JP6847428B2 - A method for determining the load factor of heat source equipment, a simulation system in heat source equipment, a computer program for executing this, and a recording medium on which this program is recorded. - Google Patents

A method for determining the load factor of heat source equipment, a simulation system in heat source equipment, a computer program for executing this, and a recording medium on which this program is recorded. Download PDF

Info

Publication number
JP6847428B2
JP6847428B2 JP2019025550A JP2019025550A JP6847428B2 JP 6847428 B2 JP6847428 B2 JP 6847428B2 JP 2019025550 A JP2019025550 A JP 2019025550A JP 2019025550 A JP2019025550 A JP 2019025550A JP 6847428 B2 JP6847428 B2 JP 6847428B2
Authority
JP
Japan
Prior art keywords
flow rate
heat source
load factor
heat
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019025550A
Other languages
Japanese (ja)
Other versions
JP2020133961A (en
Inventor
彰彦 小川
彰彦 小川
聰子 藏田
聰子 藏田
藤井 和彦
和彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E.I.ENGINEERING CO.,LTD.
Original Assignee
E.I.ENGINEERING CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E.I.ENGINEERING CO.,LTD. filed Critical E.I.ENGINEERING CO.,LTD.
Priority to JP2019025550A priority Critical patent/JP6847428B2/en
Publication of JP2020133961A publication Critical patent/JP2020133961A/en
Application granted granted Critical
Publication of JP6847428B2 publication Critical patent/JP6847428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、熱源機器の負荷率決定方法、熱源設備におけるシミュレーションシステム及びこれを実行させるためのコンピュータプログラム並びにこのプログラムを記録した記録媒体に関する。さらに詳しくは、熱負荷側機器群が使用する熱媒体を製造する複数の熱源機器と、各熱源機器に対応する複数のポンプと、前記複数の熱源機器及び前記複数のポンプが並列に接続され且つ前記熱負荷側機器群と前記複数の熱源機器との間で前記熱媒体を流通させる往ヘッダ及び還ヘッダと、前記往ヘッダと前記還ヘッダとを接続するバイパスとを備えた熱源設備における前記各熱源機器の負荷率を決定する熱源機器の負荷率決定方法、熱源設備におけるシミュレーションシステム及びこれを実行させるためのコンピュータプログラム並びにこのプログラムを記録した記録媒体に関する。 The present invention relates to a method for determining a load factor of a heat source equipment, a simulation system in a heat source equipment, a computer program for executing the simulation system, and a recording medium on which this program is recorded. More specifically, a plurality of heat source devices for producing a heat medium used by a heat load side device group, a plurality of pumps corresponding to each heat source device, the plurality of heat source devices, and the plurality of pumps are connected in parallel. Each of the above in a heat source facility provided with a forward header and a return header for circulating the heat medium between the heat load side device group and the plurality of heat source devices, and a bypass connecting the forward header and the return header. The present invention relates to a method for determining a load factor of a heat source equipment for determining a load factor of a heat source equipment, a simulation system in a heat source equipment, a computer program for executing the simulation system, and a recording medium on which this program is recorded.

従来、上述の如き熱源設備において、定流量ポンプと変流量制御とを組み合わせた場合、各機器(ポンプ)間で圧力バランスの確保が困難となるため、定流量か変流量のいずれか一方に統一して熱源設備を構築(制御)するのが一般的であった。例えば、特許文献1,2に示す如き熱源機器の制御方法において、このような熱源設備は挙げられておらず、一方のポンプ(制御)を前提に制御されている。 Conventionally, when a constant flow rate pump and a variable flow rate control are combined in the above-mentioned heat source equipment, it is difficult to secure a pressure balance between each device (pump). It was common to construct (control) heat source equipment. For example, in the control method of the heat source equipment as shown in Patent Documents 1 and 2, such a heat source equipment is not mentioned, and the control is performed on the premise of one pump (control).

しかし、近年、インバータポンプの普及等により、定流量ポンプと変流量制御との組み合わせも行われるようになった。これに対し、例えば、非特許文献1に記載の如き制御方法も提唱されている。この制御方法では、各熱源機器の流量設定値とヘッダー間差圧の双方を満たすポンプの運転周波数をヘッダー間差圧−流量特性の近似式から演算するフィード・フォワード制御と、ヘッダー間差圧調節計でヘッダー間差圧をバイパス弁開度により制御するフィード・バック制御とを組合わせることで、変流量対応熱源機器と定流量熱源機器との混在制御を実現している。 However, in recent years, due to the spread of inverter pumps and the like, a combination of a constant flow rate pump and a variable flow rate control has come to be performed. On the other hand, for example, a control method as described in Non-Patent Document 1 has also been proposed. This control method includes feed-forward control that calculates the operating frequency of the pump that satisfies both the flow rate set value of each heat source device and the differential pressure between the headers from the approximate expression of the differential pressure between the headers and the differential pressure between the headers, and the differential pressure adjustment between the headers. By combining feed-back control, which controls the differential pressure between headers by the opening of the bypass valve, mixed control of variable flow rate compatible heat source equipment and constant flow rate heat source equipment is realized.

ここで、熱源設備において、ヘッダー間差圧が一定の場合や、末端差圧制御により制御される場合があり、熱負荷が増加するとヘッダー間差圧は大きくなり、熱負荷が減少すると配管抵抗が減りヘッダー間差圧は小さくなる。これにより、定流量ポンプ及び変流量ポンプにおいても差圧が生じる。しかし、上記制御方法では、ヘッダー間差圧調節を主に規定しており、熱負荷側機器での熱負荷が変動した場合に制御できない可能性が生じていた。 Here, in heat source equipment, the differential pressure between headers may be constant or controlled by end differential pressure control. When the heat load increases, the differential pressure between headers increases, and when the heat load decreases, the piping resistance increases. The differential pressure between the headers is reduced and the differential pressure is reduced. As a result, a differential pressure is also generated in the constant flow rate pump and the variable flow rate pump. However, in the above control method, the differential pressure adjustment between headers is mainly specified, and there is a possibility that control cannot be performed when the heat load in the heat load side device fluctuates.

特許4435651号公報Japanese Patent No. 4435651 特許4173973号公報Japanese Patent No. 4173973

岡崎徳臣他、空気調和・衛生工学会、空気調和・衛生工学会論文集No.155、2010年2月、「熱源システムのモデリングによるポンプ可変速制御方法に関する研究−第1報−制御方法の検討と実験による基本特性の確認」、p11−18Tokuomi Okazaki et al., Air Conditioning and Sanitary Engineering Society, Air Conditioning and Sanitary Engineering Society Proceedings No. 155, February 2010, "Study on variable speed control method of pump by modeling heat source system-First report-Examination of control method and confirmation of basic characteristics by experiment", p11-18

かかる従来の実情に鑑みて、本発明は、定流量ポンプと変流量制御とが混在した熱源設備においても、各熱源機器の負荷率をより精度よく導き出すことが可能な熱源機器の負荷率決定方法、熱源設備におけるシミュレーションシステム及びこれを実行させるためのコンピュータプログラム並びにこのプログラムを記録した記録媒体を提供することを目的とする。 In view of such a conventional situation, the present invention is a method for determining a load factor of a heat source device capable of more accurately deriving the load factor of each heat source device even in a heat source facility in which a constant flow rate pump and a variable flow rate control are mixed. It is an object of the present invention to provide a simulation system in a heating source facility, a computer program for executing the simulation system, and a recording medium on which this program is recorded.

上記目的を達成するため、本発明に係る熱源機器の負荷率決定方法の特徴は、熱負荷側機器群が使用する熱媒体を製造する複数の熱源機器と、各熱源機器に対応する複数のポンプと、前記複数の熱源機器及び前記複数のポンプが並列に接続され且つ前記熱負荷側機器群と前記複数の熱源機器との間で前記熱媒体を流通させる往ヘッダ及び還ヘッダと、前記往ヘッダと前記還ヘッダとを接続するバイパスとを備えた熱源設備における前記各熱源機器の負荷率を決定する熱源機器の負荷率決定方法において、前記複数のポンプは、定流量ポンプ及び変流量ポンプを少なくとも1機ずつ含み、前記熱負荷側機器群が使用する熱媒体の必要流量を算出すると共に前記定流量ポンプの定流量合計流量を算出し、前記必要流量と前記バイパスのバイパス流量の和から前記定流量合計流量を引くことで前記変流量ポンプの変流量合計流量を算出し、前記変流量合計流量が0より大となるまで、運転優先順位の低い前記定流量ポンプを前記変流量ポンプに変更して前記変流量合計流量を繰り返し算出し、前記変流量合計流量を前記変流量ポンプの定格合計流量で割ることで前記変流量ポンプの変流量負荷率を求め、前記変流量負荷率が予め設定された前記変流量ポンプの運転下限負荷率より小である場合には、前記変流量負荷率を前記運転下限負荷率に置換すると共に置換した変流量負荷率で前記バイパス流量を計算し、前記複数の熱源機器の平均出口温度を算出すると共に前記各熱源機器の入口温度を算出し、前記各熱源機器の出口温度、前記入口温度、設計温度差及び前記変流量負荷率並びに予め設定された前記定流量ポンプの定流量負荷率から前記各熱源機器の負荷率を求め、前記負荷率が前記各熱源機器の最大負荷率を超える場合、前記各熱源機器の全ての前記負荷率が前記最大負荷率以下となるまで、該当する熱源機器の出口温度を当該機器の最大負荷率で運転した際の出口温度に変更すると共に前記平均出口温度及び前記入口温度を求めて前記負荷率を繰り返し算出し、算出した負荷率を前記各熱源機器の負荷率とすることにある。 In order to achieve the above object, the features of the method for determining the load factor of the heat source equipment according to the present invention are a plurality of heat source equipment for producing the heat medium used by the heat load side equipment group and a plurality of pumps corresponding to each heat source equipment. A forward header and a return header in which the plurality of heat source devices and the plurality of pumps are connected in parallel and the heat medium is circulated between the heat load side device group and the plurality of heat source devices, and the forward header. In the method for determining the load factor of the heat source equipment in the heat source equipment provided with the bypass connecting the pump and the return header, the plurality of pumps include at least a constant flow pump and a variable flow pump. The required flow rate of the heat medium used by the heat load side equipment group including one unit is calculated, the total constant flow rate of the constant flow rate pump is calculated, and the constant flow rate is calculated from the sum of the required flow rate and the bypass flow rate of the bypass. The total variable flow rate of the variable flow pump is calculated by subtracting the total flow rate, and the constant flow pump having a low operation priority is changed to the variable flow pump until the total variable flow rate becomes larger than 0. The variable flow rate total flow rate is repeatedly calculated, and the variable flow rate total flow rate is divided by the rated total flow rate of the variable flow rate pump to obtain the variable flow rate load factor of the variable flow rate pump, and the variable flow rate load factor is preset. If it is smaller than the operating lower limit load factor of the variable flow pump, the variable flow load factor is replaced with the operating lower limit load factor, and the bypass flow rate is calculated by the replaced variable flow load factor, and the plurality of said bypass flow rates are calculated. The average outlet temperature of the heat source equipment is calculated, the inlet temperature of each heat source equipment is calculated, the outlet temperature of each heat source equipment, the inlet temperature, the design temperature difference, the variable flow load factor, and the preset constant flow rate. The load factor of each heat source device is obtained from the constant flow load factor of the pump, and when the load factor exceeds the maximum load factor of each heat source device, all the load factors of the heat source equipment are equal to or less than the maximum load factor. Until then, the outlet temperature of the corresponding heat source equipment is changed to the outlet temperature when operating at the maximum load factor of the equipment, and the average outlet temperature and the inlet temperature are obtained and the load factor is repeatedly calculated to calculate the load. The rate is defined as the load rate of each of the heat source devices.

