JP6848059B2 - Propylene-based polymer, its production method, propylene-based resin composition and molded article - Google Patents

Propylene-based polymer, its production method, propylene-based resin composition and molded article Download PDF

Info

Publication number
JP6848059B2
JP6848059B2 JP2019527054A JP2019527054A JP6848059B2 JP 6848059 B2 JP6848059 B2 JP 6848059B2 JP 2019527054 A JP2019527054 A JP 2019527054A JP 2019527054 A JP2019527054 A JP 2019527054A JP 6848059 B2 JP6848059 B2 JP 6848059B2
Authority
JP
Japan
Prior art keywords
propylene
mass
group
titanium
based polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019527054A
Other languages
Japanese (ja)
Other versions
JPWO2019004418A1 (en
Inventor
康寛 甲斐
康寛 甲斐
直哉 野田
直哉 野田
憲司 道上
憲司 道上
啓太 板倉
板倉  啓太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Prime Polymer Co Ltd
Original Assignee
Mitsui Chemicals Inc
Prime Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Prime Polymer Co Ltd filed Critical Mitsui Chemicals Inc
Publication of JPWO2019004418A1 publication Critical patent/JPWO2019004418A1/en
Application granted granted Critical
Publication of JP6848059B2 publication Critical patent/JP6848059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/01Additive used together with the catalyst, excluding compounds containing Al or B
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/15Isotactic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/37Elution or crystallisation fractionation, e.g. as determined by. TREF or Crystaf
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/24Crystallisation aids

Description

本発明は、これまでにないレベルの高立体規則性を有するプロピレン系重合体、その製造方法、該プロピレン系重合体を含むプロピレン系樹脂組成物および該プロピレン系重合体もしくは該プロピレン系樹脂組成物からなる成形体に関する。 The present invention relates to a propylene-based polymer having an unprecedented level of high stereoregularity, a method for producing the same, a propylene-based resin composition containing the propylene-based polymer, and the propylene-based polymer or the propylene-based resin composition. Concerning a molded body composed of.

従来、ポリオレフィン製造用触媒として、チタン触媒成分と有機アルミニウム化合物とからなるチーグラー・ナッタ触媒が広く用いられている。 Conventionally, a Ziegler-Natta catalyst composed of a titanium catalyst component and an organoaluminum compound has been widely used as a catalyst for producing polyolefin.

特に、ポリプロピレンなどの高立体規則性ポリオレフィンを製造する際には、通常、内部ドナー(内部電子供与体)を含む固体状チタン触媒成分と、有機アルミニウム化合物と、外部ドナー(外部電子供与体)とからなる触媒が用いられている。例えば、内部ドナーとしてカルボン酸エステル類を含む塩化マグネシウム担持型固体状チタン触媒と、有機アルミニウム化合物とともに、外部ドナーとして有機ケイ素化合物とからなるオレフィン重合用触媒が知られている(例えば、特許文献1および2参照)。 In particular, when producing a highly stereoregular polyolefin such as polypropylene, a solid titanium catalyst component containing an internal donor (internal electron donor), an organoaluminum compound, and an external donor (external electron donor) are usually used. A catalyst consisting of is used. For example, a magnesium chloride-supported solid titanium catalyst containing carboxylic acid esters as an internal donor, and an olefin polymerization catalyst composed of an organosilicon compound as an external donor together with an organoaluminum compound are known (for example, Patent Document 1). And 2).

しかしながら、上記のような固体状チタン触媒成分を含む触媒を用いてオレフィンを重合させると、いわゆる「剰余チタン化合物」により、高立体規則性ポリオレフィンとともに立体規則性の低いポリオレフィンも副生されるという問題点があった(特開昭59−124909)。 However, when an olefin is polymerized using a catalyst containing a solid titanium catalyst component as described above, the so-called "surplus titanium compound" causes a problem that a polyolefin having high stereoregularity and a polyolefin having low stereoregularity are produced as a by-product. There was a point (Japanese Patent Laid-Open No. 59-124909).

一方、近年、自動車業界では環境に配慮した低燃費車の開発が盛んに行われており、自動車材料の分野においても軽量化を目的とした材料の樹脂化やさらなる薄肉化が求められている。このため、バンパー材をはじめとする自動車材料として数多くの実績があるプロピレン系材料における改善の期待は大きく、これまでにないレベルの高立体規則性を有する、高剛性および高耐熱性のプロピレン系重合体が求められている。 On the other hand, in recent years, the automobile industry has been actively developing environmentally friendly fuel-efficient vehicles, and in the field of automobile materials as well, there is a demand for resinization and further thinning of materials for the purpose of weight reduction. For this reason, there are great expectations for improvement in propylene-based materials, which have many achievements as automobile materials such as bumper materials, and propylene-based weight with high rigidity and high heat resistance, which has an unprecedented level of high stereoregularity. Coalescence is required.

特開平08−003215号公報Japanese Unexamined Patent Publication No. 08-003215 特開平08−143620号公報Japanese Unexamined Patent Publication No. 08-143620 特開昭59−124909号公報JP-A-59-124909

上記のような従来技術に鑑み、本発明は、これまでにないレベルの高立体規則性を有するとともに、高剛性および高耐熱性を有するプロピレン系重合体を提供すること、また、前記高立体規則性プロピレン系重合体を、低立体規則性ポリプロピレンの副生量が少なく、高活性で安定して製造する方法、前記高立体規則性プロピレン系重合体を含む樹脂組成物、ならびに、前記高立体規則性プロピレン系重合体もしくは前記樹脂組成物を用いて形成される成形体を提供することを課題とする。 In view of the above-mentioned prior art, the present invention provides a propylene-based polymer having an unprecedented level of high stereoregularity, high rigidity and high heat resistance, and the high stereoregularity. A method for stably producing a sex propylene polymer with a small amount of by-product of low stereoregular polypropylene, high activity and stability, a resin composition containing the highly stereoregular propylene polymer, and the high stereoregulation. An object of the present invention is to provide a molded product formed by using a sex propylene-based polymer or the resin composition.

また、さらなる薄肉化を実現するため、成形性(流動性)に優れる高MFR領域において、これまでにない高立体規則性を有する、高剛性および高耐熱性のプロピレン系重合体が特に求められており、この高MFR領域の高立体規則性プロピレン系重合体または該プロピレン系重合体を含む樹脂組成物を用いて形成される成形体を提供することも課題とする。 Further, in order to realize further thinning, a propylene-based polymer having unprecedented high stereoregularity, high rigidity and high heat resistance is particularly required in a high MFR region having excellent moldability (fluidity). It is also an object of the present invention to provide a highly stereoregular propylene-based polymer having a high MFR region or a molded product formed by using a resin composition containing the propylene-based polymer.

本発明者らは、前記課題を解決するために鋭意検討した結果、例えば、特定の固体状チタン触媒成分と特定の外部ドナーとを組み合わせてプロピレンを重合することで、極めて長いメソ連鎖(α−メチル炭素が同一方向に向いているプロピレン単位連鎖)と、MFRとの関係でTREF(昇温溶出分別測定法)高温溶出成分とを有する、これまでにないレベルの高立体規則性のプロピレン系重合体が得られることを見出した。さらに、例えば、特定の固体状チタン触媒成分と特定の外部ドナーとを組み合わせてプロピレンを重合することで、前記高立体規則性プロピレン系重合体を、低立体規則性ポリプロピレンの副生量が少なく、高活性で安定して得られることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have made an extremely long meso-chain (α-) by polymerizing propylene in combination with, for example, a specific solid titanium catalyst component and a specific external donor. A propylene-based weight with unprecedented levels of high stereoregularity, which has a propylene unit chain in which methyl carbon is oriented in the same direction) and a TREF (heated elution fractionation measurement method) high-temperature elution component in relation to MFR. We found that coalescence was obtained. Further, for example, by polymerizing propylene in combination with a specific solid titanium catalyst component and a specific external donor, the highly stereoregular propylene-based polymer can be produced with a small amount of by-product of low stereoregular polypropylene. We have found that it can be obtained stably with high activity, and have completed the present invention.

本発明に係るプロピレン系重合体は、下記要件(1)〜(4)を満たすことを特徴とし、さらに下記要件(5)を満たすことが好ましい。
(1)メソ平均連鎖長が800〜10万である;
(2)メルトフローレート(MFR)(ASTM D1238、230℃、2.16kg荷重下)が0.5〜1000g/10分である;
(3)ゲルパーミエーションクロマトグラフィー(GPC)により測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.2〜20である;
(4)昇温溶出分別測定法(TREF)により122℃以上の温度で溶出する成分の割合をA重量%とし、前記要件(2)のメルトフローレートをBg/10分とした場合、下記式(I)を満たす;
100≧A≧20×EXP(−0.01×B)・・・(I)
(5)23℃におけるn−デカン可溶成分量が0.01〜2重量%である。
The propylene-based polymer according to the present invention is characterized by satisfying the following requirements (1) to (4), and more preferably satisfies the following requirements (5).
(1) The meso average chain length is 8 to 100,000;
(2) The melt flow rate (MFR) (ASTM D1238, 230 ° C., under 2.16 kg load) is 0.5-1000 g / 10 min;
(3) The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is 4.2 to 20;
(4) When the ratio of the components eluted at a temperature of 122 ° C. or higher is A% by weight and the melt flow rate of the above requirement (2) is Bg / 10 minutes by the temperature rise elution fractionation measurement method (TREF), the following formula is used. Satisfy (I);
100 ≧ A ≧ 20 × EXP (−0.01 × B) ・ ・ ・ (I)
(5) The amount of the n-decane-soluble component at 23 ° C. is 0.01 to 2% by weight.

本発明のプロピレン重合体は、オレフィン重合用触媒の存在下でプロピレンを重合させることにより製造することができ、該オレフィン重合用触媒は、例えば、
(i)マグネシウム、チタン、ハロゲンおよび電子供与体を含み、かつ、下記要件(k1)〜(k4)を満たす固体状チタン触媒成分と、
(ii)下記式(II)で表わされる有機ケイ素化合物成分と、
(iii)周期律表の1族、2族または13族に属する元素を含む有機金属化合物成分と
を含む触媒〔A〕、または、
前記触媒〔A〕にプロピレンが予備重合された予備重合触媒(p)と、前記有機ケイ素化合物成分(ii)と、前記有機金属化合物成分(iii)とを含む触媒〔B〕
である。
The propylene polymer of the present invention can be produced by polymerizing propylene in the presence of a catalyst for olefin polymerization, and the catalyst for olefin polymerization is, for example,
(I) A solid titanium catalyst component containing magnesium, titanium, halogen and an electron donor and satisfying the following requirements (k1) to (k4).
(Ii) The organosilicon compound component represented by the following formula (II) and
(Iii) A catalyst [A] containing an organometallic compound component containing an element belonging to Group 1, Group 2, or Group 13 of the Periodic Table, or
A catalyst [B] containing a prepolymerization catalyst (p) in which propylene is prepolymerized on the catalyst [A], the organosilicon compound component (ii), and the organometallic compound component (iii).
Is.

(k1)チタン含有量が2.5重量%以下である;
(k2)電子供与体の含有量が8〜30重量%である;
(k3)電子供与体/チタン(重量比)が7以上である;
(k4)室温でのヘキサン洗浄によってチタンが実質的に脱離されることがない。
(K1) Titanium content is 2.5% by weight or less;
(K2) The content of the electron donor is 8 to 30% by weight;
(K3) Electron donor / titanium (weight ratio) is 7 or more;
(K4) Titanium is not substantially desorbed by hexane washing at room temperature.

1Si(OR22(NR34) ・・・(II)
式(II)中、R1は2級または3級の炭素数1〜20の炭化水素基を示し、R2は炭素数1〜4の炭化水素基を示し、R3は炭素数1〜12の炭化水素基または水素原子を示し、R4は炭素数1〜12の炭化水素基を示す。
R 1 Si (OR 2 ) 2 (NR 3 R 4 ) ・ ・ ・ (II)
In formula (II), R 1 represents a secondary or tertiary hydrocarbon group having 1 to 20 carbon atoms, R 2 represents a hydrocarbon group having 1 to 4 carbon atoms, and R 3 represents a hydrocarbon group having 1 to 12 carbon atoms. Indicates a hydrocarbon group or a hydrogen atom of, and R 4 indicates a hydrocarbon group having 1 to 12 carbon atoms.

前記固体状チタン触媒成分(i)は、
(a)マグネシウム、チタン、ハロゲンおよび電子供与体を含み、かつ室温でのヘキサン洗浄によってチタンが脱離することがない固体状チタン、
(b)芳香族炭化水素、
(c)液状チタン、および
(d)電子供与体
を接触させる工程を含む方法により製造することができる。
The solid titanium catalyst component (i) is
(A) Solid titanium, which contains magnesium, titanium, halogen and electron donors, and titanium is not desorbed by hexane washing at room temperature.
(B) Aromatic hydrocarbons,
It can be produced by a method including (c) contacting liquid titanium and (d) an electron donor.

本発明のプロピレン系樹脂組成物は、本発明のプロピレン系重合体を含むことを特徴とする。 The propylene-based resin composition of the present invention is characterized by containing the propylene-based polymer of the present invention.

本発明の成形体は、本発明のプロピレン系重合体またはプロピレン系樹脂組成物を用いて形成されることを特徴とする。 The molded product of the present invention is characterized by being formed by using the propylene-based polymer or the propylene-based resin composition of the present invention.

本発明によれば、特に、極めて長いメソ連鎖と、TREF高温溶出成分とを有することにより、これまでにないレベルの高立体規則性を有する、高剛性および高耐熱性のプロピレン系重合体が得られる。また、本発明の製造方法によれば、前記プロピレン重合体を高活性で安定して製造することができ、しかも低立体規則性ポリプロピレンの副生量が少ない。 According to the present invention, a highly rigid and highly heat-resistant propylene-based polymer having an unprecedented level of high stereoregularity can be obtained by having an extremely long meso-chain and a TREF high-temperature elution component. Be done. Further, according to the production method of the present invention, the propylene polymer can be produced stably with high activity, and the amount of by-product of low stereoregular polypropylene is small.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

[プロピレン系重合体]
本発明のプロピレン系重合体の第1の態様は、下記要件(1)〜(4)を満たすことを特徴とし、本発明のプロピレン系重合体の第2の態様は、下記要件(1)〜(5)を満たすことを特徴とする。以下、第1の態様と第2の態様を総称して「本発明のプロピレン系重合体」という。
(1)メソ平均連鎖長が800〜10万である;
(2)メルトフローレート(MFR)(ASTM D1238、230℃、2.16kg荷重下)が0.5〜1000g/10分である;
(3)ゲルパーミエーションクロマトグラフィー(GPC)により測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.2〜20である;
(4)昇温溶出分別測定法(TREF)により122℃以上の温度で溶出する成分の割合をA重量%とし、前記要件(2)のメルトフローレートをBg/10分とした場合、下記式(I)を満たす;
100≧A≧20×EXP(−0.01×B)・・・(I)
(5)23℃におけるn−デカン可溶成分量が0.01〜2重量%である;
以下、各要件について説明する。
[Propene polymer]
The first aspect of the propylene-based polymer of the present invention is characterized by satisfying the following requirements (1) to (4), and the second aspect of the propylene-based polymer of the present invention is the following requirements (1) to (1) to. It is characterized by satisfying (5). Hereinafter, the first aspect and the second aspect are collectively referred to as "the propylene-based polymer of the present invention".
(1) The meso average chain length is 8 to 100,000;
(2) The melt flow rate (MFR) (ASTM D1238, 230 ° C., under 2.16 kg load) is 0.5-1000 g / 10 min;
(3) The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is 4.2 to 20;
(4) When the ratio of the components eluted at a temperature of 122 ° C. or higher is A% by weight and the melt flow rate of the above requirement (2) is Bg / 10 minutes by the temperature rise elution fractionation measurement method (TREF), the following formula is used. Satisfy (I);
100 ≧ A ≧ 20 × EXP (−0.01 × B) ・ ・ ・ (I)
(5) The amount of n-decane-soluble component at 23 ° C. is 0.01 to 2% by weight;
Each requirement will be described below.

<要件(1)>
本発明のプロピレン系重合体は、メソ平均連鎖長が800〜10万、好ましくは900〜5万、より好ましくは1000〜10000である。メソ平均連鎖長が前記範囲内であると、プロピレン系重合体の立体規則性が充分に高くなり、プロピレン系重合体の耐熱性、および曲げ弾性率等の機械的性質が向上する。メソ平均連鎖長は、後述する実施例に記載の方法により求めることができる。
<Requirement (1)>
The propylene-based polymer of the present invention has a meso-average chain length of 8 to 100,000, preferably 900 to 50,000, and more preferably 1000 to 10000. When the meso-average chain length is within the above range, the stereoregularity of the propylene-based polymer is sufficiently high, and the mechanical properties such as heat resistance and flexural modulus of the propylene-based polymer are improved. The meso-average chain length can be determined by the method described in Examples described later.

<要件(2)>
本発明のプロピレン系重合体は、MFR(ASTM D1238、230℃、2.16kg荷重下)が0.5〜1000g/10分、好ましくは1.0〜800g/10分、より好ましくは1.5〜500g/10分である。MFRが前記範囲内であると、プロピレン系重合体の成形性と機械強度とのバランスが優れる。なお、本発明のプロピレン系重合体は、好ましくは50〜1000g/10分、より好ましくは100〜1000g/10分、特に好ましくは100〜500g/10分の高MFR領域においても、これまでにないレベルの高立体規則性を有する。
<Requirement (2)>
The propylene-based polymer of the present invention has an MFR (ASTM D1238, 230 ° C., under a load of 2.16 kg) of 0.5 to 1000 g / 10 minutes, preferably 1.0 to 800 g / 10 minutes, more preferably 1.5 minutes. ~ 500 g / 10 minutes. When the MFR is within the above range, the balance between the moldability of the propylene-based polymer and the mechanical strength is excellent. The propylene-based polymer of the present invention has never been used in a high MFR region of preferably 50 to 1000 g / 10 minutes, more preferably 100 to 1000 g / 10 minutes, and particularly preferably 100 to 500 g / 10 minutes. Has a high level of stereoregularity.

<要件(3)>
本発明のプロピレン系重合体は、GPCにより測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.2〜20、好ましくは4.5〜15、より好ましくは4.8〜10である。Mw/Mnが前記範囲内であると、プロピレン系重合体の成形性の観点から好ましい。
<Requirement (3)>
The propylene-based polymer of the present invention has a ratio (Mw / Mn) of a weight average molecular weight (Mw) to a number average molecular weight (Mn) measured by GPC of 4.2 to 20, preferably 4.5 to 15. It is preferably 4.8 to 10. When Mw / Mn is within the above range, it is preferable from the viewpoint of moldability of the propylene-based polymer.

<要件(4)>
本発明のプロピレン系重合体は、TREFにより122℃以上の温度で溶出する成分の割合をA重量%とし、前記要件(2)のメルトフローレートをBg/10分とした場合、下記式(I)を満たす。
<Requirement (4)>
In the propylene-based polymer of the present invention, when the proportion of the component eluted at a temperature of 122 ° C. or higher by TREF is A% by weight and the melt flow rate of the above requirement (2) is Bg / 10 minutes, the following formula (I) ) Satisfies.

100≧A≧20×EXP(−0.01×B)・・・(I)
上記式(I)を満たすプロピレン系重合体は、MFRが一定以上であっても、一定の耐熱性および高剛性を示す立体規則性を有する点で好ましい。
100 ≧ A ≧ 20 × EXP (−0.01 × B) ・ ・ ・ (I)
A propylene-based polymer satisfying the above formula (I) is preferable in that it has a stereoregularity showing a certain degree of heat resistance and high rigidity even if the MFR is a certain level or more.

<要件(5)>
本発明のプロピレン系重合体の第2の態様は、23℃におけるn−デカン可溶成分量が0.01〜2重量%、好ましくは0.1〜1.8重量%、より好ましくは0.2〜1.5重量%である。デカン可溶成分量が前記範囲内であると、高結晶性成分が充分に確保され、低立体規則性成分の副生が抑制される。
<Requirement (5)>
In the second aspect of the propylene-based polymer of the present invention, the amount of the n-decane-soluble component at 23 ° C. is 0.01 to 2% by weight, preferably 0.1 to 1.8% by weight, more preferably 0. It is 2 to 1.5% by weight. When the amount of the decan-soluble component is within the above range, the highly crystalline component is sufficiently secured, and the by-product of the low stereoregular component is suppressed.

上述した本発明のプロピレン系重合体は、後述するオレフィン重合用触媒の存在下でプロピレンを重合させることにより得ることができる。 The above-mentioned propylene-based polymer of the present invention can be obtained by polymerizing propylene in the presence of a catalyst for olefin polymerization described later.

