q)」は、電流値(I)を積算して求めた蓄電池の容量である。「Qfull」は、満容量である。
「DC(Direct Current)/DCコンバータ」は、直流電圧を別の直流電圧に変換する変換器である。
「AC(Alternating Current)/DCコンバータ」は、交流電圧を直流電圧に変換する変換器である。
First, the terms and variables used in the following explanation are summarized.
The "open circuit voltage (OCV)" is the voltage across the storage battery or the secondary battery when the load is not connected to the storage battery or the secondary battery.
The "remaining capacity (SOC: State Of Charge)" is the charge rate of the storage battery or the secondary battery, and is the ratio of the current charge state (charge capacity) to the full charge. SOC is sometimes expressed as "SOC [%]" because it usually uses a percentage.
The "capacity retention rate (SOH: State Of Health)" is the capacity retention rate of a storage battery or a secondary battery, and is the ratio of the current full capacity to the initial full capacity. Since SOH usually uses a percentage, it may be expressed as "SOH [%]".
The "integrated capacity (Q)" is the capacity of the storage battery obtained by integrating the current value (I). "Qfull" is full capacity.
A "DC (Direct Current) / DC converter" is a converter that converts a direct current voltage into another direct current voltage.
The "AC (Alternating Current) / DC converter" is a converter that converts an alternating current voltage into a direct current voltage.

<第1の実施形態>
次に、本発明における第1の実施形態について図面を参照して説明する。まず、第1の実施形態に係る蓄電制御装置10の構成について説明する。
<First Embodiment>
Next, the first embodiment of the present invention will be described with reference to the drawings. First, the configuration of the power storage control device 10 according to the first embodiment will be described.

図1は、第1の実施形態に係る蓄電制御装置10の構成の一例を示すブロック図である。蓄電制御装置10は、蓄電池20と、電圧測定部30と、電流測定部40と、OCV推定部50と、容量算出部60と、充放電制御部70と、制御部80とを含む。 FIG. 1 is a block diagram showing an example of the configuration of the power storage control device 10 according to the first embodiment. The power storage control device 10 includes a storage battery 20, a voltage measuring unit 30, a current measuring unit 40, an OCV estimation unit 50, a capacity calculation unit 60, a charge / discharge control unit 70, and a control unit 80.

蓄電池20は、複数の二次電池21を含む。二次電池21各々は、1つのセルで構成されてもよいし、複数のセルで構成されてもよい。後者の場合、複数のセルは並列に接続されてもよい。ここで、二次電池21は、代表的にはリチウムイオン二次電池であるが、これに限定されない。蓄電池20は、図示するように直列に接続した複数の二次電池21を含んでいる。蓄電池20は、蓄電制御装置10の外部の負荷と電気的に接続する負極端子90A及び正極端子90Bと接続する。 The storage battery 20 includes a plurality of secondary batteries 21. Each of the secondary batteries 21 may be composed of one cell or a plurality of cells. In the latter case, multiple cells may be connected in parallel. Here, the secondary battery 21 is typically a lithium ion secondary battery, but is not limited thereto. The storage battery 20 includes a plurality of secondary batteries 21 connected in series as shown in the figure. The storage battery 20 is connected to a negative electrode terminal 90A and a positive electrode terminal 90B that are electrically connected to an external load of the storage control device 10.

そして、蓄電池20は、充放電制御部70の制御に基づいて、負極端子90A及び正極端子90Bから供給される電力を二次電池21に充電する。また、蓄電池20は、充放電制御部70の制御に基づいて、二次電池21が蓄積した電力を、負極端子90A及び正極端子90Bから放電する。 Then, the storage battery 20 charges the secondary battery 21 with the electric power supplied from the negative electrode terminal 90A and the positive electrode terminal 90B based on the control of the charge / discharge control unit 70. Further, the storage battery 20 discharges the electric power stored in the secondary battery 21 from the negative electrode terminal 90A and the positive electrode terminal 90B based on the control of the charge / discharge control unit 70.

電圧測定部30は、蓄電池20が含む複数の二次電池21各々の正極及び負極との間の電圧を測定する。そして、電圧測定部30は、測定した複数の二次電池21各々の電圧の中の最大電圧と最小電圧を算出する。電圧測定部30は、算出した最大電圧と最小電圧の値(情報又は信号)をOCV推定部50及び制御部80に送信する。 The voltage measuring unit 30 measures the voltage between the positive electrode and the negative electrode of each of the plurality of secondary batteries 21 included in the storage battery 20. Then, the voltage measuring unit 30 calculates the maximum voltage and the minimum voltage among the measured voltages of the plurality of secondary batteries 21. The voltage measuring unit 30 transmits the calculated maximum voltage and minimum voltage values (information or signal) to the OCV estimation unit 50 and the control unit 80.

電流測定部40は、蓄電池20を充電又は放電するときに流れる電流を測定する。電流測定部40は、電流の測定手段として、例えば、検流計、シャント抵抗を用いた検流器、又は、クランプメータを用いてもよい。ただし、本実施形態は、これらの検出機器に限定されない。本実施形態の電流測定部40は、電流値を測定する手段であれば、どのような手段を用いてもよい。電流測定部40は、測定した電流の値(情報又は信号)を容量算出部60及び制御部80に送信する。 The current measuring unit 40 measures the current that flows when the storage battery 20 is charged or discharged. The current measuring unit 40 may use, for example, a galvanometer, a galvanometer using a shunt resistor, or a clamp meter as a means for measuring the current. However, this embodiment is not limited to these detection devices. The current measuring unit 40 of the present embodiment may use any means as long as it is a means for measuring the current value. The current measuring unit 40 transmits the measured current value (information or signal) to the capacity calculation unit 60 and the control unit 80.

OCV推定部50は、電圧測定部30が測定した電圧と、電流測定部40が測定した電流とを基に、蓄電池20の開放電圧(OCV)を推定する。OCV推定部50は、推定したOCVを制御部80に送信する。 The OCV estimation unit 50 estimates the open circuit voltage (OCV) of the storage battery 20 based on the voltage measured by the voltage measurement unit 30 and the current measured by the current measurement unit 40. The OCV estimation unit 50 transmits the estimated OCV to the control unit 80.

容量算出部60は、電流測定部40が測定した電流を基に、蓄電池20の積算容量(Q)を算出する。容量算出部60は、算出した積算容量(Q)を制御部80に送信する。 The capacity calculation unit 60 calculates the integrated capacity (Q) of the storage battery 20 based on the current measured by the current measurement unit 40. The capacity calculation unit 60 transmits the calculated integrated capacity (Q) to the control unit 80.

充放電制御部70は、制御部80からの蓄電池20を制御するための指示に基づいて、蓄電池20の充電及び放電の動作を制御する。充放電制御部70は、例えば、双方向のDC/DCコンバータ又はAC/DCコンバータのような電力変換部である。より具体的には、充放電制御部70は、制御部80からの指示に基づいて、蓄電池20の充電及び放電における、電流、電圧及び/又は電力を制御する。 The charge / discharge control unit 70 controls the charging and discharging operations of the storage battery 20 based on the instruction from the control unit 80 for controlling the storage battery 20. The charge / discharge control unit 70 is, for example, a power conversion unit such as a bidirectional DC / DC converter or an AC / DC converter. More specifically, the charge / discharge control unit 70 controls the current, voltage, and / or electric power in charging and discharging the storage battery 20 based on the instruction from the control unit 80.

制御部80は、電圧測定部30が測定した電圧、電流測定部40が測定した電流、OCV推定部50が推定したOCV、容量算出部60が算出した積算容量(Q)を基に、充放電制御部70に指示を送信し、蓄電池20の充電及び放電を制御する。そして、制御部80は、蓄電池20の満容量を算出する。制御部80の動作の詳細については、後ほど説明する。なお、制御部80は、図示しない外部の装置から制御信号を受信し、その制御信号に基づいて動作してもよい。 The control unit 80 charges and discharges based on the voltage measured by the voltage measuring unit 30, the current measured by the current measuring unit 40, the OCV estimated by the OCV estimation unit 50, and the integrated capacity (Q) calculated by the capacity calculation unit 60. An instruction is transmitted to the control unit 70 to control charging and discharging of the storage battery 20. Then, the control unit 80 calculates the full capacity of the storage battery 20. The details of the operation of the control unit 80 will be described later. The control unit 80 may receive a control signal from an external device (not shown) and operate based on the control signal.

次に、本実施形態に係る蓄電制御装置10の信号(情報)の流れについて説明する。図2は、本実施形態に係る蓄電制御装置10の信号の流れの一例を示す図である。 Next, the flow of the signal (information) of the power storage control device 10 according to the present embodiment will be described. FIG. 2 is a diagram showing an example of the signal flow of the power storage control device 10 according to the present embodiment.

電圧測定部30は、所定の測定タイミング(例えば、一定間隔)で各二次電池21の端子間の電圧を測定する。そして、電圧測定部30は、同じタイミングで測定した複数の二次電池21各々の電圧の中の最大電圧と最小電圧を算出する。なお、すべての測定タイミングに対応して最大電圧及び最小電圧の両方を算出してもよいし、各測定タイミングに対応して最大電圧及び最小電圧の一方を算出してもよい。後者の場合、電圧測定部30は、第1の測定タイミングで最小電圧を算出し、第2の測定タイミングで最大電圧を算出してもよい。この場合、電圧測定部30は、第1の測定タイミングにおける最大電圧及び第2の測定タイミングにおける最小電圧を算出しなくてもよい。第1の測定タイミング及び第2の測定タイミングの定義は後述する。 The voltage measuring unit 30 measures the voltage between the terminals of each secondary battery 21 at a predetermined measurement timing (for example, at regular intervals). Then, the voltage measuring unit 30 calculates the maximum voltage and the minimum voltage among the voltages of each of the plurality of secondary batteries 21 measured at the same timing. Both the maximum voltage and the minimum voltage may be calculated corresponding to all the measurement timings, or one of the maximum voltage and the minimum voltage may be calculated corresponding to each measurement timing. In the latter case, the voltage measuring unit 30 may calculate the minimum voltage at the first measurement timing and calculate the maximum voltage at the second measurement timing. In this case, the voltage measuring unit 30 does not have to calculate the maximum voltage at the first measurement timing and the minimum voltage at the second measurement timing. The definition of the first measurement timing and the second measurement timing will be described later.

そして、電圧測定部30は、電圧情報として、算出した最大電圧と最小電圧の値をOCV推定部50及び制御部80に送信する。なお、各測定タイミングで最大電圧及び最小電圧の両方を算出している場合、電圧測定部30は、各測定タイミングに対応して最大電圧及び最小電圧の両方をOCV推定部50及び制御部80に送信してもよいし、各測定タイミングに対応して最大電圧及び最小電圧の一方をOCV推定部50及び制御部80に送信してもよい。後者の場合、電圧測定部30は、第1の測定タイミングに対応して最小電圧を送信し、第2の測定タイミングに対応して最大電圧を送信してもよい。また、各測定タイミングに対応して最大電圧及び最小電圧の一方を算出している場合、電圧測定部30は、算出した値を電圧情報としてOCV推定部50及び制御部80に送信することができる。 Then, the voltage measuring unit 30 transmits the calculated maximum voltage and minimum voltage values as voltage information to the OCV estimation unit 50 and the control unit 80. When both the maximum voltage and the minimum voltage are calculated at each measurement timing, the voltage measuring unit 30 sends both the maximum voltage and the minimum voltage to the OCV estimation unit 50 and the control unit 80 corresponding to each measurement timing. It may be transmitted, or one of the maximum voltage and the minimum voltage may be transmitted to the OCV estimation unit 50 and the control unit 80 according to each measurement timing. In the latter case, the voltage measuring unit 30 may transmit the minimum voltage corresponding to the first measurement timing and the maximum voltage corresponding to the second measurement timing. Further, when one of the maximum voltage and the minimum voltage is calculated corresponding to each measurement timing, the voltage measurement unit 30 can transmit the calculated value as voltage information to the OCV estimation unit 50 and the control unit 80. ..

以下、OCV推定部50と制御部80とに送信される電圧情報を区別する場合、OCV推定部50に送信される電圧情報を「Va」と、制御部80に送信される電圧情報を「Vg」と呼ぶ。 Hereinafter, when the voltage information transmitted to the OCV estimation unit 50 and the control unit 80 is distinguished, the voltage information transmitted to the OCV estimation unit 50 is referred to as “Va” and the voltage information transmitted to the control unit 80 is referred to as “Vg”. ".

なお、電圧測定部30は、電流測定部40と同期して、OCV推定部50及び制御部80に電圧情報を送信することが望ましい。ただし、電圧測定部30は、電流測定部40により送信される電流情報と異なるタイミングで電圧情報を送信してもよい。 It is desirable that the voltage measuring unit 30 transmits voltage information to the OCV estimation unit 50 and the control unit 80 in synchronization with the current measuring unit 40. However, the voltage measuring unit 30 may transmit the voltage information at a timing different from the current information transmitted by the current measuring unit 40.

また、電圧測定部30は、OCV推定部50又は制御部80からの要求を基に、電圧情報を送信してもよい。 Further, the voltage measuring unit 30 may transmit voltage information based on a request from the OCV estimation unit 50 or the control unit 80.

あるいは、電圧測定部30は、OCV推定部50又は制御部80からの要求を基に、電圧の測定を開始してもよい。この場合、電圧測定部30は、測定完了後に、電圧情報を送信する。 Alternatively, the voltage measuring unit 30 may start measuring the voltage based on the request from the OCV estimation unit 50 or the control unit 80. In this case, the voltage measuring unit 30 transmits the voltage information after the measurement is completed.

電流測定部40は、所定の測定タイミング(例えば、一定間隔)で蓄電池20の充電電流及び放電電流(以下、まとめて「充放電電流」と呼ぶ)の値を測定する。そして、電流測定部40は、電流情報として、測定した電流値をOCV推定部50と容量算出部60と制御部80とに送信する。以下、OCV推定部50と容量算出部60と制御部80とに送信される電流情報を区別する場合、OCV推定部50に送信される電流情報を「Ib」、容量算出部60に送信される電流情報を「Id」、制御部80に送信される電流情報を「Ih」と呼ぶ。 The current measuring unit 40 measures the values of the charging current and the discharging current (hereinafter collectively referred to as “charging / discharging current”) of the storage battery 20 at a predetermined measurement timing (for example, at regular intervals). Then, the current measuring unit 40 transmits the measured current value as the current information to the OCV estimation unit 50, the capacity calculation unit 60, and the control unit 80. Hereinafter, when the current information transmitted to the OCV estimation unit 50, the capacity calculation unit 60, and the control unit 80 is distinguished, the current information transmitted to the OCV estimation unit 50 is transmitted to "Ib" and the capacity calculation unit 60. The current information is called "Id", and the current information transmitted to the control unit 80 is called "Ih".

電流測定部40は、電流情報として、測定した電流の値を送信してもよい。あるいは、電流測定部40は、所定の回数の電流の平均値を電流情報として送信してもよい。 The current measuring unit 40 may transmit the measured current value as current information. Alternatively, the current measuring unit 40 may transmit the average value of the current a predetermined number of times as current information.