定流量制御と変流量制御とが混在した熱源設備において、熱負荷側機器群が使用する熱媒体量(熱負荷)が増減すると、熱負荷側機器群と複数の熱源機器との間で熱媒体を流通させる往ヘッダ及び還ヘッダの間で差圧(ヘッダー間差圧)が増減(変動)する。ヘッダー間差圧が変動しても、定流量ポンプの出口側の流量コントロール弁を調整することで定格流量は維持される。そこで、熱負荷側機器群の必要流量から変流量ポンプの流量を引いた残量を往ヘッダと還ヘッダとを接続するバイパスに流し、バイパスの流量が最小となるように変流量ポンプの周波数を調整することで、熱源設備の流量と圧力のバランスが確保される。 In a heat source facility where constant flow control and variable flow control are mixed, if the amount of heat medium (heat load) used by the heat load side equipment group increases or decreases, the heat medium between the heat load side equipment group and multiple heat source equipment The differential pressure (differential pressure between headers) increases / decreases (varies) between the forward header and the return header. Even if the differential pressure between the headers fluctuates, the rated flow rate is maintained by adjusting the flow rate control valve on the outlet side of the constant flow rate pump. Therefore, the remaining amount obtained by subtracting the flow rate of the variable flow pump from the required flow rate of the equipment group on the heat load side is passed through the bypass connecting the forward header and the return header, and the frequency of the variable flow pump is set so that the flow rate of the bypass is minimized. By adjusting, the balance between the flow rate and pressure of the heat source equipment is ensured.

上記構成によれば、前記熱負荷側機器群が使用する熱媒体の必要流量を算出すると共に前記定流量ポンプの定流量合計流量を算出し、前記必要流量と前記バイパスのバイパス流量の和から前記定流量合計流量を引くことで前記変流量ポンプの変流量合計流量を算出し、前記変流量合計流量が0より大となるまで、運転優先順位の低い前記定流量ポンプを前記変流量ポンプに変更して前記変流量合計流量を繰り返し算出し、前記変流量合計流量を前記変流量ポンプの定格合計流量で割ることで前記変流量ポンプの変流量負荷率を求め、前記変流量負荷率が予め設定された前記変流量ポンプの運転下限負荷率より小である場合には、前記変流量負荷率を前記運転下限負荷率に置換すると共に置換した変流量負荷率で前記バイパス流量を計算するので、上述の如き、熱源設備の流量と圧力のバランスを考慮した現実に沿った値を導き出すことができる。 According to the above configuration, the required flow rate of the heat medium used by the heat load side equipment group is calculated, the total constant flow rate of the constant flow rate pump is calculated, and the sum of the required flow rate and the bypass flow rate of the bypass is used. The total flow rate of the variable flow rate is calculated by subtracting the total flow rate of the constant flow rate, and the constant flow rate pump having a low operation priority is changed to the variable flow rate pump until the total flow rate of the variable flow rate becomes larger than 0. Then, the total flow rate of the variable flow rate is repeatedly calculated, and the total flow rate of the variable flow rate is divided by the total rated flow rate of the variable flow rate pump to obtain the variable flow rate load factor of the variable flow rate pump, and the variable flow rate load factor is set in advance. If it is smaller than the operating lower limit load factor of the variable flow rate pump, the variable flow rate load factor is replaced with the operating lower limit load factor, and the bypass flow rate is calculated by the replaced variable flow rate load factor. It is possible to derive a value that is in line with reality, taking into consideration the balance between the flow rate and pressure of the heat source equipment.

そして、前記各熱源機器の出口温度、前記入口温度、設計温度差及び前記変流量負荷率並びに予め設定された前記定流量ポンプの定流量負荷率から前記各熱源機器の負荷率を求め、前記負荷率が前記各熱源機器の最大負荷率を超える場合、前記各熱源機器の全ての前記負荷率が前記最大負荷率以下となるまで、該当する熱源機器の出口温度を当該機器の最大負荷率で運転した際の出口温度に変更すると共に前記平均出口温度及び前記入口温度を求めて前記負荷率を繰り返し算出する。このように、上述の如き熱源設備の流量と圧力のバランスがとれた状態における変流量ポンプの変流量負荷率を考慮した熱源機器の負荷率を算出するので、定流量ポンプと変流量制御とが混在した熱源設備の各熱源機器の負荷率をより精度よく導き出すことができる。 Then, the load factor of each heat source device is obtained from the outlet temperature of each heat source device, the inlet temperature, the design temperature difference, the variable flow rate load factor, and the preset constant flow rate load rate of the constant flow rate pump, and the load is obtained. When the rate exceeds the maximum load factor of each heat source device, the outlet temperature of the corresponding heat source device is operated at the maximum load factor of the device until all the load factors of the heat source device are equal to or less than the maximum load factor. The load factor is repeatedly calculated by changing to the outlet temperature at the time of the pumping and obtaining the average outlet temperature and the inlet temperature. In this way, since the load factor of the heat source equipment is calculated in consideration of the variable flow rate load factor of the variable flow rate pump in the state where the flow rate and the pressure of the heat source equipment are balanced as described above, the constant flow rate pump and the variable flow rate control can be used. The load factor of each heat source equipment of the mixed heat source equipment can be derived more accurately.

係る構成において、前記変流量負荷率は、複数の変流量ポンプにおいて同一値であるとよい。これにより、計算を単純にし、迅速に処理を行う。 In such a configuration, the variable flow rate load factor may be the same value in a plurality of variable flow rate pumps. This simplifies the calculation and speeds up the process.

また、前記バイパス流量の計算は、下記式(4)に基づいて行われる。 Further, the calculation of the bypass flow rate is performed based on the following equation (4).

Figure 0006847428
Figure 0006847428

上記いずれかの構成において、前記複数の熱源機器は、冷水系機器、温水系機器又は低冷水系機器のいずれかであり、前記熱媒体は、冷水、温水、低冷水のいずれかである。 In any of the above configurations, the plurality of heat source devices are either cold water devices, hot water devices, or low cold water devices, and the heat medium is any of cold water, hot water, and low cold water.

上記目的を達成するため、本発明に係る熱源設備におけるシミュレーションシステムの特徴は、熱負荷側機器群が使用する熱媒体を製造する複数の熱源機器と、各熱源機器に対応する複数のポンプと、前記複数の熱源機器及び前記複数のポンプが並列に接続され且つ前記熱負荷側機器群と前記複数の熱源機器との間で前記熱媒体を流通させる往ヘッダ及び還ヘッダと、前記往ヘッダと前記還ヘッダとを接続するバイパスとを備えた熱源設備において、少なくとも前記複数の熱源機器の運転条件と前記熱媒体の使用量又は製造量との関係を求める熱源設備における構成において、前記複数のポンプは、定流量ポンプ及び変流量ポンプを少なくとも1機ずつ含み、日別で時間帯毎に前記熱負荷側機器群で必要とされる前記熱媒体の熱負荷量を設定する熱負荷量設定部と、時間帯別の前記熱源機器毎の運転可否及び運転優先順位を設定する運転条件設定部と、前記運転条件設定部の運転条件に従い前記熱源設備を運転させた結果の内の少なくとも前記熱媒体の製造量を計算する演算部と、前記熱負荷側機器群が使用する熱媒体の必要流量を算出すると共に前記定流量ポンプの定流量合計流量を算出する第一流量算出部と、前記必要流量と前記バイパスのバイパス流量の和から前記定流量合計流量を引くことで前記変流量ポンプの変流量合計流量を算出する第二流量算出部と、前記変流量合計流量を前記変流量ポンプの定格合計流量で割ることで前記変流量ポンプの変流量負荷率を求める流量負荷率算出部と、前記複数の熱源機器の平均出口温度を算出すると共に前記各熱源機器の入口温度を算出する温度算出部と、前記各熱源機器の出口温度、前記入口温度、設計温度差及び前記変流量負荷率並びに予め設定された前記定流量ポンプの定流量負荷率から前記各熱源機器の負荷率を求める負荷率算出部とを備え、前記第二流量算出部は、前記変流量合計流量が0より大となるまで、前記運転優先順位の低い前記定流量ポンプを前記変流量ポンプに変更して前記変流量合計流量を繰り返し算出し、前記流量負荷率算出部は、前記変流量負荷率が予め設定された前記変流量ポンプの運転下限負荷率より小である場合には、前記変流量負荷率を前記運転下限負荷率に置換すると共に置換した変流量負荷率で前記バイパス流量を計算し、前記負荷率算出部は、前記負荷率が前記各熱源機器の最大負荷率を超える場合、前記各熱源機器の全ての前記負荷率が前記最大負荷率以下となるまで、該当する熱源機器の出口温度を当該機器の機器上限負荷率で運転した際の出口温度に変更すると共に前記平均出口温度及び前記入口温度を求めて前記負荷率を繰り返し算出し、前記演算部は、算出した負荷率に基づいて前記熱媒体の製造量を計算することにある。 In order to achieve the above object, the features of the simulation system in the heat source equipment according to the present invention are a plurality of heat source equipment for producing the heat medium used by the heat load side equipment group, a plurality of pumps corresponding to each heat source equipment, and a plurality of pumps. The forward header and the return header, the forward header and the return header, in which the plurality of heat source devices and the plurality of pumps are connected in parallel and the heat medium is circulated between the heat load side device group and the plurality of heat source devices, and the forward header and the said. In a heat source facility provided with a bypass connecting the return header, at least in the configuration of the heat source facility for obtaining the relationship between the operating conditions of the plurality of heat source devices and the usage amount or the production amount of the heat medium, the plurality of pumps are used. , A heat load amount setting unit that includes at least one constant flow pump and one variable flow pump, and sets the heat load amount of the heat medium required by the heat load side equipment group for each time zone on a daily basis. Manufacture of at least the heat medium among the results of operating the heat source equipment according to the operation conditions of the operation condition setting unit for setting the operation enablement and operation priority for each heat source device for each time zone and the operation conditions of the operation condition setting unit. A calculation unit that calculates the amount, a first flow rate calculation unit that calculates the required flow rate of the heat medium used by the heat load side equipment group, and a constant flow rate total flow rate of the constant flow rate pump, and the required flow rate and the above. The second flow rate calculation unit that calculates the total variable flow rate of the variable flow pump by subtracting the total constant flow rate from the sum of the bypass flow rates of the bypass, and the total variable flow rate are calculated by the rated total flow rate of the variable flow pump. A flow load factor calculation unit that obtains the variable flow load factor of the variable flow pump by dividing, a temperature calculation unit that calculates the average outlet temperature of the plurality of heat source devices and the inlet temperature of each heat source device, and the above. A load factor calculation unit that obtains the load factor of each heat source device from the outlet temperature of each heat source device, the inlet temperature, the design temperature difference, the variable flow rate load factor, and the preset constant flow rate load rate of the constant flow rate pump. The second flow rate calculation unit repeatedly calculates the variable flow rate total flow rate by changing the constant flow rate pump having a low operation priority to the variable flow rate pump until the variable flow rate total flow rate becomes larger than 0. Then, when the variable flow load factor is smaller than the preset operating lower limit load factor of the variable flow pump, the flow rate load factor calculation unit replaces the variable flow load factor with the operating lower limit load factor. When the load factor exceeds the maximum load factor of each heat source device, the load factor calculation unit calculates the bypass flow rate with the variable flow rate load factor replaced at the same time. Until the load factor becomes equal to or less than the maximum load factor, the outlet temperature of the corresponding heat source device is changed to the outlet temperature when operating at the device upper limit load factor of the device, and the average outlet temperature and the inlet temperature are obtained. The load factor is repeatedly calculated, and the calculation unit calculates the production amount of the heat medium based on the calculated load factor.