なお、本発明のプロピレン系重合体は、前記要件(1)〜(4)または前記要件(1)〜(5)に加えて、下記要件(6)を満たすことが好ましく、さらに、下記要件(7)をも同時に満たすことがより好ましい。
(6)TREFにより122℃以上の温度で溶出する成分の割合が0.1〜100重量%である;
(7)13C−NMRにより求められるメソペンタッド分率(mmmm)が99.4〜100%である。
The propylene-based polymer of the present invention preferably satisfies the following requirement (6) in addition to the above requirements (1) to (4) or the above requirements (1) to (5), and further, the following requirement ( It is more preferable to satisfy 7) at the same time.
(6) The proportion of components eluted by TREF at a temperature of 122 ° C. or higher is 0.1 to 100% by weight;
(7) 13 The mesopentad fraction (mm mm) determined by C-NMR is 99.4 to 100%.

<要件(6)>
本発明のプロピレン系重合体は、TREFにより122℃以上の温度で溶出する成分の割合Aが、好ましくは0.1〜100重量%、より好ましくは0.2〜80重量%、特に好ましくは0.3〜50重量%である。前記溶出成分の割合が前記範囲内であると、プロピレン系重合体の立体規則性が充分に高くなり、プロピレン系重合体の耐熱性、および曲げ弾性率等の機械的性質が向上する。
<Requirement (6)>
In the propylene-based polymer of the present invention, the proportion A of the components eluted by TREF at a temperature of 122 ° C. or higher is preferably 0.1 to 100% by weight, more preferably 0.2 to 80% by weight, and particularly preferably 0. .3 to 50% by weight. When the ratio of the eluted components is within the above range, the stereoregularity of the propylene-based polymer is sufficiently high, and the mechanical properties such as heat resistance and flexural modulus of the propylene-based polymer are improved.

<要件(7)>
本発明のプロピレン系重合体は、13C−NMRにより求められるメソペンタッド分率(mmmm)が、好ましくは99.4〜100%、より好ましくは99.45〜99.99%、特に好ましくは99.5〜99.95%である。メソペンタッド分率が前記範囲内であると、プロピレン系重合体の立体規則性が充分に高くなる傾向にある。
<Requirement (7)>
The propylene-based polymer of the present invention has a mesopentad fraction (mm mm) determined by 13 C-NMR, preferably 99.4 to 100%, more preferably 99.45 to 99.99%, and particularly preferably 99. It is 5 to 99.95%. When the mesopentad fraction is within the above range, the stereoregularity of the propylene-based polymer tends to be sufficiently high.

ここで、メソペンタッド分率は、分子鎖中の五連子アイソタクティック構造の存在割合を示しており、プロピレンモノマー単位が5個連続してメソ構造を有する連鎖の中心にあるプロピレン構造単位の分率である。メソペンタッド分率は、後述する実施例に記載の方法により求めることができる。 Here, the mesopentad fraction indicates the abundance ratio of the quintuplet isotactic structure in the molecular chain, and the fraction of the propylene structural unit at the center of the chain in which five propylene monomer units have a continuous meso structure. The rate. The mesopentad fraction can be determined by the method described in Examples described later.

[オレフィン重合用触媒]
本発明で用いることができるオレフィン重合用触媒は、上述した本発明のプロピレン系重合体を得ることができれば特に限定されないが、例えば、
(i)マグネシウム、チタン、ハロゲンおよび電子供与体を含み、かつ、下記要件(k1)〜(k4)を満たす固体状チタン触媒成分と、
(ii)下記式(II)で表わされる有機ケイ素化合物成分と、
(iii)周期律表の1族、2族または13族に属する元素を含む有機金属化合物成分と
を含む触媒〔A〕、または、
前記触媒〔A〕にプロピレンが予備重合された予備重合触媒(p)と、前記有機ケイ素化合物成分(ii)と、前記有機金属化合物成分(iii)とを含む触媒〔B〕
が挙げられる。
[Catalyst for olefin polymerization]
The catalyst for olefin polymerization that can be used in the present invention is not particularly limited as long as the above-mentioned propylene-based polymer of the present invention can be obtained, but for example,
(I) A solid titanium catalyst component containing magnesium, titanium, halogen and an electron donor and satisfying the following requirements (k1) to (k4).
(Ii) The organosilicon compound component represented by the following formula (II) and
(Iii) A catalyst [A] containing an organometallic compound component containing an element belonging to Group 1, Group 2, or Group 13 of the Periodic Table, or
A catalyst [B] containing a prepolymerization catalyst (p) in which propylene is prepolymerized on the catalyst [A], the organosilicon compound component (ii), and the organometallic compound component (iii).
Can be mentioned.

(k1)チタン含有量が2.5重量%以下である。 (K1) The titanium content is 2.5% by weight or less.

(k2)電子供与体の含有量が8〜30重量%である。 (K2) The content of the electron donor is 8 to 30% by weight.

(k3)電子供与体/チタン(重量比)が7以上である。 (K3) The electron donor / titanium (weight ratio) is 7 or more.

(k4)室温でのヘキサン洗浄によってチタンが実質的に脱離されることがない。 (K4) Titanium is not substantially desorbed by hexane washing at room temperature.

1Si(OR22(NR34) ・・・(II)
式(II)中、R1は2級または3級の炭素数1〜20の炭化水素基を示し、R2は炭素数1〜4の炭化水素基を示し、R3は炭素数1〜12の炭化水素基または水素原子を示し、R4は炭素数1〜12の炭化水素基を示す。
R 1 Si (OR 2 ) 2 (NR 3 R 4 ) ・ ・ ・ (II)
In formula (II), R 1 represents a secondary or tertiary hydrocarbon group having 1 to 20 carbon atoms, R 2 represents a hydrocarbon group having 1 to 4 carbon atoms, and R 3 represents a hydrocarbon group having 1 to 12 carbon atoms. Indicates a hydrocarbon group or a hydrogen atom of, and R 4 indicates a hydrocarbon group having 1 to 12 carbon atoms.

以下、前記オレフィン重合用触媒を構成する各成分について説明する。 Hereinafter, each component constituting the olefin polymerization catalyst will be described.

<固体状チタン触媒成分(i)>
前記固体状チタン触媒成分(i)は、
(a)マグネシウム、チタン、ハロゲンおよび電子供与体を含み、かつ室温でのヘキサン洗浄によってチタンが脱離することがない固体状チタン、
(b)芳香族炭化水素、
(c)液状チタン、および
(d)電子供与体
を接触させる工程を含む方法により調製することができる。
<Solid titanium catalyst component (i)>
The solid titanium catalyst component (i) is
(A) Solid titanium, which contains magnesium, titanium, halogen and electron donors, and titanium is not desorbed by hexane washing at room temperature.
(B) Aromatic hydrocarbons,
It can be prepared by a method including (c) contacting liquid titanium and (d) an electron donor.

≪(a)固体状チタン≫
前記固体状チタン(a)は、マグネシウム化合物、チタン化合物および電子供与体(内部ドナー)などを種々の方法により接触させることにより、公知の固体状チタン触媒成分の調製法(例えば特開平4−096911号公報、特開昭58−83006号公報、特開平8−143580号公報等参照)により製造することができる。
≪ (a) Solid titanium ≫
The solid titanium (a) is a known method for preparing a solid titanium catalyst component by contacting a magnesium compound, a titanium compound, an electron donor (internal donor), or the like by various methods (for example, JP-A-4-096111). No., JP-A-58-83006, JP-A-8-143580, etc.).

前記マグネシウム化合物は固体状態で用いられることが好ましい。この固体状態のマグネシウム化合物は、マグネシウム化合物自体が固体状態であるものであってもよく、または電子供与体との付加物であってもよい。前記マグネシウム化合物としては、特開2004−2742号公報に記載のマグネシウム化合物、具体的には、塩化マグネシウム、エトキシ塩化マグネシウム、ブトキシマグネシウムなどが挙げられる。また、前記電子供与体としては、特開2004−2742号公報に記載のマグネシム化合物可溶化能を有する化合物、具体的には、アルコール、アルデヒド、アミン、カルボン酸及びこれらの混合物などが挙げられる。マグネシウム化合物及び電子供与体の使用量は、その種類、その接触条件等によっても異なるが、マグネシウム化合物を該液状の電子供与体に対して0.1〜20モル/リットル、好ましくは0.5〜5モル/リットルとなる量で用いることができる。 The magnesium compound is preferably used in a solid state. The magnesium compound in the solid state may be the magnesium compound itself in the solid state, or may be an adduct with an electron donor. Examples of the magnesium compound include magnesium compounds described in JP-A-2004-2742, specifically, magnesium chloride, ethoxymagnesium chloride, butoxymagnesium and the like. Examples of the electron donor include compounds having a magnesium compound solubilizing ability described in JP-A-2004-2742, specifically, alcohols, aldehydes, amines, carboxylic acids, and mixtures thereof. The amount of the magnesium compound and electron donor used varies depending on the type, contact conditions, etc., but 0.1 to 20 mol / liter, preferably 0.5 to 20 mol / liter of the magnesium compound with respect to the liquid electron donor. It can be used in an amount of 5 mol / liter.

前記チタン化合物は液状状態で用いられることが好ましい。このようなチタン化合物としては、例えば、下記式(III)で示される4価のチタン化合物が挙げられる。 The titanium compound is preferably used in a liquid state. Examples of such a titanium compound include a tetravalent titanium compound represented by the following formula (III).

Ti(OR5)g4-g ・・・(III)
式(III)中、R5は炭化水素基であり、Xはハロゲン原子であり、0≦g≦4である。
Ti (OR 5 ) g X 4-g・ ・ ・ (III)
In formula (III), R 5 is a hydrocarbon group, X is a halogen atom, and 0 ≦ g ≦ 4.

前記チタン化合物としては、特に四塩化チタンが好ましい。また、前記チタン化合物は2種以上を組み合わせて用いてもよい。 As the titanium compound, titanium tetrachloride is particularly preferable. Further, the titanium compound may be used in combination of two or more kinds.

前記電子供与体(内部ドナー)としては、例えば、下記式(IV)で表わされる化合物(以下「化合物(IV)」ともいう。)が挙げられる。 Examples of the electron donor (internal donor) include a compound represented by the following formula (IV) (hereinafter, also referred to as “compound (IV)”).

Figure 0006848059
式(IV)中、Rは、炭素原子数1〜10、好ましくは2〜8、より好ましくは3〜6の直鎖状もしくは分岐状のアルキル基を示し、R'は炭素数1〜10の直鎖状もしくは分岐状のアルキル基を示し、nは0〜4の整数を示す。本発明では、nが0の化合物が好ましい。
Figure 0006848059
In formula (IV), R represents a linear or branched alkyl group having 1 to 10 carbon atoms, preferably 2 to 8, more preferably 3 to 6, and R'has 1 to 10 carbon atoms. It represents a linear or branched alkyl group, where n is an integer from 0 to 4. In the present invention, a compound having n of 0 is preferable.

RおよびR'のアルキル基の例としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などが挙げられる。 Examples of alkyl groups of R and R'are methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group and heptyl. Examples include a group, an octyl group, a nonyl group, and a decyl group.

前記化合物(IV)の具体例としては、フタル酸ジメチル、フタル酸メチルエチル、フタル酸ジエチル、フタル酸n−プロピル、フタル酸ジイソプロピル、フタル酸ジn−ブチル、フタル酸ジイソブチル、フタル酸ジn−ペンチル、フタル酸ジネオペンチル、フタル酸ジn−ヘキシル、フタル酸ジn−ヘプチル、フタル酸ジ(メチルヘキシル)、フタル酸ジ(ジメチルペンチル)、フタル酸ジ(エチルペンチル)、フタル酸ジ(2,2,3-トリメチルブチル)、フタル酸ジn−オクチル、フタル酸ジ-2-エチルヘキシルなどが挙げられる。これらの中では、フタル酸ジイソブチルが特に好ましい。 Specific examples of the compound (IV) include dimethyl phthalate, methyl ethyl phthalate, diethyl phthalate, n-propyl phthalate, diisopropyl phthalate, di-butyl phthalate, diisobutyl phthalate, and di-n-phthalate. Pentyl, dineopentyl phthalate, di n-hexyl phthalate, di n-heptyl phthalate, di (methylhexyl) phthalate, di (dimethylpentyl) phthalate, di (ethylpentyl) phthalate, di (2, phthalate) 2,3-trimethylbutyl), din-octyl phthalate, di-2-ethylhexyl phthalate and the like. Of these, diisobutyl phthalate is particularly preferred.

本発明では、前記電子供与体(内部ドナー)として、前記化合物(IV)以外の別の電子供与体を用いてもよい。別の電子供与体としては、例えば、複数の原子を介して存在する2個以上のエーテル結合を有する化合物(以下「ポリエーテル化合物」ともいう。)が挙げられる。 In the present invention, another electron donor other than the compound (IV) may be used as the electron donor (internal donor). As another electron donor, for example, a compound having two or more ether bonds existing via a plurality of atoms (hereinafter, also referred to as “polyether compound”) can be mentioned.

前記ポリエーテル化合物としては、エーテル結合間に存在する原子が、炭素、ケイ素、酸素、窒素、イオウ、リン、ホウ素、またはこれらから選択される2種以上の原子である化合物などを挙げることができる。これらのうちエーテル結合間の原子に比較的嵩高い置換基が結合しており、2個以上のエーテル結合間に存在する原子に複数の炭素原子が含まれる化合物が好ましい。例えば、下記式(3)で表されるポリエーテル化合物が好ましい。 Examples of the polyether compound include compounds in which the atoms existing between the ether bonds are carbon, silicon, oxygen, nitrogen, sulfur, phosphorus, boron, or two or more kinds of atoms selected from these. .. Of these, a compound in which a relatively bulky substituent is bonded to the atom between the ether bonds and a plurality of carbon atoms are contained in the atom existing between two or more ether bonds is preferable. For example, a polyether compound represented by the following formula (3) is preferable.

Figure 0006848059
前記式(3)において、mは1〜10の整数、好ましくは3〜10の整数、より好ましくは3〜5の整数である。R11、R12、R31〜R36は、それぞれ独立に、水素原子、または炭素、水素、酸素、フッ素、塩素、臭素、ヨウ素、窒素、硫黄、リン、ホウ素およびケイ素から選択される少なくとも1種の元素を有する置換基である。R11およびR12は、それぞれ独立に、好ましくは炭素原子数1〜10の炭化水素基であり、より好ましくは炭素原子数2〜6の炭化水素基である。R31〜R36は、それぞれ独立に、好ましくは水素原子または炭素原子数1〜6の炭化水素基である。
Figure 0006848059
In the above formula (3), m is an integer of 1 to 10, preferably an integer of 3 to 10, and more preferably an integer of 3 to 5. R 11 , R 12 , R 31 to R 36 are each independently selected from a hydrogen atom or at least one selected from carbon, hydrogen, oxygen, fluorine, chlorine, bromine, iodine, nitrogen, sulfur, phosphorus, boron and silicon. It is a substituent having a seed element. R 11 and R 12 are each independently, preferably a hydrocarbon group having 1 to 10 carbon atoms, and more preferably a hydrocarbon group having 2 to 6 carbon atoms. R 31 to R 36 are each independently, preferably a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.

11およびR12の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、イソペンチル基、ネオペンチル基、ヘキシル基、へプチル基、オクチル基、2−エチルヘキシル基、デシル基、シクロペンチル基、シクロヘキシル基が挙げられる。これらの中では、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基が好ましい。R31〜R36の具体例としては、水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基が挙げられる。これらの中では、水素原子、メチル基が好ましい。任意のR11、R12、R31〜R36(好ましくはR11、R12)は、共同してベンゼン環以外の環を形成していてもよく、主鎖中に炭素以外の原子が含まれていてもよい。Specific examples of R 11 and R 12 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, isopentyl group, neopentyl group, hexyl group, heptyl group, octyl group, 2 -Ethylhexyl group, decyl group, cyclopentyl group, cyclohexyl group can be mentioned. Among these, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group are preferable. Specific examples of R 31 to R 36 include a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group. Among these, a hydrogen atom and a methyl group are preferable. Any R 11 , R 12 , R 31 to R 36 (preferably R 11 , R 12 ) may jointly form a ring other than the benzene ring, and the main chain contains an atom other than carbon. It may be.

前記ポリエーテル化合物の具体例としては、2,2−ジシクロヘキシル−1,3−ジメトキシプロパン、2,2−ジエチル−1,3−ジメトキシプロパン、2,2−ジプロピル−1,3−ジメトキシプロパン、2,2−ジブチル−1,3−ジメトキシプロパン、2−メチル−2−プロピル−1,3−ジメトキシプロパン、2−メチル−2−エチル−1,3−ジメトキシプロパン、2−メチル−2−イソプロピル−1,3−ジメトキシプロパン、2−メチル−2−シクロヘキシル−1,3−ジメトキシプロパン、2,2−ビス(2−シクロヘキシルエチル)−1,3−ジメトキシプロパン、2−メチル−2−イソブチル−1,3−ジメトキシプロパン、2−メチル−2−(2−エチルヘキシル)−1,3−ジメトキシプロパン、2,2−ジイソブチル−1,3−ジメトキシプロパン、2,2−ビス(シクロヘキシルメチル)−1,3−ジメトキシプロパン、2,2−ジイソブチル−1,3−ジエトキシプロパン、2,2−ジイソブチル−1,3−ジブトキシプロパン、2−イソブチル−2−イソプロピル−1,3−ジメトキシプロパン、2,2−ジ−s−ブチル−1,3−ジメトキシプロパン、2,2−ジ−t−ブチル−1,3−ジメトキシプロパン、2,2−ジネオペンチル−1,3−ジメトキシプロパン、2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパン、2−シクロヘキシル−2−シクロヘキシルメチル−1,3−ジメトキシプロパン、2,3−ジシクロヘキシル−1,4−ジエトキシブタン、2,3−ジイソプロピル−1,4−ジエトキシブタン、2,4−ジイソプロピル−1,5−ジメトキシペンタン、2,4−ジイソブチル−1,5−ジメトキシペンタン、2,4−ジイソアミル−1,5−ジメトキシペンタン、3−メトキシメチルテトラヒドロフラン、3−メトキシメチルジオキサン、1,2−ジイソブトキシプロパン、1,2−ジイソブトキシエタン、1,3−ジイソアミロキシエタン、1,3−ジイソアミロキシプロパン、1,3−ジイソネオペンチロキシエタン、1,3−ジネオペンチロキシプロパン、2,2−テトラメチレン−1,3−ジメトキシプロパン、2,2−ペンタメチレン−1,3−ジメトキシプロパン、2,2−ヘキサメチレン−1,3−ジメトキシプロパン、1,2−ビス(メトキシメチル)シクロヘキサン、2−シクロヘキシル−2−エトキシメチル−1,3−ジエトキシプロパン、2−シクロヘキシル−2−メトキシメチル−1,3−ジメトキシプロパン、2,2−ジイソブチル−1,3−ジメトキシシクロヘキサン、2−イソプロピル−2−イソアミル−1,3−ジメトキシシクロヘキサン、2−シクロヘキシル−2−メトキシメチル−1,3−ジメトキシシクロヘキサン、2−イソプロピル−2−メトキシメチル−1,3−ジメトキシシクロヘキサン、2−イソブチル−2−メトキシメチル−1,3−ジメトキシシクロヘキサン、2−シクロヘキシル−2−エトキシメチル−1,3−ジエトキシシクロヘキサン、2−シクロヘキシル−2−エトキシメチル−1,3−ジメトキシシクロヘキサン、2−イソプロピル−2−エトキシメチル−1,3−ジエトキシシクロヘキサン、2−イソプロピル−2−エトキシメチル−1,3−ジメトキシシクロヘキサン、2−イソブチル−2−エトキシメチル−1,3−ジエトキシシクロヘキサン、2−イソブチル−2−エトキシメチル−1,3−ジメトキシシクロヘキサン等を例示することができる。 Specific examples of the polyether compound include 2,2-dicyclohexyl-1,3-dimethoxypropane, 2,2-diethyl-1,3-dimethoxypropane, and 2,2-dipropyl-1,3-dimethoxypropane, 2. , 2-Dibutyl-1,3-dimethoxypropane, 2-methyl-2-propyl-1,3-dimethoxypropane, 2-methyl-2-ethyl-1,3-dimethoxypropane, 2-methyl-2-isopropyl- 1,3-Dimethoxypropane, 2-methyl-2-cyclohexyl-1,3-dimethoxypropane, 2,2-bis (2-cyclohexylethyl) -1,3-dimethoxypropane, 2-methyl-2-isobutyl-1 , 3-Dimethoxypropane, 2-methyl-2- (2-ethylhexyl) -1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxypropane, 2,2-bis (cyclohexylmethyl) -1, 3-Dimethoxypropane, 2,2-diisobutyl-1,3-diethoxypropane, 2,2-diisobutyl-1,3-dibutoxypropane, 2-isobutyl-2-isopropyl-1,3-dimethoxypropane, 2, 2-Di-s-butyl-1,3-dimethoxypropane, 2,2-di-t-butyl-1,3-dimethoxypropane, 2,2-dineopentyl-1,3-dimethoxypropane, 2-isopropyl-2 -Isopentyl-1,3-dimethoxypropane, 2-cyclohexyl-2-cyclohexylmethyl-1,3-dimethoxypropane, 2,3-dicyclohexyl-1,4-diethoxybutane, 2,3-diisopropyl-1,4- Diethoxybutane, 2,4-diisopropyl-1,5-dimethoxypentane, 2,4-diisobutyl-1,5-dimethoxypentane, 2,4-diisoamyl-1,5-dimethoxypentane, 3-methoxymethyl tetrahydrofuran, 3 −methoxymethyldioxane, 1,2-diisobutoxypropane, 1,2-diisobutoxyethane, 1,3-diisoamyloxyethane, 1,3-diisoamyloxypropane, 1,3-diisoneopentyroxy Ethane, 1,3-dineopentyroxypropane, 2,2-tetramethylene-1,3-dimethoxypropane, 2,2-pentamethylene-1,3-dimethoxypropane, 2,2-hexamethylene-1,3 -Dimethoxypropane, 1,2-bis (methoxymethyl) cyclohexane, 2-cyclohexyl-2-ethoxymethyl-1,3-di Ethoxypropane, 2-cyclohexyl-2-methoxymethyl-1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxycyclohexane, 2-isopropyl-2-isoamyl-1,3-dimethoxycyclohexane, 2-cyclohexyl -2-methoxymethyl-1,3-dimethoxycyclohexane, 2-isopropyl-2-methoxymethyl-1,3-dimethoxycyclohexane, 2-isobutyl-2-methoxymethyl-1,3-dimethoxycyclohexane, 2-cyclohexyl-2 -Ethoxymethyl-1,3-diethoxycyclohexane, 2-cyclohexyl-2-ethoxymethyl-1,3-dimethoxycyclohexane, 2-isopropyl-2-ethoxymethyl-1,3-diethoxycyclohexane, 2-isopropyl-2 Examples thereof include −ethoxymethyl-1,3-dimethoxycyclohexane, 2-isobutyl-2-ethoxymethyl-1,3-diethoxycyclohexane, 2-isobutyl-2-ethoxymethyl-1,3-dimethoxycyclohexane and the like. ..