なお、電流測定部40は、電圧測定部30と同期して、OCV推定部50、容量算出部60及び制御部80に電流情報を送信することが望ましい。ただし、電流測定部40は、電圧測定部30により送信される電圧情報と異なるタイミングで電流情報を送信してもよい。 It is desirable that the current measurement unit 40 transmits current information to the OCV estimation unit 50, the capacity calculation unit 60, and the control unit 80 in synchronization with the voltage measurement unit 30. However, the current measuring unit 40 may transmit the current information at a timing different from the voltage information transmitted by the voltage measuring unit 30.

また、電流測定部40は、OCV推定部50、容量算出部60又は制御部80からの要求を基に、電流情報を送信してもよい。 Further, the current measuring unit 40 may transmit current information based on a request from the OCV estimation unit 50, the capacity calculation unit 60, or the control unit 80.

あるいは、電流測定部40は、OCV推定部50、容量算出部60又は制御部80からの要求を基に、電流の値の測定を開始してもよい。この場合、電流測定部40は、測定完了後に、測定した電流情報を送信する。 Alternatively, the current measuring unit 40 may start measuring the current value based on the request from the OCV estimation unit 50, the capacity calculation unit 60, or the control unit 80. In this case, the current measuring unit 40 transmits the measured current information after the measurement is completed.

OCV推定部50は、電圧測定部30から、蓄電池20を構成する二次電池21の電圧情報(Va)を受信する。 The OCV estimation unit 50 receives voltage information (Va) of the secondary battery 21 constituting the storage battery 20 from the voltage measurement unit 30.

また、OCV推定部50は、電流測定部40から、蓄電池20の充電又は放電時の電流情報(Ib)を受信する。 Further, the OCV estimation unit 50 receives current information (Ib) at the time of charging or discharging the storage battery 20 from the current measuring unit 40.

なお、繰り返しとなるが、OCV推定部50は、同期した同じ時刻で、電圧情報(Va)と電流情報(Ib)との測定値を受信することが望ましい。 Again, it is desirable that the OCV estimation unit 50 receive the measured values of the voltage information (Va) and the current information (Ib) at the same time in synchronization.

そして、OCV推定部50は、電圧情報(Va)と、電流情報(Ib)とに基づき、二次電池21の最大と最小の開放電圧(OCV)を推定する。例えば、OCV推定部50は、第1の測定タイミングの最小電圧に基づき算出した第1の測定タイミングの開放電圧(最小の開放電圧)、及び、第2の測定タイミングの最大電圧に基づき算出した第2の測定タイミングの開放電圧(最大の開放電圧)を推定する。なお、OCV推定部50は、すべての測定タイミングに対応して、最小電圧に基づく開放電圧(最小の開放電圧)、及び、最大電圧に基づく開放電圧(最大の開放電圧)を推定してもよい。そして、OCV推定部50は、推定したOCVの情報(以下、「OCVc」と呼ぶ)を制御部80に送信する。 Then, the OCV estimation unit 50 estimates the maximum and minimum open circuit voltages (OCV) of the secondary battery 21 based on the voltage information (Va) and the current information (Ib). For example, the OCV estimation unit 50 calculates the open circuit voltage (minimum open circuit voltage) of the first measurement timing calculated based on the minimum voltage of the first measurement timing and the maximum voltage of the second measurement timing. Estimate the open circuit voltage (maximum open circuit voltage) of the measurement timing of 2. The OCV estimation unit 50 may estimate the open circuit voltage based on the minimum voltage (minimum open circuit voltage) and the open circuit voltage based on the maximum voltage (maximum open circuit voltage) corresponding to all measurement timings. .. Then, the OCV estimation unit 50 transmits the estimated OCV information (hereinafter, referred to as “OCVc”) to the control unit 80.

なお、上記説明では、電圧測定部30は、各測定タイミングに対応して最小電圧、及び/又は、最大電圧をOCV推定部50及び制御部80に送信するものした。変形例として、電圧測定部30は、複数の測定タイミング各々における複数の二次電池21各々の電圧値をOCV推定部50及び制御部80に送信してもよい。 In the above description, the voltage measuring unit 30 transmits the minimum voltage and / or the maximum voltage to the OCV estimation unit 50 and the control unit 80 in accordance with each measurement timing. As a modification, the voltage measuring unit 30 may transmit the voltage value of each of the plurality of secondary batteries 21 at each of the plurality of measurement timings to the OCV estimation unit 50 and the control unit 80.

当該変形例の場合、OCV推定部50は、各測定タイミングに対応して、電圧情報(Va)と、電流情報(Ib)とに基づき、各二次電池21の開放電圧(OCV)を推定してもよい。そして、OCV推定部50は、各測定タイミングに対応して、複数の二次電池21各々の開放電圧の中の最大の開放電圧及び/又は最小の開放電圧を算出してもよい。例えば、OCV推定部50は、第1の測定タイミングにおける最小の開放電圧、及び、第2の測定タイミングにおける最大の開放電圧を算出してもよい。そして、OCV推定部50は、OCV情報として、算出した最大の開放電圧と最小の開放電圧を制御部80に送信する。 In the case of the modification, the OCV estimation unit 50 estimates the open circuit voltage (OCV) of each secondary battery 21 based on the voltage information (Va) and the current information (Ib) corresponding to each measurement timing. You may. Then, the OCV estimation unit 50 may calculate the maximum open circuit voltage and / or the minimum open circuit voltage among the open circuit voltages of each of the plurality of secondary batteries 21 according to each measurement timing. For example, the OCV estimation unit 50 may calculate the minimum open circuit voltage at the first measurement timing and the maximum open circuit voltage at the second measurement timing. Then, the OCV estimation unit 50 transmits the calculated maximum open circuit voltage and minimum open circuit voltage to the control unit 80 as OCV information.

ここで、OCV推定部50による開放電圧の推定手法は、特に制限はない。例えば、OCV推定部50は、二次電池21の等価回路モデルに基づき、OCV情報を推定してもよい。あるいは、OCV推定部50は、二次電池21の内部抵抗に基づき、OCV情報を推定してもよい。また、OCV推定部50は、二次電池21の等価回路モデルにおけるパラメータ又は二次電池21の内部抵抗を、蓄電池20の使用に伴って動的に算出し、算出された値を用いてOCV情報を推定してもよい。また、充放電電流が0の場合の、二次電池21の電圧からOCV情報を推定してもよい。 Here, the method of estimating the open circuit voltage by the OCV estimation unit 50 is not particularly limited. For example, the OCV estimation unit 50 may estimate OCV information based on the equivalent circuit model of the secondary battery 21. Alternatively, the OCV estimation unit 50 may estimate the OCV information based on the internal resistance of the secondary battery 21. Further, the OCV estimation unit 50 dynamically calculates the parameters in the equivalent circuit model of the secondary battery 21 or the internal resistance of the secondary battery 21 with the use of the storage battery 20, and uses the calculated values to obtain OCV information. May be estimated. Further, OCV information may be estimated from the voltage of the secondary battery 21 when the charge / discharge current is 0.

容量算出部60は、電流測定部40から、蓄電池20の充電又は放電時の電流情報(Id)を受信する。 The capacity calculation unit 60 receives current information (Id) at the time of charging or discharging the storage battery 20 from the current measuring unit 40.

容量算出部60は、ある時点を0として、電流情報(Id)に基づき、電流の積分値として容量を算出し、算出した容量を積算して積算容量を算出し、算出した積算容量を積算容量情報(以下、「Qe」と呼ぶ)として制御部80に送信する。容量算出部60は、例えば、積算容量を、現在時刻での電流値に、現在時刻と1つ前の算出時刻との差分時間を掛け合わせたものを、1つ前の算出時刻の積算容量に加えたものとして算出する。つまり、容量算出部60は、積算容量を、電流情報(Id)の電流値の時間毎の積分値として算出する。積分容量の単位は、通常、[Ah]を用いる。例えば、容量算出部60は、充電方向の電流をプラス、放電方向の電流をマイナスとして、算出した容量を積算して積算容量を算出する。 The capacity calculation unit 60 calculates the capacity as an integrated value of the current based on the current information (Id) with a certain time point as 0, integrates the calculated capacities to calculate the integrated capacity, and integrates the calculated integrated capacity. It is transmitted to the control unit 80 as information (hereinafter referred to as “Qe”). The capacity calculation unit 60 calculates, for example, the integrated capacity by multiplying the current value at the current time by the difference time between the current time and the previous calculated time to obtain the integrated capacity at the previous calculated time. Calculated as an addition. That is, the capacity calculation unit 60 calculates the integrated capacity as an integrated value of the current value of the current information (Id) for each time. [Ah] is usually used as the unit of the integrated capacitance. For example, the capacity calculation unit 60 calculates the integrated capacity by integrating the calculated capacities with the current in the charging direction being positive and the current in the discharging direction being negative.

制御部80は、OCV推定部50からOCV情報(OCVc)を受信する。 The control unit 80 receives OCV information (OCVc) from the OCV estimation unit 50.

ここで、本実施形態の制御部80は、予め、関数又はルックアップテーブルとして、二次電池21の開放電圧OCVに対する残容量SOC[%]の関係を示した情報を記憶している。制御部80は、例えば、制御部80内又は図示しない制御部80に接続されたメモリに、関数又はルックアップテーブルを記憶している。 Here, the control unit 80 of the present embodiment stores in advance information indicating the relationship of the remaining capacity SOC [%] with respect to the open circuit voltage OCV of the secondary battery 21 as a function or a look-up table. The control unit 80 stores a function or a look-up table in the control unit 80 or in a memory connected to the control unit 80 (not shown), for example.

図3は、開放電圧OCVに対する残容量SOC[%](以下、「OCV−SOC[%]」とする)の関係の一例を表す図である。 FIG. 3 is a diagram showing an example of the relationship of the remaining capacity SOC [%] (hereinafter, referred to as “OCV-SOC [%]”) with respect to the open circuit voltage OCV.

制御部80は、図3に示すOCV−SOC[%]の関係を基に作成されたルックアップテーブル又は図3に示すOCV−SOC[%]の関係を表す関数を記憶する。そして、制御部80は、記憶している関数又はルックアップテーブルを基に、受信したOCV情報(OCVc)に対する残容量SOCを算出する。 The control unit 80 stores a lookup table created based on the OCV-SOC [%] relationship shown in FIG. 3 or a function representing the OCV-SOC [%] relationship shown in FIG. Then, the control unit 80 calculates the remaining capacity SOC for the received OCV information (OCVc) based on the stored function or lookup table.

例えば、制御部80は、第1の測定タイミングにおける最小の開放電圧に基づき残容量SOCを算出するとともに、第2の測定タイミングにおける最大の開放電圧に基づき残容量SOCを算出する。 For example, the control unit 80 calculates the remaining capacity SOC based on the minimum open circuit voltage at the first measurement timing, and calculates the remaining capacity SOC based on the maximum open circuit voltage at the second measurement timing.

また、制御部80は、容量算出部60から積算容量情報(Qe)を受信する。 Further, the control unit 80 receives the integrated capacity information (Qe) from the capacity calculation unit 60.

また、制御部80は、充放電制御部70に、充放電制御情報(以下、「CTLf」と呼ぶ)を送信する。充放電制御情報(CTLf)は、充放電制御部70が蓄電池20を放電する放電モード又は充電する充電モードといった、充放電制御部70の動作モードの設定を含む。あるいは、充放電制御情報(CTLf)は、充放電制御部70の放電時の放電設定又は充電時の充電設定を含む。 Further, the control unit 80 transmits charge / discharge control information (hereinafter, referred to as “CTLf”) to the charge / discharge control unit 70. The charge / discharge control information (CTLf) includes setting an operation mode of the charge / discharge control unit 70, such as a discharge mode in which the charge / discharge control unit 70 discharges the storage battery 20 or a charge mode in which the storage battery 20 is charged. Alternatively, the charge / discharge control information (CTLf) includes a discharge setting at the time of discharge or a charge setting at the time of charging of the charge / discharge control unit 70.

なお、制御部80は、充放電制御部70から、充放電制御部70が蓄電池20の充放電の制御において取得する電流又は電圧等の計測情報を受信してもよい。 The control unit 80 may receive measurement information such as current or voltage acquired by the charge / discharge control unit 70 in the charge / discharge control of the storage battery 20 from the charge / discharge control unit 70.

なお、繰り返しとなるが、制御部80は、電圧測定部30からの電圧情報(Vg)とOCV推定部50の電圧情報(Va)とを、同期して受信することが望ましい。 Again, it is desirable that the control unit 80 receive the voltage information (Vg) from the voltage measuring unit 30 and the voltage information (Va) of the OCV estimation unit 50 in synchronization.

制御部80は、予め、蓄電池20を構成する二次電池21の充放電可能な電圧範囲を保持する。二次電池21がリチウムイオン二次電池の単電池の場合、充放電可能な電圧範囲は、例えば2.5V〜4.2Vである。そして、制御部80は、電圧測定部30から受信した電圧情報(Vg)の二次電池21の電圧値が、電圧範囲外か否かを判定する。ここでの電圧範囲は、充放電可能な電圧範囲である。 The control unit 80 holds in advance a chargeable and dischargeable voltage range of the secondary battery 21 constituting the storage battery 20. When the secondary battery 21 is a single battery of a lithium ion secondary battery, the voltage range that can be charged and discharged is, for example, 2.5V to 4.2V. Then, the control unit 80 determines whether or not the voltage value of the secondary battery 21 of the voltage information (Vg) received from the voltage measuring unit 30 is out of the voltage range. The voltage range here is a voltage range that can be charged and discharged.

そして、二次電池21の電圧値が電圧範囲外の場合、制御部80は、充放電制御部70に指示を送信し、蓄電池20の充電又は放電を停止する。この動作を基に、制御部80は、充電中及び放電中の過放電及び過充電を防止する。 Then, when the voltage value of the secondary battery 21 is out of the voltage range, the control unit 80 sends an instruction to the charge / discharge control unit 70 to stop charging or discharging the storage battery 20. Based on this operation, the control unit 80 prevents over-discharging and over-charging during charging and discharging.

例えば、充電時には、複数の二次電池21の中の少なくとも1つの電圧値が電圧範囲外となった場合(上限を超えた場合)、制御部80は、充電を停止することができる。放電時には、複数の二次電池21の中の少なくとも1つの電圧値が電圧範囲外となった場合(下限を下回った場合)、制御部80は、放電を停止することができる。 For example, at the time of charging, when at least one voltage value in the plurality of secondary batteries 21 is out of the voltage range (when the upper limit is exceeded), the control unit 80 can stop charging. At the time of discharging, if at least one voltage value in the plurality of secondary batteries 21 is out of the voltage range (below the lower limit), the control unit 80 can stop the discharging.