係る場合、前記複数の熱源機器は、少なくとも冷水系機器、温水系機器又は低冷水系機器のいずれかを含み、前記熱源設備は、前記複数の熱源機器及び/又は前記熱負荷側機器群で使用される電力を供給する発電系機器と前記熱負荷側機器群で使用される蒸気を供給するボイラ系機器とをさらに備え、前記演算部は、前記負荷率に基づいて、前記電力の使用量又は製造量の計算の前に前記蒸気の使用量又は製造量の計算を行い、前記蒸気の使用量又は製造量の計算の前に前記熱媒体の製造量の計算を行うとよい。 In such a case, the plurality of heat source equipment includes at least one of cold water system equipment, hot water system equipment, and low cold water system equipment, and the heat source equipment is used in the plurality of heat source equipment and / or the heat load side equipment group. Further, a power generation system device for supplying the power to be generated and a boiler system device for supplying steam used in the heat load side device group are further provided, and the calculation unit may use the power or the power consumption based on the load factor. It is preferable to calculate the amount of steam used or the amount of production before calculating the amount of production, and to calculate the amount of heat medium used or amount of heat before calculating the amount of steam used or amount of production.

上記いずれかに記載のシミュレーションシステムは、これをコンピュータに実行させるためのコンピュータプログラムにより実現され、このコンピュータプログラムは記録媒体に記録される。 The simulation system described in any of the above is realized by a computer program for causing a computer to execute the simulation system, and the computer program is recorded on a recording medium.

上記本発明に係る熱源機器の負荷率決定方法、熱源設備におけるシミュレーションシステム及びこれを実行させるためのコンピュータプログラム並びにこのプログラムを記録した記録媒体の特徴によれば、定流量ポンプと変流量制御とが混在した熱源設備においても、各熱源機器の負荷率をより精度よく導き出すことが可能となった。 According to the method for determining the load factor of the heat source equipment according to the present invention, the simulation system in the heat source equipment, the computer program for executing the simulation system, and the recording medium on which this program is recorded, the constant flow pump and the variable flow control can be used. Even in a mixed heat source facility, it has become possible to derive the load factor of each heat source device more accurately.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。 Other objects, configurations and effects of the present invention will become apparent from the sections of embodiments of the invention below.

本発明に係るシミュレーションシステムの対象となる熱電設備の概略図である。It is the schematic of the thermoelectric equipment which is the object of the simulation system which concerns on this invention. シミュレーションシステムのデータフロー図である。It is a data flow diagram of a simulation system. シミュレーションシステムのハードウエアの構成図である。It is a block diagram of the hardware of the simulation system. 熱電設備の一例を示すブロック図である。It is a block diagram which shows an example of a thermoelectric equipment. シミュレーションシステムのソフトウエアの構成図である。It is a block diagram of the software of the simulation system. 各設定部の設定手順を示すフロー図である。It is a flow chart which shows the setting procedure of each setting part. 一般的ロジックフローの全体を示す図である。It is a figure which shows the whole of the general logic flow. 冷水及び温水のエネルギーバランスの一般的ロジックフローを示す図である。It is a figure which shows the general logic flow of the energy balance of cold water and hot water. 低圧蒸気エネルギーバランスの一般的ロジックフローを示す図である。It is a figure which shows the general logic flow of a low pressure steam energy balance. ガスエンジン排温水エネルギーバランスの一般的ロジックフローを示す図である。It is a figure which shows the general logic flow of the gas engine exhaust hot water energy balance. 給湯及び電力のエネルギーバランスの一般的ロジックフローを示す図Diagram showing the general logic flow of energy balance of hot water supply and electric power 定流量制御及び変流量制御の熱源機器が混在する熱源機器の一例を示す図である。It is a figure which shows an example of the heat source equipment which mixes the heat source equipment of constant flow rate control and variable flow rate control. ポンプの流量負荷率の算出手順を示すフロー図である。It is a flow chart which shows the calculation procedure of the flow rate load factor of a pump. 熱源機器の負荷率の算出手順を示すフロー図である。It is a flow chart which shows the calculation procedure of the load factor of a heat source equipment. ポンプの運転条件の設定画面の一例を示す図である。It is a figure which shows an example of the setting screen of the operating condition of a pump.

次に、適宜添付図面を参照しながら、本発明をさらに詳しく説明する。
本発明に係るシミュレーションシステム1の対象となる熱電設備MEは、図1に示すように、複数の熱電機器m1〜9により構成される。熱電設備MEは、受入高圧蒸気R1、受入低圧蒸気R2、化石燃料及びその他燃料(以下、単に「燃料」という。)R3、電力R4、受入冷水R5、受入温水R6が供給され、蒸気S(高圧蒸気S1及び低圧蒸気S2)、冷水S3、温水S4、給湯S5、電力S6が製造され、利用設備N(ビル、工場、ホテル、病院等の熱負荷側機器群)に供給される。
Next, the present invention will be described in more detail with reference to the accompanying drawings as appropriate.
As shown in FIG. 1, the thermoelectric equipment ME that is the target of the simulation system 1 according to the present invention is composed of a plurality of thermoelectric devices m1-9. The thermoelectric equipment ME is supplied with receiving high-pressure steam R1, receiving low-pressure steam R2, fossil fuel and other fuel (hereinafter, simply referred to as "fuel") R3, electric power R4, receiving cold water R5, and receiving hot water R6, and steam S (high pressure). Steam S1 and low-pressure steam S2), cold water S3, hot water S4, hot water supply S5, and electric power S6 are produced and supplied to the utilization equipment N (heat load side equipment group of buildings, factories, hotels, hospitals, etc.).

熱電機器MEは、大略、発電系機器m1、ボイラ系機器m2、冷水系機器m3、温水系機器m4、低冷水系機器m5、給湯系機器m6、冷却塔系機器m7(グループ冷却塔)、蓄熱系機器m8及びポンプ系機器m9に系統別に分類されており、これらを適宜組み合わせて上述の如き熱電設備MEが構築される。なお、例えば低冷水系機器m5として、低冷水系電動ターボ冷凍機や低冷水系電動ヒートポンプを設け、低冷水が供給されるようにすることも可能である。また、冷水系機器であるジェネリンク(登録商標)は、ガスコージェネレーション(ガスエンジン、燃料電池)から発生する100℃以下の排熱温水を有効に利用し、冷水を製造する排温水投入型吸収冷凍機である。また、本明細書において、熱源機器MHとは、熱電機器m1〜9から発電系機器m1を除いたものをいう。 The thermoelectric equipment ME is roughly, power generation equipment m1, boiler equipment m2, cold water equipment m3, hot water equipment m4, low cold water equipment m5, hot water supply equipment m6, cooling tower equipment m7 (group cooling tower), heat storage. The system equipment m8 and the pump system equipment m9 are classified according to the system, and the thermoelectric equipment ME as described above is constructed by appropriately combining these. For example, as the low chilled water system device m5, a low chilled water system electric turbo chiller or a low chilled water system electric heat pump may be provided so that low chilled water can be supplied. In addition, Genelink (registered trademark), which is a cold water system device, effectively utilizes the exhaust heat hot water of 100 ° C or less generated from gas cogeneration (gas engine, fuel cell) to produce cold water. It is a machine. Further, in the present specification, the heat source device MH means a thermoelectric device m1 to 9 excluding the power generation device m1.

シミュレーションシステム1は、図2に示すように、DBサーバー4に対しTCP/IP等のネットワーク5を通じて、複数のユーザー端末2が接続されている。
ユーザー端末2のハードウエアの構成は、図3に示すように、大略、ユーザーインターフェイス6と、シミュレーションシステム1のソフトウェア(プログラム)10を実行する処理部7とから構成される。ユーザーインターフェイス6は、モニタ等の出力装置6aと、キーボードやマウス等の入力装置6bとを備え、出力装置6aに表示される画面上のボタンや入力欄をユーザーが操作する。また、処理部7は、CPU7a、一時記憶メモリ7b、HDD等の記憶装置7c、ネットワークアダプタ等の通信インターフェイス7d等とデータバス、アドレスバス等のバス8により接続されている。また、CPU7a、一時記憶メモリ7b、記憶装置7c等は連携して、ソフトウェア10を稼働させる。
As shown in FIG. 2, in the simulation system 1, a plurality of user terminals 2 are connected to the DB server 4 through a network 5 such as TCP / IP.
As shown in FIG. 3, the hardware configuration of the user terminal 2 is roughly composed of a user interface 6 and a processing unit 7 that executes software (program) 10 of the simulation system 1. The user interface 6 includes an output device 6a such as a monitor and an input device 6b such as a keyboard and a mouse, and the user operates buttons and input fields on the screen displayed on the output device 6a. Further, the processing unit 7 is connected to a CPU 7a, a temporary storage memory 7b, a storage device 7c such as an HDD, a communication interface 7d such as a network adapter, and the like by a bus 8 such as a data bus and an address bus. Further, the CPU 7a, the temporary storage memory 7b, the storage device 7c, and the like cooperate with each other to operate the software 10.

DBサーバー4のデータベース(以下、「DB」と省略する。)群100は、電力料金等DB101、環境負荷DB102、機器性能DB103及び気象条件DB104を備えている。この電力料金等DB101には、エネルギーの価格に関する情報が記憶され、保存される。環境負荷DB102には公表されている各種データ等から作成される環境負荷データ(単位環境負荷)が記憶される。また、機器性能DB103には、機器の部分負荷特性、外気温度及び湿球温度による機器効率の変化、内部動力消費量及びシステムに組み込まれた機器の制約条件等が主要メーカの機種別、燃料別、能力別に記憶される。気象条件DB104には、例えば、全国28地点の時間毎の外気温度、湿球温度の情報が記憶され、保存されている。 The database (hereinafter abbreviated as "DB") group 100 of the DB server 4 includes a power charge DB 101, an environmental load DB 102, an equipment performance DB 103, and a weather condition DB 104. Information on the price of energy is stored and stored in the electricity rate DB 101. Environmental load data (unit environmental load) created from various published data and the like is stored in the environmental load DB 102. In addition, the equipment performance DB 103 includes the partial load characteristics of the equipment, changes in equipment efficiency due to the outside air temperature and wet-bulb temperature, internal power consumption, constraints on the equipment incorporated in the system, etc. by model type and fuel of major manufacturers. , Memorized by ability. In the meteorological condition DB 104, for example, information on the hourly outside air temperature and wet-bulb temperature at 28 points nationwide is stored and stored.

本システムのユーザーは、DBサーバー4に対しネットワーク5を通じてアクセスし、電力料金データファイル101a、環境負荷データファイル102a、メーカ・機器データテンプレートファイル103a及び気象条件データファイル104aを各DB101〜104から読み込み、読込データ100aとして保存する。読込データ100aは、適宜手動で変更でき、ケースファイル106に保存される。このように、後述する各設定部へ設定された条件及びパラメータはケースファイル106として電子記録媒体等の記憶装置7cに記録可能である。なお、記憶装置(媒体)としては、HDD7cに限らず、磁気ディスク、光ディスク、RAM等の各種のリムーバブルディスクを電子記録媒体として使用することも可能である。 The user of this system accesses the DB server 4 through the network 5, reads the power charge data file 101a, the environmental load data file 102a, the manufacturer / equipment data template file 103a, and the weather condition data file 104a from each DB 101-104. Save as read data 100a. The read data 100a can be manually changed as appropriate and is saved in the case file 106. In this way, the conditions and parameters set in each setting unit described later can be recorded as a case file 106 in a storage device 7c such as an electronic recording medium. The storage device (medium) is not limited to the HDD 7c, and various removable disks such as magnetic disks, optical disks, and RAMs can be used as the electronic recording medium.