これらの中では、1,3−ジエーテル類が好ましく、2−イソプロピル−2−イソブチル−1,3−ジメトキシプロパン、2,2−ジイソブチル−1,3−ジメトキシプロパン、2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパン、2,2−ジシクロヘキシル−1,3−ジメトキシプロパン、2,2−ビス(シクロヘキシルメチル)1,3−ジメトキシプロパンがより好ましい。これらの化合物は一種を用いてもよく、二種以上を併用してもよい。 Among these, 1,3-diethers are preferable, 2-isopropyl-2-isobutyl-1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxypropane, 2-isopropyl-2-isopentyl- More preferably, 1,3-dimethoxypropane, 2,2-dicyclohexyl-1,3-dimethoxypropane, and 2,2-bis (cyclohexylmethyl) 1,3-dimethoxypropane. One of these compounds may be used, or two or more of these compounds may be used in combination.

≪固体状チタン(a)の調製≫
前記固体状チタン(a)は、前記マグネシウム化合物と、前記チタン化合物と、前記電子供与体との接触により調製することができる。この際、固体状態のマグネシウム化合物を炭化水素溶媒に懸濁して用いることが好ましい。また、これら各成分を接触させる際に、液状形態のチタン化合物を1回用いて固形物(1)を生成させてもよく、得られた固形物(1)にさらに液状形態のチタン化合物を接触させて固形物(2)を生成させてもよい。さらに、この固形物(1)または(2)を必要に応じて炭化水素溶媒で洗浄してから固体状チタン(a)を調製することが好ましい。
<< Preparation of solid titanium (a) >>
The solid titanium (a) can be prepared by contacting the magnesium compound, the titanium compound, and the electron donor. At this time, it is preferable to suspend the magnesium compound in a solid state in a hydrocarbon solvent for use. Further, when the respective components are brought into contact with each other, the liquid titanium compound may be used once to generate the solid substance (1), and the obtained solid substance (1) is further contacted with the liquid titanium compound. It may be allowed to generate a solid substance (2). Further, it is preferable to wash the solid (1) or (2) with a hydrocarbon solvent, if necessary, and then prepare the solid titanium (a).

上記のような各成分の接触は、通常−70℃〜+200℃、好ましくは−50℃〜+150℃、より好ましくは−30℃〜+130℃の温度で行われる。固体状チタン(a)を調製する際に用いられる各成分の量は、調製方法によって異なり一概に規定できないが、例えばマグネシウム化合物1モル当り、電子供与体は0.01〜10モル、好ましくは0.1〜5モルの量で、チタン化合物は0.01〜1000モル、好ましくは0.1〜200モルの量で用いることができる。 The contact of each component as described above is usually carried out at a temperature of −70 ° C. to + 200 ° C., preferably −50 ° C. to + 150 ° C., more preferably −30 ° C. to + 130 ° C. The amount of each component used in preparing the solid titanium (a) varies depending on the preparation method and cannot be unconditionally specified. For example, the electron donor is 0.01 to 10 mol, preferably 0 per mol of the magnesium compound. In an amount of .1-5 mol, the titanium compound can be used in an amount of 0.01-1000 mol, preferably 0.1-200 mol.

本発明では、このようにして得られた固形物(1)または(2)をそのまま固体状チタン(i)として用いることができるが、この固形物を0〜150℃の炭化水素溶媒で洗浄することが好ましい。 In the present invention, the solid (1) or (2) thus obtained can be used as it is as the solid titanium (i), and the solid is washed with a hydrocarbon solvent at 0 to 150 ° C. Is preferable.

この炭化水素溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカン、セタンなどの脂肪族炭化水素溶媒、トルエン、キシレン、ベンゼンなどの非ハロゲン系芳香族炭化水素溶媒、または、ハロゲン含有芳香族炭化水素溶媒などが用いられる。これらのうち、脂肪族炭化水素溶媒またはハロゲンを含まない芳香族炭化水素溶媒が好ましく用いられる。 Examples of the hydrocarbon solvent include aliphatic hydrocarbon solvents such as hexane, heptane, octane, nonane, decane and cetan, non-halogen aromatic hydrocarbon solvents such as toluene, xylene and benzene, and halogen-containing aromatic solvents. A hydrocarbon solvent or the like is used. Of these, an aliphatic hydrocarbon solvent or a halogen-free aromatic hydrocarbon solvent is preferably used.

固形物の洗浄に際しては、炭化水素溶媒は、固形物1gに対して通常10〜500ml好ましくは20〜100mlの量で用いられる。このようにして得られる固体状チタン(a)は、マグネシウム、チタン、ハロゲンおよび電子供与体を含有している。この固体状チタン(a)では、電子供与体/チタン(重量比)が6以下であることが好ましい。 When cleaning the solid matter, the hydrocarbon solvent is usually used in an amount of 10 to 500 ml, preferably 20 to 100 ml per 1 g of the solid matter. The solid titanium (a) thus obtained contains magnesium, titanium, halogen and an electron donor. In this solid titanium (a), the electron donor / titanium (weight ratio) is preferably 6 or less.

このようにして得られた固体状チタン(a)は、室温でのヘキサン洗浄によってチタンが脱離することがない。 The solid titanium (a) thus obtained is not desorbed by hexane washing at room temperature.

≪(b)芳香族炭化水素≫
前記固体状チタン(a)との接触に用いられる芳香族炭化水素(b)としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、これらのハロゲン含有炭化水素などが挙げられる。これらの中では、キシレン(特にパラキシレン)が好ましい。前記固体状チタン(a)を、このような芳香族炭化水素(b)と接触させることにより、低立体規則性成分を副生する、いわゆる「剰余チタン化合物」を低減することができる。
≪ (b) Aromatic hydrocarbons ≫
Examples of the aromatic hydrocarbon (b) used for contact with the solid titanium (a) include benzene, toluene, xylene, ethylbenzene, and halogen-containing hydrocarbons thereof. Of these, xylene (particularly paraxylene) is preferred. By contacting the solid titanium (a) with such an aromatic hydrocarbon (b), it is possible to reduce the so-called "surplus titanium compound" that by-produces a low stereoregular component.

≪(c)液状チタン≫
前記固体状チタン(a)との接触に用いられる液状チタン(c)としては、該固体状チタン(a)を調製する際に用いたチタン化合物と同様のものを挙げることができる。それらの中でも、テトラハロゲン化チタンが好ましく、特に四塩化チタンが好ましい。
≪ (c) Liquid titanium ≫
Examples of the liquid titanium (c) used for contact with the solid titanium (a) include those similar to the titanium compound used when preparing the solid titanium (a). Among them, titanium tetrahalogenate is preferable, and titanium tetrachloride is particularly preferable.

≪(d)電子供与体≫
前記固体状チタン(a)との接触に用いられる電子供与体(d)の例としては、上述した電子供与体(内部ドナー)で例示したものと同じものを挙げることができる。それらの中でも、前記固体状チタン(a)の調製に使用した電子供与体と同じものを用いることが好ましい。
≪ (d) Electron donor ≫
Examples of the electron donor (d) used for contact with the solid titanium (a) include the same as those exemplified in the above-mentioned electron donor (internal donor). Among them, it is preferable to use the same electron donor used for the preparation of the solid titanium (a).

≪固体状チタン触媒成分(i)の調製方法≫
固体状チタン(a)、芳香族炭化水素(b)、液状チタン(c)および電子供与体(d)の接触は、通常110〜160℃、好ましくは115℃〜150℃の温度で、1分間〜10時間、好ましくは10分間〜5時間行われる。
<< Preparation method of solid titanium catalyst component (i) >>
The contact of the solid titanium (a), the aromatic hydrocarbon (b), the liquid titanium (c) and the electron donor (d) is usually at a temperature of 110 to 160 ° C, preferably 115 ° C to 150 ° C for 1 minute. It is carried out for 10 hours, preferably 10 minutes to 5 hours.

この接触では、芳香族炭化水素(b)は、固体状チタン(a)1gに対して通常1〜10000ml、好ましくは5〜5000mlより好ましくは10〜1000mlの量で用いられる。液状チタン(c)は、芳香族炭化水素(b)100mlに対して通常0.1〜50ml、好ましくは0.2〜20ml、特に好ましくは0.3〜10mlの範囲で用いられる。電子供与体(d)は、芳香族炭化水素(b)100mlに対して通常0.01〜10ml、好ましくは0.02〜5ml、特に好ましくは0.03〜3mlの量で用いられる。 In this contact, the aromatic hydrocarbon (b) is used in an amount of usually 1 to 10000 ml, preferably 5 to 5000 ml, more preferably 10 to 1000 ml per 1 g of solid titanium (a). The liquid titanium (c) is usually used in the range of 0.1 to 50 ml, preferably 0.2 to 20 ml, particularly preferably 0.3 to 10 ml with respect to 100 ml of the aromatic hydrocarbon (b). The electron donor (d) is usually used in an amount of 0.01 to 10 ml, preferably 0.02 to 5 ml, particularly preferably 0.03 to 3 ml with respect to 100 ml of the aromatic hydrocarbon (b).

固体状チタン(a)、芳香族炭化水素(b)、液状チタン(c)および電子供与体(d)の接触順序は、特に限定されることなく、同時または逐次に接触させることができる。 The contact order of the solid titanium (a), the aromatic hydrocarbon (b), the liquid titanium (c) and the electron donor (d) is not particularly limited, and the solid titanium (a), the aromatic hydrocarbon (b), and the electron donor (d) can be contacted simultaneously or sequentially.

固体状チタン(a)、芳香族炭化水素(b)、液状チタン(c)および電子供与体(d)は、不活性ガス雰囲気下、攪拌下に接触させることが好ましい。例えば、充分に窒素置換された攪拌機付きガラス製フラスコ中で、固体状チタン(a)、芳香族炭化水素(b)、液状チタン(c)および電子供与体(d)のスラリーを、上記温度で、攪拌機を100〜1000rpm、好ましくは200〜800rpmの回転数で、上記の時間、攪拌して、固体状チタン(a)、芳香族炭化水素(b)、液状チタン(c)および電子供与体(d)を接触させることが望ましい。 It is preferable that the solid titanium (a), the aromatic hydrocarbon (b), the liquid titanium (c) and the electron donor (d) are brought into contact with each other under an inert gas atmosphere and stirring. For example, in a fully nitrogen-substituted glass flask with a stirrer, a slurry of solid titanium (a), aromatic hydrocarbons (b), liquid titanium (c) and electron donor (d) is placed at the above temperatures. , Stirring the stirrer at 100-1000 rpm, preferably 200-800 rpm for the above time to stir solid titanium (a), aromatic hydrocarbons (b), liquid titanium (c) and electron donors ( It is desirable to bring d) into contact.

接触後の固体状チタン(a)と芳香族炭化水素(b)とは、濾過により分離することができる。 The solid titanium (a) and the aromatic hydrocarbon (b) after contact can be separated by filtration.

このような固体状チタン(a)と芳香族炭化水素(b)との接触により、固体状チタン(a)よりもチタン含有量が減少された固体状チタン触媒成分(i)が得られる。具体的には、チタン含有量が固体状チタン(a)よりも25重量%以上、好ましくは30〜95重量%より好ましくは40〜90重量%少ない固体状チタン触媒成分(i)が得られる。 By such contact between the solid titanium (a) and the aromatic hydrocarbon (b), the solid titanium catalyst component (i) having a lower titanium content than the solid titanium (a) can be obtained. Specifically, the solid titanium catalyst component (i) having a titanium content of 25% by weight or more, preferably 30 to 95% by weight, preferably 40 to 90% by weight less than that of the solid titanium (a) can be obtained.

上記のようにして得られる固体状チタン触媒成分(i)は、マグネシウム、チタン、ハロゲンおよび電子供与体を含み、かつ、下記要件(k1)〜(k4)を満たし、好ましくは下記要件(k5)をさらに満たしている。 The solid titanium catalyst component (i) obtained as described above contains magnesium, titanium, halogen and an electron donor, and satisfies the following requirements (k1) to (k4), preferably the following requirements (k5). Is further satisfied.

(k1)固体状チタン触媒成分(i)のチタン含有量は2.5重量%以下、好ましくは2.2〜0.1重量%、より好ましくは2.0〜0.2重量%、特に好ましくは1.8〜0.3重量%、最も好ましくは1.5〜0.4重量%である。 (K1) The titanium content of the solid titanium catalyst component (i) is 2.5% by weight or less, preferably 2.2 to 0.1% by weight, more preferably 2.0 to 0.2% by weight, and particularly preferably. Is 1.8 to 0.3% by weight, most preferably 1.5 to 0.4% by weight.

(k2)電子供与体の含有量は8〜30重量%、好ましくは9〜25重量%、より好ましくは10〜20重量%である。 The content of the (k2) electron donor is 8 to 30% by weight, preferably 9 to 25% by weight, and more preferably 10 to 20% by weight.

(k3)電子供与体/チタン(重量比)は7以上、好ましくは7.5〜35、より好ましくは8〜30、特に好ましくは8.5〜25である。 (K3) The electron donor / titanium (weight ratio) is 7 or more, preferably 7.5 to 35, more preferably 8 to 30, and particularly preferably 8.5 to 25.

(k4)固体状チタン触媒成分(i)は、室温でのヘキサン洗浄によってチタンが実質的に脱離されることがない。なお、固体状チタン触媒成分(i)のヘキサン洗浄とは、固体状チタン触媒成分(i)1gに対して、通常10〜500ml、好ましくは20〜100mlの量のヘキサンで5分間洗浄することをいう。室温とは15〜25℃である。また、チタンが実質的に脱離されることがないとは、ヘキサン洗浄液中のチタン濃度が0.1g/リットル以下であることを意味する。 (K4) The solid titanium catalyst component (i) is substantially free of titanium by hexane washing at room temperature. The hexane cleaning of the solid titanium catalyst component (i) means that 1 g of the solid titanium catalyst component (i) is washed with hexane in an amount of usually 10 to 500 ml, preferably 20 to 100 ml for 5 minutes. Say. Room temperature is 15 to 25 ° C. Further, the fact that titanium is not substantially desorbed means that the titanium concentration in the hexane cleaning solution is 0.1 g / liter or less.

(k5)固体状チタン触媒成分(i)は、平均粒径が5〜70μmであり、好ましくは7〜65μmであり、より好ましくは8〜60μmであり、特に好ましくは10〜55μmである。 The solid titanium catalyst component (i) has an average particle size of 5 to 70 μm, preferably 7 to 65 μm, more preferably 8 to 60 μm, and particularly preferably 10 to 55 μm.

ここで、マグネシウム、ハロゲン、チタンおよび電子供与体の量は、それぞれ固体状チタン触媒成分(i)の単位重量あたりの重量%であり、マグネシウム、ハロゲンおよびチタンはプラズマ発光分光分析(ICP法)により、電子供与体はガスクロマトグラフィーにより定量される。また、触媒の平均粒径は、デカリン溶媒を用いた遠心沈降法により測定される。 Here, the amounts of magnesium, halogen, titanium and electron donor are each% by weight per unit weight of the solid titanium catalyst component (i), and magnesium, halogen and titanium are obtained by plasma emission spectroscopy (ICP method). , Electron donors are quantified by gas chromatography. The average particle size of the catalyst is measured by a centrifugal sedimentation method using a decalin solvent.

上記のような固体状チタン触媒成分(i)は、オレフィン重合用触媒成分として用いると、プロピレンを高活性で重合させることができるとともに、立体規則性の低いポリプロピレンの生成量が少なく、高立体規則性のポリプロピレンを安定に製造することができる。 When the solid titanium catalyst component (i) as described above is used as a catalyst component for olefin polymerization, propylene can be polymerized with high activity, and the amount of polypropylene having low stereoregularity is small, resulting in high stereoregularity. Sexual polypropylene can be stably produced.

<有機ケイ素化合物成分(ii)>
本発明のオレフィン重合用触媒を構成する有機ケイ素化合物成分(ii)は、下記式(II)で表わされる。
<Organosilicon compound component (ii)>
The organosilicon compound component (ii) constituting the catalyst for olefin polymerization of the present invention is represented by the following formula (II).

1Si(OR22(NR34) ・・・(II)
式(II)中、R1は2級または3級の炭素数1〜20の炭化水素基を示し、R2は炭素数1〜4の炭化水素基を示し、R3は炭素数1〜12の炭化水素基または水素原子を示し、R4は炭素数1〜12の炭化水素基を示す。
R 1 Si (OR 2 ) 2 (NR 3 R 4 ) ・ ・ ・ (II)
In formula (II), R 1 represents a secondary or tertiary hydrocarbon group having 1 to 20 carbon atoms, R 2 represents a hydrocarbon group having 1 to 4 carbon atoms, and R 3 represents a hydrocarbon group having 1 to 12 carbon atoms. Indicates a hydrocarbon group or a hydrogen atom of, and R 4 indicates a hydrocarbon group having 1 to 12 carbon atoms.

1としては、脂環式炭化水素基、例えば、シクロブチル基、シクロペンチル基、シクロペンテニル基、シクロペンタジエニル基、シクロヘキシル基、シクロヘキシニル基、置換基を有するこれらの基などが挙げられる。Examples of R 1 include an alicyclic hydrocarbon group, for example, a cyclobutyl group, a cyclopentyl group, a cyclopentenyl group, a cyclopentadienyl group, a cyclohexyl group, a cyclohexynyl group, these groups having a substituent and the like.

また、R1として、Siに隣接する炭素が2級炭素である炭化水素基としては、i-プロピル基、s-ブチル基、s-アミル基、α-メチルベンジル基などが挙げられ、Siに隣接する炭素が3級炭素である炭化水素基としては、tert-ブチル基、tert-アミル基、α,α'-ジメチルベンジル基、アドマンチル基などが挙げられる。Further, as R 1 , examples of the hydrocarbon group in which the carbon adjacent to Si is a secondary carbon include an i-propyl group, an s-butyl group, an s-amyl group, an α-methylbenzyl group, and the like. Examples of the hydrocarbon group in which the adjacent carbon is a tertiary carbon include a tert-butyl group, a tert-amyl group, an α, α'-dimethylbenzyl group, an admantyl group and the like.

これらの中では、シクロペンチル基およびシクロブチル基が好ましく、特にシクロペンチル基が好ましい。 Among these, a cyclopentyl group and a cyclobutyl group are preferable, and a cyclopentyl group is particularly preferable.

2としては、例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、ter−ブチル基、sec−ブチル基などが挙げられる。これらの中ではメチル基およびエチル基が特に好ましい。 The R 2, for example, a methyl group, an ethyl group, n- propyl group, iso- propyl, n- butyl, iso- butyl group, ter t - butyl group, etc. sec- butyl group. Of these, methyl and ethyl groups are particularly preferred.

3としては、例えば、水素、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、ter−ブチル基、sec−ブチル基、n−ペンチル基、iso−ペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、オクチル基などが挙げられる。これらの中では、エチル基が特に好ましい。 The R 3, for example, hydrogen, methyl group, ethyl group, n- propyl group, iso- propyl, n- butyl, iso- butyl group, ter t - butyl group, sec- butyl group, n- pentyl group , Iso-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, octyl group and the like. Of these, the ethyl group is particularly preferred.