さらに、制御部80は、予め、蓄電池20の充電時及び放電時に許容される電流範囲を保持する。そして、制御部80は、電流測定部40から受信した電流情報(Ih)の電流値が、電流範囲外か否かを判定する。ここでの電流範囲は、許容される電流範囲である。そして、蓄電池20の電流が電流範囲外の場合、制御部80は、充放電制御部70に指示を送信し、蓄電池20への充電又は放電を停止する。この動作を基に、制御部80は、蓄電池20に含まれる二次電池21に、仕様を超えた過電流を流さないよう制御する。 Further, the control unit 80 holds in advance an allowable current range when the storage battery 20 is charged and discharged. Then, the control unit 80 determines whether or not the current value of the current information (Ih) received from the current measurement unit 40 is out of the current range. The current range here is an acceptable current range. Then, when the current of the storage battery 20 is out of the current range, the control unit 80 transmits an instruction to the charge / discharge control unit 70 to stop charging or discharging the storage battery 20. Based on this operation, the control unit 80 controls the secondary battery 21 included in the storage battery 20 so as not to cause an overcurrent exceeding the specifications.

次に、蓄電制御装置10の動作について図面を参照して説明する。 Next, the operation of the power storage control device 10 will be described with reference to the drawings.

図4は、本実施形態に係る蓄電制御装置10の動作を説明するための図である。図4は、蓄電制御装置10が、満容量を検出する動作における充電動作に対する開放電圧OCVから算出される残容量SOC[%]の時間変化を示す。なお、図4において、開放電圧OCVから算出される残容量SOCを「SOC(@OCV)」と表す。複数の二次電池21のうち、第1の測定タイミング及び第2の測定タイミング各々において、最大及び最小開放電圧となる二次電池21の残容量SOC[%]の時間変化を示している。残容量SOC[%]は、開放電圧OCVから算出されたものである。また、残容量SOC[%]の時間変化は充電動作時の時間変化である。 FIG. 4 is a diagram for explaining the operation of the power storage control device 10 according to the present embodiment. FIG. 4 shows a time change of the remaining capacity SOC [%] calculated from the open circuit voltage OCV with respect to the charging operation in the operation in which the storage control device 10 detects the full capacity. In FIG. 4, the remaining capacity SOC calculated from the open circuit voltage OCV is referred to as “SOC (@OCV)”. Among the plurality of secondary batteries 21, the time change of the remaining capacity SOC [%] of the secondary battery 21, which is the maximum and minimum open circuit voltage, is shown at each of the first measurement timing and the second measurement timing. The remaining capacity SOC [%] is calculated from the open circuit voltage OCV. Further, the time change of the remaining capacity SOC [%] is the time change during the charging operation.

まず、制御部80は、充放電制御部70に充電モードを指示する。充電モード中の充放電制御部70は、蓄電池20からの放電を行わず、蓄電池20に充電を行う。 First, the control unit 80 instructs the charge / discharge control unit 70 of the charging mode. The charge / discharge control unit 70 in the charge mode does not discharge from the storage battery 20, but charges the storage battery 20.

制御部80は、第1の測定タイミングにおいて、OCV推定部50からOCV情報(OCV1c)受信する。OCV1cは、第1の測定タイミングにおける二次電池21の最大の開放電圧(OCV1max)と最小の開放電圧(OCV1min)である。なお、OCV1cは、最小の開放電圧(OCV1min)を含み、最大の開放電圧(OCV1max)を含まなくてもよい。 The control unit 80 receives OCV information (OCV1c) from the OCV estimation unit 50 at the first measurement timing. OCV1c is the maximum open circuit voltage (OCV1max) and the minimum open circuit voltage (OCV1min) of the secondary battery 21 at the first measurement timing. The OCV1c may include the minimum open circuit voltage (OCV1min) and may not include the maximum open circuit voltage (OCV1max).

そして、制御部80は、記憶しているOCV−SOC[%]の関係を基に、第1の測定タイミングにおける最大の開放電圧OCV1maxに対応した第1の測定タイミングにおける最大の残容量SOC1max[%]を算出する。また、制御部80は、記憶しているOCV−SOC[%]の関係を基に、第1の測定タイミングにおける最小の開放電圧OCV1minに対応した第1の測定タイミングにおける最小の残容量SOC1min[%](第1のSOC)を算出する。なお、制御部80は、第1の測定タイミングにおける最小の残容量SOC1min[%]を算出し、第1の測定タイミングにおける最大の残容量SOC1max[%]を算出しなくてもよい。 Then, the control unit 80 has the maximum remaining capacity SOC1max [%] at the first measurement timing corresponding to the maximum open circuit voltage OCV1max at the first measurement timing based on the stored OCV-SOC [%] relationship. ] Is calculated. Further, the control unit 80 has a minimum remaining capacity SOC 1 min [%] at the first measurement timing corresponding to the minimum open circuit voltage OCV 1 min at the first measurement timing based on the stored OCV-SOC [%] relationship. ] (First SOC) is calculated. The control unit 80 does not have to calculate the minimum remaining capacity SOC1min [%] at the first measurement timing and the maximum remaining capacity SOC1max [%] at the first measurement timing.

さらに、制御部80は、容量算出部60から積算容量情報(Qe)を受信する。第1の測定タイミングにおける積算容量情報(Qe)を、以下、第1の積算容量(Q1)と呼ぶ。 Further, the control unit 80 receives the integrated capacity information (Qe) from the capacity calculation unit 60. The integrated capacity information (Qe) at the first measurement timing is hereinafter referred to as the first integrated capacity (Q1).

引き続き、制御部80は、充電を継続する。そして、制御部80は、第2の測定タイミングにおいて、OCV推定部50からOCV情報(OCV2c)受信する。OCV2cは、第2の測定タイミングにおける二次電池21の最大の開放電圧(OCV2max)と最小の開放電圧(OCV2min)である。なお、OCV2cは、最大の開放電圧(OCV2max)を含み、最小の開放電圧(OCV2min)を含まなくてもよい。 Subsequently, the control unit 80 continues charging. Then, the control unit 80 receives the OCV information (OCV2c) from the OCV estimation unit 50 at the second measurement timing. OCV2c is the maximum open circuit voltage (OCV2max) and the minimum open circuit voltage (OCV2min) of the secondary battery 21 at the second measurement timing. The OCV2c may include the maximum open circuit voltage (OCV2max) and may not include the minimum open circuit voltage (OCV2min).

そして、制御部80は、記憶しているOCV−SOC[%]の関係を基に、第2の測定タイミングにおける最大の開放電圧OCV2maxに対応した第2の測定タイミングにおける最大の残容量SOC2max[%](第2のSOC)を算出する。また、制御部80は、記憶しているOCV−SOC[%]の関係を基に、第2の測定タイミングにおける最小の開放電圧OCV2minに対応した第2の測定タイミングにおける最小の残容量SOC2min[%]を算出する。なお、制御部80は、第2の測定タイミングにおける最大の残容量SOC2max[%]を算出し、第2の測定タイミングにおける最小の残容量SOC2min[%]を算出しなくてもよい。 Then, the control unit 80 has the maximum remaining capacity SOC2max [%] at the second measurement timing corresponding to the maximum open circuit voltage OCV2max at the second measurement timing based on the stored OCV-SOC [%] relationship. ] (Second SOC) is calculated. Further, the control unit 80 has a minimum remaining capacity SOC2min [%] at the second measurement timing corresponding to the minimum open circuit voltage OCV2min at the second measurement timing based on the stored OCV-SOC [%] relationship. ] Is calculated. The control unit 80 does not have to calculate the maximum remaining capacity SOC2max [%] at the second measurement timing and the minimum remaining capacity SOC2min [%] at the second measurement timing.

さらに、制御部80は、容量算出部60から積算容量情報(Qe)を受信する。第2の測定タイミングにおける積算容量情報(Qe)を、以下、第2の積算容量(Q2)と呼ぶ。 Further, the control unit 80 receives the integrated capacity information (Qe) from the capacity calculation unit 60. The integrated capacity information (Qe) at the second measurement timing is hereinafter referred to as the second integrated capacity (Q2).

第1の測定タイミングの最大の開放電圧OCV1max、最小の開放電圧OCV1minと第2の測定タイミングの最大の開放電圧OCV2max、最小の開放電圧OCV2minは、残容量SOC[%]の0〜100[%]に対応するOCVの電圧範囲内の電圧である。二次電池21がリチウムイオン二次電池の単電池の場合、第1の測定タイミングの最大の開放電圧OCV1max、最小の開放電圧OCV1minと第2の測定タイミングの最大の開放電圧OCV2max、最小の開放電圧OCV2minは、例えば2.9V〜4.1V内の電圧である。 The maximum open circuit voltage OCV1max at the first measurement timing, the minimum open circuit voltage OCV1min, the maximum open circuit voltage OCV2max at the second measurement timing, and the minimum open circuit voltage OCV2min are 0 to 100 [%] of the remaining capacity SOC [%]. It is a voltage within the voltage range of the OCV corresponding to. When the secondary battery 21 is a single battery of a lithium ion secondary battery, the maximum open-circuit voltage OCV1max at the first measurement timing, the minimum open-circuit voltage OCV1min, the maximum open-circuit voltage OCV2max at the second measurement timing, and the minimum open-circuit voltage. OCV2min is, for example, a voltage within 2.9V to 4.1V.

例えば、第1の測定タイミングは、制御部80がOCV推定部50より受信したOCV情報から最小開放電圧(OCVmin)を取得し、最小開放電圧OCVminがあらかじめ設定した第1の電圧に達した時点としてもよい。もしくは、最小開放電圧OCVminから、制御部80で記憶しているOCV−SOC[%]の関係を基に、最小残容量(SOCmin)を算出し、最小残容量があらかじめ設定した第1の残容量に達した時点としてもよい。一方、第2の測定タイミングは、制御部80がOCV推定部50より受信したOCV情報から最大開放電圧(OCVmax)を取得し、最大開放電圧OCVmaxがあらかじめ設定した第2の電圧に達した時点としてもよい。もしくは、最大開放電圧OCVmaxから、制御部80で記憶しているOCV−SOC[%]の関係を基に、最大残容量(SOCmax)を算出し、最大残容量があらかじめ設定した第2の残容量に達した時点としてもよい。なお、第2の電圧>第1の電圧となる。また、第2の残容量>第1の残容量となる。 For example, the first measurement timing is set as the time when the control unit 80 acquires the minimum open circuit voltage (OCVmin) from the OCV information received from the OCV estimation unit 50 and the minimum open circuit voltage OCVmin reaches a preset first voltage. May be good. Alternatively, the minimum remaining capacity (SOCmin) is calculated from the minimum open circuit voltage OCVmin based on the relationship of OCV-SOC [%] stored in the control unit 80, and the minimum remaining capacity is a preset first remaining capacity. It may be the time when it reaches. On the other hand, the second measurement timing is set as the time when the control unit 80 acquires the maximum open circuit voltage (OCVmax) from the OCV information received from the OCV estimation unit 50 and the maximum open circuit voltage OCVmax reaches a preset second voltage. May be good. Alternatively, the maximum remaining capacity (SOCmax) is calculated from the maximum open circuit voltage OCVmax based on the relationship of OCV-SOC [%] stored in the control unit 80, and the maximum remaining capacity is a preset second remaining capacity. It may be the time when it reaches. The second voltage> the first voltage. Further, the second remaining capacity> the first remaining capacity.

また、第1の測定タイミングは、制御部80が電圧測定部30より受信した電圧情報(Vg)から二次電池21の最小電圧を取得し、最小電圧があらかじめ設定した第1の電圧に達した時点、もしくはその時点から一定時間経過した時点としてもよい。一方、第2の測定タイミングは、制御部80が電圧測定部30より受信した電圧情報(Vg)から二次電池21の最大電圧を取得し、最大電圧があらかじめ設定した第2の電圧に達した時点、もしくはその時点から一定時間経過した時点としてもよい。 Further, in the first measurement timing, the control unit 80 acquires the minimum voltage of the secondary battery 21 from the voltage information (Vg) received from the voltage measurement unit 30, and the minimum voltage reaches the preset first voltage. It may be a time point or a time point after a certain period of time has passed. On the other hand, at the second measurement timing, the control unit 80 acquires the maximum voltage of the secondary battery 21 from the voltage information (Vg) received from the voltage measurement unit 30, and the maximum voltage reaches the preset second voltage. It may be a time point or a time point after a certain period of time has passed.

もしくは、第1の測定タイミングは、例えば、制御部80が電圧測定部30より受信した電圧情報(Vg)から二次電池21の最小電圧又は最大電圧を取得し、最小電圧又は最大電圧があらかじめ設定した第1の電圧に達した時点、もしくはその時点から一定時間経過した時点としてもよい。そして、第2の測定タイミングは、制御部80が電圧測定部30より受信した電圧情報(Vg)から二次電池21の最小電圧又は最大電圧を取得し、最小電圧又は最大電圧があらかじめ設定した第2の電圧に達した時点、もしくはその時点から一定時間経過した時点としてもよい。 Alternatively, for the first measurement timing, for example, the control unit 80 acquires the minimum voltage or the maximum voltage of the secondary battery 21 from the voltage information (Vg) received from the voltage measurement unit 30, and the minimum voltage or the maximum voltage is set in advance. It may be the time when the first voltage is reached, or the time when a certain time has passed from that time. Then, in the second measurement timing, the control unit 80 acquires the minimum voltage or the maximum voltage of the secondary battery 21 from the voltage information (Vg) received from the voltage measurement unit 30, and the minimum voltage or the maximum voltage is set in advance. It may be the time when the voltage of 2 is reached, or the time when a certain time has passed from that time.

いずれにしても、第1の測定タイミング及び第2の測定タイミングは、少なくとも、第1の最小開放電圧OCV1minが、第2の最小開放電圧OCV2minより小さい、OCV1min<OCV2minであるように設定されていればよい。言い換えれば、SOC1min<SOC2minであるように設定されていればよい。 In any case, the first measurement timing and the second measurement timing are set so that at least the first minimum open circuit voltage OCV 1 min is smaller than the second minimum open circuit voltage OCV 2 min, and OCV 1 min <OCV 2 min. Just do it. In other words, it suffices if SOC1min <SOC2min is set.

なお、本実施形態では、第1の測定タイミングを完全放電状態とし、第2の測定タイミングを満充電状態とする必要がない。本実施形態では、完全放電状態と異なる状態の時を第1の測定タイミングとし、満充電状態と異なるタイミングの時を第2の測定タイミングとできる。すなわち、0<SOC1min<SOC2max<100とできる。 In this embodiment, it is not necessary to set the first measurement timing to the fully discharged state and the second measurement timing to the fully charged state. In the present embodiment, the time when the state is different from the fully discharged state can be set as the first measurement timing, and the time when the timing is different from the fully charged state can be set as the second measurement timing. That is, 0 <SOC1min <SOC2max <100 can be set.

そして、制御部80は、第1の測定タイミングの最小の残容量SOC1min[%](第1のSOC)、第2の測定タイミングの最大の残容量SOC2max[%](第2のSOC)、第1の積算容量Q1、及び、第2の積算容量Q2を基に、満容量Qfullを算出する。例えば、制御部80は、次に示す式1を用いて、満容量Qfullを算出する。 Then, the control unit 80 has the minimum remaining capacity SOC1min [%] (first SOC) of the first measurement timing, the maximum remaining capacity SOC2max [%] (second SOC) of the second measurement timing, and the second. The full capacity Qfull is calculated based on the integrated capacity Q1 of 1 and the integrated capacity Q2 of the second. For example, the control unit 80 calculates the full capacity Qfull using the following formula 1.