処理部7の演算部7pでは、ユーザーが評価するエネルギーシステムに合わせたデータに修正して実施したシミュレーションデータをケースファイル106と熱電負荷ファイル104として保存すると共にグラフや帳票として表示、印刷又はファイル等の形式にて出力される。また、熱電機器のいずれかが部分負荷特性を含み、演算部7pは、上述のエネルギーのいずれかの製造量がエネルギー負荷設定部20で設定した目標値となるように当該熱電機器の負荷率を変更させて収斂計算を行う。また、演算部7pは、収斂計算が完了するように熱電機器の台数を判定し台数を変更する。 In the calculation unit 7p of the processing unit 7, the simulation data obtained by modifying the data according to the energy system evaluated by the user is saved as the case file 106 and the thermoelectric load file 104, and displayed, printed or filed as a graph or form. It is output in the format of. Further, one of the thermoelectric devices includes a partial load characteristic, and the calculation unit 7p sets the load factor of the thermoelectric device so that the production amount of any of the above-mentioned energies becomes the target value set by the energy load setting unit 20. Change and calculate convergence. Further, the calculation unit 7p determines the number of thermoelectric devices and changes the number so that the convergence calculation is completed.

ここで、図4に熱電設備MEのブロックフローを示す。この熱電設備MEは、発電系機器としてのガスタービンコージェネレーションm1a、ボイラ系機器としての低圧ボイラm2a、冷水系機器としての吸収式冷凍機m3a及びターボ冷凍機m3bより構成してある。ガスタービンコージェネレーションm1aは、排熱ボイラm1a1を備えている。 Here, FIG. 4 shows the block flow of the thermoelectric equipment ME. This thermoelectric equipment ME is composed of a gas turbine cogeneration m1a as a power generation equipment, a low pressure boiler m2a as a boiler equipment, an absorption chiller m3a as a cold water equipment, and a turbo chiller m3b. The gas turbine cogeneration m1a includes an exhaust heat boiler m1a1.

図5に示すように、シミュレーションシステム1のプログラム10は、大略、エネルギー負荷設定部(熱負荷量設定部)20、基本条件設定部30、システム構築設定部40、運転条件設定部50、運転結果出力部60、ケースファイル等作成部70、表示制御部80及び熱源機器算出部90よりなる。 As shown in FIG. 5, the program 10 of the simulation system 1 is roughly composed of an energy load setting unit (heat load amount setting unit) 20, a basic condition setting unit 30, a system construction setting unit 40, an operation condition setting unit 50, and an operation result. It includes an output unit 60, a case file creation unit 70, a display control unit 80, and a heat source device calculation unit 90.

基本条件設定部30は、ユーティリティーコスト設定部31、プロセス条件設定部32、環境負荷設定部33及び温度データ設定部34とからなる。ユーティリティーコスト設定部31は、電力コスト設定部31a及び燃料コスト設定部31bを備えている。ユーティリティーコストは、供給されるエネルギーとそのエネルギーの価格に乗じて求められる。 The basic condition setting unit 30 includes a utility cost setting unit 31, a process condition setting unit 32, an environmental load setting unit 33, and a temperature data setting unit 34. The utility cost setting unit 31 includes an electric power cost setting unit 31a and a fuel cost setting unit 31b. Utility costs are calculated by multiplying the energy supplied and the price of that energy.

ここで、図6にシミュレーションシステムの各設定部の設定手順を示す。
この設定手順は、まず、エネルギー負荷設定部20によりエネルギー負荷を設定する(S201)。次に、プロセス条件設定部32により熱媒のプロセス条件を設定する(S202)。そして、環境負荷設定部33及びユーティリティーコスト設定部31により環境負荷DB102及び電力料金等DB101から読み込むことで環境負荷データ及びユーティリティーコストを設定する(S203,204)。これらを設定後、システム構築設定部40において、熱電機器を選択して機器性能データを読み込むことにより熱電設備を構築し(S206,207)、その構築した熱電設備における運転条件を運転条件設定部50により設定する(S208)。熱電設備の構築状況は適宜表示制御部80を介してフロー図に表示される。上記各ステップで設定した条件は、ケースファイル等作成部70によりユーザー機器テンプレートファイル103b、熱電負荷ファイル105及びケースファイル106等の個別データ100bとして適宜保存することができる。また、上記各ステップにおいてDB群100の各種データを利用して設定したが、保存している個別データ100bを利用して各種設定を行うことも可能である。
Here, FIG. 6 shows a setting procedure of each setting unit of the simulation system.
In this setting procedure, first, the energy load is set by the energy load setting unit 20 (S201). Next, the process condition setting unit 32 sets the process conditions of the heat medium (S202). Then, the environmental load data and the utility cost are set by reading from the environmental load DB 102 and the electricity charge DB 101 by the environmental load setting unit 33 and the utility cost setting unit 31 (S203, 204). After setting these, the system construction setting unit 40 constructs the thermoelectric equipment by selecting the thermoelectric equipment and reading the equipment performance data (S206, 207), and sets the operating conditions in the constructed thermoelectric equipment to the operation condition setting unit 50. (S208). The construction status of the thermoelectric equipment is appropriately displayed on the flow chart via the display control unit 80. The conditions set in each of the above steps can be appropriately saved as individual data 100b such as the user device template file 103b, the thermoelectric load file 105, and the case file 106 by the case file or the like creation unit 70. Further, although various data of the DB group 100 are used for setting in each of the above steps, it is also possible to make various settings using the stored individual data 100b.

そして、これらの設定条件に基づいて時間帯別及び/又は年間のシミュレーションを演算部7pにより実行する(S209)。その結果は運転結果出力部60により、グラフや帳票の形式で出力される(S210)。また、条件を変更して繰り返しシミュレーションを行うことも可能である。係る場合、運転優先順位、運転可否及び最低買電量、電主、熱主等の変更等(S211)は運転条件で行い、比較検討の為の機器の追加、変更及び削除等(S212)はシステム構築設定で行う。そして、再度シミュレーションを実行し出力する(S209,210)。 Then, based on these setting conditions, the time zone-specific and / or yearly simulation is executed by the calculation unit 7p (S209). The result is output by the operation result output unit 60 in the form of a graph or a form (S210). It is also possible to change the conditions and perform the simulation repeatedly. In such cases, changes in operation priority, operation availability and minimum power purchase amount, electric power owner, heat owner, etc. (S211) are performed under operating conditions, and equipment additions, changes, and deletions (S212) for comparative examination are performed in the system. Perform in the build settings. Then, the simulation is executed again and output (S209, 210).

エネルギー負荷設定(S201)において、エネルギー負荷設定部20は、月別、日別及びパターン別で時間帯毎に利用設備で必要とされる複合エネルギーの量を設定する。例えば、外気温度、湿球温度及び熱電負荷データとして冷水負荷、蒸気負荷、電力負荷、冷水供給温度及び冷水戻り温度を設定する。外気温度は、ガスタービンの吸気温度と関連し、その吸気温度はガスタービン発電量のパラメータとなる。湿球温度は、冷却水温度に影響し、吸収式冷凍機及びターボ冷凍機の性能(COP)の変数となり電力消費量、化石燃料消費量に関係する。 In the energy load setting (S201), the energy load setting unit 20 sets the amount of combined energy required for the equipment to be used for each time zone by month, day, and pattern. For example, the chilled water load, the steam load, the electric power load, the chilled water supply temperature, and the chilled water return temperature are set as the outside air temperature, the wet bulb temperature, and the thermoelectric load data. The outside air temperature is related to the intake air temperature of the gas turbine, and the intake air temperature is a parameter of the gas turbine power generation amount. The wet-bulb temperature affects the cooling water temperature, becomes a variable of the performance (COP) of the absorption chiller and the turbo chiller, and is related to the power consumption and fossil fuel consumption.

また、冷水負荷、温水負荷、低圧蒸気、高圧蒸気、給湯負荷、電力負荷等の熱電負荷データは、熱電設備が既に稼働している場合、その稼働時に採取してある熱電負荷データを利用して設定することができる。また、このエネルギー負荷設定は、12ヶ月分を各月最大8パターンの負荷まで24時間データで設定可能である。冷水、低冷水、温水の各供給温度及び戻り温度も同様に設定可能である。 For thermoelectric load data such as cold water load, hot water load, low-voltage steam, high-pressure steam, hot water supply load, and electric power load, if the thermoelectric equipment is already in operation, use the thermoelectric load data collected during the operation. Can be set. In addition, this energy load setting can be set for 12 months with 24-hour data up to a maximum of 8 patterns of load each month. The supply temperature and return temperature of cold water, low cold water, and hot water can be set in the same manner.

次に、プロセス条件設定(S202)において、プロセス条件設定部32は、基本条件、燃料データ、電気系統・蒸気系統及びガスタービン等回収蒸気の種類等の熱媒のプロセス条件を設定する。このプロセス条件設定部32は、エネルギー負荷設定部20の熱媒の温度差、外気温度及び湿球温度を使用するかを選択すると共に、冷水、温水、低冷水の供給温度と戻り温度との各目標温度差及びミニマムバイバス流量を設定する。また、高圧・低圧蒸気の条件(圧力MpaG、蒸気エンタルピーkJ/kg、還水のエンタルピーkJ/kg、蒸気回収率%)を設定する。 Next, in the process condition setting (S202), the process condition setting unit 32 sets the process conditions of the heat medium such as the basic conditions, the fuel data, the electric system / steam system, and the type of recovered steam such as the gas turbine. The process condition setting unit 32 selects whether to use the temperature difference of the heat medium, the outside air temperature, and the wet-bulb temperature of the energy load setting unit 20, and determines each of the supply temperature and the return temperature of cold water, hot water, and low cold water. Set the target temperature difference and the minimum by-bus flow rate. In addition, the conditions for high-pressure and low-pressure steam (pressure MpaG, steam enthalpy kJ / kg, return water enthalpy kJ / kg, steam recovery rate%) are set.

燃料のプロセス条件では、ガス、重油、灯油及びその他の油の発熱量及び比重を設定する。電気系統及び蒸気系統については、熱電負荷データの電力負荷、低圧蒸気負荷の内訳、発電電力の供給先、ガスタービン及び追焚きガスタービン、ガスエンジンの回収蒸気種別、蒸気減圧による電力回収をそれぞれ設定する。 In the fuel process conditions, the calorific value and specific gravity of gas, heavy oil, kerosene and other oils are set. For the electric system and steam system, the power load of thermoelectric load data, the breakdown of low-pressure steam load, the supply destination of generated power, the gas turbine and reheating gas turbine, the recovery steam type of the gas engine, and the power recovery by steam decompression are set respectively. To do.