4としては、例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、ter−ブチル基、sec−ブチル基、n−ペンチル基、iso−ペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、オクチル基などが挙げられる。これらの中では、エチル基が特に好ましい。
The R 4, for example, a methyl group, an ethyl group, n- propyl group, iso- propyl, n- butyl, iso- butyl group, ter t - butyl group, sec- butyl group, n- pentyl group, iso -Pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, octyl group and the like can be mentioned. Of these, the ethyl group is particularly preferred.

前記式(II)で表わされる有機ケイ素化合物の具体例としては、シクロペンチルジエチルアミノジメトキシシラン、シクロペンテニルジエチルアミノジメトキシシラン、シクロペンタジエニルジエチルアミノジメトキシシラン、シクロヘキシルジエチルアミノジメトキシシラン、イソプロピルジエチルアミノジメトキシシラン、tert-ブチルジエチルアミノジメトキシシランなどが挙げられる。 Specific examples of the organosilicon compound represented by the above formula (II) include cyclopentyldiethylaminodimethoxysilane, cyclopentenyldiethylaminodimethoxysilane, cyclopentadienyldiethylaminodimethoxysilane, cyclohexyldiethylaminodimethoxysilane, isopropyldiethylaminodimethoxysilane, and tert-butyldiethylamino. Examples thereof include dimethoxysilane.

前記式(II)で表わされる有機ケイ素化合物の中では、高立体規則性、特に、長いメソ連鎖長及びTREF高温溶出量割合を高める観点から、シクロペンチルジエチルアミノジメトキシシランが好ましい。 Among the organosilicon compounds represented by the formula (II), cyclopentyldiethylaminodimethoxysilane is preferable from the viewpoint of increasing the high stereoregularity, particularly the long mesochain length and the high temperature elution amount ratio of TREF.

上述した有機ケイ素化合物成分(ii)は、1種単独で用いてもよく、2種以上を併用してもよい。 The above-mentioned organosilicon compound component (ii) may be used alone or in combination of two or more.

前記固体状チタン触媒成分(i)と前記有機ケイ素化合物成分(ii)とを組み合わせて用いることにより、これまでにないレベルの高立体規則性を有するプロピレン系重合体を得ることができる。 By using the solid titanium catalyst component (i) and the organosilicon compound component (ii) in combination, a propylene-based polymer having an unprecedented level of high stereoregularity can be obtained.

<有機金属化合物成分(iii)>
本発明のオレフィン重合用触媒を構成する有機金属化合物成分(iii)は、周期律表の1族、2族または13族に属する金属を含む有機金属化合物であり、例えば、有機アルミニウム化合物、第1族金属とアルミニウムとの錯アルキル化合物、第2族金属の有機金属化合物などが挙げられる。なお、有機金属化合物成分(iii)は、2種以上を併用してもよい。
<Organometallic compound component (iii)>
The organometallic compound component (iii) constituting the olefin polymerization catalyst of the present invention is an organometallic compound containing a metal belonging to Group 1, Group 2, or Group 13 of the periodic table, and is, for example, an organoaluminum compound, the first. Examples thereof include a complex alkyl compound of a group metal and aluminum, an organometallic compound of a group 2 metal, and the like. Two or more kinds of organometallic compound component (iii) may be used in combination.

≪有機アルミニウム化合物≫
前記有機アルミニウム化合物は、例えば下記式で示される。
≪Organoaluminium compound≫
The organoaluminum compound is represented by, for example, the following formula.

a nAlX3-n
式中、Raは炭素原子数1〜12の炭化水素基であり、Xはハロゲンまたは水素であり、nは1〜3である。
R a n AlX 3-n
In the formula, Ra is a hydrocarbon group having 1 to 12 carbon atoms, X is a halogen or hydrogen, and n is 1 to 3.

aは、炭素原子数1〜12の炭化水素基、例えばアルキル基、シクロアルキル基またはアリール基であるが、具体的には、メチル、エチル、n-プロピル、イソプロピル、イソブチル、ペンチル、ヘキシル、オクチル、シクロペンチル基、シクロヘキシル、フェニル、トリルなどである。 Ra is a hydrocarbon group having 1 to 12 carbon atoms, for example, an alkyl group, a cycloalkyl group or an aryl group, and specifically, methyl, ethyl, n-propyl, isopropyl, isobutyl, pentyl, hexyl, etc. Octyl, cyclopentyl group, cyclohexyl, phenyl, trill and the like.

また、前記有機アルミニウム化合物として、下記式で示される化合物を挙げることもできる。 Further, as the organoaluminum compound, a compound represented by the following formula can also be mentioned.

a nAlY3-n
式中、Raは上記と同様であり、Yは−ORb基、−OSiRc 3基、−OAlRd 2基、−NRe 2基、−SiRf 3基または−N(Rg)AlRh 2基であり、nは1〜2であり、Rb、Rc、RdおよびRhはメチル基、エチル基、イソプロピル基、イソブチル基、シクロヘキシル基、フェニル基などであり、Reは水素、メチル基、エチル基、イソプロピル基、フェニル基、トリメチルシリル基などであり、RfおよびRgはメチル基、エチル基などである。
R a n AlY 3-n
In the formula, R a is the same as above, Y is -OR b group, -OSiR c 3 group, -OAlR d 2 group, -NR e 2 group, -SiR f 3 group or -N (R g ) AlR. h is 2 groups, n is 1 to 2, R b , R c , R d and R h are methyl group, ethyl group, isopropyl group, isobutyl group, cyclohexyl group, phenyl group and the like, and R e is Hydrogen, methyl group, ethyl group, isopropyl group, phenyl group, trimethylsilyl group and the like, and R f and R g are methyl group, ethyl group and the like.

このような有機アルミニウム化合物としては、具体的には、以下のような化合物が挙げられる。
・ Ra nAl(ORb)3-n で表される化合物、例えばジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジイソブチルアルミニウムメトキシドなど。
・Ra nAl(OSiRc)3-n で表される化合物、例えばEt2Al(OSiMe3)、(iso-Bu)2Al(OSiMe3)、(iso-Bu) 2Al(OSiEt3)など。
・Ra nAl(OAlRd 2)3-nEt2AlOAlEt2、(iso-Bu) 2AlOAl(iso-Bu) 2 など。
Specific examples of such organoaluminum compounds include the following compounds.
· R a n Al (OR b ) a compound represented by 3-n, e.g., dimethylaluminum methoxide, diethylaluminum ethoxide and diisobutylaluminum methoxide.
· R a n Al (OSiR c ) a compound represented by 3-n, e.g., Et 2 Al (OSiMe 3), (iso-Bu) 2 Al (OSiMe 3), (iso-Bu) 2 Al (OSiEt 3) Such.
· R a n Al (OAlR d 2) 3-n Et 2 AlOAlEt 2, such as (iso-Bu) 2 AlOAl ( iso-Bu) 2.

上記のような有機アルミニウム化合物のうちでも、Ra 3Alで表される有機アルミニウム化合物が好ましく用いられる。Among the above-mentioned organoaluminum compounds, the organoaluminum compound represented by Ra 3 Al is preferably used.

[オレフィン重合用触媒の製造方法]
前記オレフィン重合用触媒は、前記固体状チタン触媒成分(i)と、前記有機ケイ素化合物成分(ii)と、前記有機金属化合物成分(iii)とを接触させる工程を含む方法により製造することができる。
[Method for producing catalyst for olefin polymerization]
The olefin polymerization catalyst can be produced by a method including a step of contacting the solid titanium catalyst component (i), the organosilicon compound component (ii), and the organometallic compound component (iii). ..

本発明では、これら各成分(i)、(ii)、(iii)からオレフィン重合用触媒を形成する際に、必要に応じて他の成分を用いることもできる。 In the present invention, when forming a catalyst for olefin polymerization from each of these components (i), (ii), and (iii), other components can be used if necessary.

本発明では、上記のような各成分から予備重合触媒(p)が形成されていてもよい。予備重合触媒(p)は、上述した各成分(i)、(ii)、(iii)および必要に応じて用いられる他の成分の存在下に、プロピレンを予備重合させることにより形成される。このような予備重合触媒(p)は、通常、有機ケイ素化合物(ii)および有機金属化合物(iii)とともにオレフィン重合用触媒を形成するが、予備重合触媒(p)のみをオレフィン重合用触媒として用いることができる場合もある。 In the present invention, the prepolymerization catalyst (p) may be formed from each of the above components. The prepolymerization catalyst (p) is formed by prepolymerizing propylene in the presence of the above-mentioned components (i), (ii), (iii) and other components used as needed. Such a prepolymerization catalyst (p) usually forms a catalyst for olefin polymerization together with the organic silicon compound (ii) and the organic metal compound (iii), but only the prepolymerization catalyst (p) is used as the catalyst for olefin polymerization. In some cases it can be done.

[プロピレン系重合体の製造方法]
本発明のプロピレン系重合体の製造方法では、上述したオレフィン重合用触媒の存在下でプロピレンを重合させる。
[Method for producing propylene polymer]
In the method for producing a propylene-based polymer of the present invention, propylene is polymerized in the presence of the above-mentioned olefin polymerization catalyst.

なお、プロピレンの重合を行う際に、プロピレンに加えて、少量のプロピレン以外の他のオレフィンまたは少量のジエン化合物を重合系内に共存させてランダム共重合体を製造することもできる。このようなプロピレン以外の他のオレフィンとしては、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、3-メチル-1-ブテンなどの炭素数2〜8のオレフィンが挙げられる。これらの中ではエチレンが好ましい。ランダム共重合体の場合、プロピレン以外の他のコモノマーの含有量は、好ましくは6モル%以下、より好ましくは3モル%以下である。 When polymerizing propylene, in addition to propylene, a small amount of other olefins other than propylene or a small amount of diene compound may coexist in the polymerization system to produce a random copolymer. Examples of such olefins other than propylene include ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, and 3-methyl-. Examples thereof include olefins having 2 to 8 carbon atoms such as 1-butene. Of these, ethylene is preferred. In the case of the random copolymer, the content of the comonomer other than propylene is preferably 6 mol% or less, more preferably 3 mol% or less.

本発明では、重合は溶液重合、懸濁重合などの液相重合法または気相重合法いずれにおいても実施することができる。重合がスラリー重合の反応形態を採る場合、反応溶媒として、不活性有機溶媒を用いることもできるし、反応温度において液状のオレフィンを用いることもできる。 In the present invention, the polymerization can be carried out by either a liquid phase polymerization method such as solution polymerization or suspension polymerization or a gas phase polymerization method. When the polymerization takes the reaction form of slurry polymerization, an inert organic solvent can be used as the reaction solvent, or a liquid olefin at the reaction temperature can be used.

不活性有機溶媒としては、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;脂環族炭化水素;芳香族炭化水素;ハロゲン化炭化水素、あるいはこれらの接触物などを挙げることができる。これらの中では、特に脂肪族炭化水素を用いることが好ましい。 Specific examples of the inert organic solvent include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; alicyclic hydrocarbons; aromatic hydrocarbons; halogenated hydrocarbons. Examples thereof include hydrogen and contact materials thereof. Among these, it is particularly preferable to use an aliphatic hydrocarbon.

重合に際しては、固体状チタン触媒成分(i)または予備重合触媒(p)は、重合容積1リットル当りチタン原子に換算して、通常は約1×10-5〜1ミリモル、好ましくは約1×10-4〜0.1ミリモルの量で用いられる。During polymerization, the solid titanium catalyst component (i) or prepolymerization catalyst (p) is usually about 1 × 10 -5 to 1 mmol, preferably about 1 ×, in terms of titanium atoms per liter of polymerization volume. It is used in an amount of 10-4 to 0.1 mmol.

有機ケイ素化合物(ii)は、有機金属化合物(iii)の金属原子1モルに対し、通常約0.001モル〜10モル、好ましくは0.01モル〜5モルの量で用いられる。 The organosilicon compound (ii) is usually used in an amount of about 0.001 mol to 10 mol, preferably 0.01 mol to 5 mol, based on 1 mol of the metal atom of the organometallic compound (iii).

有機金属化合物(iii)は、該化合物(iii)中の金属原子が重合系中のチタン原子1モルに対し、通常約1〜2000モル、好ましくは約2〜500モルとなるような量で用いられる。 The organometallic compound (iii) is used in an amount such that the metal atom in the compound (iii) is usually about 1 to 2000 mol, preferably about 2 to 500 mol, with respect to 1 mol of the titanium atom in the polymerization system. Be done.

なお、この重合時に予備重合触媒(p)を用いると、有機ケイ素化合物(ii)および/または有機金属化合物(iii)を添加しなくてもよい場合がある。予備重合触媒(p)、成分(ii)および成分(iii)からオレフィン重合用触媒が形成されるときには、これら各成分(ii)および(iii)は上記のような量で用いることができる。 If the prepolymerization catalyst (p) is used during this polymerization, it may not be necessary to add the organosilicon compound (ii) and / or the organometallic compound (iii). When the catalyst for olefin polymerization is formed from the prepolymerization catalyst (p), the component (ii) and the component (iii), each of these components (ii) and (iii) can be used in the above amounts.

重合時に水素を用いれば、得られるプロピレン重合体の分子量を調節することができ、MFRの大きい重合体が得られる。 If hydrogen is used at the time of polymerization, the molecular weight of the obtained propylene polymer can be adjusted, and a polymer having a large MFR can be obtained.

本発明では、重合は、通常、約20〜150℃、好ましくは約50〜100℃の温度で、また常圧〜100kg/cm2、好ましくは約2〜50kg/cm2の圧力下で行われる。In the present invention, the polymerization is usually carried out at a temperature of about 20 to 150 ° C., preferably about 50 to 100 ° C., and under a pressure of normal pressure to 100 kg / cm 2 , preferably about 2 to 50 kg / cm 2. ..

本発明では、重合を、バッチ式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を、反応条件を変えて2段以上に分けて行うこともできる。また、本発明では、プロピレンの単独重合体を製造してもよく、またプロピレン以外のオレフィンからランダム共重合体またはブロック共重合体などを製造してもよい。 In the present invention, the polymerization can be carried out by any of a batch method, a semi-continuous method and a continuous method. Further, the polymerization can be carried out in two or more stages by changing the reaction conditions. Further, in the present invention, a homopolymer of propylene may be produced, or a random copolymer, a block copolymer or the like may be produced from an olefin other than propylene.

[プロピレン系樹脂組成物]
本発明のプロピレン系樹脂組成物は、上述した本発明のプロピレン系重合体(以下「プロピレン系重合体(A)」ともいう。)を必須構成成分として含む樹脂組成物である。本発明のプロピレン系樹脂組成物を構成する前記プロピレン系重合体(A)以外の成分としては、特に限定されず、用途に応じて公知の成分を配合することができる。
[Propylene resin composition]
The propylene-based resin composition of the present invention is a resin composition containing the above-mentioned propylene-based polymer of the present invention (hereinafter, also referred to as “propylene-based polymer (A)”) as an essential constituent component. The components other than the propylene-based polymer (A) constituting the propylene-based resin composition of the present invention are not particularly limited, and known components can be blended depending on the intended use.

本発明のプロピレン系樹脂組成物の好ましい態様としては、
プロピレン単独重合体部とプロピレン・α−オレフィン共重合体部とからなるプロピレン系ブロック共重合体(C)20〜80質量%、
エチレンに由来する構成単位50〜95モル%と、炭素数3〜20のα−オレフィンに由来する構成単位5〜50モル%とを含有するエチレン・α−オレフィン共重合体(D)1〜50質量%、および
無機充填材(E)0〜70質量%
を含み(ただし、成分(C)、(D)および(E)の合計を100質量%とする。)、
前記プロピレン系ブロック共重合体(C)が、前記プロピレン単独重合体部として、前記プロピレン系重合体(A)60〜99質量%、および、前記プロピレン・α−オレフィン共重合体部として、プロピレンに由来する構成単位55〜90モル%と、プロピレン以外の炭素数2〜20のα−オレフィンに由来する構成単位10〜45モル%とを含有するプロピレン・α−オレフィン共重合体(B)1〜40質量%を含む(ただし、成分(A)と(B)の合計を100質量%とする。)、
プロピレン系樹脂組成物(以下「第1の組成物」ともいう。);
前記プロピレン系重合体(A)100質量部、および
核剤(F)0.01〜10質量部
を含むプロピレン系樹脂組成物(以下「第2の組成物」ともいう。);ならびに、
前記プロピレン系重合体(A)および前記プロピレン系ブロック共重合体(C)からなる群より選ばれる少なくとも1種の成分70〜99.5質量%と、
無機繊維(G)0.5〜30質量%と
を含む(ただし、成分(A)、(C)および(G)の合計を100質量%とする。)プロピレン系樹脂組成物(以下「第3の組成物」ともいう。)
などが挙げられる。以下、各組成物について説明する。
A preferred embodiment of the propylene-based resin composition of the present invention is
20 to 80% by mass of a propylene-based block copolymer (C) composed of a propylene homopolymer portion and a propylene / α-olefin copolymer portion,
Ethylene-α-olefin copolymers (D) 1 to 50 containing 50 to 95 mol% of a structural unit derived from ethylene and 5 to 50 mol% of a structural unit derived from an α-olefin having 3 to 20 carbon atoms. Mass% and Inorganic Filler (E) 0-70 Mass%
(However, the total of the components (C), (D) and (E) is 100% by mass).
The propylene-based block copolymer (C) is converted into propylene as the propylene homopolymer portion, 60 to 99% by mass of the propylene-based polymer (A), and as the propylene / α-olefin copolymer portion. Propylene / α-olefin copolymer (B) 1 to contain a constituent unit of 55 to 90 mol% derived from the constituent unit and a constituent unit of 10 to 45 mol% derived from an α-olefin having 2 to 20 carbon atoms other than propylene. Including 40% by mass (however, the total of the components (A) and (B) is 100% by mass).
Propylene-based resin composition (hereinafter, also referred to as "first composition");
A propylene-based resin composition containing 100 parts by mass of the propylene-based polymer (A) and 0.01 to 10 parts by mass of the nucleating agent (F) (hereinafter, also referred to as "second composition");
70 to 99.5% by mass of at least one component selected from the group consisting of the propylene-based polymer (A) and the propylene-based block copolymer (C).
A propylene-based resin composition containing 0.5 to 30% by mass of an inorganic fiber (G) (however, the total of the components (A), (C) and (G) is 100% by mass) (hereinafter, "third". Also referred to as "composition of")
And so on. Hereinafter, each composition will be described.

<第1の組成物>
本発明の第1の組成物は、前記プロピレン系ブロック共重合体(C)、前記エチレン・α−オレフィン共重合体(D)を含み、必要に応じて無機充填材(E)をさらに含む樹脂組成物であり、前記プロピレン系ブロック共重合体(C)は、前記プロピレン系重合体(A)と前記プロピレン・α−オレフィン共重合体(B)とを含む。このような本発明の第1の組成物は、成形時の流動性に優れるとともに、曲げ弾性率および耐衝撃性に優れた成形体を形成することができる。
<First composition>
The first composition of the present invention is a resin containing the propylene-based block copolymer (C) and the ethylene / α-olefin copolymer (D), and further containing an inorganic filler (E), if necessary. It is a composition, and the propylene-based block copolymer (C) contains the propylene-based polymer (A) and the propylene / α-olefin copolymer (B). Such a first composition of the present invention can form a molded product having excellent fluidity during molding and excellent flexural modulus and impact resistance.

本発明の第1の組成物では、前記プロピレン系ブロック共重合体(C)を構成する前記プロピレン系重合体(A)として、プロピレン単独重合体が用いられる。 In the first composition of the present invention, a propylene homopolymer is used as the propylene-based polymer (A) constituting the propylene-based block copolymer (C).

本発明の第1の組成物は、前記プロピレン系重合体(A)と前記プロピレン・α−オレフィン共重合体(B)とを混合してプロピレン系ブロック共重合体(C)を形成した後、前記エチレン・α−オレフィン共重合体(D)および必要に応じて前記無機充填材(E)を混合することにより、調製することができる。 In the first composition of the present invention, the propylene-based polymer (A) and the propylene / α-olefin copolymer (B) are mixed to form a propylene-based block copolymer (C), and then the propylene-based block copolymer (C) is formed. It can be prepared by mixing the ethylene / α-olefin copolymer (D) and, if necessary, the inorganic filler (E).

≪プロピレン系ブロック共重合他(C)≫
前記プロピレン系ブロック共重合体(C)は、プロピレン単独重合体部として前記プロピレン系重合体(A)を60〜99質量%、好ましくは70〜97質量%、より好ましくは75〜95質量%の範囲で含み、前記プロピレン・α−オレフィン共重合体(B)を1〜40質量%、好ましくは3〜30質量%、より好ましくは5〜25質量%の範囲で含む(ただし、成分(A)と(B)の合計を100質量%とする。)。
≪Propene block copolymerization, etc. (C) ≫
The propylene-based block copolymer (C) contains 60 to 99% by mass, preferably 70 to 97% by mass, and more preferably 75 to 95% by mass of the propylene-based polymer (A) as a propylene homopolymer portion. The propylene / α-olefin copolymer (B) is contained in the range of 1 to 40% by mass, preferably 3 to 30% by mass, and more preferably 5 to 25% by mass (however, the component (A)). And (B) are 100% by mass.).