Figure 0006848475
Figure 0006848475

ここで、本実施形態の蓄電制御装置10の作用効果を説明する。 Here, the operation and effect of the power storage control device 10 of the present embodiment will be described.

図5は、直列組電池である蓄電池20の二次電池21間の残容量SOCがずれている場合のOCVとSOCの関係を表した図である。二次電池iに対して二次電池jは、SOCでa[%]分ずれている状態で、図中では、a[%]分シフトして表現される。例えば、二次電池iのSOCが80[%]のときに、SOCが−10[%]ずれている場合、二次電池jのSOCは90[%]である。蓄電池では、安全に充放電するために、充放電可能な電圧範囲が決められており、蓄電池20を構成するいずれの二次電池21もその充放電可能な電圧範囲で使用される。換言すると、少なくとも1つの二次電池21の電圧値が電圧範囲を超えると、充放電を停止する。図5では、放電を行うと、二次電池iが先に電圧範囲の下限となる2.9Vに達してそれ以上の放電は行わない。一方、充電の場合は、今度は、二次電池jが先に電圧範囲の上限となる4.1Vに達してその以上の充電は行わない。そのため、各二次電池21の満容量が同じCであっても、実際の蓄電池20の充放電可能満容量はC(1+(a/100))となる。本実施形態の蓄電制御装置10によれば、当該充放電可能満容量を算出することができる。 FIG. 5 is a diagram showing the relationship between OCV and SOC when the remaining capacity SOC between the secondary batteries 21 of the storage battery 20 which is a series-assembled battery is deviated. The secondary battery j is expressed by shifting by a [%] in the figure in a state where the SOC is shifted by a [%] with respect to the secondary battery i. For example, when the SOC of the secondary battery i is 80 [%] and the SOC is deviated by −10 [%], the SOC of the secondary battery j is 90 [%]. In the storage battery, a charge / discharge voltage range is determined for safe charging / discharging, and any secondary battery 21 constituting the storage battery 20 is used in the charge / discharge voltage range. In other words, when the voltage value of at least one secondary battery 21 exceeds the voltage range, charging / discharging is stopped. In FIG. 5, when discharging, the secondary battery i first reaches the lower limit of the voltage range of 2.9V, and no further discharging is performed. On the other hand, in the case of charging, this time, the secondary battery j first reaches the upper limit of the voltage range of 4.1 V, and no further charging is performed. Therefore, even if the full capacity of each secondary battery 21 is the same C, the actual chargeable and dischargeable full capacity of the storage battery 20 is C (1+ (a / 100)). According to the power storage control device 10 of the present embodiment, the chargeable / dischargeable full capacity can be calculated.

例えば、二次電池21間のSOCずれが−10[%]≦a≦0[%]であって、二次電池iと二次電池jのSOCずれがa=−10[%]であった場合、第1の測定タイミングを複数の二次電池21各々の残容量の中の最小の残容量が20[%]に達した時点、第2の測定タイミングを複数の二次電池21各々の残容量の中の最大の残容量が90[%]に達した時点として充電したとき、第1の測定タイミングにおける最小の残容量は二次電池iの残容量であり、SOC1min=20[%]、第1の測定タイミングにおける最大の残容量は二次電池jの残容量であり、SOC1max=30[%]となる。また、第2の測定タイミングにおける最小の残容量は二次電池iの残容量であり、SOC2min=80[%]、第2の測定タイミングにおける最大の残容量は二次電池jの残容量であり、SOC2max=90[%]となる。 For example, the SOC deviation between the secondary batteries 21 was −10 [%] ≦ a ≦ 0 [%], and the SOC deviation between the secondary battery i and the secondary battery j was a = -10 [%]. In the case, the first measurement timing is set when the minimum remaining capacity among the remaining capacities of the plurality of secondary batteries 21 reaches 20 [%], and the second measurement timing is set to the remaining capacity of each of the plurality of secondary batteries 21. When charging is performed when the maximum remaining capacity in the capacity reaches 90 [%], the minimum remaining capacity at the first measurement timing is the remaining capacity of the secondary battery i, SOC 1min = 20 [%], The maximum remaining capacity at the first measurement timing is the remaining capacity of the secondary battery j, and SOC1max = 30 [%]. Further, the minimum remaining capacity at the second measurement timing is the remaining capacity of the secondary battery i, SOC2min = 80 [%], and the maximum remaining capacity at the second measurement timing is the remaining capacity of the secondary battery j. , SOC2max = 90 [%].

各二次電池21の満容量が同じCで、実際の充放電可能満容量はC(1+(−10/100)=0.9Cとなる。第1と第2の測定タイミングの充電容量はSOC相当で60[%]分となるため、Q2−Q1=C×60/100=0.6Cとなる。数式1を用いると、Qfull=0.6C/((90−20)/100)=0.857Cとなり、充放電可能満容量(実際の満容量)に対する容量比は0.857C/0.9C=0.952となる。 The full capacity of each secondary battery 21 is the same C, and the actual full capacity that can be charged and discharged is C (1+ (-10/100) = 0.9C. The charging capacity at the first and second measurement timings is SOC. Since it is equivalent to 60 [%], Q2-Q1 = C × 60/100 = 0.6C. Using Equation 1, Qfull = 0.6C / ((90-20) / 100) = 0. It becomes .857C, and the capacity ratio to the chargeable full capacity (actual full capacity) is 0.857C / 0.9C = 0.952.

一方、各二次電池21では、第1と第2の測定タイミングの充電容量はSOC相当で60[%]分で、SOCの変化量が60[%]となるため、算出される満容量はCとなる。また、第1の測定タイミング及び第2の測定タイミングの各二次電池21の平均SOCを用いて算出される満容量もCとなり、充放電可能満容量(実際の満容量)に対する容量比はC/0.9C=1.111で、SOCずれを考慮した値が算出されない。以上より、本実施形態によれば、より正確に(より小さい誤差で)満容量を算出できることがわかる。 On the other hand, in each secondary battery 21, the charge capacity at the first and second measurement timings is 60 [%] equivalent to SOC, and the amount of change in SOC is 60 [%], so the calculated full capacity is It becomes C. Further, the full capacity calculated by using the average SOC of each of the secondary batteries 21 at the first measurement timing and the second measurement timing is also C, and the capacity ratio to the chargeable / dischargeable full capacity (actual full capacity) is C. At /0.9C=1.111, the value considering the SOC deviation is not calculated. From the above, it can be seen that according to the present embodiment, the full capacity can be calculated more accurately (with a smaller error).

図6は、第1の測定タイミングと第2の測定タイミングを変えて(測定範囲を変えて)算出した満容量の充放電可能満容量に対する容量比を表した図である。二次電池21間のSOCずれが異なる(すなわち二次電池iと二次電池jのSOCずれが異なる)複数のケースごとに、測定範囲と容量比の関係を示す。第1の測定タイミングと第2の測定タイミングは、二次電池iのSOCに基づいて決定している。 FIG. 6 is a diagram showing the capacity ratio of the full capacity to the chargeable / dischargeable full capacity calculated by changing the first measurement timing and the second measurement timing (changing the measurement range). The relationship between the measurement range and the capacity ratio is shown for each of a plurality of cases in which the SOC deviations between the secondary batteries 21 are different (that is, the SOC deviations of the secondary battery i and the secondary battery j are different). The first measurement timing and the second measurement timing are determined based on the SOC of the secondary battery i.

図6にあるように、本実施形態では、一定の精度で満容量を算出することができる。第1と第2の測定タイミングにおける測定範囲が広いほど(横軸で右に行くほど)、推定した容量と実際の容量との差は少ない。しかし、当該測定範囲が狭くても(横軸で左にいっても)SOCやSOHのずれが小さければ推定した容量と実際の容量との差を小さくできる。また、セルバランスを実行した場合、二次電池21間のSOCずれは例えば3%以下に抑えることができるが、この場合、図より、測定範囲の下限をSOC30%以下とし、測定範囲の上限をSOC70%以上とすることで、容量比5%以下に抑えられることが分かる。 As shown in FIG. 6, in the present embodiment, the full capacity can be calculated with a certain accuracy. The wider the measurement range at the first and second measurement timings (to the right on the horizontal axis), the smaller the difference between the estimated capacity and the actual capacity. However, even if the measurement range is narrow (even if it goes to the left on the horizontal axis), if the deviation of SOC and SOH is small, the difference between the estimated capacity and the actual capacity can be reduced. Further, when the cell balance is executed, the SOC deviation between the secondary batteries 21 can be suppressed to, for example, 3% or less. In this case, in this case, the lower limit of the measurement range is set to SOC 30% or less and the upper limit of the measurement range is set to 30% or less. It can be seen that the volume ratio can be suppressed to 5% or less by setting the SOC to 70% or more.

図7は、直列組電池である蓄電池20の二次電池21間の残容量SOCと容量維持率SOHがずれている場合のOCVとSOCの関係を表した図である。二次電池iに対して二次電池jは、SOCでa[%]分ずれている状態で、図中では、a[%]分シフトして表現される。さらに、二次電池iに対して二次電池jは、SOHがb[%]となっている状態で、図中では同じOCVに対してSOCがb[%]圧縮して表現される。ここで、a≦0である。 FIG. 7 is a diagram showing the relationship between OCV and SOC when the remaining capacity SOC and the capacity retention rate SOH between the secondary batteries 21 of the storage battery 20 which is a series-assembled battery deviate from each other. The secondary battery j is expressed by shifting by a [%] in the figure in a state where the SOC is shifted by a [%] with respect to the secondary battery i. Further, the secondary battery j is expressed by compressing the SOC by b [%] with respect to the same OCV in the figure in a state where the SOH is b [%] with respect to the secondary battery i. Here, a ≦ 0.

図8は、第1の測定タイミングと第2の測定タイミングを変えて(測定範囲を変えて)算出した満容量の充放電可能満容量に対する容量比を表した図である。図7のように二次電池21間のSOCずれが異なる(すなわち二次電池iと二次電池jのSOCずれが異なる)複数のケースごとに、測定範囲と容量比の関係を示す。なお、二次電池iに対して二次電池jは、SOHが95[%]すなわちSOHが5[%]分ずれている場合のものである。第1の測定タイミングと第2の測定タイミングは、二次電池iのSOCに基づいて決定している。 FIG. 8 is a diagram showing a capacity ratio of the full capacity to the chargeable / dischargeable full capacity calculated by changing the first measurement timing and the second measurement timing (changing the measurement range). As shown in FIG. 7, the relationship between the measurement range and the capacity ratio is shown for each of a plurality of cases in which the SOC deviations between the secondary batteries 21 are different (that is, the SOC deviations of the secondary battery i and the secondary battery j are different). The secondary battery j is a case where the SOH is deviated by 95 [%], that is, the SOH is deviated by 5 [%] with respect to the secondary battery i. The first measurement timing and the second measurement timing are determined based on the SOC of the secondary battery i.

図8にあるように、本実施形態では、当該ケースにおいても一定の精度で満容量を算出することができる。第1と第2の測定タイミングにおける測定範囲が広いほど(横軸で右に行くほど)、推定した容量と実際の容量との差は少ない。しかし、当該測定範囲が狭くても(横軸で左にいっても)SOCやSOHのずれが小さければ推定した容量と実際の容量との差を小さくできる。また、セルバランスを実行した場合、二次電池21間のSOCずれは例えば3%以下に抑えることができるが、この場合、図より、測定範囲の下限をSOC20%以下とし、測定範囲の上限をSOC80%以上とすることで、容量比5%以下に抑えられることが分かる。 As shown in FIG. 8, in the present embodiment, the full capacity can be calculated with a certain accuracy even in this case. The wider the measurement range at the first and second measurement timings (to the right on the horizontal axis), the smaller the difference between the estimated capacity and the actual capacity. However, even if the measurement range is narrow (even if it goes to the left on the horizontal axis), if the deviation of SOC and SOH is small, the difference between the estimated capacity and the actual capacity can be reduced. Further, when the cell balance is executed, the SOC deviation between the secondary batteries 21 can be suppressed to, for example, 3% or less. In this case, in this case, the lower limit of the measurement range is set to SOC 20% or less and the upper limit of the measurement range is set to 20% or less. It can be seen that the volume ratio can be suppressed to 5% or less by setting the SOC to 80% or more.

図9は、図7と同じく、直列組電池である蓄電池20の二次電池21間の残容量SOCと容量維持率SOHがずれている場合のOCVとSOCの関係を表した図である。二次電池iに対して二次電池jは、SOCでa[%]分ずれている状態で、図中では、a[%]分シフトして表現される。さらに、二次電池iに対して二次電池jは、SOHがb[%]となっている状態で、図中では同じOCVに対してSOCがb[%]圧縮して表現される。ここで、a>0、b≧100−aである。 FIG. 9 is a diagram showing the relationship between OCV and SOC when the remaining capacity SOC and the capacity retention rate SOH between the secondary batteries 21 of the storage battery 20 which is a series-assembled battery are different from each other, as in FIG. The secondary battery j is expressed by shifting by a [%] in the figure in a state where the SOC is shifted by a [%] with respect to the secondary battery i. Further, the secondary battery j is expressed by compressing the SOC by b [%] with respect to the same OCV in the figure in a state where the SOH is b [%] with respect to the secondary battery i. Here, a> 0 and b ≧ 100-a.

図10は、第1の測定タイミングと第2の測定タイミングを変えて(測定範囲を変えて)算出した満容量の充放電可能満容量に対する容量比を表した図である。図9のように二次電池21間のSOCずれが異なる(すなわち二次電池iと二次電池jのSOCずれが異なる)複数のケースごとに、測定範囲と容量比の関係を示す。なお、二次電池iに対して二次電池jは、SOHが95[%]すなわちSOHが5[%]分ずれている場合のものである。第1の測定タイミングと第2の測定タイミングは、二次電池iのSOCに基づいて決定している。 FIG. 10 is a diagram showing the capacity ratio of the full capacity to the chargeable / dischargeable full capacity calculated by changing the first measurement timing and the second measurement timing (changing the measurement range). As shown in FIG. 9, the relationship between the measurement range and the capacity ratio is shown for each of a plurality of cases in which the SOC deviations between the secondary batteries 21 are different (that is, the SOC deviations of the secondary battery i and the secondary battery j are different). The secondary battery j is a case where the SOH is deviated by 95 [%], that is, the SOH is deviated by 5 [%] with respect to the secondary battery i. The first measurement timing and the second measurement timing are determined based on the SOC of the secondary battery i.