熱電負荷データの電力負荷の内訳は、エネルギー負荷設定部20で設定した電力負荷が熱電設備以外に供給される電力負荷であるか、熱電設備の電力を含んだ電力負荷であるかを選定する。同様に熱電負荷データの低圧蒸気負荷の内訳は、低圧蒸気負荷が熱電設備以外に供給される蒸気負荷であるか、熱電設備で発生する蒸気負荷であるかを選定する。また、全蒸気負荷(蒸気発生器からの蒸気負荷)を選択する場合は、利用設備に蒸気が供給され且つ熱電設備で蒸気が使用される場合であり、蒸気発生機器から発生する合計流量として設定される。 The breakdown of the electric power load of the thermoelectric load data selects whether the electric power load set by the energy load setting unit 20 is the electric power load supplied to other than the thermoelectric equipment or the electric power load including the electric power of the thermoelectric equipment. Similarly, the breakdown of the low-voltage steam load in the thermoelectric load data selects whether the low-voltage steam load is a steam load supplied to other than the thermoelectric facility or a steam load generated in the thermoelectric facility. In addition, when the total steam load (steam load from the steam generator) is selected, it is the case where steam is supplied to the equipment used and steam is used in the thermoelectric equipment, and it is set as the total flow rate generated from the steam generator. Will be done.

また、蒸気減圧による電力回収は、高圧蒸気に余剰が生じ低圧蒸気に減圧される時に電力回収ができる電力回収設備について設定する。係る場合、最大発電量と部分負荷発電量に必要な高圧蒸気量と排蒸気のエンタルピーを設定する。各回収蒸気種別は、発電系機器(ガスタービン、追焚きガスタービン、ガスエンジン)から発生する蒸気を低圧蒸気とするか、高圧蒸気とするかを選択する。 In addition, power recovery by steam decompression is set for a power recovery facility that can recover power when there is a surplus in high-pressure steam and the pressure is reduced to low-pressure steam. In this case, set the enthalpy of high-pressure steam and exhaust steam required for the maximum power generation amount and partial load power generation amount. For each recovered steam type, it is selected whether the steam generated from the power generation system equipment (gas turbine, reheating gas turbine, gas engine) is low-pressure steam or high-pressure steam.

発電電力の供給先の設定は、発電系機器が発電した電気をどこに供給し利用するかを決定するために、熱電設備と利用設備の電力を負担、熱電設備のみの電力を負担、利用設備のみの電力を負担のいずれかから選択する。電力供給先を「熱電設備への供給」と選択すると、熱電設備で消費される電力量にあわせて発電系機器が発電するように電力をバランスさせる。また、「需要家のみ」を選択すれば、同様に熱源以外の電力量にあわせて発電系機器が発電するように電力をバランスさせる。 When setting the supply destination of generated power, in order to determine where to supply and use the electricity generated by the power generation equipment, the power of the thermoelectric equipment and the equipment used is borne, the power of only the thermoelectric equipment is borne, and only the equipment used. Select the power of the burden from one of the burdens. When the power supply destination is selected as "supply to thermoelectric equipment", the power is balanced so that the power generation equipment generates power according to the amount of power consumed by the thermoelectric equipment. Also, if "Consumer only" is selected, the power is similarly balanced so that the power generation equipment generates power according to the amount of power other than the heat source.

環境負荷データ設定(S203)において、環境負荷データ設定部33は環境負荷データを設定する。具体的には、エネルギー負荷設定部20、基本条件設定部30、システム構築設定部40及び運転条件設定部50にて設定した条件で求められた電力消費量及び化石燃料及び他の燃料消費量に対し、環境負荷データ(単位環境負荷)をそれぞれ乗じて環境負荷(一次エネルギー、CO2、NOx、SOx)を出力するために設定する。設定されるデータは電力、ガス、灯油、重油、その他の油毎にCO2、NOx、SOxの各排出原単位及び原油換算値である。電力は、さらに一次エネルギー換算値が設定される。また、電力は、例えば昼間及び夜間のように時間帯別に設定可能である。 In the environmental load data setting (S203), the environmental load data setting unit 33 sets the environmental load data. Specifically, the power consumption and fossil fuel and other fuel consumptions obtained under the conditions set by the energy load setting unit 20, the basic condition setting unit 30, the system construction setting unit 40, and the operating condition setting unit 50. On the other hand, it is set to output the environmental load (primary energy, CO 2 , NO x , SO x ) by multiplying the environmental load data (unit environmental load). The data to be set are CO 2 , NO x , and SO x emission intensity and crude oil conversion values for each of electricity, gas, kerosene, heavy oil, and other oils. For electric power, a primary energy conversion value is further set. Further, the electric power can be set for each time zone such as daytime and nighttime.

次に、ユーティリティーコスト設定(S204)において、電力コスト設定部31a及び燃料コスト設定部31bは、電力及び燃料コストの設定を行う。電力コスト設定部31aは、電力契約種別、選択約款の附加種別及び消費電力量別によって定められた電力コストを設定する。 Next, in the utility cost setting (S204), the electric power cost setting unit 31a and the fuel cost setting unit 31b set the electric power and the fuel cost. The electric power cost setting unit 31a sets the electric power cost determined by the electric power contract type, the additional type of the optional clause, and the electric energy consumption.

システム構築設定(S206)において、システム構築設定部40は、熱電設備MEのシステム構成を構築する。このシステム構築設定部40は同一機種、能力の異なる機種、動作のためのエネルギーが異なる機種又はメーカの異なる機種の熱電機器を複数台任意に設定し、運転条件設定部50の運転条件に従い各々を動作させることが可能である。 In the system construction setting (S206), the system construction setting unit 40 constructs the system configuration of the thermoelectric equipment ME. The system construction setting unit 40 arbitrarily sets a plurality of thermoelectric devices of the same model, models with different capacities, models with different energies for operation, or models with different manufacturers, and each of them is set according to the operating conditions of the operating condition setting unit 50. It is possible to operate.

熱電機器の各性能データは、DB群100の機器性能DB103に記憶されており、機器データ読み込み(S207)において、この性能データを読み込むことにより設定する。機器性能DB103は、上述の機器の系統毎に、機器別、メーカー別、型番別、燃料別、能力別、性能別に分類整理されて記憶されている。性能データの読み込みは、システム構築設定部40及び表示制御部80を介してこれらの分類を選択して行う。なお、上記各機器性能データは、任意に性能等の変更が可能である。 Each performance data of the thermoelectric device is stored in the device performance DB 103 of the DB group 100, and is set by reading the performance data in the device data reading (S207). The device performance DB 103 is classified and stored according to the above-mentioned device system, by device, by manufacturer, by model number, by fuel, by ability, and by performance. The performance data is read by selecting these classifications via the system construction setting unit 40 and the display control unit 80. The performance of each of the above device performance data can be changed arbitrarily.

ここで、上述の如く機器性能DB103より読込みこんだ熱電機器の機器性能データについて説明する。
ガスタービンコージェネレーションm1aの機器性能データは、ガスタービンの吸気温度別(例えば0℃、15℃、30℃)における運転負荷率%と発電効率%、排熱ボイラ熱回収率%の関係を含んでいる。この関係により、エネルギー負荷設定部20において設定された外気温度でその時間の性能が決定される。説明変数を吸気温度と負荷率とした多変量回帰式モデルにより、吸気温度15℃及び負荷率で発電効率及び熱回収率が決定される。また、吸気温度は変更可能であり、吸気温度を変更することで温度毎の性能カーブをグラフで表示することができる。このように、設定した温度以外の温度性能については、この回帰式により吸気温度及び負荷率で発電効率及び熱回収率が決定される。
Here, the device performance data of the thermoelectric device read from the device performance DB 103 as described above will be described.
The equipment performance data of the gas turbine cogeneration m1a includes the relationship between the operating load factor%, the power generation efficiency%, and the exhaust heat boiler heat recovery rate% for each intake temperature of the gas turbine (for example, 0 ° C., 15 ° C., 30 ° C.). There is. Based on this relationship, the performance for that time is determined by the outside air temperature set in the energy load setting unit 20. The power generation efficiency and heat recovery rate are determined by the intake air temperature of 15 ° C. and the load factor by a multivariate regression model with the explanatory variables as the intake air temperature and the load factor. In addition, the intake air temperature can be changed, and the performance curve for each temperature can be displayed as a graph by changing the intake air temperature. As described above, for the temperature performance other than the set temperature, the power generation efficiency and the heat recovery rate are determined by the intake air temperature and the load factor by this regression equation.

低圧ボイラm2aの機器性能データは、低圧ボイラの複数の任意の負荷率%における熱効率%を設定する。また、上記と同様に、ブローダウン量、主機の能力・台数・燃料、NOx値、補機の消費電力及び起動時のエネルギーロスを設定する。低圧ボイラm2aの機器性能データも上記と同様に、データの読み込みにより設定される。 The equipment performance data of the low-pressure boiler m2a sets the thermal efficiency% at a plurality of arbitrary load factors% of the low-pressure boiler. Further, in the same manner as described above, the blowdown amount, the capacity / number / fuel of the main engine, the NOx value, the power consumption of the auxiliary engine, and the energy loss at the time of starting are set. The equipment performance data of the low-pressure boiler m2a is also set by reading the data in the same manner as described above.

吸収式冷凍機m3aの機器性能データは、任意の複数の部分負荷率における冷水モード運転時のCOPを設定する。これらを設定することで、上記回帰式と同様に、各モードにおけるCOPと冷却水温度をパラメータとして、変化するCOP%との関係が設定される。また、冷水、冷却水の各設計温度差を設定する。 The equipment performance data of the absorption chiller m3a sets the COP during cold water mode operation at any plurality of partial load factors. By setting these, the relationship between the COP in each mode and the changing COP% is set with the cooling water temperature as a parameter, as in the above regression equation. Also, set the design temperature difference between cold water and cooling water.

冷水モードCOPと冷却水温度をパラメータとして変化するCOP%との関係を上記回帰式により求める。また、主機の台数、設計能力及び実際能力(経年劣化した場合等の能力)、付属冷却塔のファン1台当りの能力及び消費電力、冷却塔能力及び付属冷却塔の補給水濃縮倍率を設定する。 The relationship between the cold water mode COP and the COP% that changes with the cooling water temperature as a parameter is obtained by the above regression equation. In addition, the number of main engines, design capacity and actual capacity (capacity when deteriorated over time), capacity and power consumption per fan of the attached cooling tower, cooling tower capacity and make-up water concentration ratio of the attached cooling tower are set. ..

さらに、図10に示すように、ポンプの流量制御方式、運転下限負荷率、実揚程等を設定する。さらに、吸収冷凍機の補機の消費電力及び起動時のエネルギーロスを上記と同様に設定する。 Further, as shown in FIG. 10, the flow rate control method of the pump, the operating lower limit load factor, the actual head, and the like are set. Further, the power consumption of the auxiliary machine of the absorption chiller and the energy loss at the time of starting are set in the same manner as described above.

ターボ冷凍機m3bの機器性能データは、主機の能力・台数を設定する。また、部分負荷率と冷水運転の時のCOPを設定し、冷水COPと冷却水温度をパラメータとして変化するCOP%との関係を設定する。設計の冷水温度差及び冷却水温度差を設定する。これらの設定は吸収式冷凍機と同様である。また、冷水COPと負荷率をパラメータとして、変化するCOPとの関係及び冷水COPと冷却水温度をパラメータとして、変化するCOP%との関係についても同様に回帰式により求める。また、ポンプ効率の設定も吸収式冷凍機と同様の設定であり、機器データの読み込みにより設定する。 The equipment performance data of the turbo chiller m3b sets the capacity and number of main engines. In addition, the partial load factor and the COP during cold water operation are set, and the relationship between the cold water COP and the COP% that changes with the cooling water temperature as a parameter is set. Set the design chilled water temperature difference and chilled water temperature difference. These settings are similar to the absorption chiller. Further, the relationship between the cold water COP and the load factor as parameters and the changing COP and the relationship between the cold water COP and the cooling water temperature as parameters are also obtained by the regression equation. In addition, the pump efficiency is set in the same way as the absorption chiller, and is set by reading the equipment data.