このように前記プロピレン系重合体(A)および前記プロピレン・α−オレフィン共重合体(B)を用いてプロピレン系ブロック共重合体(C)を形成することにより、剛性や耐熱性と耐衝撃性とのバランスに優れた成形体を形成することができる。 By forming the propylene-based block copolymer (C) using the propylene-based polymer (A) and the propylene / α-olefin copolymer (B) in this way, rigidity, heat resistance, and impact resistance are formed. It is possible to form a molded product having an excellent balance with the above.

≪プロピレン・α−オレフィン共重合体(B)≫
前記プロピレン・α−オレフィン共重合体(B)は、プロピレンと、プロピレン以外の炭素数2〜20のα−オレフィンとの共重合体であり、プロピレンに由来する構成単位を55〜90モル%、好ましくは60〜85モル%の範囲内で含有し、前記α−オレフィンに由来する構成単位を10〜45モル%、好ましくは15〜40モル%の範囲内で含有する(ただし、プロピレンに由来する構成単位とα−オレフィンに由来する構成単位の合計を100モル%とする。)。
≪Propene / α-olefin copolymer (B) ≫
The propylene / α-olefin copolymer (B) is a copolymer of propylene and an α-olefin having 2 to 20 carbon atoms other than propylene, and contains 55 to 90 mol% of a constituent unit derived from propylene. It is preferably contained in the range of 60 to 85 mol%, and the constituent unit derived from the α-olefin is contained in the range of 10 to 45 mol%, preferably 15 to 40 mol% (provided that it is derived from propylene). The total of the structural unit and the structural unit derived from the α-olefin is 100 mol%).

プロピレン以外の炭素数2〜20のα−オレフィンとしては、エチレン、1−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセンなどが挙げられる。これらは1種を用いてもよく、2種以上を併用してもよい。これらの中では、エチレンが好ましい。 Examples of α-olefins having 2 to 20 carbon atoms other than propylene include ethylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, and 3-methyl-1. -Pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene and the like can be mentioned. One of these may be used, or two or more thereof may be used in combination. Of these, ethylene is preferred.

前記プロピレン・α−オレフィン共重合体(B)のMFR(ASTM D1238E、測定温度230℃、荷重2.16kg)は、好ましくは0.1g/10分以上、より好ましくは0.3〜20g/10分である。 The MFR (ASTM D1238E, measurement temperature 230 ° C., load 2.16 kg) of the propylene / α-olefin copolymer (B) is preferably 0.1 g / 10 minutes or more, more preferably 0.3 to 20 g / 10. Minutes.

前記プロピレン・α−オレフィン共重合体(B)は、種々公知の製造方法、例えば、メタロセン触媒の存在下、プロピレンとプロピレン以外の炭素数2〜20のα−オレフィンとを共重合させることにより製造することができる。 The propylene / α-olefin copolymer (B) is produced by various known production methods, for example, by copolymerizing propylene with an α-olefin having 2 to 20 carbon atoms other than propylene in the presence of a metallocene catalyst. can do.

前記プロピレン・α−オレフィン共重合体(B)は、1種を用いてもよく、2種以上を併用してもよい。 As the propylene / α-olefin copolymer (B), one type may be used, or two or more types may be used in combination.

≪エチレン・α−オレフィン共重合体(D)≫
前記エチレン・α−オレフィン共重合体(D)は、エチレンと炭素数3〜20のα−オレフィンとのランダム共重合体であり、エチレンに由来する構成単位を50〜95モル%、好ましくは55〜90モル%の範囲内で含有し、前記α−オレフィンに由来する構成単位を5〜50モル%、好ましくは10〜45モル%の範囲内で含有する。前記エチレン・α−オレフィン共重合体(D)を前記プロピレン系ブロック共重合体(C)に配合することにより、耐衝撃性をさらに向上させることができる。
<< Ethylene / α-olefin copolymer (D) >>
The ethylene / α-olefin copolymer (D) is a random copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms, and has a constituent unit derived from ethylene of 50 to 95 mol%, preferably 55. It is contained in the range of ~ 90 mol%, and the structural unit derived from the α-olefin is contained in the range of 5 to 50 mol%, preferably 10 to 45 mol%. By blending the ethylene / α-olefin copolymer (D) with the propylene-based block copolymer (C), the impact resistance can be further improved.

炭素数3〜20のα−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセンなどが挙げられる。これらは1種を用いてもよく、2種以上を併用してもよい。これらの中では、プロピレン、1−ブテン、1−ヘキセン、1−オクテンが好ましく、1−ブテンおよび1−オクテンがより好ましい。 Examples of the α-olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, and the like. Examples thereof include 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosen. One of these may be used, or two or more thereof may be used in combination. Among these, propylene, 1-butene, 1-hexene and 1-octene are preferable, and 1-butene and 1-octene are more preferable.

前記エチレン・α−オレフィン共重合体(D)のMFR(ASTM D1238E、測定温度230℃、荷重2.16kg)は、好ましくは0.1〜50g/10分、より好ましくは0.3〜20g/10分、さらに好ましくは0.5〜10g/10分である。また、前記エチレン・α−オレフィン共重合体(D)の密度は、好ましくは0.850〜0.920kg/m3、より好ましくは0.855〜0.900kg/m3である。The MFR (ASTM D1238E, measurement temperature 230 ° C., load 2.16 kg) of the ethylene / α-olefin copolymer (D) is preferably 0.1 to 50 g / 10 minutes, more preferably 0.3 to 20 g /. It is 10 minutes, more preferably 0.5 to 10 g / 10 minutes. The density of the ethylene / α-olefin copolymer (D) is preferably 0.850 to 0.920 kg / m 3 , and more preferably 0.855 to 0.900 kg / m 3 .

前記エチレン・α−オレフィン共重合体(D)は、公知の方法により製造したものを用いてもよく、市販品を用いてもよい。好ましい市販品としては、例えば、三井化学(株)社製の「タフマー(登録商標)A」シリーズおよび「タフマー(登録商標)H」シリーズ、デュポン・ダウ社製の「Engage(登録商標)」シリーズ、エクソンモービル社製の「Exact(登録商標)」シリーズなどが挙げられる。 As the ethylene / α-olefin copolymer (D), one produced by a known method may be used, or a commercially available product may be used. Preferred commercial products include, for example, the "Toughmer (registered trademark) A" series and "Toughmer (registered trademark) H" series manufactured by Mitsui Chemicals, Inc., and the "Engage (registered trademark)" series manufactured by DuPont Dow. , ExxonMobil's "Exact®" series and the like.

前記エチレン・α−オレフィン共重合体(D)は、1種を用いてもよく、2種以上を併用してもよい。 As the ethylene / α-olefin copolymer (D), one type may be used, or two or more types may be used in combination.

≪無機充填材(E)≫
前記無機充填材(E)としては、例えば、タルク、クレー、マイカ、炭酸カルシウム、水酸化マグネシウム、リン酸アンモニウム塩、珪酸塩類、炭酸塩類、カーボンブラック、硫酸マグネシウム繊維、ガラス繊維、炭素繊維等が挙げられる。これらは、1種を用いてもよく、2種以上を併用してもよい。本発明の第1の組成物では、無機充填材(E)としてタルクを用いることが好ましい。
≪Inorganic filler (E) ≫
Examples of the inorganic filler (E) include talc, clay, mica, calcium carbonate, magnesium hydroxide, ammonium phosphate, silicates, carbonates, carbon black, magnesium sulfate fiber, glass fiber, carbon fiber and the like. Can be mentioned. These may be used alone or in combination of two or more. In the first composition of the present invention, it is preferable to use talc as the inorganic filler (E).

本発明の第1の組成物における成分(C)〜(E)の含有量としては、成分(C)〜(E)の合計を100質量%とした場合、成分(C)が、20〜80質量%、好ましくは25〜75質量%、より好ましくは30〜70質量%であり、成分(D)が、1〜50質量%、好ましくは5〜40質量%、より好ましくは10〜30質量%であり、成分(E)が、0〜70質量%、好ましくは5〜60質量%、より好ましくは10〜50質量%である。 Regarding the content of the components (C) to (E) in the first composition of the present invention, when the total of the components (C) to (E) is 100% by mass, the component (C) is 20 to 80. It is mass%, preferably 25 to 75% by mass, more preferably 30 to 70% by mass, and the component (D) is 1 to 50% by mass, preferably 5 to 40% by mass, more preferably 10 to 30% by mass. The component (E) is 0 to 70% by mass, preferably 5 to 60% by mass, and more preferably 10 to 50% by mass.

<第2の組成物>
本発明の第2の組成物は、前記プロピレン系重合体(A)および核剤(F)を含む樹脂組成物であり、剛性、耐熱性および曲げ弾性率に優れた成形体を形成することができる。
<Second composition>
The second composition of the present invention is a resin composition containing the propylene-based polymer (A) and the nucleating agent (F), and can form a molded product having excellent rigidity, heat resistance and flexural modulus. it can.

本発明の第2の組成物で用いられる前記プロピレン系重合体(A)は、プロピレン単独重合体でもよく、プロピレン以外のモノマーを共重合成分として含むランダム共重合体でもよい。 The propylene-based polymer (A) used in the second composition of the present invention may be a propylene homopolymer or a random copolymer containing a monomer other than propylene as a copolymerization component.

前記核剤(F)としては、例えば、ソルビトール系核剤、フォスフェート系核剤(有機リン酸金属塩)、芳香族カルボン酸の金属塩、脂肪族カルボン酸の金属塩、ロジン系化合物等の有機系の核剤;無機化合物等の無機系の核剤などが挙げられる。これらは1種を用いてもよく、2種以上を併用してもよい。 Examples of the nucleating agent (F) include sorbitol-based nucleating agents, phosphate-based nucleating agents (organic phosphate metal salts), aromatic carboxylic acid metal salts, aliphatic carboxylic acid metal salts, and rosin-based compounds. Organic nucleating agents; examples thereof include inorganic nucleating agents such as inorganic compounds. One of these may be used, or two or more thereof may be used in combination.

前記核剤(F)の市販品としては、フォスフェート系核剤である「アデカスタブNA−11」((株)ADEKA製)、ロジン系核剤である「パインクリスタルKM1610」(荒川化学(株)製)、脂肪族カルボン酸の金属塩からなる核剤「ハイパーフォームHPN−20E」(ミリケン社製)、ソルビトール系核剤「ミラッドNX8000」(ミリケン社製)などが挙げられる。 Commercially available products of the nucleating agent (F) include "ADEKA STUB NA-11" (manufactured by ADEKA Corporation), which is a phosphate-based nucleating agent, and "Pine Crystal KM1610" (Arakawa Chemical Co., Ltd.), which is a rosin-based nucleating agent. (Manufactured by), a nuclear agent "Hyperform HPN-20E" (manufactured by Milliken) composed of a metal salt of an aliphatic carboxylic acid, a sorbitol-based nuclear agent "Mirad NX8000" (manufactured by Milliken), and the like.

本発明の第2の組成物における核剤(F)の含有量は、前記プロピレン系重合体(A)100質量部に対して、好ましくは0.01〜10質量部、より好ましくは0.05〜5質量部、さらに好ましくは0.1〜1.0質量部である。 The content of the nucleating agent (F) in the second composition of the present invention is preferably 0.01 to 10 parts by mass, more preferably 0.05 with respect to 100 parts by mass of the propylene-based polymer (A). ~ 5 parts by mass, more preferably 0.1 to 1.0 parts by mass.

<第3の組成物>
本発明の第2の組成物は、前記プロピレン系重合体(A)および前記プロピレン系ブロック共重合体(C)からなる群より選ばれる少なくとも1種の成分と、無機繊維(G)とを含む樹脂組成物であり、剛性、耐熱性および曲げ弾性率のバランスに優れた成形体を形成することができる。
<Third composition>
The second composition of the present invention contains at least one component selected from the group consisting of the propylene-based polymer (A) and the propylene-based block copolymer (C), and the inorganic fiber (G). It is a resin composition, and it is possible to form a molded product having an excellent balance of rigidity, heat resistance and flexural modulus.

本発明の第3の組成物で用いられる前記プロピレン系重合体(A)は、プロピレン単独重合体およびランダム共重合体のいずれでもよいが、前記プロピレン系ブロック共重合体(C)を構成する前記プロピレン系重合体(A)はプロピレン単独重合体である。 The propylene-based polymer (A) used in the third composition of the present invention may be either a propylene homopolymer or a random copolymer, but the propylene-based block copolymer (C) constituting the propylene-based block copolymer (C). The propylene-based polymer (A) is a propylene copolymer.

前記無機繊維(G)としては、例えば、硫酸マグネシウム繊維、ガラス繊維、炭素繊維などが挙げられる。これらは1種を用いてもよく、2種以上を併用してもよい。 Examples of the inorganic fiber (G) include magnesium sulfate fiber, glass fiber, carbon fiber and the like. One of these may be used, or two or more thereof may be used in combination.

硫酸マグネシウム繊維を用いた場合、その平均繊維長は、5〜50μmであることが好ましく、10〜30μmであることがより好ましい。また、硫酸マグネシウム繊維の平均繊維径は、0.3〜2μmであることが好ましく、0.5〜1μmであることがより好ましい。市販品としては、「モスハイジ」(宇部マテリアルズ(株)製、商品名)などが挙げられる。 When magnesium sulfate fibers are used, the average fiber length is preferably 5 to 50 μm, more preferably 10 to 30 μm. The average fiber diameter of the magnesium sulfate fibers is preferably 0.3 to 2 μm, more preferably 0.5 to 1 μm. Examples of commercially available products include "Mosheidi" (manufactured by Ube Material Industries Ltd., trade name).

ガラス繊維としては、Eガラス(Electrical glass)、Cガラス(Chemical glass)、Aガラス(Alkali glass)、Sガラス(High strength glass)および耐アルカリガラスなどのガラスを溶融紡糸して、フィラメント状の繊維にしたものを挙げることができる。該ガラス繊維は、1mm以下の短繊維または1mm以上の長繊維の形態で組成物中に含有される。 As the glass fiber, filamentous fiber is obtained by melt-spinning glass such as E glass (Electrical glass), C glass (Chemical glass), A glass (Alkari glass), S glass (High strength glass) and alkali resistant glass. You can list what you have done. The glass fibers are contained in the composition in the form of short fibers of 1 mm or less or long fibers of 1 mm or more.

炭素繊維としては、例えば、ポリアクリロニトリルを原料としたポリアクリロニトリル(PAN)系炭素繊維や、ピッチを原料としたピッチ系炭素繊維などが挙げられる。これらの炭素繊維は、繊維原糸を所望の長さに裁断した、いわゆるチョップドカーボンファイバーとして用いることができ、また必要に応じて、各種サイジング剤を用いて収束処理されたものであってもよい。 Examples of the carbon fiber include polyacrylonitrile (PAN) -based carbon fiber made from polyacrylonitrile and pitch-based carbon fiber made from pitch. These carbon fibers can be used as so-called chopped carbon fibers in which the fiber yarn is cut to a desired length, and may be converged with various sizing agents, if necessary. ..

本発明の第3の組成物における無機繊維(G)の含有量は、成分(A)および成分(G)の合計を100質量%とした場合、好ましくは1〜30質量%、より好ましくは2〜25質量%、さらに好ましくは5〜20質量%である。 The content of the inorganic fiber (G) in the third composition of the present invention is preferably 1 to 30% by mass, more preferably 2 when the total of the component (A) and the component (G) is 100% by mass. It is ~ 25% by mass, more preferably 5 to 20% by mass.

<他の成分>
本発明のプロピレン系樹脂組成物は、本発明の目的を損なわない範囲で、上述した成分(A)〜(G)以外の、樹脂、ゴム、充填剤、耐候安定剤、耐熱安定剤、帯電防止剤、スリップ防止剤、アンチブロッキング剤、防曇剤、滑剤、顔料、染料、可塑剤、老化防止剤、塩酸吸収剤、酸化防止剤、結晶核剤などの他の成分を配合することができる。本発明のプロピレン系樹脂組成物における前記他の成分の配合量は、本発明の目的を損なわない範囲であれば、特に限定されるものではない。
<Other ingredients>
The propylene-based resin composition of the present invention contains resins, rubbers, fillers, weather-resistant stabilizers, heat-resistant stabilizers, and antistatic agents other than the above-mentioned components (A) to (G), as long as the object of the present invention is not impaired. Other ingredients such as agents, anti-slip agents, anti-blocking agents, anti-fog agents, lubricants, pigments, dyes, plasticizers, anti-aging agents, hydrochloric acid absorbers, antioxidants, crystal nucleating agents and the like can be blended. The blending amount of the other components in the propylene-based resin composition of the present invention is not particularly limited as long as it does not impair the object of the present invention.

<プロピレン系樹脂組成物の製造方法>
本発明のプロピレン系樹脂組成物は、上述した各成分を配合することにより製造することができる。各成分は、任意の順番で逐次配合してもよく、同時に混合してもよい。また、一部の成分を混合した後に他の成分を混合するような多段階の混合方法を採用してもよい。ただし、本発明の第1の組成物については、上述したように、前記プロピレン系重合体(A)と前記プロピレン・α−オレフィン共重合体(B)とを混合してプロピレン系ブロック共重合体(C)を形成した後、前記エチレン・α−オレフィン共重合体(D)ならびに必要に応じて前記無機充填材(E)および他の成分を混合することにより製造される。また、本発明の第3の組成物において、前記プロピレン系ブロック共重合体(C)を用いる場合も同様に、予め前記プロピレン系ブロック共重合体(C)を形成した後、他の成分を混合することにより製造される。
<Manufacturing method of propylene resin composition>
The propylene-based resin composition of the present invention can be produced by blending each of the above-mentioned components. Each component may be sequentially blended in any order, or may be mixed at the same time. Further, a multi-step mixing method in which some components are mixed and then other components are mixed may be adopted. However, with respect to the first composition of the present invention, as described above, the propylene-based polymer (A) and the propylene / α-olefin copolymer (B) are mixed to form a propylene-based block copolymer. After forming (C), it is produced by mixing the ethylene / α-olefin copolymer (D) and, if necessary, the inorganic filler (E) and other components. Further, in the case of using the propylene-based block copolymer (C) in the third composition of the present invention, similarly, after forming the propylene-based block copolymer (C) in advance, other components are mixed. Manufactured by

各成分の配合方法としては、例えば、バンバリーミキサー、単軸押出機、2軸押出機、高速2軸押出機などの混合装置を用いて、各成分を同時にもしくは逐次に、混合または溶融混練する方法が挙げられる。 As a method of blending each component, for example, a method of mixing or melt-kneading each component simultaneously or sequentially using a mixing device such as a Banbury mixer, a single-screw extruder, a twin-screw extruder, or a high-speed twin-screw extruder. Can be mentioned.

[成形体]
本発明の成形体は、上述した本発明のプロピレン系重合体または本発明のプロピレン系樹脂組成物を用いて形成される。本発明のプロピレン系重合体は、これまでにないレベルの高立体規則性を有するとともに、高剛性および高耐熱性を有することから、本発明の成形体は、温度変化による寸法変化が小さく寸法安定性に優れている。そのため、本発明の成形体は、例えば自動車用部品、家電部品、食品容器、医療容器など様々な分野に好適に用いることができる。前記自動車用部品としては、例えば、バンパーやインストルメンタルパネル等の自動車内外装部材、ルーフ、ドアパネル、フェンダー等の外板材などが挙げられる。特に、本発明の第1の組成物は自動車用バンパー、インストルメントパネル、フェンダーとして好適であり、本発明の第2の組成物は自動車内装部材(例えば、ドアパネル、ピラー等)として好適であり、本発明の第3の組成物は自動車機能部材(例えば、エンジンファン、ファンシェラウド等)として好適であるが、これらに限定されるものではない。
[Molded product]
The molded product of the present invention is formed by using the above-mentioned propylene-based polymer of the present invention or the propylene-based resin composition of the present invention. Since the propylene-based polymer of the present invention has an unprecedented level of high stereoregularity, high rigidity and high heat resistance, the molded product of the present invention is dimensionally stable with little dimensional change due to temperature changes. Excellent in sex. Therefore, the molded product of the present invention can be suitably used in various fields such as automobile parts, home appliance parts, food containers, and medical containers. Examples of the automobile parts include automobile interior / exterior members such as bumpers and instrumental panels, and outer panel materials such as roofs, door panels, and fenders. In particular, the first composition of the present invention is suitable as an automobile bumper, an instrument panel, a fender, and the second composition of the present invention is suitable as an automobile interior member (for example, a door panel, a pillar, etc.). The third composition of the present invention is suitable as an automobile functional member (for example, engine fan, fan shroud, etc.), but is not limited thereto.