図10にあるように、本実施形態では、当該ケースにおいても一定の精度で満容量を算出することができる。第1と第2の測定タイミングにおける測定範囲が広いほど(横軸で右に行くほど)、推定した容量と実際の容量との差は少ない。しかし、当該測定範囲が狭くても(横軸で左にいっても)SOCやSOHのずれが小さければ推定した容量と実際の容量との差を小さくできる。また、セルバランスを実行した場合、二次電池21間のSOCずれは例えば3%以下に抑えることができるが、この場合、図より、測定範囲の下限をSOC40%以下とし、測定範囲の上限をSOC70%以上とすることで、容量比5%以下に抑えられることが分かる。 As shown in FIG. 10, in the present embodiment, the full capacity can be calculated with a certain accuracy even in this case. The wider the measurement range at the first and second measurement timings (to the right on the horizontal axis), the smaller the difference between the estimated capacity and the actual capacity. However, even if the measurement range is narrow (even if it goes to the left on the horizontal axis), if the deviation of SOC and SOH is small, the difference between the estimated capacity and the actual capacity can be reduced. Further, when the cell balance is executed, the SOC deviation between the secondary batteries 21 can be suppressed to, for example, 3% or less. In this case, in this case, the lower limit of the measurement range is set to SOC 40% or less and the upper limit of the measurement range is set to 40% or less. It can be seen that the volume ratio can be suppressed to 5% or less by setting the SOC to 70% or more.

図11は、図7及び図9と同じく、直列組電池である蓄電池20の二次電池21間の残容量SOCと容量維持率SOHがずれている場合のOCVとSOCの関係を表した図である。二次電池iに対して二次電池jは、SOCでa[%]分ずれている状態で、図中では、a[%]分シフトして表現される。さらに、二次電池iに対して二次電池jは、SOHがb[%]となっている状態で、図中では同じOCVに対してSOCがb[%]圧縮して表現される。ここで、a>0、b<100−aである。 FIG. 11 is a diagram showing the relationship between OCV and SOC when the remaining capacity SOC and the capacity retention rate SOH between the secondary batteries 21 of the storage battery 20 which is a series-assembled battery are different from each other, as in FIGS. 7 and 9. is there. The secondary battery j is expressed by shifting by a [%] in the figure in a state where the SOC is shifted by a [%] with respect to the secondary battery i. Further, the secondary battery j is expressed by compressing the SOC by b [%] with respect to the same OCV in the figure in a state where the SOH is b [%] with respect to the secondary battery i. Here, a> 0 and b <100-a.

この場合、二次電池jの残容量が、第1の測定タイミングでは最小の残容量であり、第2の測定タイミングでは最大の残容量となる測定範囲では、蓄電池の満容量は二次電池jの満容量と等しくなり、正確に満容量を算出することができる。 In this case, in the measurement range where the remaining capacity of the secondary battery j is the minimum remaining capacity at the first measurement timing and the maximum remaining capacity at the second measurement timing, the full capacity of the storage battery is the secondary battery j. It becomes equal to the full capacity of, and the full capacity can be calculated accurately.

以上のようにすることで、複数の二次電池から構成され、二次電池間にSOCやSOHのばらつきがある組電池の場合でも、短時間及び高精度に満容量を算出することができる。 By doing so, the full capacity can be calculated in a short time and with high accuracy even in the case of an assembled battery composed of a plurality of secondary batteries and having variations in SOC and SOH among the secondary batteries.

例えば、電池セルを、完全放電状態が検出されるまで放電させた後、引き続いて満充電状態が検出されるまで充電し、完全放電状態の検出に続いて満充電状態が検出されるまでの充電容量から使用時の実容量、すなわち満充電容量を求める方法がある。この方法の場合、満充電容量を求めるためには、必ず完全放電、その後さらに満充電を行う必要があるという問題点があった。また、電池セルを、完全放電状態が検出されるまで放電する際、放電電流は、電池セルに接続される負荷に応じて変動する。そのため、当該方法においては、放電電流が小さい場合、完全放電状態が検出されるまでの放電時間が長くなるという問題があった。さらに、当該方法においては、電池セルを、完全放電状態の検出に続いて満充電状態が検出されるまで充電する。そのため、充電時間も長くなり、放電と充電という一連の満充電容量を求める処理の時間が長くなってしまうという問題点があった。上述の通り、本実施形態の蓄電制御装置10によれば当該問題点を解決できる。 For example, the battery cell is discharged until a fully discharged state is detected, then charged until a fully charged state is detected, and then charged until a fully charged state is detected and then a fully charged state is detected. There is a method of obtaining the actual capacity at the time of use, that is, the fully charged capacity from the capacity. In the case of this method, there is a problem that in order to obtain the full charge capacity, it is necessary to perform a complete discharge and then a further full charge. Further, when the battery cell is discharged until a completely discharged state is detected, the discharge current varies depending on the load connected to the battery cell. Therefore, in this method, when the discharge current is small, there is a problem that the discharge time until the complete discharge state is detected becomes long. Further, in this method, the battery cell is charged until a fully charged state is detected following the detection of a fully discharged state. Therefore, there is a problem that the charging time becomes long and the processing time for obtaining a series of full charge capacity of discharging and charging becomes long. As described above, the power storage control device 10 of the present embodiment can solve the problem.

特許文献1に記載の蓄電池の満充電容量検出方法は、一つの蓄電池の満充電容量を検出するものであって、複数の蓄電池を組み合わせた組電池を有する蓄電システムの全体的な満充電容量を算出するものではない。 The method for detecting the full charge capacity of a storage battery described in Patent Document 1 detects the full charge capacity of one storage battery, and determines the overall full charge capacity of a power storage system having an assembled battery in which a plurality of storage batteries are combined. It is not calculated.

例えば、蓄電池1と蓄電池2が直列に接続された組電池で、蓄電池1と蓄電池2の満充電容量はいずれもCとする。第1の無負荷電圧から算出された残容量がそれぞれ0[%]と10[%]で、組電池としては空の状態である。その後、満充電容量の90[%]分を充電すると、第2の無負荷電圧から算出された残容量がそれぞれ90[%]と100[%]で、組電池としては満充電の状態である。この場合、組電池の満充電容量は、満充電容量の90[%]分を充電したため、0.9Cとなる。一方、蓄電池1、蓄電池2のそれぞれに特許文献1に記載の方法を適用すると、いずれの満充電容量もCとなってしまい、正しく組電池の満充電容量は算出できない。また、第1の無負荷電圧のタイミングのときの平均SOCは5[%]、第2の無負荷電圧のタイミングのときの平均SOCは95[%]となって、平均SOCを用いても組電池の満充電容量はCとなってしまい、正しく組電池の満充電容量は算出できない。このように、複数の蓄電池を組み合わせた組電池において、組電池の満充電容量は算出できない問題点があった。特許文献2及び3はいずれも、特許文献1と同様の問題点があった。上述の通り、本実施形態の蓄電制御装置10によれば当該問題点を解決できる。 For example, in an assembled battery in which the storage battery 1 and the storage battery 2 are connected in series, the full charge capacity of the storage battery 1 and the storage battery 2 is C. The remaining capacities calculated from the first no-load voltage are 0 [%] and 10 [%], respectively, which are empty as an assembled battery. After that, when 90 [%] of the fully charged capacity is charged, the remaining capacities calculated from the second no-load voltage are 90 [%] and 100 [%], respectively, and the assembled battery is in a fully charged state. .. In this case, the fully charged capacity of the assembled battery is 0.9C because 90 [%] of the fully charged capacity is charged. On the other hand, if the method described in Patent Document 1 is applied to each of the storage battery 1 and the storage battery 2, the full charge capacity of each of them becomes C, and the full charge capacity of the assembled battery cannot be calculated correctly. Further, the average SOC at the timing of the first no-load voltage is 5 [%], and the average SOC at the timing of the second no-load voltage is 95 [%]. The full charge capacity of the battery becomes C, and the full charge capacity of the assembled battery cannot be calculated correctly. As described above, in the assembled battery in which a plurality of storage batteries are combined, there is a problem that the full charge capacity of the assembled battery cannot be calculated. Both Patent Documents 2 and 3 have the same problems as Patent Document 1. As described above, the power storage control device 10 of the present embodiment can solve the problem.

他の作用効果を説明する。制御部80は、電圧測定部30と、電流測定部40と、OCV推定部50と、容量算出部60と、充放電制御部70とネットワークを介して接続されていてもよい。制御部80は、SOC1min[%]、SOC2max[%]、積算容量Q1及び積算容量Q2を基に、満容量Qfullを算出するため、少ない情報量で満容量を算出でき、ネットワークの負荷が少ない。 Other effects will be explained. The control unit 80 may be connected to the voltage measurement unit 30, the current measurement unit 40, the OCV estimation unit 50, the capacity calculation unit 60, and the charge / discharge control unit 70 via a network. Since the control unit 80 calculates the full capacity Qfull based on SOC1min [%], SOC2max [%], integrated capacity Q1 and integrated capacity Q2, the full capacity can be calculated with a small amount of information, and the network load is small.

他の作用効果を説明する。蓄電池20は、複数の二次電池21にて構成されており充放電などを繰り返すとSOC/SOHのばらつきにより、蓄電池20のあるタイミングで各二次電池21間の電圧がずれてきてしまう。そのため、放電を行う際に最も電圧が低い二次電池21が先に電圧範囲の下限(例:2.9V)に達するとそれ以上の放電は行わない。同様に、最も電圧が高い二次電池21が先に電圧範囲の上限(例:4.1V)に達するとそれ以上の充電は行われない。本実施形態における容量推定を行う際においても、特定の二次電池21の電圧に基づいて容量推定を行っても、二次電池21の電圧にばらつきがあると上記理由のように最も電圧が高い二次電池21と最も電圧が低い二次電池21により充放電の範囲がきまるため、第1の測定タイミングと第2の測定タイミングにより適切に満容量である容量推定を実施することができなかった。そこで、第1の測定タイミングにおいては最も電圧の低い二次電池21の電圧を、また第2の測定タイミングにおいては最も電圧の高い二次電池21の電圧を用いることにより、複数の二次電池21間に電圧のばらつきがあったとしても、適切に満容量である容量推定を実施することができる。 Other effects will be explained. The storage battery 20 is composed of a plurality of secondary batteries 21, and if charging and discharging are repeated, the voltage between the secondary batteries 21 will shift at a certain timing of the storage battery 20 due to variations in SOC / SOH. Therefore, when the secondary battery 21 having the lowest voltage reaches the lower limit of the voltage range (example: 2.9 V) first when discharging, no further discharging is performed. Similarly, if the secondary battery 21 having the highest voltage reaches the upper limit of the voltage range (example: 4.1 V) first, no further charging is performed. Even when the capacity is estimated in the present embodiment, even if the capacity is estimated based on the voltage of the specific secondary battery 21, if the voltage of the secondary battery 21 varies, the voltage is the highest as described above. Since the charge / discharge range is determined by the secondary battery 21 and the secondary battery 21 having the lowest voltage, it is not possible to appropriately estimate the full capacity by the first measurement timing and the second measurement timing. .. Therefore, by using the voltage of the secondary battery 21 having the lowest voltage at the first measurement timing and the voltage of the secondary battery 21 having the highest voltage at the second measurement timing, a plurality of secondary batteries 21 are used. Even if there is a voltage variation between them, it is possible to appropriately estimate the full capacity.

ここで変形例を説明する。上記説明では、式(1)のSOC2max[%]を、第2の測定タイミングにおける複数の二次電池21各々の開放電圧の中の最大の開放電圧に基づき算出した。最大の開放電圧に代えて、複数の二次電池21各々の開放電圧の中の大きい方から順に定めた順位が上位x%に含まれる開放電圧の統計値(平均値、中間値、最頻値等)に基づき、SOC2max[%]を算出してもよい。 Here, a modified example will be described. In the above description, the SOC2max [%] of the formula (1) was calculated based on the maximum open circuit voltage among the open circuit voltages of each of the plurality of secondary batteries 21 at the second measurement timing. Instead of the maximum open circuit voltage, the statistical value of the open circuit voltage (mean value, median value, mode value) in which the order determined in order from the largest open circuit voltage of each of the plurality of secondary batteries 21 is included in the upper x%. Etc.), SOC2max [%] may be calculated.

同様に、上記説明では、式(1)のSOC1min[%]を、第1の測定タイミングにおける複数の二次電池21各々の開放電圧の中の最小の開放電圧に基づき算出した。最小の開放電圧に代えて、複数の二次電池21各々の開放電圧の中の大きい方から順に定めた順位が下位x%に含まれる開放電圧の統計値(平均値、中間値、最頻値等)に基づき、SOC1min[%]を算出してもよい。なお、xは、0より大100より小である。当該変形例においても同様の作用効果を実現できる。 Similarly, in the above description, the SOC 1 min [%] of the formula (1) was calculated based on the minimum open circuit voltage among the open circuit voltages of each of the plurality of secondary batteries 21 at the first measurement timing. Instead of the minimum open circuit voltage, the statistical value of the open circuit voltage (mean value, median value, mode value) in which the order determined in order from the largest open circuit voltage of each of the plurality of secondary batteries 21 is included in the lower x% Etc.), SOC 1 min [%] may be calculated. Note that x is greater than 0 and less than 100. The same effect can be realized in the modified example.

<第2の実施形態>
次に、本発明の第2の実施形態について説明する。本実施形態に係る蓄電制御装置10の構成は、第1の実施形態の蓄電制御装置10と同様のため、構成の詳細な説明を省略する。また、説明中の変数は、第1の実施形態と同様である。
<Second embodiment>
Next, a second embodiment of the present invention will be described. Since the configuration of the storage control device 10 according to the present embodiment is the same as that of the storage control device 10 of the first embodiment, detailed description of the configuration will be omitted. Further, the variables being described are the same as those in the first embodiment.

図12は、本実施形態に係る蓄電制御装置10の動作を説明するための図である。図12は、蓄電制御装置10が、満容量を検出する動作における放電動作に対する開放電圧OCVから算出される残容量SOC[%]の時間変化を示す。 FIG. 12 is a diagram for explaining the operation of the power storage control device 10 according to the present embodiment. FIG. 12 shows a time change of the remaining capacity SOC [%] calculated from the open circuit voltage OCV with respect to the discharge operation in the operation in which the storage control device 10 detects the full capacity.

まず、制御部80は、充放電制御部70に放電モードを指示する。放電モード中の充放電制御部70は、蓄電池20に充電を行わず、蓄電池20から放電を行う。 First, the control unit 80 instructs the charge / discharge control unit 70 of the discharge mode. The charge / discharge control unit 70 in the discharge mode does not charge the storage battery 20, but discharges from the storage battery 20.

制御部80は、第2の測定タイミングにおいて、OCV推定部50からOCV情報(OCV2c)受信する。OCV2cは、第2の測定タイミングにおける二次電池21の最大の開放電圧(OCV2max)と最小の開放電圧(OCV2min)である。なお、OCV2cは、最大の開放電圧(OCV2max)を有し、最小の開放電圧(OCV2min)を有さなくてもよい。 The control unit 80 receives OCV information (OCV2c) from the OCV estimation unit 50 at the second measurement timing. OCV2c is the maximum open circuit voltage (OCV2max) and the minimum open circuit voltage (OCV2min) of the secondary battery 21 at the second measurement timing. The OCV2c has a maximum open circuit voltage (OCV2max) and does not have to have a minimum open circuit voltage (OCV2min).