運転条件設定(S208)において、運転条件設定部50は、月別、日別及びパターン毎に時間帯別で前記熱電機器毎の運転可否及び/又は運転優先順位を設定する。この運転条件の設定により熱電機器の運転計画が構築される。冷水、温水系機器については、優先順位の他、各機器の出口温度も設定する。低冷水系機器も同様に設定可能である。 In the operation condition setting (S208), the operation condition setting unit 50 sets the operation availability and / or the operation priority for each thermoelectric device for each month, day, and pattern for each time zone. An operation plan for thermoelectric equipment is constructed by setting these operating conditions. For cold water and hot water equipment, in addition to the priority, set the outlet temperature of each equipment. Low cold water equipment can be set in the same way.

外部の活用できる高圧蒸気、低圧蒸気、冷水、温水、電力を受け入れる受入量を設定する。各受入量は、複数の任意の時間帯を設定し、各時間帯における受入量をそれぞれ設定する。なお、熱電設備で製造し他の設備に供給可能な複合全エネルギー量も同様に設定する。これらの設定値が考慮され供給エネルギーや複合全エネルギーのバランスがとられる。高圧蒸気、冷水、温水、電力も全て同様に処理される。これにより、エネルギー負荷設定部20で設定されたエネルギー負荷を参照しながら、運転条件設定部50で熱電設備の運転計画を設定することができる。 Set the amount of high-pressure steam, low-pressure steam, cold water, hot water, and electricity that can be used externally. For each received amount, a plurality of arbitrary time zones are set, and the received amount in each time zone is set respectively. The total amount of combined energy that can be manufactured by thermoelectric equipment and supplied to other equipment is also set in the same way. These set values are taken into consideration to balance the supply energy and the total combined energy. High-pressure steam, cold water, hot water, and electric power are all treated in the same way. Thereby, the operation plan of the thermoelectric equipment can be set by the operation condition setting unit 50 while referring to the energy load set by the energy load setting unit 20.

運転条件設定後、シミュレーションが実行され(S209)、その結果が出力される。出力ステップ(S210)において、運転結果出力部60は、シミュレーション結果を時間帯別及び/又は年間計算として出力する。出力形式として、グラフや帳票等がある。 After setting the operating conditions, the simulation is executed (S209) and the result is output. In the output step (S210), the operation result output unit 60 outputs the simulation result as a time zone-based and / or annual calculation. Output formats include graphs and forms.

運転条件設定部50による運転条件設定(S208)及び演算部7pによるシミュレーション計算手順は、図7AのS01〜07のステップよりなり、各ステップは図7B〜7Eに対応する。なお、以下の各説明において、電主(電力優先)運転は、電力に逆潮が生じない運転であり、熱主(熱負荷優先)運転は例えば蒸気の放出等が生じない運転である。また、各ステップの説明に当たり、図4の熱電設備を用いた実例に関連するステップのみを先に示す。また、シミュレーション計算の詳細は、本願出願人の先の出願(特願2010−504354)にされているため、詳しい説明を省略する。 The operation condition setting (S208) by the operation condition setting unit 50 and the simulation calculation procedure by the calculation unit 7p consist of the steps S01 to 07 of FIG. 7A, and each step corresponds to FIGS. 7B to 7E. In each of the following descriptions, the electric power main (power priority) operation is an operation in which a reverse tide does not occur in the electric power, and the heat main (heat load priority) operation is an operation in which, for example, steam is not released. Further, in the explanation of each step, only the steps related to the example using the thermoelectric equipment of FIG. 4 are shown first. Further, since the details of the simulation calculation are in the earlier application (Japanese Patent Application No. 2010-504354) of the applicant of the present application, detailed description thereof will be omitted.

図7Aに示すフローは、シミュレーションにおける一般的バランス計算処理手順であり、、冷水エネルギーバランスステップ(以下、「EB」と省略する。)(S01)、温水EB(S02)、低圧蒸気EB(S03)、高圧蒸気EB(S04)、ガスエンジン排温水EB(S05)、給湯EB(S06)、電力EB(S07)からなる。このように、供給されるエネルギーは、電力エネルギーの前に蒸気エネルギー、この蒸気エネルギーの前にその他のエネルギーの順で、上記各ステップでの設定条件に基づいて順次計算される。 The flow shown in FIG. 7A is a general balance calculation processing procedure in the simulation, and is a cold water energy balance step (hereinafter abbreviated as “EB”) (S01), hot water EB (S02), and low pressure steam EB (S03). , High-pressure steam EB (S04), gas engine exhaust hot water EB (S05), hot water supply EB (S06), and electric power EB (S07). In this way, the supplied energy is sequentially calculated in the order of steam energy before electric power energy and other energy before this steam energy, based on the setting conditions in each of the above steps.

ここで、熱電設備が電主運転の場合において、G1>Ea−W1の場合、ABS(G1−(Ea−W1))が許容される誤差範囲α以内かを判定する(図7CのS73)。本実施形態では許容誤差範囲α=±1kW以内としており、誤差範囲内の場合、計算は終了する。なお、図中のABSとは、数値から符号+−を除く関数である。なお、G1は発電量、Eaはシステム内消費電力量、W1は最低買電量である。 Here, in the case where the thermoelectric equipment is in the main operation, if G1> Ea-W1, it is determined whether the ABS (G1- (Ea-W1)) is within the allowable error range α (S73 in FIG. 7C). In the present embodiment, the permissible error range α = ± 1 kW or less, and if it is within the error range, the calculation ends. The ABS in the figure is a function obtained by removing the sign +-from the numerical value. G1 is the amount of power generation, Ea is the amount of power consumption in the system, and W1 is the minimum amount of power purchased.

許容誤差が±1kW以内でない場合、例えば発電系機器のGTコージェネの負荷率P1を変更し、G1=Ea−W1になるよう式2から負荷率P1を求める。しかし、負荷率P1が変更され、回収蒸気量S1が変動すると、当該GTコージェネや他の機器の運転条件の変動に伴って内部消費電力が変動し、システム内消費電力Eaも変動する結果、電主運転で逆潮を防ぐという当初の目的を達成できない。そこで、S73の収斂がなされるまで、以下の如くS74の負荷率P1変更を経てS35cからS71を繰り返す収斂計算が必要となる。 If the permissible error is not within ± 1 kW, for example, the load factor P1 of the GT cogeneration of the power generation system equipment is changed, and the load factor P1 is obtained from Equation 2 so that G1 = Ea−W1. However, when the load factor P1 is changed and the recovered steam amount S1 fluctuates, the internal power consumption fluctuates according to the fluctuation of the operating conditions of the GT cogeneration and other devices, and the power consumption Ea in the system also fluctuates. The original purpose of preventing reverse tide in main operation cannot be achieved. Therefore, until the convergence of S73 is achieved, it is necessary to perform the convergence calculation of repeating S35c to S71 after changing the load factor P1 of S74 as follows.

ここで、GTコージェネ負荷率Pと排熱回収率S%との関係は、式1の如く、また、同負荷率Pと発電効率G%との関係は、式2の如く表される。両関係式ともに、多変量回帰式モデル、独立2変数式の一般形である。但し、吸気温度をT℃とする。
S=f(T,P) 式1
G=g(T,P) 式2
Here, the relationship between the GT cogeneration load factor P and the exhaust heat recovery rate S% is expressed as in Equation 1, and the relationship between the same load factor P and the power generation efficiency G% is expressed as in Equation 2. Both relational expressions are general forms of multivariate regression model and independent bivariate expression. However, the intake air temperature is T ° C.
S = f (T, P) Equation 1
G = g (T, P) Equation 2

吸気温度を一定とした場合、各説明変数による2次式として作成した目標発電量から負荷率%を求めると、2次式の解として得ることができる。しかし、ガスタービンでは最低負荷率%による制限があるため、負荷率最大(Pmax%)と最低負荷率(Pmin%)との中間値(Pmid%)を計算開始点としている。そこで、Pmid%での発電量が目標発電量より大である場合にPmax=Pmid とし、Pmid%での発電量が目標発電量より小である場合にPmin=Pmid とする2分検索による収束計算で目標の負荷率%を求める。同時に、Pmid%での発電量kWと目標発電量kW間の差は、1kW以下を許容誤差としている。なお、収束不可の場合を考慮して最大収束計算回数を20回としているが、収束回数は適宜設定可能である。収斂した場合はさらに次のステップに進む。なお、2分検索法は代数方程式数値計算法よる収束計算方法の一例に過ぎない。代数方程式数値計算法よる収束計算方法は、高次代数方程式や分数方程式、無理方程式、あるいは超越方程式のように微分・積分を含まない方程式の数値計算である。本発明における全ての収斂計算はこれらの各手法を用いることができる。 When the intake air temperature is constant, the load factor% can be obtained as a solution of the quadratic equation by obtaining the load factor% from the target power generation amount created as the quadratic equation by each explanatory variable. However, since the gas turbine is limited by the minimum load factor%, the calculation start point is the intermediate value (Pmid%) between the maximum load factor (Pmax%) and the minimum load factor (Pmin%). Therefore, when the amount of power generation at Pmid% is larger than the target amount of power generation, Pmax = Pmid, and when the amount of power generation at Pmid% is smaller than the target amount of power generation, Pmin = Pmid. Find the target load factor% with. At the same time, the margin of error between the power generation amount kW at Pmid% and the target power generation amount kW is 1 kW or less. The maximum number of convergence calculations is set to 20 in consideration of the case where convergence is not possible, but the number of convergences can be set as appropriate. If it converges, proceed to the next step. The two-minute search method is only an example of a convergence calculation method based on an algebraic equation numerical calculation method. Convergence calculation method by algebraic equation numerical calculation method is numerical calculation of equations that do not include differentiation and integration such as higher-order algebraic equations, fractional equations, irrational equations, and transcendental equations. Each of these methods can be used for all convergence calculations in the present invention.

上述とは異なり、S37a〜S38bの熱主運転では、回収蒸気量S1と低圧蒸気負荷S2との差が誤差範囲α内であるか否かが検討される。通常、そのための負荷率P1の変更は1度設定すれば足り、収斂計算を行う必然性はない。しかし、熱電可変GTコージェネの如き機器では、発生した蒸気を再び回収し発電効率を向上させることが可能である。かかる場合、蒸気回収率及び/又は負荷率P1を変更し、低圧蒸気の過不足がなく及び電力の逆潮が発生せぬよう収斂計算を行うことも可能である。 Unlike the above, in the thermal main operation of S37a to S38b, it is examined whether or not the difference between the recovered steam amount S1 and the low pressure steam load S2 is within the error range α. Normally, it is sufficient to change the load factor P1 for that purpose once, and it is not necessary to perform the convergence calculation. However, in a device such as a thermoelectric variable GT cogeneration, it is possible to recover the generated steam again and improve the power generation efficiency. In such a case, it is possible to change the steam recovery rate and / or the load factor P1 and perform the convergence calculation so that there is no excess or deficiency of low-pressure steam and no reverse tide of electric power is generated.