本発明の成形体の成形法としては、特に限定されず、重合体の成形法として公知の様々な方法を採用することができるが、特に射出成形やプレス成形が好ましい。 The molding method of the molded product of the present invention is not particularly limited, and various known methods for molding the polymer can be adopted, but injection molding and press molding are particularly preferable.

以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、実施例に記載された各種物性の測定方法は以下のとおりである。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples. The methods for measuring various physical properties described in the examples are as follows.

<メソペンタッド分率(mmmm(ノイズ除去法))>
1.測定条件
装置:ブルカー・バイオスピン製AVANCE III cryo−500型核磁気共鳴装置
測定核:13C(125MHz)
測定モード:シングルパルスプロトンブロードバンドデカップリング
パルス幅:45°(5.00マイクロ秒)
繰り返し時間:5.5秒
積算回数:256回
測定溶媒:o−ジクロロベンゼン/重ベンゼン(80/20体積%)混合溶媒
試料濃度:50mg/0.6mL
測定温度:120℃
ケミカルシフト基準:21.59ppm(メソpentad methyl peak shifts)
<Mesopentad fraction (mmmm (noise removal method))>
1. 1. Measurement condition device: Bruker Biospin AVANCE III cryo-500 type nuclear magnetic resonance device Measurement nucleus: 13C (125MHz)
Measurement mode: Single pulse proton broadband decoupling Pulse width: 45 ° (5.00 microseconds)
Repeat time: 5.5 seconds Accumulation number: 256 times Measurement solvent: o-dichlorobenzene / heavy benzene (80/20% by volume) mixed solvent Sample concentration: 50 mg / 0.6 mL
Measurement temperature: 120 ° C
Chemical shift criteria: 21.59 ppm (mesopentad methyl peak shifts)

2.算出法
重合体の立体規則性の指標の1つであり、そのミクロタクティシティーを調べたメソペンタッド分率(mmmm, %)は、上記1の測定条件により得られた13C−NMRスペクトルのピーク強度比より算出した。
ここで、本発明における測定対象のような、これまでにないレベルの高い立体規則性を有するポリプロピレンの場合、rmmr、mmrm、rmrr、rmrm、mrrr領域を積分値に含めると、「ノイズ」の積分値への影響度が大きくなり、一般的な算出方法におけるS2を過大評価、即ちmmmm(%)を過少評価してしまうという問題があると考える。Prog. Polym. Sci. 26(2001), 443−533においても、95%以上の立体規則性を有するポリプロピレンの場合、一定要件を満たせば、rmmr、mmrm、rmrr、rmrm、mrrr領域の積分値は、理論上、合計0.1%以下となることが報告されており、一般的な算出方法におけるS2の過大評価に繋がることを示唆している。
2. Calculation method The mesopentad fraction (mmmm,%), which is one of the indexes of the stereoregularity of the polymer and whose microtacticity was examined, is the peak intensity of the 13 C-NMR spectrum obtained under the measurement condition of 1 above. Calculated from the ratio.
Here, in the case of polypropylene having an unprecedented level of stereoregularity such as the measurement target in the present invention, if the rmrr, mmrm, rmrr, rmrm, and mrrr regions are included in the integral value, the integral of "noise" is included. It is considered that there is a problem that the degree of influence on the value becomes large and S2 in a general calculation method is overestimated, that is, mmmm (%) is underestimated. Even in Prog. Polymer. Sci. 26 (2001), 443-533, in the case of polypropylene having a stereoregularity of 95% or more, if certain requirements are satisfied, the integrated value of the rmrr, mmrm, rmrr, rmrm, and mrrr regions is In theory, it has been reported that the total is 0.1% or less, suggesting that it leads to an overestimation of S2 in a general calculation method.

そこで、本発明では、下記(式1)に従い算出した。rmmr, mmrm, rmrr, rmrm, mrrr領域については、Prog. Polym. Sci. 26(2001), 443−533の示唆に従い計算から除いた。以下、本明細書での算出法を「ノイズ除去法」と称する。
mmmm(ノイズ除去法)(%)= S1/S2 * 100 ・・・(式1)
S1 = (mmmm, mmmrを含むピーク)-(n−プロピル末端)-(n−ブチル末端)- mrrm * 2
S2 = S1 + mmmr + mmrr + mrrm + rrrr
= S1 + 5 * mrrm + rrrr
Therefore, in the present invention, it was calculated according to the following (Equation 1). The rmmer, mmrm, rmrr, rmrm, and rmrr regions were excluded from the calculations as suggested by Prog. Polymer. Sci. 26 (2001), 443-533. Hereinafter, the calculation method in the present specification will be referred to as a "noise removal method".
mmmm (noise removal method) (%) = S1 / S2 * 100 ... (Equation 1)
S1 = (peak containing mmmm, mmml)-(n-propyl end)-(n-butyl end) -mrm * 2
S2 = S1 + mmrr + mmrr + mrrm + rrrrr
= S1 + 5 * mrrm + rrrrr

上記(式1)で算出するにあたり、例として、下記の如く帰属した。なお、mmmmのピークには、mmmrと(n−プロピル末端)及び(n−ブチル末端)の各ピークが重複している。
mmmm, mmmrを含むピーク:21.2〜22.0ppmのピーク面積
mmmr = mrrm * 2
mmrr = mrrm * 2
mrrm:19.5〜19.7ppmのピーク面積
rrrr:20.0〜20.2ppmのピーク面積
n−プロピル末端:(A1 + A3)/2
A1:14.2ppmのピーク面積
A3:39.4ppmのピーク面積
n−ブチル末端:36.7ppmのピーク面積
In the calculation by the above (Equation 1), as an example, it was assigned as follows. It should be noted that the mmm peak overlaps with each of the (n-propyl end) and (n-butyl end) peaks.
Peak including mmmm and mmml: Peak area of 21.2 to 22.0 ppm mmm = mrrm * 2
mmrr = mrrm * 2
mrrm: Peak area of 19.5 to 19.7 ppm rrrr: Peak area of 20.0 to 20.2 ppm n-propyl terminal: (A1 + A3) / 2
A1: Peak area of 14.2ppm A3: Peak area of 39.4ppm n-Butyl end: Peak area of 36.7ppm

<メソ平均連鎖長>
メソ平均連鎖長Ln(m)は下記式に基づいて算出した。
Ln(m)=3+5X/(1−X)
X=mmmm(ノイズ除去法)(%)/100
<Meso average chain length>
The meso average chain length Ln (m) was calculated based on the following formula.
Ln (m) = 3 + 5X / (1-X)
X = mmmm (noise removal method) (%) / 100

<昇温溶出分別測定(TREF)>
立体規則性の指標の1つと考えられるTREF高温溶出成分量は、下記条件における昇温分別測定によって得られる122℃以上で溶出したポリマー濃度から算出した。
装置:Polymer Char製CFC2型クロス分別クロマトグラフ
検出器:Polymer Char製IR4型赤外分光光度計(内蔵)
移動相:o−ジクロロベンゼン、BHT添加
流速:1.0mL/min
試料濃度:90mg/30mL
注入量:0.5mL
溶解条件:145℃、30min
安定化条件:135℃、30min
降温速度:1.0mL/min
溶出区分:−20℃〜0℃ 10℃刻み、0℃〜80℃ 5℃刻み、
80℃〜104℃ 3℃刻み、104〜126℃ 2℃刻み
溶出時間:3min
<Measurement of temperature rise elution fractionation (TREF)>
The amount of the TREF high-temperature elution component, which is considered to be one of the indexes of stereoregularity, was calculated from the polymer concentration eluted at 122 ° C. or higher obtained by the temperature rise fractional measurement under the following conditions.
Equipment: Polymer Char CFC2 type cross fractionation chromatograph Detector: Polymer Char IR4 type infrared spectrophotometer (built-in)
Mobile phase: o-dichlorobenzene, BHT added Flow rate: 1.0 mL / min
Sample concentration: 90 mg / 30 mL
Injection volume: 0.5 mL
Dissolution conditions: 145 ° C, 30 min
Stabilization conditions: 135 ° C, 30 min
Temperature drop rate: 1.0 mL / min
Elution classification: -20 ° C to 0 ° C in 10 ° C increments, 0 ° C to 80 ° C in 5 ° C increments,
80 ° C to 104 ° C in 3 ° C increments, 104 to 126 ° C in 2 ° C increments Elution time: 3 min

<分子量分布>
分子量分布の指標であるMw/Mn値は、下記条件で測定したクロマトグラムを公知の方法によって解析することによって得た。
装置:Waters製ゲル浸透クロマトグラフAllianceGPC2000型
カラム:東ソー製TSKgel GMH6−HT x2 + TSKgel GMH6−HTL x2
移動相:o−ジクロロベンゼン(0.025%BHT含有)
流速:1.0ml/min
温度:140℃
カラム校正:東ソー製単分散ポリスチレン
試料濃度:0.15%(w/v)
注入量:0.4ミリリットル
<メルトフローレート(MFR)>
ASTM D1238Eに準拠し、測定温度は230℃とした。
<Molecular weight distribution>
The Mw / Mn value, which is an index of the molecular weight distribution, was obtained by analyzing a chromatogram measured under the following conditions by a known method.
Equipment: Waters gel permeation chromatograph Alliance GPC2000 type Column: Tosoh TSKgel GMH6-HT x2 + TSKgel GMH6-HTL x2
Mobile phase: o-dichlorobenzene (containing 0.025% BHT)
Flow velocity: 1.0 ml / min
Temperature: 140 ° C
Column calibration: Tosoh monodisperse polystyrene Sample concentration: 0.15% (w / v)
Injection volume: 0.4 ml <Melt flow rate (MFR)>
According to ASTM D1238E, the measurement temperature was 230 ° C.

<デカン可溶成分量>
ガラス製の測定容器にプロピレン系重合体約6グラム(この重量を、下式においてb(グラム)と表した)、デカン500ml、およびデカンに可溶な耐熱安定剤を少量装入し、窒素雰囲気下、スターラーで攪拌しながら2時間で150℃に昇温してプロピレン重合体を溶解させ、150℃で2時間保持した後、8時間掛けて23℃まで徐冷した。得られたプロピレン重合体の析出物を含む液を、磐田ガラス社製25G−4規格のグラスフィルターにて減圧濾過した。濾液の100mlを採取し、これを減圧乾燥してデカン可溶成分の一部を得た。この重量を、下式においてa(グラム)と表した。この操作の後、デカン可溶成分量を下記式によって決定した。
デカン可溶成分含有率(重量%)=100×(500×a)/(100×b)
<Amount of decane-soluble components>
Approximately 6 grams of propylene polymer (this weight is expressed as b (gram) in the formula below), 500 ml of decan, and a small amount of heat-resistant stabilizer soluble in decan are charged in a glass measuring container, and a nitrogen atmosphere is provided. Below, the temperature was raised to 150 ° C. in 2 hours while stirring with a stirrer to dissolve the propylene polymer, and the mixture was held at 150 ° C. for 2 hours and then slowly cooled to 23 ° C. over 8 hours. The liquid containing the precipitate of the obtained propylene polymer was filtered under reduced pressure with a glass filter of 25G-4 standard manufactured by Iwata Glass Co., Ltd. 100 ml of the filtrate was collected and dried under reduced pressure to obtain a part of the decan-soluble component. This weight was expressed as a (gram) in the following formula. After this operation, the amount of decane-soluble component was determined by the following formula.
Decan-soluble component content (% by weight) = 100 x (500 x a) / (100 x b)

<曲げ弾性率>
ISO 178に準拠して、以下の条件で曲げ弾性率(MPa)を測定した。
温度:23℃
試験片:10mm(幅)×4mm(厚さ)×80mm(長さ)
曲げ速度:2mm/分
スパン間:64mm
<Flexural modulus>
The flexural modulus (MPa) was measured under the following conditions in accordance with ISO 178.
Temperature: 23 ° C
Specimen: 10 mm (width) x 4 mm (thickness) x 80 mm (length)
Bending speed: 2 mm / min Span interval: 64 mm

[実施例1]
<固体状チタン(a−1)の調製>
内容積2リットルの高速撹拌装置(特殊機化工業製)を充分窒素置換した後、該装置に精製灯油700ml、塩化マグネシウム10g、エタノール24.2gおよびソルビタンジステアレート(花王アトラス(株)製「エマゾール320」)3gを装入した。この系を撹拌下で昇温し、120℃および800rpmの条件で30分間撹拌した。高速撹拌下、内径5mmのテフロン(登録商標)製チューブを用いて、予め−10℃に冷却された精製灯油1リットルを張り込んである2リットルのガラスフラスコ(攪拌機付)に移液した。得られた固体を濾過し、精製n−ヘキサンで充分洗浄することにより、塩化マグネシウム1モルに対してエタノールが2.8モル配位した固体状付加物を得た。
[Example 1]
<Preparation of solid titanium (a-1)>
After sufficiently replacing a high-speed agitator with an internal volume of 2 liters (manufactured by Tokushu Kagaku Kogyo) with nitrogen, 700 ml of refined kerosene, 10 g of magnesium chloride, 24.2 g of ethanol and sorbitan distearate (manufactured by Kao Atlas Co., Ltd. Emazole 320 ") 3 g was charged. The temperature of this system was raised under stirring, and the mixture was stirred under the conditions of 120 ° C. and 800 rpm for 30 minutes. Under high-speed stirring, the solution was transferred to a 2 liter glass flask (with a stirrer) filled with 1 liter of refined kerosene previously cooled to −10 ° C. using a Teflon (registered trademark) tube having an inner diameter of 5 mm. The obtained solid was filtered and thoroughly washed with purified n-hexane to obtain a solid adduct in which 2.8 mol of ethanol was coordinated with 1 mol of magnesium chloride.

次いで、前記固体状付加物(マグネシウム原子に換算して45ミリモル)をデカン20mlに懸濁させた後、−20℃に保持した四塩化チタン195ml中に、攪拌下で全量導入した。この混合液を5時間かけて80℃に昇温し、ジイソブチルフタレート1.8ml(6.2ミリモル)を添加した。引き続き110℃まで昇温して1.5時間攪拌した。 Then, the solid adduct (45 mmol in terms of magnesium atom) was suspended in 20 ml of decane, and then the whole amount was introduced into 195 ml of titanium tetrachloride kept at −20 ° C. under stirring. The mixture was heated to 80 ° C. over 5 hours and 1.8 ml (6.2 mmol) of diisobutylphthalate was added. The temperature was subsequently raised to 110 ° C. and the mixture was stirred for 1.5 hours.

1.5時間の反応終了後、熱濾過にて固体部を採取し、100℃のデカンおよび室温のヘキサンによって、ろ液中にチタンが検出されなくなるまで洗浄した。このようにして、チタン3.8重量%、マグネシウム16重量%、ジイソブチルフタレ−ト18.2重量%、エタノ−ル残基1.1重量%を含有する固体状チタン(a−1)を得た。 After completion of the reaction for 1.5 hours, the solid part was collected by hot filtration and washed with decan at 100 ° C. and hexane at room temperature until titanium was no longer detected in the filtrate. In this way, solid titanium (a-1) containing 3.8% by weight of titanium, 16% by weight of magnesium, 18.2% by weight of diisobutylphthalate, and 1.1% by weight of etanol residues was obtained. Obtained.

<固体状チタン触媒成分(i-1)の調製>
充分に窒素置換された200mlのガラス製反応器に、得られた固体状チタン(a−1)6.8g、パラキシレン113ml、デカン11ml、四塩化チタン2.5ml(23ミリモル)及びジイソブチルフタレ−ト0.34ml(1.2ミリモル)を入れた。反応器内の温度を130℃に昇温し、その温度で1時間攪拌して接触処理した後、熱ろ過により固体部を採取した。この固体部を101mlのパラキシレンに再懸濁させ、さらに四塩化チタン1.7ml(15ミリモル)及びジイソブチルフタレート0.22ml(0.8ミリモル)を添加した。
<Preparation of solid titanium catalyst component (i-1)>
In a 200 ml glass reactor fully nitrogen-substituted, 6.8 g of the obtained solid titanium (a-1), 113 ml of para-xylene, 11 ml of decane, 2.5 ml (23 mmol) of titanium tetrachloride and diisobutylphthale -To 0.34 ml (1.2 mmol) was added. The temperature inside the reactor was raised to 130 ° C., and the mixture was stirred at that temperature for 1 hour for contact treatment, and then the solid part was collected by thermal filtration. This solid portion was resuspended in 101 ml of para-xylene, and 1.7 ml (15 mmol) of titanium tetrachloride and 0.22 ml (0.8 mmol) of diisobutylphthalate were further added.

次いで、130℃に昇温し、該温度を保持しながら1時間攪拌して反応させた。反応終了後、再び熱ろ過にて固液分離を行い、得られた固体部を100℃のデカン及び室温のヘキサンによって触媒中のパラキシレンが1重量%以下となるまで洗浄した。このようにして、チタン1.3重量%、マグネシウム20重量%、ジイソブチルフタレート13.8重量%を含有する固体状チタン触媒成分(i-1)を得た。 Then, the temperature was raised to 130 ° C., and the mixture was stirred and reacted for 1 hour while maintaining the temperature. After completion of the reaction, solid-liquid separation was performed again by hot filtration, and the obtained solid part was washed with decane at 100 ° C. and hexane at room temperature until the amount of para-xylene in the catalyst was 1% by weight or less. In this way, a solid titanium catalyst component (i-1) containing 1.3% by weight of titanium, 20% by weight of magnesium, and 13.8% by weight of diisobutylphthalate was obtained.

<本重合>
ヘプタン7mlを入れた30mlガラス容器に、トリエチルアルミニウムを0.35ミリモル、シクロペンチルジエチルアミノジメトキシシランを0.07ミリモル、および得られた固体状チタン触媒成分(i-1)をチタン原子換算で0.0028ミリモル装入し、20℃で10分間接触させてオレフィン重合用触媒を調製した。次いで、プロピレン500gを装入した内容積2リットルのオートクレーブ内に、前記オレフィン重合用触媒を装入して20℃で10分間重合を行った後、さらに水素10リットルを装入し、系内の温度を70℃に昇温して1時間重合を行った。次いで、エタノールを添加することにより重合を停止し、未反応のプロピレンをパージしてポリプロピレン(A−1)371gを得た。得られたポリプロピレン(A−1)の物性を評価した結果を表1に示す。
<Main polymerization>
In a 30 ml glass container containing 7 ml of heptane, 0.35 mmol of triethylaluminum, 0.07 mmol of cyclopentyldiethylaminodimethoxysilane, and 0.0028 of the obtained solid titanium catalyst component (i-1) in terms of titanium atom. A catalyst for olefin polymerization was prepared by charging in mmol and contacting at 20 ° C. for 10 minutes. Next, the catalyst for olefin polymerization was charged into an autoclave having an internal volume of 2 liters charged with 500 g of propylene, and polymerization was carried out at 20 ° C. for 10 minutes, and then 10 liters of hydrogen was further charged into the system. The temperature was raised to 70 ° C. and polymerization was carried out for 1 hour. Then, the polymerization was stopped by adding ethanol, and unreacted propylene was purged to obtain 371 g of polypropylene (A-1). Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (A-1).

[実施例2]
実施例1において、本重合にて装入した水素を10リットルから7.5リットルに変更したこと以外は実施例1と同様に行った。得られたポリプロピレン(A−2)の物性を評価した結果を表1に示す。
[Example 2]
In Example 1, the same procedure as in Example 1 was carried out except that the hydrogen charged in the main polymerization was changed from 10 liters to 7.5 liters. Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (A-2).

[実施例3]
<本重合>
ヘプタン7mlを入れた30mlガラス容器に、トリエチルアルミニウムを0.35ミリモル、シクロペンチルジエチルアミノジメトキシシランを0.07ミリモル、ジエチル亜鉛を0.35ミリモルおよび実施例1上記で得られた固体状チタン触媒成分(A-1)をチタン原子換算で0.0028ミリモル装入し、20℃で10分間接触させてオレフィン重合用触媒を調製した。次いで、プロピレンを500g装入した内容積2リットルのオートクレーブ内に、前記オレフィン重合用触媒を装入して20℃で10分間重合を行った後、さらに水素16リットルを装入し、系内の温度を60℃に昇温して1時間重合を行った。次いで、エタノールを添加することにより重合を停止し、未反応のプロピレンをパージしてポリプロピレン(A−3)279gを得た。得られたポリプロピレン(A−3)の物性を評価した結果を表1に示す。
[Example 3]
<Main polymerization>
In a 30 ml glass container containing 7 ml of heptane, 0.35 mmol of triethylaluminum, 0.07 mmol of cyclopentyldiethylaminodimethoxysilane, 0.35 mmol of diethylzinc, and Example 1 The solid titanium catalyst component obtained above (Example 1). A-1) was charged in 0.0028 mmol in terms of titanium atom and contacted at 20 ° C. for 10 minutes to prepare a catalyst for olefin polymerization. Next, the catalyst for olefin polymerization was charged into an autoclave having an internal volume of 2 liters charged with 500 g of propylene, and polymerization was carried out at 20 ° C. for 10 minutes, and then 16 liters of hydrogen was further charged into the system. The temperature was raised to 60 ° C. and polymerization was carried out for 1 hour. Then, the polymerization was stopped by adding ethanol, and unreacted propylene was purged to obtain 279 g of polypropylene (A-3). Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (A-3).