そして、制御部80は、記憶しているOCV−SOC[%]の関係を基に、第2の測定タイミングにおける最大の開放電圧OCV2maxに対応した第2の測定タイミングにおける最大の残容量SOC2max[%]を算出する。また、制御部80は、記憶しているOCV−SOC[%]の関係を基に、第2の測定タイミングにおける最小の開放電圧OCV2minに対応した第2の測定タイミングにおける最小の残容量SOC2min[%]を算出する。なお、制御部80は、第2の測定タイミングにおける最大の残容量SOC2max[%]を算出し、第2の測定タイミングにおける最小の残容量SOC2min[%]を算出しなくてもよい。 Then, the control unit 80 has the maximum remaining capacity SOC2max [%] at the second measurement timing corresponding to the maximum open circuit voltage OCV2max at the second measurement timing based on the stored OCV-SOC [%] relationship. ] Is calculated. Further, the control unit 80 has a minimum remaining capacity SOC2min [%] at the second measurement timing corresponding to the minimum open circuit voltage OCV2min at the second measurement timing based on the stored OCV-SOC [%] relationship. ] Is calculated. The control unit 80 does not have to calculate the maximum remaining capacity SOC2max [%] at the second measurement timing and the minimum remaining capacity SOC2min [%] at the second measurement timing.

さらに、制御部80は、容量算出部60から積算容量情報(Qe)を受信する。第2の測定タイミングにおける積算容量情報(Qe)を、以下、第2の積算容量(Q2)と呼ぶ。 Further, the control unit 80 receives the integrated capacity information (Qe) from the capacity calculation unit 60. The integrated capacity information (Qe) at the second measurement timing is hereinafter referred to as the second integrated capacity (Q2).

引き続き、制御部80は、放電を継続する。制御部80は、第1の測定タイミングにおいて、OCV推定部50からOCV情報(OCV1c)受信する。OCV1cは、第1の測定タイミングにおける二次電池21の最大の開放電圧(OCV1max)と最小の開放電圧(OCV1min)である。なお、OCV1cは、最小の開放電圧(OCV1min)を有し、最大の開放電圧(OCV1max)を有さなくてもよい。 Subsequently, the control unit 80 continues discharging. The control unit 80 receives OCV information (OCV1c) from the OCV estimation unit 50 at the first measurement timing. OCV1c is the maximum open circuit voltage (OCV1max) and the minimum open circuit voltage (OCV1min) of the secondary battery 21 at the first measurement timing. The OCV1c does not have to have the minimum open-circuit voltage (OCV1min) and the maximum open-circuit voltage (OCV1max).

そして、制御部80は、記憶しているOCV−SOC[%]の関係を基に、第1の測定タイミングにおける最大の開放電圧OCV1maxに対応した第1の測定タイミングにおける最大の残容量SOC1max[%]を算出する。また、制御部80は、記憶しているOCV−SOC[%]の関係を基に、第1の測定タイミングにおける最小の開放電圧OCV1minに対応した第1の測定タイミングにおける最小の残容量SOC1min[%]を算出する。なお、制御部80は、第1の測定タイミングにおける最小の残容量SOC1min[%]を算出し、第1の測定タイミングにおける最大の残容量SOC1max[%]を算出しなくてもよい。 Then, the control unit 80 has the maximum remaining capacity SOC1max [%] at the first measurement timing corresponding to the maximum open circuit voltage OCV1max at the first measurement timing based on the stored OCV-SOC [%] relationship. ] Is calculated. Further, the control unit 80 has a minimum remaining capacity SOC 1 min [%] at the first measurement timing corresponding to the minimum open circuit voltage OCV 1 min at the first measurement timing based on the stored OCV-SOC [%] relationship. ] Is calculated. The control unit 80 does not have to calculate the minimum remaining capacity SOC1min [%] at the first measurement timing and the maximum remaining capacity SOC1max [%] at the first measurement timing.

さらに、制御部80は、容量算出部60から積算容量情報(Qe)を受信する。第1の測定タイミングの積算容量情報(Qe)を、以下、第1の積算容量(Q1)と呼ぶ。 Further, the control unit 80 receives the integrated capacity information (Qe) from the capacity calculation unit 60. The integrated capacity information (Qe) of the first measurement timing is hereinafter referred to as the first integrated capacity (Q1).

そして、制御部80は、第1の測定タイミングの最小の残容量SOC1min[%]、第2の測定タイミングの最大の残容量SOC2max[%]、第1の積算容量Q1、及び、第2の積算容量Q2を基に、満容量Qfullを算出する。例えば、制御部80は、上記式1を用いて、満容量Qfullを算出する。 Then, the control unit 80 has the minimum remaining capacity SOC1min [%] of the first measurement timing, the maximum remaining capacity SOC2max [%] of the second measurement timing, the first integrated capacity Q1, and the second integrated. The full capacity Qfull is calculated based on the capacity Q2. For example, the control unit 80 calculates the full capacity Qfull using the above formula 1.

以上のようにすることで、放電中であっても、複数の二次電池から構成され、二次電池間にSOCやSOHのばらつきがある組電池の場合でも、短時間及び高精度に満容量を算出することができる。 By doing so, even during discharging, even if the battery is composed of a plurality of secondary batteries and the SOC and SOH vary among the secondary batteries, the full capacity can be achieved in a short time and with high accuracy. Can be calculated.

<第3の実施形態>
次に、本発明の第3の実施形態について説明する。本実施形態に係る蓄電制御装置10の構成は、第1の実施形態の蓄電制御装置10と同様のため、構成の詳細な説明を省略する。また、説明中の変数は、第1の実施形態と同様である。
<Third embodiment>
Next, a third embodiment of the present invention will be described. Since the configuration of the storage control device 10 according to the present embodiment is the same as that of the storage control device 10 of the first embodiment, detailed description of the configuration will be omitted. Further, the variables being described are the same as those in the first embodiment.

図13は、本実施形態に係る蓄電制御装置10の動作を説明するための図である。図13は、蓄電制御装置10が、満容量を検出する動作における充放電動作に対する開放電圧OCVから算出される残容量SOC[%]の時間変化を示す。 FIG. 13 is a diagram for explaining the operation of the power storage control device 10 according to the present embodiment. FIG. 13 shows the time change of the remaining capacity SOC [%] calculated from the open circuit voltage OCV with respect to the charge / discharge operation in the operation in which the power storage control device 10 detects the full capacity.

まず、制御部80は、充放電制御部70に充放電モード(充電及び放電を行うモード)を指示する。充放電モード中の充放電制御部70は、制御部80からの指示、もしくは、充放電制御部70に接続される電源や負荷の状況に応じて充電及び放電を切り換えて充放電を行う。 First, the control unit 80 instructs the charge / discharge control unit 70 of the charge / discharge mode (mode for charging and discharging). The charge / discharge control unit 70 in the charge / discharge mode switches between charging and discharging according to an instruction from the control unit 80 or the state of the power supply and the load connected to the charge / discharge control unit 70 to perform charging / discharging.

制御部80は、第1の測定タイミングにおいて、OCV推定部50からOCV情報(OCV1c)受信する。OCV1cは、第1の測定タイミングにおける二次電池21の最大の開放電圧(OCV1max)と最小の開放電圧(OCV1min)である。なお、OCV1cは、最小の開放電圧(OCV1min)を有し、最大の開放電圧(OCV1max)を有さなくてもよい。 The control unit 80 receives OCV information (OCV1c) from the OCV estimation unit 50 at the first measurement timing. OCV1c is the maximum open circuit voltage (OCV1max) and the minimum open circuit voltage (OCV1min) of the secondary battery 21 at the first measurement timing. The OCV1c does not have to have the minimum open-circuit voltage (OCV1min) and the maximum open-circuit voltage (OCV1max).

そして、制御部80は、記憶しているOCV−SOC[%]の関係を基に、第1の測定タイミングにおける最大の開放電圧OCV1maxに対応した第1の測定タイミングにおける最大の残容量SOC1max[%]を算出する。また、制御部80は、記憶しているOCV−SOC[%]の関係を基に、第1の測定タイミングにおける最小の開放電圧OCV1minに対応した第1の測定タイミングにおける最小の残容量SOC1min[%]を算出する。なお、制御部80は、第1の測定タイミングにおける最小の残容量SOC1min[%]を算出し、第1の測定タイミングにおける最大の残容量SOC1max[%]を算出しなくてもよい。 Then, the control unit 80 has the maximum remaining capacity SOC1max [%] at the first measurement timing corresponding to the maximum open circuit voltage OCV1max at the first measurement timing based on the stored OCV-SOC [%] relationship. ] Is calculated. Further, the control unit 80 has a minimum remaining capacity SOC 1 min [%] at the first measurement timing corresponding to the minimum open circuit voltage OCV 1 min at the first measurement timing based on the stored OCV-SOC [%] relationship. ] Is calculated. The control unit 80 does not have to calculate the minimum remaining capacity SOC1min [%] at the first measurement timing and the maximum remaining capacity SOC1max [%] at the first measurement timing.

さらに、制御部80は、容量算出部60から積算容量情報(Qe)を受信する。第1の測定タイミングの積算容量情報(Qe)を、以下、第1の積算容量(Q1)と呼ぶ。 Further, the control unit 80 receives the integrated capacity information (Qe) from the capacity calculation unit 60. The integrated capacity information (Qe) of the first measurement timing is hereinafter referred to as the first integrated capacity (Q1).

引き続き、制御部80は、充放電を継続する。制御部80は、第2の測定タイミングにおいて、OCV推定部50からOCV情報(OCV2c)受信する。OCV2cは、第2の測定タイミングにおける二次電池21の最大の開放電圧(OCV2max)と最小の開放電圧(OCV2min)である。なお、OCV2cは、最大の開放電圧(OCV2max)を有し、最小の開放電圧(OCV2min)を有さなくてもよい。 Subsequently, the control unit 80 continues charging / discharging. The control unit 80 receives OCV information (OCV2c) from the OCV estimation unit 50 at the second measurement timing. OCV2c is the maximum open circuit voltage (OCV2max) and the minimum open circuit voltage (OCV2min) of the secondary battery 21 at the second measurement timing. The OCV2c has a maximum open circuit voltage (OCV2max) and does not have to have a minimum open circuit voltage (OCV2min).

そして、制御部80は、記憶しているOCV−SOC[%]の関係を基に、第2の測定タイミングにおける最大の開放電圧OCV2maxに対応した第2の測定タイミングにおける最大の残容量SOC2max[%]を算出する。また、制御部80は、記憶しているOCV−SOC[%]の関係を基に、最小の開放電圧OCV2minに対応した第2の測定タイミングにおける最小の残容量SOC2min[%]を算出する。なお、制御部80は、第2の測定タイミングにおける最大の残容量SOC2max[%]を算出し、第2の測定タイミングにおける最小の残容量SOC2min[%]を算出しなくてもよい。 Then, the control unit 80 has the maximum remaining capacity SOC2max [%] at the second measurement timing corresponding to the maximum open circuit voltage OCV2max at the second measurement timing based on the stored OCV-SOC [%] relationship. ] Is calculated. Further, the control unit 80 calculates the minimum remaining capacity SOC2min [%] at the second measurement timing corresponding to the minimum open circuit voltage OCV2min based on the stored OCV-SOC [%] relationship. The control unit 80 does not have to calculate the maximum remaining capacity SOC2max [%] at the second measurement timing and the minimum remaining capacity SOC2min [%] at the second measurement timing.

さらに、制御部80は、容量算出部60から積算容量情報(Qe)を受信する。第2の測定タイミングの積算容量情報(Qe)を、以下、第2の積算容量(Q2)と呼ぶ。 Further, the control unit 80 receives the integrated capacity information (Qe) from the capacity calculation unit 60. The integrated capacity information (Qe) of the second measurement timing is hereinafter referred to as the second integrated capacity (Q2).

そして、制御部80は、第1の測定タイミングの最小の残容量SOC1min[%]、第2の測定タイミングの最大の残容量SOC2max[%]、第1の積算容量Q1、及び、第2の積算容量Q2を基に、満容量Qfullを算出する。例えば、制御部80は、上記式1を用いて、満容量Qfullを算出する。 Then, the control unit 80 has the minimum remaining capacity SOC1min [%] of the first measurement timing, the maximum remaining capacity SOC2max [%] of the second measurement timing, the first integrated capacity Q1, and the second integrated. The full capacity Qfull is calculated based on the capacity Q2. For example, the control unit 80 calculates the full capacity Qfull using the above formula 1.

以上のようにすることで、充放電中であっても、複数の二次電池から構成され、二次電池間にSOCやSOHのばらつきがある組電池の場合でも、短時間及び高精度に満容量を算出することができる。なお、本実施形態では、第1の測定タイミングと第2の測定タイミングの間の制御内容が充電及び放電の一方に縛られない。すなわち、充電及び放電を自由に切り替えることができる。本実施形態によれば、第1の測定タイミングと第2の測定タイミングの間の蓄電池20の利用形態の自由度が高まり好ましい。 By doing so, even during charging / discharging, even if the battery is composed of a plurality of secondary batteries and the SOC and SOH vary between the secondary batteries, the battery can be fully satisfied in a short time and with high accuracy. The capacity can be calculated. In the present embodiment, the control content between the first measurement timing and the second measurement timing is not restricted to either charging or discharging. That is, charging and discharging can be freely switched. According to the present embodiment, the degree of freedom in the usage mode of the storage battery 20 between the first measurement timing and the second measurement timing is increased, which is preferable.

ここで、蓄電制御装置10のハードウエア構成の一例について説明する。当該一例は、上述したすべての実施形態に適用可能である。本実施形態(第1乃至第3の実施形態)の蓄電制御装置10が備える機能部の一部または全部は、任意のコンピュータのCPU(Central Processing Unit)、メモリ、メモリにロードされるプログラム、そのプログラムを格納するハードディスク等の記憶ユニット(あらかじめ装置を出荷する段階から格納されているプログラムのほか、CD(Compact Disc)等の記憶媒体やインターネット上のサーバ等からダウンロードされたプログラムをも格納できる)、ネットワーク接続用インターフェイスを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。 Here, an example of the hardware configuration of the power storage control device 10 will be described. The example is applicable to all the embodiments described above. A part or all of the functional units included in the power storage control device 10 of the present embodiment (first to third embodiments) is a CPU (Central Processing Unit) of an arbitrary computer, a memory, a program loaded into the memory, and the like. A storage unit such as a hard disk that stores programs (in addition to programs stored in advance from the stage of shipping the device, it can also store programs downloaded from storage media such as CDs (Compact Discs) and servers on the Internet). , It is realized by any combination of hardware and software centering on the network connection interface. And, it is understood by those skilled in the art that there are various modifications of the realization method and the device.

図14は、本実施形態の蓄電制御装置10のハードウエア構成を例示するブロック図である。図14に示すように、蓄電制御装置10は、プロセッサ1A、メモリ2A、入出力インターフェイス3A、周辺回路4A、バス5Aを有する。周辺回路4Aには、様々なモジュールが含まれる。 FIG. 14 is a block diagram illustrating a hardware configuration of the power storage control device 10 of the present embodiment. As shown in FIG. 14, the power storage control device 10 includes a processor 1A, a memory 2A, an input / output interface 3A, a peripheral circuit 4A, and a bus 5A. The peripheral circuit 4A includes various modules.