なお、電主運転で負荷率P1を再設定した場合は、説明の便宜上、低圧蒸気EB03のS35cの前(図7CのK)に戻るように設定したが、計算に矛盾を生じない限り、例えば冷水EB01の当初位置(図7BのK’)に戻るように設定しても構わない。条件を再設定し、再度全ての系統の機器において運転状態を再度調整し、特定の供給されるエネルギーが目標値に収斂することに意味がある。 When the load factor P1 was reset in the main operation, for convenience of explanation, it was set to return to the front of S35c of the low-voltage steam EB03 (K in FIG. 7C), but as long as there is no contradiction in the calculation, for example. It may be set to return to the initial position of the cold water EB01 (K'in FIG. 7B). It is meaningful to reset the conditions, readjust the operating conditions of all the equipment of the system, and converge the specific supplied energy to the target value.

このように、システムバランス計算の手順は、各系列毎に順番、例えば冷水、温水、低圧蒸気、高圧蒸気、給湯、電力の順番に熱電収支バランスを組み立てる。組み立てた条件に変更が生じた時場合は、多変数代数方程式数値解析法で収斂計算を行い、全ての系統の熱電バランスを計算する。このバランス結果に基づいて各機器の負荷で運転し出力された機器のアウトプットが、必要とされる情報に整理されて運転結果出力部60により上述の如く出力される。 In this way, the procedure for calculating the system balance is to assemble the thermoelectric balance in the order of cold water, hot water, low-pressure steam, high-pressure steam, hot water supply, and electric power for each series. When the assembled conditions change, the convergence calculation is performed by the multivariable algebraic equation numerical analysis method, and the thermoelectric balance of all systems is calculated. Based on this balance result, the output of the device operated and output under the load of each device is organized into necessary information and output by the operation result output unit 60 as described above.

ところで、シミュレーションの対象となる熱電設備MEには、例えば、図8に示す如き熱源設備MHも含まれる。この熱源設備MHは、熱負荷側機器群N(利用設備)が使用する熱媒体Rを製造する複数の熱源機器mhと、各熱源機器mhに対応する複数のポンプpと、複数の熱源機器mh及び複数のポンプpが並列に接続され且つ熱負荷側機器群Nと複数の熱源機器mhとの間で熱媒体Rを流通させる往ヘッダHF及び還ヘッダHBと、往ヘッダHFと還ヘッダHBとを接続するバイパスBとを備える。 By the way, the thermoelectric equipment ME to be simulated includes, for example, the heat source equipment MH as shown in FIG. This heat source equipment MH includes a plurality of heat source equipment mh for manufacturing the heat medium R used by the heat load side equipment group N (utilization equipment), a plurality of pumps p corresponding to each heat source equipment mh, and a plurality of heat source equipment mh. And the forward header HF and the return header HB in which a plurality of pumps p are connected in parallel and the heat medium R is circulated between the heat load side equipment group N and the plurality of heat source equipment mh, and the forward header HF and the return header HB. It is provided with a bypass B for connecting the above.

複数の熱源機器mhは、定格定流量制御の熱源機器mh1〜mhm及びそれに対応する定流量ポンプp1〜pmであり、変流量制御の熱源機器mhm+1〜mhn及び変流量ポンプpm+1〜pnより構成されている。このように、複数のポンプpは、定流量ポンプ及び変流量ポンプを少なくとも1機ずつ含む。本発明は、定流量制御と変流量制御が混在する熱源設備において、各熱源機器の運転負荷率を精度よく決定(シュミレート)する。 The plurality of heat source devices mh are the rated constant flow rate control heat source devices mh1 to mhm and the corresponding constant flow rate pumps p1 to pm, and are composed of the variable flow rate control heat source devices mhm + 1 to mhn and the variable flow rate pumps pm + 1 to pn. There is. As described above, the plurality of pumps p include at least one constant flow rate pump and one variable flow rate pump. The present invention accurately determines (simulates) the operating load factor of each heat source device in a heat source facility in which constant flow rate control and variable flow rate control coexist.

なお、同図の例及び以下の説明において、複数の熱源機器mhを冷水系機器とし、熱媒体Rを冷水として説明するが、これに限られるものではない。複数の熱源機器mhは、冷水系機器に限らず、少なくとも冷水系機器、温水系機器及び低冷水系機器のいずれかであればよい。また、熱媒体Rは、冷水に限らず、冷水、温水及び低冷水のいずれかである。以下の冷水の場合と同様に、温水及び低冷水の場合も処理される。 In the example of the figure and the following description, a plurality of heat source devices mh will be described as cold water devices, and the heat medium R will be described as cold water, but the present invention is not limited thereto. The plurality of heat source devices mh are not limited to cold water devices, and may be at least one of cold water devices, hot water devices, and low cold water devices. Further, the heat medium R is not limited to cold water, but may be cold water, hot water, or low cold water. Similar to the case of cold water below, hot water and low cold water are also treated.

次に、図5,9A,9Bを参照しながら、冷水系機器の負荷率の算出について、さらに詳しく説明する。 Next, the calculation of the load factor of the cold water system equipment will be described in more detail with reference to FIGS. 5, 9A and 9B.

図5に示すように、シミュレーションシステム1の負荷率算出部90は、大略、第一流量算出部91と、第二流量算出部92と、流量負荷率算出部93と、温度算出部94と、負荷率算出部95とを備える。また、計算工程は、大略、図9Aに示すポンプの流量負荷率算出ステップと、図9Bに示す熱源機器の負荷率算出ステップとよりなる。 As shown in FIG. 5, the load factor calculation unit 90 of the simulation system 1 is roughly composed of a first flow rate calculation unit 91, a second flow rate calculation unit 92, a flow rate load rate calculation unit 93, and a temperature calculation unit 94. A load factor calculation unit 95 is provided. Further, the calculation step roughly includes a flow rate load factor calculation step of the pump shown in FIG. 9A and a load factor calculation step of the heat source device shown in FIG. 9B.

まず、第一流量算出部91が、熱負荷側機器群N(利用設備)で必要となる(使用する)冷水Rの必要流量F(m3/h)を下記式(1)により算出する(S101)。なお、下記式(1)中、Qは冷水負荷、ΔTは冷水の往還温度差である。 First, the first flow rate calculation unit 91 calculates the required flow rate F (m 3 / h) of the cold water R required (used) in the heat load side equipment group N (utilized equipment) by the following formula (1) (1). S101). In the following equation (1), Q is the cold water load, and ΔT is the temperature difference between the cold water.

Figure 0006847428
Figure 0006847428

ここで、バイパスBの冷水ミニマムバイパス流量をFBとすると、複数のポンプp1〜pn全体で熱負荷側機器群Nに送出するべき冷水流量FT(m3/h)は、F+FBとなる。 Here, the cold water minimum bypass flow rate of the bypass B to F B, coolant flow rate F T should be delivered to the heat load side equipment group N across multiple pumps p1~pn (m 3 / h) becomes F + F B ..

また、第一流量算出部91は、定流量ポンプp1〜pmの定流量合計流量を算出する(S102)。ここで、定流量ポンプp1〜pmの定格ポンプ容量FRは、冷水系機器mh1〜mhmの設計能力(MJ/h)/4.18605(MJ/Mcal)/設計温度差(℃)により求まるので、定格ポンプ容量FRの総和が定流量合計流量となる。この計算の際、本実施形態では、各定流量ポンプp1〜pmの流量負荷率PRは全て100%としている。残りを変流量ポンプpm+1〜pnが均等負荷率で分担する。これにより、計算を単純化して高速に処理する。 Further, the first flow rate calculation unit 91 calculates the total flow rate of the constant flow rates of the constant flow rate pumps p1 to pm (S102). Here, the rated pump capacity F R of the constant flow pump p1~pm Since found by chilled water system equipment mh1~mhm design capabilities (MJ / h) /4.18605 (MJ / Mcal) / design temperature difference (℃) , the sum of the rated pump capacity F R is constant flow total flow rate. During this calculation, in the present embodiment, the flow rate load factor P R of the constant flow pump p1~pm are all 100%. The variable flow rate pump pm + 1 to pn shares the rest with a uniform load factor. This simplifies the calculation and processes it at high speed.

上記で求めた冷水Rの必要流量Fと冷水ミニマムバイパス流量FBとの和(=冷水流量FT)から定流量ポンプp1〜pmの定流量合計流量を引くことで、変流量ポンプpm+1〜pnの変流量合計流量を求めることができる。よって、第二流量算出部93は、下記式(2)により変流量合計流量を算出する(S103)。なお、下記式(2)中、Fiは変流量ポンプ流量、FiRは定格定流量ポンプ流量である。また、定流量ポンプの台数をi=1〜m、変流量ポンプの台数をi=m+1〜nとする。 By subtracting the constant flow total flow rate from the sum (= coolant flow rate F T) of the constant flow pump p1~pm the required flow rate F and cold minimum bypass flow rate F B of cold R obtained above, variable flow pump pm + 1~pn The total flow rate of the variable flow rate can be obtained. Therefore, the second flow rate calculation unit 93 calculates the total variable flow rate by the following formula (2) (S103). In the following formulas (2), F i is variable flow pump flow, F iR is Teikakujo flow pump flow. Further, the number of constant flow rate pumps is i = 1 to m, and the number of variable flow rate pumps is i = m + 1 to n.

Figure 0006847428
Figure 0006847428

ここで、求めた変流量合計流量がマイナス(0以下)となる場合がある(S104)。係る場合、運転条件設定部50は、予め設定した運転優先順位において最も順位の低い定流量ポンプを変流量ポンプに変更する(S105)。そして、第二流量算出部92は、変更した運転条件で再度計算を行う(S103)。この計算は、変流量合計流量がプラス(0より大)となるまで繰り返し行う。但し、電力消費量については、定流量の電力消費量で計算するとよい。一時的に流量がマイナスとなって流量バランスが確保できないことが想定されるためである。 Here, the obtained total variable flow rate may be negative (0 or less) (S104). In such a case, the operation condition setting unit 50 changes the constant flow rate pump having the lowest rank in the preset operation priority to the variable flow rate pump (S105). Then, the second flow rate calculation unit 92 performs the calculation again under the changed operating conditions (S103). This calculation is repeated until the total variable flow rate becomes positive (greater than 0). However, the power consumption may be calculated by the power consumption of a constant flow rate. This is because it is assumed that the flow rate becomes negative temporarily and the flow rate balance cannot be secured.

そして、変流量合計流量がプラスとなると、流量負荷率算出部93は、下記式(3)により変流量ポンプの変流量負荷率LFを算出する(S106)。 When the variable flow total flow rate is positive, the flow rate load factor calculating unit 93 calculates a variable flow load factor L F of the variable flow pump by the following formula (3) (S106).

Figure 0006847428
Figure 0006847428

ここで、ポンプの条件は、図10に示す如く、機器性能データによってポンプの運転下限負荷率が設定されている。求めた変流量負荷率LFが予め設定された運転下限負荷率よりも小さい場合、流量負荷率算出部93は、求めた変流量負荷率LFを運転下限負荷率に置換すると共に置換した変流量負荷率LFでバイパス流量FBを計算する(S108)。求めた変流量負荷率LFを運転下限負荷率に置換することで、熱負荷側機器群Nで必要とする流量はより増加する。よって、下記式(4)により、冷水ミニマムバイパス流量FBを算出する。この式は、上記式(3)を逆算したものである。このようにして、各変流量ポンプpm+1〜pnの流量負荷率LFが求まる。 Here, as for the pump conditions, as shown in FIG. 10, the operating lower limit load factor of the pump is set according to the equipment performance data. When the obtained variable flow rate load factor L F is smaller than the preset operating lower limit load factor, the flow rate load factor calculation unit 93 replaces the obtained variable flow rate load factor L F with the lower operating lower limit load factor. at a flow rate load factor L F calculating the bypass flow rate F B (S108). By substituting the obtained variable flow rate load factor L F with the operation lower limit load factor, the flow rate required by the heat load side equipment group N can be further increased. Therefore, the following equation (4) to calculate a cold minimum bypass flow rate F B. This formula is a back calculation of the above formula (3). In this way, the flow rate load factor L F of each variable flow rate pump pm + 1 to pn can be obtained.