[実施例4]
実施例3において、本重合にて装入したジエチル亜鉛を0.35ミリモルから0.7ミリモルに変更したこと以外は実施例3と同様に行った。得られたポリプロピレン(A−4)の物性を評価した結果を表1に示す。
[Example 4]
In Example 3, the same procedure as in Example 3 was carried out except that the diethylzinc charged in the present polymerization was changed from 0.35 mmol to 0.7 mmol. Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (A-4).

[実施例5]
実施例3において、本重合にて装入した水素を16リットルから12.5リットルに、ジエチル亜鉛を0.35ミリモルから2.8ミリモルに変更したこと以外は実施例3と同様に行った。得られたポリプロピレン(A−5)の物性を評価した結果を表1に示す。
[Example 5]
In Example 3, hydrogen charged in the main polymerization was changed from 16 liters to 12.5 liters, and diethylzinc was changed from 0.35 mmol to 2.8 mmol in the same manner as in Example 3. Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (A-5).

[実施例6]
<予備重合触媒(p-1)の調製>
窒素置換された200mlのガラス製反応器に、ヘキサン50ml、トリエチルアルミニウム2.5ミリモル、シクロペンチルジエチルアミノジメトキシシラン0.5ミリモル、および実施例1で得られた固体状チタン触媒成分(i-1)をチタン原子換算で0.25ミリモル装入した後、系内の温度を20℃に保ちながら、1.47リットル/時間の量でプロピレンを1時間供給した。この操作により、固体状チタン触媒成分(i-1)1g当り3gのプロピレンが予備重合された予備重合触媒(p−1)を得た。
[Example 6]
<Preparation of prepolymerization catalyst (p-1)>
In a 200 ml glass reactor substituted with nitrogen, 50 ml of hexane, 2.5 mmol of triethylaluminum, 0.5 mmol of cyclopentyldiethylaminodimethoxysilane, and the solid titanium catalyst component (i-1) obtained in Example 1 were placed. After charging 0.25 mmol in terms of titanium atoms, propylene was supplied at an amount of 1.47 liters / hour for 1 hour while keeping the temperature in the system at 20 ° C. By this operation, a prepolymerized catalyst (p-1) in which 3 g of propylene was prepolymerized per 1 g of the solid titanium catalyst component (i-1) was obtained.

<本重合>
内容積2リットルのオートクレーブに、プロピレン500gと水素7.5リットルとを装入し、系内の温度を60℃に昇温した。その後、トリエチルアルミニウムを0.7ミリモル、シクロペンチルジエチルアミノジメトキシシランを0.7ミリモルおよび上記で得られた予備重合触媒(p-1)をチタン原子換算で0.0028ミリモル添加することにより重合を開始した。系内の温度を70℃に保ちながら1時間重合を行った。次いで、エタノールを添加することにより重合を停止し、未反応のプロピレンをパージしてポリプロピレン(A−6)286gを得た。得られたポリプロピレン(A−6)の物性を評価した結果を表1に示す。
<Main polymerization>
500 g of propylene and 7.5 liters of hydrogen were charged into an autoclave having an internal volume of 2 liters, and the temperature inside the system was raised to 60 ° C. Then, 0.7 mmol of triethylaluminum, 0.7 mmol of cyclopentyldiethylaminodimethoxysilane, and 0.0028 mmol of the prepolymerization catalyst (p-1) obtained above were added in terms of titanium atoms to initiate polymerization. .. Polymerization was carried out for 1 hour while maintaining the temperature in the system at 70 ° C. Then, the polymerization was stopped by adding ethanol, and unreacted propylene was purged to obtain 286 g of polypropylene (A-6). Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (A-6).

[実施例7]
実施例6において、装入した水素を7.5リットルから11.5リットルに変更したこと以外は実施例6と同様に行った。得られたポリプロピレン(A−7)の物性を評価した結果を表1に示す。
[Example 7]
In Example 6, the same procedure as in Example 6 was carried out except that the charged hydrogen was changed from 7.5 liters to 11.5 liters. Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (A-7).

[比較例1]
実施例1において、本重合で用いたシクロペンチルジエチルアミノジメトキシシランの代わりにジシクロペンチルジメトキシシランを用いたこと、装入した水素を10リットルから7.5リットルに変更したこと以外は実施例1と同様に行った。得られたポリプロピレン(a−1)の物性を評価した結果を表1に示す。
[Comparative Example 1]
In Example 1, the same as in Example 1 except that dicyclopentyl dimethoxysilane was used instead of cyclopentyl diethylaminodimethoxysilane used in the present polymerization and the charged hydrogen was changed from 10 liters to 7.5 liters. went. Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (a-1).

[比較例2]
実施例1において、本重合で用いたシクロペンチルジエチルアミノジメトキシシランの代わりにシクロヘキシルメチルジメトキシシランを用いたこと、装入した水素を10リットルから4.5リットルに変更したこと以外は実施例1と同様に行った。得られたポリプロピレン(a−2)の物性を評価した結果を表1に示す。
[Comparative Example 2]
In Example 1, cyclopentylmethyldimethoxysilane was used instead of cyclopentyldiethylaminodimethoxysilane used in the present polymerization, and the charged hydrogen was changed from 10 liters to 4.5 liters in the same manner as in Example 1. went. Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (a-2).

[比較例3]
実施例1において、本重合で用いたシクロペンチルジエチルアミノジメトキシシランの代わりにジイソプロピルジメトキシシランを用いたこと、装入した水素を10リットルから4.0リットルに変更したこと以外は実施例1と同様に行った。得られたポリプロピレン(a−3)の物性を評価した結果を表1に示す。
[Comparative Example 3]
In Example 1, the same procedure as in Example 1 was carried out except that diisopropyldimethoxysilane was used instead of cyclopentyldiethylaminodimethoxysilane used in the present polymerization and the charged hydrogen was changed from 10 liters to 4.0 liters. It was. Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (a-3).

[比較例4]
実施例1において、本重合で用いたシクロペンチルジエチルアミノジメトキシシランの代わりに2−イソブチル−2−イソプロピル−1,3−ジメトキシプロパンを用いたこと、装入した水素を10リットルから2.0リットルに変更したこと以外は実施例1と同様に行った。得られたポリプロピレン(a−4)の物性を評価した結果を表1に示す。
[Comparative Example 4]
In Example 1, 2-isobutyl-2-isopropyl-1,3-dimethoxypropane was used instead of cyclopentyldiethylaminodimethoxysilane used in this polymerization, and the charged hydrogen was changed from 10 liters to 2.0 liters. Except for what was done, the same procedure as in Example 1 was carried out. Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (a-4).

[比較例5]
<固体状チタン触媒成分(ci-1)の調製>
無水塩化マグネシウム95.2g、デカン442mlおよび2−エチルヘキシルアルコール390.6gを、130℃で2時間加熱反応させて均一溶液とした後、この溶液中に無水フタル酸22.2gを添加し、さらに、130℃にて1時間攪拌混合を行なって無水フタル酸を溶解させた。このようにして得られた均一溶液を室温に冷却した後、−20℃に保持した四塩化チタン200ml中にこの均一溶液の75mlを1時間にわたって滴下装入した。装入終了後、この混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでジイソブチルフタレート5.22gを添加し、2時間同温度にて攪拌保持した。次いで、熱濾過にて固体部を採取し、この固体部を275mlの四塩化チタンに再懸濁させた後、再び110℃で2時間、加熱反応を行なった。反応終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンを用いて、溶液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。このようにして、チタン2.3重量%、マグネシウム20.0重量%、ジイソブチルフタレート10.2重量%を含有する固体状チタン触媒成分(ci-1)を得た。
[Comparative Example 5]
<Preparation of solid titanium catalyst component (ci-1)>
95.2 g of anhydrous magnesium chloride, 442 ml of decane and 390.6 g of 2-ethylhexyl alcohol were heated and reacted at 130 ° C. for 2 hours to form a uniform solution, and then 22.2 g of phthalic anhydride was added to this solution. Phthalic anhydride was dissolved by stirring and mixing at 130 ° C. for 1 hour. After cooling the uniform solution thus obtained to room temperature, 75 ml of this uniform solution was added dropwise over 200 ml of titanium tetrachloride kept at −20 ° C. for 1 hour. After completion of charging, the temperature of this mixed solution was raised to 110 ° C. over 4 hours, 5.22 g of diisobutylphthalate was added when the temperature reached 110 ° C., and the mixture was stirred and held at the same temperature for 2 hours. Then, the solid part was collected by heat filtration, the solid part was resuspended in 275 ml of titanium tetrachloride, and then the heating reaction was carried out again at 110 ° C. for 2 hours. After completion of the reaction, the solid part was collected again by hot filtration and washed thoroughly with decane and hexane at 110 ° C. until no free titanium compound was detected in the solution. In this way, a solid titanium catalyst component (ci-1) containing 2.3% by weight of titanium, 20.0% by weight of magnesium, and 10.2% by weight of diisobutylphthalate was obtained.

<本重合>
実施例1において、固体状チタン触媒成分(i-1)の代わりに固体状チタン触媒成分(ci-1)を用いたこと、装入した水素を10リットルから6.5リットルに変更したこと以外は実施例1と同様に行った。得られたポリプロピレン(a−5)の物性を評価した結果を表1に示す。
<Main polymerization>
Except that in Example 1, the solid titanium catalyst component (ci-1) was used instead of the solid titanium catalyst component (i-1), and the charged hydrogen was changed from 10 liters to 6.5 liters. Was carried out in the same manner as in Example 1. Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (a-5).

[比較例6]
比較例5において、本重合で用いたシクロペンチルジエチルアミノジメトキシシランの代わりにジピロリジルジメトキシシランを用いたこと、装入した水素を6.5リットルから4.5リットルに変更したこと以外は比較例5と同様に行った。得られたポリプロピレン(a−6)の物性を評価した結果を表1に示す。
[Comparative Example 6]
In Comparative Example 5, Comparative Example 5 except that dipyrrolidyldimethoxysilane was used instead of cyclopentyldiethylaminodimethoxysilane used in the present polymerization and the charged hydrogen was changed from 6.5 liters to 4.5 liters. I went in the same way. Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (a-6).

[比較例7]
実施例1において、本重合で用いたシクロペンチルジエチルアミノジメトキシシランの代わりにジエチルアミノトリエトキシシランを用いたこと、装入した水素を10リットルから1.8リットルに変更したこと以外は実施例1と同様に行った。得られたポリプロピレン(a−7)の物性を評価した結果を表1に示す。
[Comparative Example 7]
In Example 1, the same as in Example 1 except that diethylaminotriethoxysilane was used instead of cyclopentyldiethylaminodimethoxysilane used in the present polymerization and the charged hydrogen was changed from 10 liters to 1.8 liters. went. Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (a-7).

[比較例8]
実施例6において、本重合で用いたシクロペンチルジエチルアミノジメトキシシランの代わりにジエチルアミノトリエトキシシランを用いたこと、装入した水素を7.5リットルから1.0リットルに変更したこと以外は実施例6と同様に行った。得られたポリプロピレン(a−8)の物性を評価した結果を表1に示す。
[Comparative Example 8]
In Example 6, Except that diethylaminotriethoxysilane was used instead of cyclopentyldiethylaminodimethoxysilane used in the present polymerization and the charged hydrogen was changed from 7.5 liters to 1.0 liters. It was done in the same way. Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (a-8).

[比較例9]
比較例8において、装入した水素を1.0リットルから5.0リットルに変更したこと以外は比較例8と同様に行った。得られたポリプロピレン(a−9)の物性を評価した結果を表1に示す。
[Comparative Example 9]
In Comparative Example 8, the same procedure as in Comparative Example 8 was carried out except that the charged hydrogen was changed from 1.0 liter to 5.0 liter. Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (a-9).

[比較例10]
比較例8において、装入した水素を1.0リットルから7.0リットルに変更したこと以外は比較例8と同様に行った。得られたポリプロピレン(a−10)の物性を評価した結果を表1に示す。
[Comparative Example 10]
In Comparative Example 8, the same procedure as in Comparative Example 8 was carried out except that the charged hydrogen was changed from 1.0 liter to 7.0 liter. Table 1 shows the results of evaluating the physical characteristics of the obtained polypropylene (a-10).

Figure 0006848059
表1中の「オレフィン重合用触媒」の「外部ドナー」に関する記号の意味は以下のとおりである。
ii-1:シクロペンチルジエチルアミノジメトキシシラン
cii-1:ジシクロペンチルジメトキシシラン
cii-2:シクロヘキシルメチルジメトキシシラン
cii-3:ジイソプロピルジメトキシシラン
cii-4:2−イソブチル−2−イソプロピル−1,3−ジメトキシプロパン
cii-5:ジピロリジルジメトキシシラン
cii-6:ジエチルアミノトリエトキシシラン
Figure 0006848059
The meanings of the symbols relating to "external donor" of "catalyst for olefin polymerization" in Table 1 are as follows.
ii-1: Cyclopentyl diethylaminodimethoxysilane
cii-1: dicyclopentyl dimethoxysilane
cii-2: Cyclohexylmethyldimethoxysilane
cii-3: diisopropyldimethoxysilane
cii-4: 2-isobutyl-2-isopropyl-1,3-dimethoxypropane
cii-5: dipyrrolidyldimethoxysilane
cii-6: diethylaminotriethoxysilane

[実施例8〜10および比較例11〜13]
表2に示す組成となるように、上述した実施例または比較例で得られたポリプロピレンと、核剤(F)または無機繊維(G)とを混合した後(ただし、実施例8および比較例11では、ポリプロピレンのみを用いた。)、二軸押出機にて下記の条件で溶融混練してペレット状のプロピレン系樹脂組成物を作製した。得られたペレットを用いて、射出成形機にて下記の条件で射出成形し、試験片を作製した。得られた射出成形体(試験片)の物性を表2に示す。
[Examples 8 to 10 and Comparative Examples 11 to 13]
After mixing the polypropylene obtained in the above-mentioned Example or Comparative Example with the nucleating agent (F) or the inorganic fiber (G) so as to have the composition shown in Table 2 (however, Example 8 and Comparative Example 11). Then, only polypropylene was used.) A pellet-shaped propylene-based resin composition was prepared by melt-kneading with a twin-screw extruder under the following conditions. Using the obtained pellets, a test piece was prepared by injection molding with an injection molding machine under the following conditions. Table 2 shows the physical characteristics of the obtained injection molded product (test piece).

<溶融混練条件>
同方向二軸混練機:品番 KZW−15、(株)テクノベル 社製
混練温度:190℃
スクリュー回転数:500rpm
フィーダー回転数:40rpm
<射出成形条件>
射出成形機:EC40(商品名、東芝機械(株)製)
シリンダー温度:190℃
金型温度:40℃
射出時間−保圧時間:13秒
冷却時間:15秒
<Melting and kneading conditions>
Biaxial kneader in the same direction: Part number KZW-15, manufactured by Technobel Co., Ltd. Kneading temperature: 190 ° C
Screw rotation speed: 500 rpm
Feeder speed: 40 rpm
<Injection molding conditions>
Injection molding machine: EC40 (trade name, manufactured by Toshiba Machine Co., Ltd.)
Cylinder temperature: 190 ° C
Mold temperature: 40 ° C
Injection time-holding time: 13 seconds Cooling time: 15 seconds

[実施例11〜12および比較例14〜16]
まず、ポリプロピレンとプロピレン・α−オレフィン共重合体(B)とを、表2に示す量で混合した後、二軸押出機にて下記の条件で溶融混練することにより、プロピレン系ブロック共重合体を調製した。次いで、得られたプロピレン系ブロック共重合体に、エチレン・α−オレフィン共重合体(D)および無機充填材(E)を表2に示す量で配合し、二軸押出機にて下記の条件で溶融混練してペレット状のプロピレン系樹脂組成物を作製した。得られたペレットを用いて、射出成形機にて下記の条件で射出成形し、試験片を作製した。得られた射出成形体(試験片)の物性を表2に示す。
[Examples 11-12 and Comparative Examples 14-16]
First, polypropylene and the propylene / α-olefin copolymer (B) are mixed in the amounts shown in Table 2, and then melt-kneaded with a twin-screw extruder under the following conditions to obtain a propylene-based block copolymer. Was prepared. Next, the ethylene / α-olefin copolymer (D) and the inorganic filler (E) were added to the obtained propylene-based block copolymer in the amounts shown in Table 2, and the conditions were as follows using a twin-screw extruder. To prepare a pellet-shaped propylene-based resin composition by melt-kneading with. Using the obtained pellets, a test piece was prepared by injection molding with an injection molding machine under the following conditions. Table 2 shows the physical characteristics of the obtained injection molded product (test piece).

<溶融混練条件>
同方向二軸混練機:品番 KZW−15、(株)テクノベル 社製
混練温度:190℃
スクリュー回転数:500rpm
フィーダー回転数:40rpm
<射出成形条件>
射出成形機:EC40(商品名、東芝機械(株)製)
シリンダー温度:190℃
金型温度:40℃
射出時間−保圧時間:13秒
冷却時間:15秒
<Melting and kneading conditions>
Biaxial kneader in the same direction: Part number KZW-15, manufactured by Technobel Co., Ltd. Kneading temperature: 190 ° C
Screw rotation speed: 500 rpm
Feeder speed: 40 rpm
<Injection molding conditions>
Injection molding machine: EC40 (trade name, manufactured by Toshiba Machine Co., Ltd.)
Cylinder temperature: 190 ° C
Mold temperature: 40 ° C
Injection time-holding time: 13 seconds Cooling time: 15 seconds

Figure 0006848059
表2中の成分(B)および(D)〜(G)に関する記号の意味は以下のとおりである。
B−1:プロピレン・エチレン共重合体(商品名:タフマーS4020、三井化学(株)製)
D−1:エチレン・ブテン共重合体(商品名:タフマーA1050S、三井化学(株)製)
E−1:タルク(商品名:JM209、浅田製粉(株)製)
F−1:フォスフェート系核剤(商品名:アデカスタブNA−11、(株)ADEKA製)
G−1:塩基性硫酸マグネシウム無機繊維(商品名:モスハイジA、宇部マテリアルズ(株)製)
Figure 0006848059
The meanings of the symbols relating to the components (B) and (D) to (G) in Table 2 are as follows.
B-1: Propylene / ethylene copolymer (trade name: Toughmer S4020, manufactured by Mitsui Chemicals, Inc.)
D-1: Ethylene-butene copolymer (trade name: Toughmer A1050S, manufactured by Mitsui Chemicals, Inc.)
E-1: Talc (trade name: JM209, manufactured by Asada Flour Milling Co., Ltd.)
F-1: Phosphate-based nucleating agent (trade name: ADEKA STAB NA-11, manufactured by ADEKA CORPORATION)
G-1: Basic magnesium sulfate inorganic fiber (trade name: Mosheidi A, manufactured by Ube Material Industries Ltd.)