バス5Aは、プロセッサ1A、メモリ2A、周辺回路4A及び入出力インターフェイス3Aが相互にデータを送受信するためのデータ伝送路である。プロセッサ1Aは、例えばCPU(Central Processing Unit) やGPU(Graphics Processing Unit)などの演算処理装置である。メモリ2Aは、例えばRAM(Random Access Memory)やROM(Read Only Memory)などのメモリである。入出力インターフェイス3Aは、入力装置(例:キーボード、マウス、マイク、物理キー、タッチパネルディスプレイ、コードリーダ等)、外部装置、外部サーバ、外部センサ等から情報を取得するためのインターフェイスや、出力装置(例:ディスプレイ、スピーカ、プリンター、メーラ等)、外部装置、外部サーバ等に情報を出力するためのインターフェイスなどを含む。プロセッサ1Aは、各モジュールに指令を出し、それらの演算結果をもとに演算を行うことができる。 The bus 5A is a data transmission line for the processor 1A, the memory 2A, the peripheral circuit 4A, and the input / output interface 3A to transmit and receive data to and from each other. The processor 1A is, for example, an arithmetic processing unit such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit). The memory 2A is, for example, a memory such as a RAM (Random Access Memory) or a ROM (Read Only Memory). The input / output interface 3A is an interface for acquiring information from an input device (eg, keyboard, mouse, microphone, physical key, touch panel display, code reader, etc.), an external device, an external server, an external sensor, etc., and an output device (example: keyboard, mouse, microphone, physical key, touch panel display, code reader, etc.) Example: Display, speaker, printer, mailer, etc.), including an interface for outputting information to an external device, external server, etc. The processor 1A can issue commands to each module and perform calculations based on the calculation results thereof.

次に、第1乃至第3の実施形態に適用できる変形例を説明する。第1乃至第3の実施形態では、蓄電池20と物理的及び/又は論理的に一体となったシステム(蓄電制御装置10)において、満容量Qfullを算出するためのデータの取得及び演算を行った。変形例では、物理的及び/又は論理的に互いに分かれた複数の装置により、満容量Qfullを算出するためのデータの取得及び演算を行ってもよい。 Next, a modification that can be applied to the first to third embodiments will be described. In the first to third embodiments, in the system (storage control device 10) physically and / or logically integrated with the storage battery 20, data acquisition and calculation for calculating the full capacity Qfull are performed. .. In the modified example, data acquisition and calculation for calculating the full capacity Qfull may be performed by a plurality of devices physically and / or logically separated from each other.

例えば、各蓄電池20に対応して設置された端末装置と、サーバ(例:クラウドサーバ)とにより、満容量Qfullを算出するためのデータの取得及び演算を行ってもよい。端末装置とサーバは、任意の通信手段で互いに情報の送受信ができるよう構成される。 For example, the terminal device installed corresponding to each storage battery 20 and a server (eg, a cloud server) may acquire and calculate data for calculating the full capacity Qfull. The terminal device and the server are configured to be able to send and receive information to and from each other by any communication means.

この場合、図1に示す電圧測定部30、電流測定部40及び充放電制御部70は、端末装置に備えられてもよい。OCV推定部50は、端末装置又はサーバに備えられてもよい。容量算出部60は、端末装置又はサーバに備えられてもよい。制御部80は、サーバに備えられてもよい。当該条件を満たすあらゆる組合せを採用できる。 In this case, the voltage measuring unit 30, the current measuring unit 40, and the charge / discharge control unit 70 shown in FIG. 1 may be provided in the terminal device. The OCV estimation unit 50 may be provided in the terminal device or the server. The capacity calculation unit 60 may be provided in the terminal device or the server. The control unit 80 may be provided in the server. Any combination that meets the conditions can be adopted.

例えば、蓄電池20の複数の二次電池21における最も電圧が高い二次電池21の電圧の情報と、最も電圧が低い二次電池21の電圧の情報を、複数の蓄電池20を統合的に制御するクラウドサーバに送信してもよい。そのため、複数の蓄電池20を統合的に制御するクラウドサーバは、第1の測定タイミングと第2の測定タイミングを設定することで、当該タイミングにおける二次電池21の最大電圧と最小電圧の情報により蓄電池20の充放電制御を実施しながら、リフレッシュ充電を行わなくても満容量を求める容量推定を実施することができる。つまり、この満容量推定は蓄電池20側だけでなく、クラウド側でも第1の測定タイミングの最小電圧と第2の測定タイミングの最大電圧により実施することができる。 For example, the information on the voltage of the secondary battery 21 having the highest voltage in the plurality of secondary batteries 21 of the storage battery 20 and the information on the voltage of the secondary battery 21 having the lowest voltage are controlled in an integrated manner by the plurality of storage batteries 20. It may be sent to the cloud server. Therefore, the cloud server that integrally controls the plurality of storage batteries 20 sets the first measurement timing and the second measurement timing, and the storage battery is based on the information of the maximum voltage and the minimum voltage of the secondary battery 21 at the timing. While performing the charge / discharge control of 20, capacity estimation for obtaining the full capacity can be performed without performing refresh charging. That is, this full capacity estimation can be performed not only on the storage battery 20 side but also on the cloud side by the minimum voltage of the first measurement timing and the maximum voltage of the second measurement timing.

なお、リフレッシュ充電は、一旦満容量計測の起点となる空の状態まで放電後、満充電状態まで充電し、満容量を計測するための充電を指す。 Note that refresh charging refers to charging for measuring the full capacity by once discharging to an empty state, which is the starting point of full capacity measurement, and then charging to a fully charged state.

空の状態は、蓄電池の使用範囲において、充電容量が0もしくは0とみなせる状態である。使用範囲の下限が2.9Vの蓄電池では、負荷に応じて放電していき、いずれかのセルが2.9Vに達した時を、充電容量0の空の状態とする。 The empty state is a state in which the charge capacity can be regarded as 0 or 0 within the usage range of the storage battery. In a storage battery having a lower limit of the usage range of 2.9V, the battery is discharged according to the load, and when any of the cells reaches 2.9V, the charging capacity is 0 and the battery is empty.

満充電状態は、満充電まで充電した状態である。使用範囲の上限が4.1Vの蓄電池では、一定電流で充電していき、いずれかのセルが4.1Vに達したら電流を段階的に下げて充電する。これは、CC(定電流)−CV(定電圧)充電といわれる。最終的には、電流がある電流値以下となったら充電を終了する。この時の状態を満充電の状態とする。リフレッシュ充電で計測される場合、空の状態から満充電状態までの充電容量(積算容量)を満容量として算出することになる。 The fully charged state is a state in which the battery is fully charged. A storage battery having an upper limit of the use range of 4.1 V is charged with a constant current, and when any cell reaches 4.1 V, the current is gradually reduced to charge. This is called CC (constant current) -CV (constant voltage) charging. Eventually, charging ends when the current falls below a certain current value. The state at this time is the fully charged state. When measured by refresh charging, the charging capacity (integrated capacity) from the empty state to the fully charged state is calculated as the full capacity.

当該変形例においても、同様の作用効果を実現できる。また、処理を端末装置とサーバとに分担できるので、一つの装置の負担が大きくなる不都合を軽減できる。 In the modified example, the same effect can be realized. Further, since the processing can be shared between the terminal device and the server, it is possible to reduce the inconvenience that the load on one device becomes large.

以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成及び詳細には、本願発明のスコープ内で当業者が理解し得る様々に変更をすることができる。 Although the invention of the present application has been described above with reference to the embodiment, the invention of the present application is not limited to the above embodiment. The configuration and details of the present invention can be modified in various ways that can be understood by those skilled in the art within the scope of the present invention.

以下、参考形態の例を付記する。
1. 複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に前記蓄電池の開放電圧を推定するOCV推定手段と、
前記蓄電池の電流値を基に前記蓄電池の積算容量を算出する容量算出手段と、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最小値に基づき算出した第1のSOC(State Of Charge)、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最大値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する制御手段と、
を含む蓄電制御装置。
2. 複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に前記蓄電池の開放電圧を推定するOCV推定手段と、
前記蓄電池の電流値を基に前記蓄電池の積算容量を算出する容量算出手段と、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の大きい方から順に定めた順位が下位x%(xは0より大100より小)に含まれる開放電圧の統計値に基づき算出した第1のSOC、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の大きい方から順に定めた順位が上位x%に含まれる開放電圧の統計値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する制御手段と、
を含む蓄電制御装置。
3. 前記制御手段が、前記第1の測定タイミングの前記積算容量と前記第2の測定タイミングの前記積算容量との差に基づいて、前記蓄電池の満容量を算出する1又は2に記載の蓄電制御装置。
4. 前記制御手段が、前記第1のSOCと前記第2のSOCとの差に基づき、前記満容量を算出する1から3のいずれかに記載の蓄電制御装置。
5. 第1のSOCをSOC1min、第2のSOCをSOC2max、前記第1の測定タイミングの前記積算容量をQ1、前記第2の測定タイミングの前記積算容量をQ2、前記蓄電池の満容量をQfullとした場合、前記制御手段が、以下の式1に基づき前記蓄電池の満容量を算出する1から4のいずれかに記載の蓄電制御装置。

Figure 0006848475
6. 前記OCV推定手段は、複数の前記二次電池各々の電圧の測定値の中の最大電圧及び最小電圧の少なくとも一方を含む電圧情報と、前記蓄電池の充電電流及び放電電流の測定値を含む電流情報とを同期して受信する1から5のいずれかに記載の蓄電制御装置。
7. 第1のSOCが第2のSOCより小さくなるように、前記第1の測定タイミング及び前記第2の測定タイミングが設定されている1から6のいずれかに記載の蓄電制御装置。
8. 複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に推定された前記蓄電池の開放電圧、及び、前記蓄電池の電流値を基に算出された前記蓄電池の積算容量を取得する手段と、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最小値に基づき算出した第1のSOC、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最大値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する手段と、
を含むサーバ。
9. 複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に推定された前記蓄電池の開放電圧、及び、前記蓄電池の電流値を基に算出された前記蓄電池の積算容量を取得する手段と、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の大きい方から順に定めた順位が下位x%(xは0より大100より小)に含まれる開放電圧の統計値に基づき算出した第1のSOC、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の大きい方から順に定めた順位が上位x%に含まれる開放電圧の統計値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する手段と、
を含むサーバ。
10. コンピュータが、
複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に前記蓄電池の開放電圧を推定するOCV推定工程と、
前記蓄電池の電流値を基に前記蓄電池の積算容量を算出する容量算出工程と、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最小値に基づき算出した第1のSOC(State Of Charge)、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最大値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する制御工程と、
を実行する蓄電制御方法。
11. コンピュータを、
複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に前記蓄電池の開放電圧を推定するOCV推定手段、
前記蓄電池の電流値を基に前記蓄電池の積算容量を算出する容量算出手段、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最小値に基づき算出した第1のSOC(State Of Charge)、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最大値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する制御手段、
として機能させるプログラム。 Hereinafter, an example of the reference form will be added.
1. 1. An OCV estimation means that estimates the open circuit voltage of the storage battery based on the voltage value of the storage battery, which is an assembled battery in which a plurality of secondary batteries are connected in series.
A capacity calculation means for calculating the integrated capacity of the storage battery based on the current value of the storage battery, and
The first SOC (State Of Charge) calculated based on the minimum value in the open circuit voltage of each of the plurality of secondary batteries at the first measurement timing, and each of the plurality of secondary batteries at the second measurement timing. The full capacity of the storage battery is calculated based on the second SOC calculated based on the maximum value in the open circuit voltage, the integrated capacity at the first measurement timing, and the integrated capacity at the second measurement timing. Control means to
Storage control device including.
2. An OCV estimation means that estimates the open circuit voltage of the storage battery based on the voltage value of the storage battery, which is an assembled battery in which a plurality of secondary batteries are connected in series.
A capacity calculation means for calculating the integrated capacity of the storage battery based on the current value of the storage battery, and
The statistical value of the open circuit voltage included in the lower x% (x is greater than 0 and less than 100) in the order determined from the largest of the open circuit voltages of each of the plurality of secondary batteries at the first measurement timing. Calculated based on the statistical value of the open circuit voltage in which the order determined in order from the largest of the open circuit voltages of each of the plurality of secondary batteries at the first SOC and the second measurement timing is included in the upper x%. A control means for calculating the full capacity of the storage battery based on the second SOC, the integrated capacity at the first measurement timing, and the integrated capacity at the second measurement timing.
Storage control device including.
3. 3. The storage control device according to 1 or 2, wherein the control means calculates the full capacity of the storage battery based on the difference between the integrated capacity at the first measurement timing and the integrated capacity at the second measurement timing. ..
4. The storage control device according to any one of 1 to 3, wherein the control means calculates the full capacity based on the difference between the first SOC and the second SOC.
5. When the first SOC is SOC 1min, the second SOC is SOC 2max, the integrated capacity at the first measurement timing is Q1, the integrated capacity at the second measurement timing is Q2, and the full capacity of the storage battery is Qfull. The power storage control device according to any one of 1 to 4, wherein the control means calculates the full capacity of the storage battery based on the following formula 1.
Figure 0006848475
6. The OCV estimation means includes voltage information including at least one of the maximum voltage and the minimum voltage among the measured values of the voltages of each of the plurality of secondary batteries, and current information including the measured values of the charge current and the discharge current of the storage battery. The storage control device according to any one of 1 to 5, which receives in synchronization with.
7. The storage control device according to any one of 1 to 6, wherein the first measurement timing and the second measurement timing are set so that the first SOC is smaller than the second SOC.
8. Acquires the open circuit voltage of the storage battery estimated based on the voltage value of the storage battery which is an assembled battery in which a plurality of secondary batteries are connected in series, and the integrated capacity of the storage battery calculated based on the current value of the storage battery. Means to do and
The first SOC calculated based on the minimum value in the open circuit voltage of each of the plurality of secondary batteries at the first measurement timing, and the open voltage of each of the plurality of secondary batteries at the second measurement timing. A means for calculating the full capacity of the storage battery based on the second SOC calculated based on the maximum value of, the integrated capacity of the first measurement timing, and the integrated capacity of the second measurement timing.
The server that contains.
9. Acquires the open circuit voltage of the storage battery estimated based on the voltage value of the storage battery which is an assembled battery in which a plurality of secondary batteries are connected in series, and the integrated capacity of the storage battery calculated based on the current value of the storage battery. Means to do and
The statistical value of the open circuit voltage included in the lower x% (x is greater than 0 and less than 100) in the order determined from the largest of the open circuit voltages of each of the plurality of secondary batteries at the first measurement timing. Calculated based on the statistical value of the open circuit voltage in which the order determined in order from the largest of the open circuit voltages of each of the plurality of secondary batteries at the first SOC and the second measurement timing is included in the upper x%. A means for calculating the full capacity of the storage battery based on the second SOC, the integrated capacity at the first measurement timing, and the integrated capacity at the second measurement timing.
The server that contains.
10. The computer
An OCV estimation process that estimates the open circuit voltage of the storage battery based on the voltage value of the storage battery, which is an assembled battery in which a plurality of secondary batteries are connected in series.
A capacity calculation step of calculating the integrated capacity of the storage battery based on the current value of the storage battery, and
The first SOC (State Of Charge) calculated based on the minimum value in the open circuit voltage of each of the plurality of secondary batteries at the first measurement timing, and each of the plurality of secondary batteries at the second measurement timing. The full capacity of the storage battery is calculated based on the second SOC calculated based on the maximum value in the open circuit voltage, the integrated capacity at the first measurement timing, and the integrated capacity at the second measurement timing. Control process and
Storage control method to execute.
11. Computer,
An OCV estimation means that estimates the open circuit voltage of the storage battery based on the voltage value of the storage battery, which is an assembled battery in which a plurality of secondary batteries are connected in series.
A capacity calculation means for calculating the integrated capacity of the storage battery based on the current value of the storage battery,
The first SOC (State Of Charge) calculated based on the minimum value in the open circuit voltage of each of the plurality of secondary batteries at the first measurement timing, and each of the plurality of secondary batteries at the second measurement timing. The full capacity of the storage battery is calculated based on the second SOC calculated based on the maximum value in the open circuit voltage, the integrated capacity at the first measurement timing, and the integrated capacity at the second measurement timing. Control means,
A program that functions as.

10 蓄電制御装置
20 蓄電池
21 二次電池
30 電圧測定部
40 電流測定部
50 OCV推定部
60 容量算出部
70 充放電制御部
80 制御部
90A 負極端子
90B 正極端子
1A プロセッサ
2A メモリ
3A 入出力I/F
4A 周辺回路
5A バス
10 Storage control device 20 Storage battery 21 Secondary battery 30 Voltage measurement unit 40 Current measurement unit 50 OCV estimation unit 60 Capacity calculation unit 70 Charge / discharge control unit 80 Control unit 90A Negative terminal 90B Positive terminal 1A Processor 2A Memory 3A Input / output I / F
4A peripheral circuit 5A bus

Claims (11)

複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に複数の前記二次電池各々の開放電圧を推定するOCV推定手段と、
前記蓄電池の電流値を基に前記蓄電池の積算容量を算出する容量算出手段と、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最小値に基づき算出した第1のSOC(State Of Charge)、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最大値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する制御手段と、
を含む蓄電制御装置。
An OCV estimation means that estimates the open circuit voltage of each of the plurality of secondary batteries based on the voltage value of the storage battery, which is an assembled battery in which a plurality of secondary batteries are connected in series.
A capacity calculation means for calculating the integrated capacity of the storage battery based on the current value of the storage battery, and
The first SOC (State Of Charge) calculated based on the minimum value in the open circuit voltage of each of the plurality of secondary batteries at the first measurement timing, and each of the plurality of secondary batteries at the second measurement timing. The full capacity of the storage battery is calculated based on the second SOC calculated based on the maximum value in the open circuit voltage, the integrated capacity at the first measurement timing, and the integrated capacity at the second measurement timing. Control means to
Storage control device including.
複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に複数の前記二次電池各々の開放電圧を推定するOCV推定手段と、
前記蓄電池の電流値を基に前記蓄電池の積算容量を算出する容量算出手段と、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の大きい方から順に定めた順位が下位x%(xは0より大100より小)に含まれる開放電圧の統計値に基づき算出した第1のSOC、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の大きい方から順に定めた順位が上位x%に含まれる開放電圧の統計値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する制御手段と、
を含む蓄電制御装置。
An OCV estimation means that estimates the open circuit voltage of each of the plurality of secondary batteries based on the voltage value of the storage battery, which is an assembled battery in which a plurality of secondary batteries are connected in series.
A capacity calculation means for calculating the integrated capacity of the storage battery based on the current value of the storage battery, and
The statistical value of the open circuit voltage included in the lower x% (x is greater than 0 and less than 100) in the order determined from the largest of the open circuit voltages of each of the plurality of secondary batteries at the first measurement timing. Calculated based on the statistical value of the open circuit voltage in which the order determined in order from the largest of the open circuit voltages of each of the plurality of secondary batteries at the first SOC and the second measurement timing is included in the upper x%. A control means for calculating the full capacity of the storage battery based on the second SOC, the integrated capacity at the first measurement timing, and the integrated capacity at the second measurement timing.
Storage control device including.
前記制御手段が、前記第1の測定タイミングの前記積算容量と前記第2の測定タイミングの前記積算容量との差に基づいて、前記蓄電池の満容量を算出する請求項1又は2に記載の蓄電制御装置。 The power storage according to claim 1 or 2, wherein the control means calculates the full capacity of the storage battery based on the difference between the integrated capacity at the first measurement timing and the integrated capacity at the second measurement timing. Control device. 前記制御手段が、前記第1のSOCと前記第2のSOCとの差に基づき、前記満容量を算出する請求項1から3のいずれか1項に記載の蓄電制御装置。 The power storage control device according to any one of claims 1 to 3, wherein the control means calculates the full capacity based on the difference between the first SOC and the second SOC. 第1のSOCをSOC1min、第2のSOCをSOC2max、前記第1の測定タイミングの前記積算容量をQ1、前記第2の測定タイミングの前記積算容量をQ2、前記蓄電池の満容量をQfullとした場合、前記制御手段が、以下の式1に基づき前記蓄電池の満容量を算出する請求項1から4のいずれか1項に記載の蓄電制御装置。
Figure 0006848475
When the first SOC is SOC 1min, the second SOC is SOC 2max, the integrated capacity at the first measurement timing is Q1, the integrated capacity at the second measurement timing is Q2, and the full capacity of the storage battery is Qfull. The power storage control device according to any one of claims 1 to 4, wherein the control means calculates the full capacity of the storage battery based on the following formula 1.
Figure 0006848475
前記OCV推定手段は、複数の前記二次電池各々の電圧の測定値の中の最大電圧及び最小電圧の少なくとも一方を含む電圧情報と、前記蓄電池の充電電流及び放電電流の測定値を含む電流情報とを同期して受信する請求項1から5のいずれか1項に記載の蓄電制御装置。 The OCV estimation means includes voltage information including at least one of the maximum voltage and the minimum voltage among the measured values of the voltages of each of the plurality of secondary batteries, and current information including the measured values of the charge current and the discharge current of the storage battery. The power storage control device according to any one of claims 1 to 5, which receives in synchronization with the above. 第1のSOCが第2のSOCより小さくなるように、前記第1の測定タイミング及び前記第2の測定タイミングが設定されている請求項1から6のいずれか1項に記載の蓄電制御装置。 The storage control device according to any one of claims 1 to 6, wherein the first measurement timing and the second measurement timing are set so that the first SOC is smaller than the second SOC. 複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に推定された複数の前記二次電池各々の開放電圧、及び、前記蓄電池の電流値を基に算出された前記蓄電池の積算容量を取得する手段と、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最小値に基づき算出した第1のSOC、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最大値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する手段と、
を含むサーバ。
The storage battery calculated based on the open circuit voltage of each of the plurality of secondary batteries estimated based on the voltage value of the storage battery which is an assembled battery in which a plurality of secondary batteries are connected in series, and the current value of the storage battery. Means to obtain the integrated capacity of
The first SOC calculated based on the minimum value in the open circuit voltage of each of the plurality of secondary batteries at the first measurement timing, and the open voltage of each of the plurality of secondary batteries at the second measurement timing. A means for calculating the full capacity of the storage battery based on the second SOC calculated based on the maximum value of, the integrated capacity of the first measurement timing, and the integrated capacity of the second measurement timing.
The server that contains.
複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に推定された複数の前記二次電池各々の開放電圧、及び、前記蓄電池の電流値を基に算出された前記蓄電池の積算容量を取得する手段と、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の大きい方から順に定めた順位が下位x%(xは0より大100より小)に含まれる開放電圧の統計値に基づき算出した第1のSOC、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の大きい方から順に定めた順位が上位x%に含まれる開放電圧の統計値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する手段と、
を含むサーバ。
The storage battery calculated based on the open circuit voltage of each of the plurality of secondary batteries estimated based on the voltage value of the storage battery which is an assembled battery in which a plurality of secondary batteries are connected in series, and the current value of the storage battery. Means to obtain the integrated capacity of
The statistical value of the open circuit voltage included in the lower x% (x is greater than 0 and less than 100) in the order determined from the largest of the open circuit voltages of each of the plurality of secondary batteries at the first measurement timing. Calculated based on the statistical value of the open circuit voltage in which the order determined in order from the largest of the open circuit voltages of each of the plurality of secondary batteries at the first SOC and the second measurement timing is included in the upper x%. A means for calculating the full capacity of the storage battery based on the second SOC, the integrated capacity at the first measurement timing, and the integrated capacity at the second measurement timing.
The server that contains.
コンピュータが、
複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に複数の前記二次電池各々の開放電圧を推定するOCV推定工程と、
前記蓄電池の電流値を基に前記蓄電池の積算容量を算出する容量算出工程と、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最小値に基づき算出した第1のSOC(State Of Charge)、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最大値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する制御工程と、
を実行する蓄電制御方法。
The computer
An OCV estimation process that estimates the open circuit voltage of each of the plurality of secondary batteries based on the voltage value of a storage battery that is an assembled battery in which a plurality of secondary batteries are connected in series.
A capacity calculation step of calculating the integrated capacity of the storage battery based on the current value of the storage battery, and
The first SOC (State Of Charge) calculated based on the minimum value in the open circuit voltage of each of the plurality of secondary batteries at the first measurement timing, and each of the plurality of secondary batteries at the second measurement timing. The full capacity of the storage battery is calculated based on the second SOC calculated based on the maximum value in the open circuit voltage, the integrated capacity at the first measurement timing, and the integrated capacity at the second measurement timing. Control process and
Storage control method to execute.
コンピュータを、
複数の二次電池を直列に接続した組電池である蓄電池の電圧値を基に複数の前記二次電池各々の開放電圧を推定するOCV推定手段、
前記蓄電池の電流値を基に前記蓄電池の積算容量を算出する容量算出手段、
第1の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最小値に基づき算出した第1のSOC(State Of Charge)、第2の測定タイミングにおける複数の前記二次電池各々の前記開放電圧の中の最大値に基づき算出した第2のSOC、前記第1の測定タイミングの前記積算容量、及び、前記第2の測定タイミングの前記積算容量に基づき、前記蓄電池の満容量を算出する制御手段、
として機能させるプログラム。
Computer,
An OCV estimation means that estimates the open circuit voltage of each of the plurality of secondary batteries based on the voltage value of the storage battery, which is an assembled battery in which a plurality of secondary batteries are connected in series.
A capacity calculation means for calculating the integrated capacity of the storage battery based on the current value of the storage battery,
The first SOC (State Of Charge) calculated based on the minimum value in the open circuit voltage of each of the plurality of secondary batteries at the first measurement timing, and each of the plurality of secondary batteries at the second measurement timing. The full capacity of the storage battery is calculated based on the second SOC calculated based on the maximum value in the open circuit voltage, the integrated capacity at the first measurement timing, and the integrated capacity at the second measurement timing. Control means,
A program that functions as.
JP2017010534A 2017-01-24 2017-01-24 Storage control device, server, storage control method and program Active JP6848475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017010534A JP6848475B2 (en) 2017-01-24 2017-01-24 Storage control device, server, storage control method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017010534A JP6848475B2 (en) 2017-01-24 2017-01-24 Storage control device, server, storage control method and program

Publications (2)

Publication Number Publication Date
JP2018119839A JP2018119839A (en) 2018-08-02
JP6848475B2 true JP6848475B2 (en) 2021-03-24

Family

ID=63045007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017010534A Active JP6848475B2 (en) 2017-01-24 2017-01-24 Storage control device, server, storage control method and program

Country Status (1)

Country Link
JP (1) JP6848475B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991554B (en) * 2019-03-29 2021-05-14 深圳猛犸电动科技有限公司 Battery electric quantity detection method and device and terminal equipment
CN109991545B (en) * 2019-03-29 2021-05-14 深圳猛犸电动科技有限公司 Battery pack electric quantity detection method and device and terminal equipment
JP2021009061A (en) * 2019-06-28 2021-01-28 パナソニックIpマネジメント株式会社 Storage battery capacity detection method, program, and storage battery capacity detection system
JP7135028B2 (en) * 2020-05-15 2022-09-12 横河電機株式会社 Analysis device, analysis system and analysis method
CN115891767B (en) * 2022-10-29 2024-06-14 重庆长安汽车股份有限公司 Method and device for setting SOC balance point of power battery of hybrid electric vehicle and vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5397013B2 (en) * 2009-05-20 2014-01-22 日産自動車株式会社 Battery control device
WO2012081696A1 (en) * 2010-12-16 2012-06-21 本田技研工業株式会社 Battery control apparatus and battery control method
JP5409840B2 (en) * 2012-05-11 2014-02-05 カルソニックカンセイ株式会社 Apparatus for estimating cell state of battery pack
JP2013250159A (en) * 2012-05-31 2013-12-12 Sanyo Electric Co Ltd Residual capacity calculation method for secondary battery, and pack battery
KR101966062B1 (en) * 2012-11-23 2019-04-05 삼성전자주식회사 Measuring device for state of charging of battery and measuring method the same
JP6367217B2 (en) * 2014-07-25 2018-08-01 株式会社東芝 Internal state estimation system and estimation method thereof
JPWO2016038873A1 (en) * 2014-09-12 2017-06-29 日本電気株式会社 Control device, control method, and program

Also Published As

Publication number Publication date
JP2018119839A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6848475B2 (en) Storage control device, server, storage control method and program
US9651628B2 (en) Method and apparatus for determining a capacity of a battery
US8319479B2 (en) Method of estimating battery recharge time and related device
EP2002525B1 (en) Battery charge indication methods, battery charge monitoring devices, rechargeable batteries and articles of manufacture
JP6324248B2 (en) Battery state detection device, secondary battery system, battery state detection program, battery state detection method
JP6316690B2 (en) Battery state detection device, secondary battery system, battery state detection program, battery state detection method
JP4210794B2 (en) Battery capacity detection method, battery pack and electronic device system
US8502504B1 (en) Model-based battery fuel gauges and methods
US10873201B2 (en) Battery management apparatus and method for protecting a lithium iron phosphate cell from over-voltage using the same
US10444296B2 (en) Control device, control method, and recording medium
JP2017511104A (en) Apparatus and method for controlling a plurality of cells of a battery
KR20070106499A (en) System and method for cell equalization using state of charge
KR101488828B1 (en) Apparatus for measuring a life time of secondary battery, electronic equipment comprising it and method for measuring a life time of secondary battery
US10564223B2 (en) Power storage system, control system of secondary battery, and control method of secondary battery
JP6970289B2 (en) Charge control devices, transportation equipment, and programs
JP2016171716A (en) Battery residual amount prediction device and battery pack
CN113678009A (en) Battery state estimating device and method
JP2013142638A (en) System, program, and method for measuring remaining battery power
TW201926840A (en) Energy storage system and charging and discharging method
JP5851514B2 (en) Battery control device, secondary battery system
EP3605123A1 (en) Storage battery control device and control method
JP5999409B2 (en) State estimation device and state estimation method
JP2018169238A (en) Power storage controller, power storage control system, server, power storage control method, and program
JP2018169237A (en) Power storage controller, power storage control system, server, power storage control method, and program
JP4660367B2 (en) Rechargeable battery remaining capacity detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6848475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150