Claims (9)

下記要件(1)〜(4)を満たすことを特徴とするプロピレン系重合体:
(1)メソ平均連鎖長が1665〜10万である;
(2)メルトフローレート(MFR)(ASTM D1238、230℃、2.16kg荷重下)が17〜1000g/10分である;
(3)ゲルパーミエーションクロマトグラフィー(GPC)により測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.2〜20である;
(4)昇温溶出分別測定法(TREF)により122℃以上の温度で溶出する成分の割合をA重量%とし、前記要件(2)のメルトフローレートをBg/10分とした場合、下記式(I)を満たす。
100≧A≧20×EXP(−0.01×B)・・・(I)
Propylene-based polymer characterized by satisfying the following requirements (1) to (4):
(1) The meso average chain length is 1665 to 100,000;
(2) Melt flow rate (MFR) (ASTM D1238, 230 ° C., under a 2.16kg load) is 17 to 1000 g / 10 min;
(3) The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is 4.2 to 20;
(4) When the ratio of the components eluted at a temperature of 122 ° C. or higher is A% by weight and the melt flow rate of the above requirement (2) is Bg / 10 minutes by the temperature rise elution fractionation measurement method (TREF), the following formula is used. (I) is satisfied.
100 ≧ A ≧ 20 × EXP (−0.01 × B) ・ ・ ・ (I)
下記要件(1)〜(5)を満たすことを特徴とするプロピレン系重合体:
(1)メソ平均連鎖長が1665〜10万である;
(2)メルトフローレート(MFR)(ASTM D1238、230℃、2.16kg荷重下)が17〜1000g/10分である;
(3)ゲルパーミエーションクロマトグラフィー(GPC)により測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.2〜20である;
(4)昇温溶出分別測定法(TREF)により122℃以上の温度で溶出する成分の割合をA重量%とし、前記要件(2)のメルトフローレートをBg/10分とした場合、下記式(I)を満たす;
100≧A≧20×EXP(−0.01×B)・・・(I)
(5)23℃におけるn−デカン可溶成分量が0.01〜2重量%である。
Propylene-based polymer characterized by satisfying the following requirements (1) to (5):
(1) The meso average chain length is 1665 to 100,000;
(2) Melt flow rate (MFR) (ASTM D1238, 230 ° C., under a 2.16kg load) is 17 to 1000 g / 10 min;
(3) The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is 4.2 to 20;
(4) When the ratio of the components eluted at a temperature of 122 ° C. or higher is A% by weight and the melt flow rate of the above requirement (2) is Bg / 10 minutes by the temperature rise elution fractionation measurement method (TREF), the following formula is used. Satisfy (I);
100 ≧ A ≧ 20 × EXP (−0.01 × B) ・ ・ ・ (I)
(5) The amount of the n-decane-soluble component at 23 ° C. is 0.01 to 2% by weight.
オレフィン重合用触媒の存在下でプロピレンを重合させることにより請求項1または2に記載のプロピレン系重合体を製造する方法であって、
前記オレフィン重合用触媒が、
(i)マグネシウム、チタン、ハロゲンおよび電子供与体を含み、かつ、下記要件(k1)〜(k4)を満たす固体状チタン触媒成分と、
(ii)下記式(II)で表わされる有機ケイ素化合物成分と、
(iii)周期律表の1族、2族または13族に属する元素を含む有機金属化合物成分と
を含む触媒〔A〕、または、
前記触媒〔A〕にプロピレンが予備重合された予備重合触媒(p)と、前記有機ケイ素化合物成分(ii)と、前記有機金属化合物成分(iii)とを含む触媒〔B〕
であることを特徴とするプロピレン系重合体の製造方法:
(k1)チタン含有量が2.5重量%以下である;
(k2)電子供与体の含有量が8〜30重量%である;
(k3)電子供与体/チタン(重量比)が7以上である;
(k4)室温でのヘキサン洗浄によってチタンが実質的に脱離されることがない。
1Si(OR22(NR34) ・・・(II)
[式(II)中、R1は2級または3級の炭素数1〜20の炭化水素基を示し、R2は炭素数1〜4の炭化水素基を示し、R3は炭素数1〜12の炭化水素基または水素原子を示し、R4は炭素数1〜12の炭化水素基を示す。]
The method for producing a propylene-based polymer according to claim 1 or 2, wherein propylene is polymerized in the presence of a catalyst for olefin polymerization.
The catalyst for olefin polymerization
(I) A solid titanium catalyst component containing magnesium, titanium, halogen and an electron donor and satisfying the following requirements (k1) to (k4).
(Ii) The organosilicon compound component represented by the following formula (II) and
(Iii) A catalyst [A] containing an organometallic compound component containing an element belonging to Group 1, Group 2, or Group 13 of the Periodic Table, or
A catalyst [B] containing a prepolymerization catalyst (p) in which propylene is prepolymerized on the catalyst [A], the organosilicon compound component (ii), and the organometallic compound component (iii).
A method for producing a propylene-based polymer, which is characterized by being:
(K1) Titanium content is 2.5% by weight or less;
(K2) The content of the electron donor is 8 to 30% by weight;
(K3) Electron donor / titanium (weight ratio) is 7 or more;
(K4) Titanium is not substantially desorbed by hexane washing at room temperature.
R 1 Si (OR 2 ) 2 (NR 3 R 4 ) ・ ・ ・ (II)
[In formula (II), R 1 represents a secondary or tertiary hydrocarbon group having 1 to 20 carbon atoms, R 2 represents a hydrocarbon group having 1 to 4 carbon atoms, and R 3 represents a hydrocarbon group having 1 to 4 carbon atoms. It represents 12 hydrocarbon groups or hydrogen atoms, and R 4 represents a hydrocarbon group having 1 to 12 carbon atoms. ]
前記固体状チタン触媒成分(i)が、
(a)マグネシウム、チタン、ハロゲンおよび電子供与体を含み、かつ室温でのヘキサン洗浄によってチタンが脱離することがない固体状チタン、
(b)芳香族炭化水素、
(c)液状チタン、および
(d)電子供与体
を接触させる工程を含む方法により製造される請求項3に記載のプロピレン系重合体の製造方法。
The solid titanium catalyst component (i)
(A) Solid titanium, which contains magnesium, titanium, halogen and electron donors, and titanium is not desorbed by hexane washing at room temperature.
(B) Aromatic hydrocarbons,
The method for producing a propylene-based polymer according to claim 3, wherein (c) is produced by a method including a step of contacting liquid titanium and (d) an electron donor.
プロピレン単独重合体部とプロピレン・α−オレフィン共重合体部とからなるプロピレン系ブロック共重合体(C)20〜80質量%、
エチレンに由来する構成単位50〜95モル%と、炭素数3〜20のα−オレフィンに由来する構成単位5〜50モル%とを含有するエチレン・α−オレフィン共重合体(D)1〜50質量%、および
無機充填材(E)0〜70質量%
を含み(ただし、成分(C)、(D)および(E)の合計を100質量%とする。)、
前記プロピレン系ブロック共重合体(C)が、
前記プロピレン単独重合体部として、請求項1または2に記載のプロピレン系重合体(A)60〜99質量%、および
前記プロピレン・α−オレフィン共重合体部として、プロピレンに由来する構成単位55〜90モル%と、プロピレン以外の炭素数2〜20のα−オレフィンに由来する構成単位10〜45モル%とを含有するプロピレン・α−オレフィン共重合体(B)1〜40質量%を含む(ただし、成分(A)と(B)の合計を100質量%とする。)、
プロピレン系樹脂組成物。
20 to 80% by mass of a propylene-based block copolymer (C) composed of a propylene homopolymer portion and a propylene / α-olefin copolymer portion,
Ethylene-α-olefin copolymers (D) 1 to 50 containing 50 to 95 mol% of a structural unit derived from ethylene and 5 to 50 mol% of a structural unit derived from an α-olefin having 3 to 20 carbon atoms. Mass% and Inorganic Filler (E) 0-70 Mass%
(However, the total of the components (C), (D) and (E) is 100% by mass).
The propylene-based block copolymer (C) is
As the propylene homopolymer part, 60 to 99% by mass of the propylene-based polymer (A) according to claim 1 or 2, and as the propylene / α-olefin copolymer part, a structural unit derived from propylene 55 to It contains 1 to 40% by mass of a propylene / α-olefin copolymer (B) containing 90 mol% and 10 to 45 mol% of a structural unit derived from an α-olefin having 2 to 20 carbon atoms other than propylene (). However, the total of the components (A) and (B) is 100% by mass.),
Propylene resin composition.
請求項1または2に記載のプロピレン系重合体(A)100質量部、および
核剤(F)0.01〜10質量部
を含むプロピレン系樹脂組成物。
A propylene-based resin composition containing 100 parts by mass of the propylene-based polymer (A) according to claim 1 or 2 and 0.01 to 10 parts by mass of a nucleating agent (F).
請求項1または2に記載のプロピレン系重合体(A)、および、プロピレン単独重合体部とプロピレン・α−オレフィン共重合体部とからなるプロピレン系ブロック共重合体(C)からなる群より選ばれる少なくとも1種の成分70〜99.5質量%と、
無機繊維(G)0.5〜30質量%と
を含み(ただし、成分(A)、(C)および(G)の合計を100質量%とする。)、
前記プロピレン系ブロック共重合体(C)が、
前記プロピレン単独重合体部として、請求項1または2に記載のプロピレン系重合体(A)60〜99質量%、および
前記プロピレン・α−オレフィン共重合体部として、プロピレンに由来する構成単位55〜90モル%と、プロピレン以外の炭素数2〜20のα−オレフィンに由来する構成単位10〜45モル%とを含有するプロピレン・α−オレフィン共重合体(B)1〜40質量%を含む(ただし、成分(A)と(B)の合計を100質量%とする。)、
プロピレン系樹脂組成物。
Selected from the group consisting of the propylene-based polymer (A) according to claim 1 or 2 and the propylene-based block copolymer (C) composed of a propylene homopolymer portion and a propylene / α-olefin copolymer portion. At least one component 70-99.5% by mass,
Inorganic fiber (G) containing 0.5 to 30% by mass (provided that the total of components (A), (C) and (G) is 100% by mass).
The propylene-based block copolymer (C) is
As the propylene homopolymer part, 60 to 99% by mass of the propylene-based polymer (A) according to claim 1 or 2, and as the propylene / α-olefin copolymer part, a structural unit derived from propylene 55 to It contains 1 to 40% by mass of a propylene / α-olefin copolymer (B) containing 90 mol% and 10 to 45 mol% of a structural unit derived from an α-olefin having 2 to 20 carbon atoms other than propylene (). However, the total of the components (A) and (B) is 100% by mass.),
Propylene resin composition.
請求項1または2に記載のプロピレン系重合体を含む成形体。 A molded product containing the propylene-based polymer according to claim 1 or 2. 請求項5〜7のいずれか1項に記載のプロピレン系樹脂組成物を用いて形成された成形体。 A molded product formed by using the propylene-based resin composition according to any one of claims 5 to 7.
JP2019527054A 2017-06-30 2018-06-29 Propylene-based polymer, its production method, propylene-based resin composition and molded article Active JP6848059B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017128735 2017-06-30
JP2017128735 2017-06-30
PCT/JP2018/024777 WO2019004418A1 (en) 2017-06-30 2018-06-29 Propylene-based polymer, method for preparing same, propylene-based resin composition, and molded body

Publications (2)

Publication Number Publication Date
JPWO2019004418A1 JPWO2019004418A1 (en) 2020-02-06
JP6848059B2 true JP6848059B2 (en) 2021-03-24

Family

ID=64742394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019527054A Active JP6848059B2 (en) 2017-06-30 2018-06-29 Propylene-based polymer, its production method, propylene-based resin composition and molded article

Country Status (5)

Country Link
US (1) US11292899B2 (en)
EP (1) EP3647329A4 (en)
JP (1) JP6848059B2 (en)
CN (1) CN110662773B (en)
WO (1) WO2019004418A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7207997B2 (en) * 2018-12-27 2023-01-18 株式会社プライムポリマー Stretched film containing propylene polymer
JP7155398B2 (en) 2019-03-19 2022-10-18 三井化学株式会社 PROPYLENE-BASED RESIN COMPOSITION, MOLDED PRODUCT AND PROPYLENE POLYMER
WO2021025141A1 (en) 2019-08-08 2021-02-11 株式会社プライムポリマー Propylene polymer composition and molded article
TWI762127B (en) * 2020-12-29 2022-04-21 臺灣塑膠工業股份有限公司 Polypropylene and method for producing the same, and meltblown fiber fabrics
WO2022221049A1 (en) * 2021-04-15 2022-10-20 Exxonmobil Chemical Patents Inc. Processes for making improved polypropylene homopolymers, random copolymers, and impact copolymers
CN115260664B (en) * 2022-06-10 2023-11-03 青岛科技大学 High-temperature-explosion-resistant polybutene alloy material and preparation method thereof

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2061296B (en) * 1979-09-18 1983-08-24 Mitsubishi Petrochemical Co Propylene block copolymers
JPS5883006A (en) 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd Polymerization of olefin
JPS59120611A (en) * 1982-12-27 1984-07-12 Idemitsu Petrochem Co Ltd Production of propylene block copolymer
JPS59124909A (en) 1982-12-29 1984-07-19 Mitsui Toatsu Chem Inc Production of olefin polymerization catalyst
DE3640948A1 (en) * 1986-11-29 1988-06-01 Hoechst Ag METHOD FOR PRODUCING A 1-OLEFIN STEREOBLOCK POLYMER
US5700896A (en) * 1988-07-30 1997-12-23 Hoechst Aktiengesellschaft Polymer having long isotactic sequences and randomly-distributed ethylene content obtained by polymerizing propylene in presence of specific catalysts
US4971936A (en) * 1989-07-10 1990-11-20 Shell Oil Company Catalyst component for making primarily isotactic elastomeric polypropylene or polybutene
JP2874934B2 (en) * 1990-02-08 1999-03-24 三菱化学株式会社 Production of .ALPHA.-olefin polymer
JP2941017B2 (en) 1990-08-10 1999-08-25 三井化学株式会社 Solid titanium catalyst component for olefin polymerization, olefin polymerization catalyst and olefin polymerization method
TW272985B (en) * 1992-09-11 1996-03-21 Hoechst Ag
TW275076B (en) * 1992-12-02 1996-05-01 Hoechst Ag
JPH08143580A (en) 1994-11-18 1996-06-04 Toho Titanium Co Ltd Organic silicon compound and electron donor
JPH083215A (en) 1994-04-22 1996-01-09 Ube Ind Ltd Method for polymerizing alpha-olefin
US5684173A (en) 1994-04-28 1997-11-04 Toho Titanium Co., Ltd. Organosilicon compound and ziegler-natta catalyst containing the same
CN1100069C (en) * 1994-05-12 2003-01-29 昭和电工株式会社 Propylene polymer, process for producing the same, composition thereof, polymerization catalyst component, and process for producing the same
US6184328B1 (en) * 1994-09-07 2001-02-06 Showa Denko Kabushiki Kaisha Propylene-based polymer, method for its production, composition thereof, catalyst component for polymerization, and method for its production
US6143686A (en) * 1994-08-03 2000-11-07 Exxon Chemical Patents, Inc. Supported ionic catalyst compositions
CA2162946C (en) * 1994-11-21 2004-01-06 Kazuyuki Watanabe Propylene block copolymer and process for producing the same
JP3443990B2 (en) 1994-11-22 2003-09-08 宇部興産株式会社 α-Olefin polymerization method
JPH0940714A (en) * 1995-07-28 1997-02-10 Ube Ind Ltd Aminoalkoxysilane
DE69821866T2 (en) * 1997-04-24 2004-12-16 Mitsui Chemicals, Inc. CRYSTALLINE POLYPROPYLENE RESIN COMPOSITION
US6759475B2 (en) * 1997-04-24 2004-07-06 Mitsui Chemicals, Inc. Resin composition based on crystalline polypropylene
DE19726796A1 (en) * 1997-06-24 1999-01-07 Basf Ag Propylene polymers
US7022795B1 (en) * 1998-03-13 2006-04-04 Novolen Technology Holdings, C.V. Highly crystalline propylene homopolymers
CA2299390A1 (en) * 1998-06-05 1999-12-16 Japan Polychem Corporation Propylene block copolymer and propylene resin composition
EP1867662B2 (en) * 1998-06-25 2013-02-27 Idemitsu Kosan Co., Ltd. Propylene polymer and composition containing the same, molded object and laminate comprising these, and processes for producing propylene polymer and composition containing the same
KR100565151B1 (en) * 1999-02-04 2006-03-30 미쓰이 가가쿠 가부시키가이샤 Polypropylene block-copolymer resin and process for producing it
EP1524278B1 (en) * 1999-10-05 2006-12-13 Idemitsu Kosan Company Limited Propylene polymer, and resin composition and molded product thereof
DE19957384A1 (en) * 1999-11-29 2001-05-31 Targor Gmbh Propylene polymer, useful for the production of water pipes, has a Mw of 350,000-1,000,000 g/mol, Mw/Mn of 4-10, contains polymer fractions having a viscosity number of 500-1400 ml/g and 200-400 ml/g
US7122498B2 (en) * 2000-06-30 2006-10-17 Exxonmobil Chemical Patents Inc. Metallocenes and catalyst compositions derived therefrom
DE60114464T2 (en) * 2001-06-27 2006-07-20 Borealis Technology Oy Propylene polymer resin with improved properties
EP1454931B1 (en) * 2001-11-09 2018-01-24 Japan Polypropylene Corporation Propylene block copolymer
CN100390205C (en) 2002-04-04 2008-05-28 三井化学株式会社 Solid titanium catalyst component for olefin polymerization, catalyst for olefin polymerization, and process for olefin polymerization
JP2004002742A (en) 2002-04-04 2004-01-08 Mitsui Chemicals Inc Solid titanium catalyst component for olefin polymerization, olefin polymerization catalyst and method for polymerization of olefin
EP1484345A1 (en) * 2003-06-06 2004-12-08 Borealis Technology Oy Process for the production of polypropylene using a Ziegler-Natta catalyst
BRPI0413961A (en) * 2003-09-11 2006-10-31 Basell Polyolefine Gmbh multi-step process for preparing propylene heterophasic copolymers
US7056592B2 (en) * 2003-11-19 2006-06-06 Sehyun Kim Propylene homopolymers for biaxially oriented films
WO2006051708A1 (en) * 2004-11-11 2006-05-18 Idemitsu Kosan Co., Ltd. Polypropylene resin, fiber, and nonwoven fabric
EP1726602A1 (en) * 2005-05-27 2006-11-29 Borealis Technology Oy Propylene polymer with high crystallinity
EP1726603A1 (en) * 2005-05-27 2006-11-29 Borealis Technology Oy Propylene polymer with high crystallinity
EP1911779B1 (en) * 2005-07-29 2012-12-19 Japan Polypropylene Corporation Process for production of propylene block copolymer
WO2007140019A1 (en) * 2006-06-01 2007-12-06 Sunoco, Inc. (R & M) High crystallinity, high melt flow rate polypropylene
US7662901B2 (en) * 2007-11-30 2010-02-16 Sunoco Chemicals, Inc. High crystallinity, high melt flow rate polypropylene
US8039552B2 (en) * 2008-07-04 2011-10-18 Sumitomo Chemical Company, Limited Process for producing propylene block copolymer
MX2011007152A (en) * 2008-12-31 2012-01-12 Dow Global Technologies Llc Production of substituted phenylene aromatic diesters.
US9322114B2 (en) * 2012-12-03 2016-04-26 Exxonmobil Chemical Patents Inc. Polypropylene fibers and fabrics
US9382411B2 (en) * 2012-12-03 2016-07-05 Exxonmobil Chemical Patents Inc. Propylene polymers
EP2963064B1 (en) * 2013-02-27 2019-04-03 Toho Titanium Co., Ltd. Method for producing propylene block copolymer
ES2715831T3 (en) * 2013-07-17 2019-06-06 Exxonmobil Chemical Patents Inc Substituted metallocene catalysts
US9458260B2 (en) * 2013-07-17 2016-10-04 Exxonmobil Chemical Patents Inc. Process using substituted metallocene catalysts and products therefrom
US9376559B2 (en) * 2013-11-22 2016-06-28 Exxonmobil Chemical Patents Inc. Reverse staged impact copolymers
WO2016017753A1 (en) * 2014-07-31 2016-02-04 三井化学株式会社 Propylene homopolymer composition for capacitor film, method for producing same, and capacitor film

Also Published As

Publication number Publication date
CN110662773A (en) 2020-01-07
WO2019004418A1 (en) 2019-01-03
CN110662773B (en) 2022-08-19
EP3647329A1 (en) 2020-05-06
EP3647329A4 (en) 2021-03-24
US11292899B2 (en) 2022-04-05
JPWO2019004418A1 (en) 2020-02-06
US20210147663A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP6848059B2 (en) Propylene-based polymer, its production method, propylene-based resin composition and molded article
KR101564178B1 (en) In-situ reactor blend of a ziegler-natta catalysed, nucleated polypropylene and a metallocene catalysed polypropylene
KR101895181B1 (en) Heterophasic polypropylene with improved puncture respectively impact strength/stiffness balance
KR102113467B1 (en) High flow heterophasic polyolefin composition with improved stiffness / impact balance
EP1219645B1 (en) Polybutene resin and pipe material and pipe comprising the same
RU2647310C1 (en) Olefin-based resin, process for its production and propylene-based resin composition
CN103201299B (en) Improved process for polymerising propylene
JP4864274B2 (en) Butene copolymer, resin composition thereof, molded article thereof, solid titanium catalyst for producing the same, and method for producing the same
JP2024050994A (en) Propylene-based resin composition, molded article and propylene polymer
CA3026181C (en) Solid catalyst for the preparation of nucleated polyolefins
JP7207997B2 (en) Stretched film containing propylene polymer
KR102125674B1 (en) Soft polypropylene composition with improved properties
US20210253838A1 (en) Polypropylene based composition with improved paintability
JP6831218B2 (en) Masterbatch composition and polypropylene resin composition containing it
WO2021176930A1 (en) Multilayer polypropylene film for capacitor
JP7186594B2 (en) Method for producing propylene polymer
KR102503022B1 (en) Polypropylene composition with excellent stiffness and impact strength
JP7134743B2 (en) Propylene-based polymer, catalyst for olefin polymerization and molding
JP7195897B2 (en) Propylene-based resin composition and molded article
JP7291479B2 (en) molding
JP2020105356A (en) Capacitor film and its producing method
WO2024024880A1 (en) Solid catalyst component mixture for olefin polymerization, olefin polymerization catalyst, and method for producing olefin polymer
JP2017155104A (en) Polypropylene-based resin composition for hollow molding and hollow molded article
JP2024044572A (en) Polypropylene resin composition and method for producing the same
WO2023171435A1 (en) Catalyst for olefin polymerization, method for producing olefin polymer, and propylene homopolymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210303

R150 Certificate of patent or registration of utility model

Ref document number: 6848059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250