Figure 0006847428
Figure 0006847428

こうして求めた各変流量ポンプpm+1〜pnの流量負荷率LFを用いて、図9Bに示す手順にて、各冷水系機器mh1〜mhnの負荷率Liを求める。
まず、温度算出部94は、運転条件設定部50で設定された各冷水系機器mh1〜mhnの出口温度Ti及びその冷水系機器に対応する各変流量ポンプ流量Fiに基づき、下記式(5)により平均出口温度TTを算出する(S111)。ここで、上記ステップS105において定流量ポンプから変流量ポンプに変更したポンプは、変流量ポンプpm+1〜pnの流量にて計算する。
Thus with a flow rate load factor L F of the variable flow pump pm + 1~pn determined, in the procedure shown in FIG. 9B, determining the load factor L i of each chilled water system equipment Mh1~mhn.
First, the temperature calculating section 94, based on each variable flow pump flow F i corresponding to the outlet temperature T i and chilled water system equipment of each chilled water system equipment mh1~mhn set in operating condition setting unit 50, the following formula ( 5) calculating an average outlet temperature T T (S 111). Here, the pump changed from the constant flow rate pump to the variable flow rate pump in step S105 is calculated with the flow rate of the variable flow rate pump pm + 1 to pn.

Figure 0006847428
Figure 0006847428

また、温度算出部94は、求めた平均出口温度TTを用いて下記式(6)により各冷水系機器mh1〜mhnの入口温度TUを求める(S112)。 The temperature calculation section 94, by the following equation (6) using the average outlet temperature T T determined obtaining the inlet temperature T U of the chilled water system equipment mh1~mhn (S112).

Figure 0006847428
Figure 0006847428

そして、負荷率算出部95は、各冷水系機器mh1〜mhnの出口温度Ti、求めた入口温度TU、予めプロセス条件設定部32で設定された設計温度差ΔTi及び先に求めた変流量負荷率LFiを用いて、下記式(7)により各冷水系機器mh1〜mhnの負荷率Liを算出する(S113)。ここで、定流量ポンプp1〜pmに対応する冷水系機器mh1〜mhmの場合、変流量負荷率LFiを予め設定された定流量ポンプp1〜pmの定流量負荷率(例えば100%)として計算する。 Then, the load factor calculation unit 95 includes the outlet temperature T i of each cold water system device mh1 to mhn, the obtained inlet temperature T U , the design temperature difference ΔT i set in advance by the process condition setting unit 32, and the previously obtained change. Using the flow rate load factor L Fi , the load factor L i of each cold water system device mh1 to mhn is calculated by the following formula (7) (S113). Here, in the case of the cold water system equipment mh1 to mhm corresponding to the constant flow rate pumps p1 to pm, the variable flow rate load factor L Fi is calculated as the constant flow rate load rate (for example, 100%) of the preset constant flow rate pumps p1 to pm. To do.

Figure 0006847428
Figure 0006847428

ここで、求めた各冷水系機器mh1〜mhnの負荷率Liが各冷水系機器mh1〜mhnの最大負荷率を超える場合(S114)、各冷水系機器mh1〜mhnの全てにおいて、負荷率Liが最大負荷率以下となるまで、該当する冷水系機器mhの出口温度Tiを当該機器の機器上限負荷率で運転した際の出口温度に変更する(S115)と共に、平均出口温度TT及び入口温度TUを求めて負荷率Li%を繰り返し算出する(S113〜S115)。 Here, when the load factor L i of each chilled water system equipment Mh1~mhn determined exceeds the maximum load factor of each chilled water system equipment mh1~mhn (S114), in all of the chilled water system equipment Mh1~mhn, load factor L Until i becomes less than the maximum load factor, the outlet temperature T i of the corresponding cold water system equipment mh is changed to the outlet temperature when operating at the equipment upper limit load factor of the equipment (S115), and the average outlet temperature TT and seeking inlet temperature T U repeatedly calculating a load factor L i% (S113~S115).

このようにして、負荷率Liが最大負荷率以下となれば、その負荷率Liにて冷水EBステップを行う。また、上記で求めた変流量負荷率LFiを用いて、各冷水系機器のポンプの運転制御方法に応じて消費電力が算出される。なお、「弁による変流量制御」の場合は下記式(8)、「吐出圧一定インバータ変流量制御」の場合は下記式(9)、「吐出圧変動インバータ変流量制御」の場合は下記式(10)を用いる。 In this way, when the load factor Li is equal to or less than the maximum load factor, the cold water EB step is performed at the load factor L i. Further, using the variable flow load factor L Fi obtained above, the power consumption is calculated according to the operation control method of the pump of each cold water system device. In the case of "variable flow rate control by valve", the following formula (8), in the case of "constant discharge pressure inverter variable flow rate control", the following formula (9), in the case of "discharge pressure fluctuation inverter variable flow rate control", the following formula (10) is used.

Figure 0006847428
Figure 0006847428

Figure 0006847428
Figure 0006847428

Figure 0006847428
Figure 0006847428

そして、上記他のエネルギーバランスステップに進み、熱源設備MHにおける例えば冷水のシュミレートを実行し、エネルギーの使用量を算出する。 Then, the process proceeds to the other energy balance step described above, simulation of cold water, for example, in the heat source equipment MH is performed, and the amount of energy used is calculated.

本発明は、複数の熱電機器が接続され、少なくとも電力及び化石燃料が供給され、電力、低冷水、冷水、温水、給湯、高圧蒸気及び低圧蒸気を製造して利用設備に供給する熱電設備において、複合全エネルギーのいずれかを製造するのに要するエネルギー使用量をシミュレートする熱電設備のシミュレーションシステムとして利用することができる。また、本発明は、エネルギー負荷設定部、基本条件設定部、システム構築設定部及び運転条件設定部の条件で求められた電力消費量及び化石燃料及び他の燃料消費量並びに環境負荷データ設定部の単位環境負荷をそれぞれ乗じて環境負荷(一次エネルギー、CO2、NOx、SOx)をシミュレートするシステムとして利用することができる。さらに、本発明は、熱電機器の現状シミュレートによる運転診断、運転方法の変更による省エネルギー、機器リニューアルによる改良とその省エネルギー、環境負荷低減の評価及びコンサルテーションに利用することができる。 The present invention is a thermoelectric facility in which a plurality of thermoelectric devices are connected, at least electric power and fossil fuel are supplied, and electric power, low cold water, cold water, hot water, hot water supply, high pressure steam and low pressure steam are produced and supplied to the utilization equipment. It can be used as a simulation system for thermoelectric equipment that simulates the amount of energy used to produce any of the combined total energy. Further, the present invention relates to the power consumption, fossil fuel and other fuel consumption, and the environmental load data setting unit obtained by the conditions of the energy load setting unit, the basic condition setting unit, the system construction setting unit, and the operating condition setting unit. It can be used as a system that simulates the environmental load (primary energy, CO 2, NOx, SOx) by multiplying each unit environmental load. Further, the present invention can be used for operation diagnosis by simulating the current state of thermoelectric equipment, energy saving by changing the operation method, improvement by equipment renewal and its energy saving, evaluation and consultation of reduction of environmental load.

1:シミュレーションシステム、2:ユーザー端末、4:DBサーバー、5:ネットワーク、6:ユーザーインターフェイス、6a:出力装置、6b:入力装置、7:処理部、7a:CPU、7b:一時記憶メモリ、7c:記憶装置、7d:通信インターフェイス、7:処理部、7p:演算部、8:バス、10:ソフトウェア(プログラム)、20:エネルギー負荷設定部(熱負荷量設定部)、30:基本条件設定部、31:ユーティリティーコスト設定部、31a:電力コスト設定部、31b:燃料コスト設定部、32:プロセス条件設定部、33:環境負荷設定部、34:温度データ設定部、40:システム構築設定部、50:運転条件設定部、60:運転結果出力部、70:ケースファイル等作成部、80:表示制御部、90:熱源機器算出部、91:第一流量算出部、92:第二流量算出部、93:流量負荷率算出部、94:温度算出部、95:負荷率算出部、100:DB群、100a:読込データ、101:電力料金等DB、101a:電力料金データファイル、102:環境負荷DB、102a:環境負荷データファイル、103:機器性能DB、103a:機器データファイル、104:気象条件DB、104a:気象条件データファイル、105:熱電負荷ファイル、106:ケースファイル、ME:熱電設備、MH:熱源設備、R1:高圧蒸気、R2:低圧蒸気、R3:燃料、R4:電力、R5:冷水、R6:温水、S1:高圧蒸気、S2:低圧蒸気、S3:冷水、S4:温水、S5:給湯、S6:電力、 N:利用設備(熱負荷側機器群)、m1:発電系機器、m2:ボイラ系機器、m3:冷水系機器、m4:温水系機器、m5:低冷水系機器、m6:給湯系機器、m7:冷却塔系機器(グループ冷却塔)、m8:蓄熱系機器、m9:ポンプ系機器、mh:熱源機器、R:熱媒体、HF:往ヘッダ、HB:還ヘッダ、B:バイパス、p:ポンプ、m1a:ガスタービンコージェネレーション、m2a:低圧ボイラ、m3a:吸収式冷凍機、m3b:ターボ冷凍機、m1a1:排熱ボイラ 1: Simulation system 2: User terminal 4: DB server 5: Network, 6: User interface, 6a: Output device, 6b: Input device, 7: Processing unit, 7a: CPU, 7b: Temporary storage memory, 7c : Storage device, 7d: Communication interface, 7: Processing unit, 7p: Calculation unit, 8: Bus, 10: Software (program), 20: Energy load setting unit (heat load amount setting unit), 30: Basic condition setting unit , 31: Utility cost setting unit, 31a: Electric power cost setting unit, 31b: Fuel cost setting unit, 32: Process condition setting unit, 33: Environmental load setting unit, 34: Temperature data setting unit, 40: System construction setting unit, 50: Operating condition setting unit, 60: Operation result output unit, 70: Case file creation unit, 80: Display control unit, 90: Heat source equipment calculation unit, 91: First flow rate calculation unit, 92: Second flow rate calculation unit , 93: Flow rate load factor calculation unit, 94: Temperature calculation unit, 95: Load factor calculation unit, 100: DB group, 100a: Read data, 101: Power charge data file, 101a: Power charge data file, 102: Environmental load DB, 102a: Environmental load data file, 103: Equipment performance DB, 103a: Equipment data file, 104: Meteorological condition DB, 104a: Meteorological condition data file, 105: Thermoelectric load file, 106: Case file, ME: Thermoelectric equipment, MH: Heat source equipment, R1: High pressure steam, R2: Low pressure steam, R3: Fuel, R4: Electric power, R5: Cold water, R6: Hot water, S1: High pressure steam, S2: Low pressure steam, S3: Cold water, S4: Hot water, S5 : Hot water supply, S6: Electric power, N: Equipment used (heat load side equipment group), m1: Power generation equipment, m2: Boiler equipment, m3: Cold water equipment, m4: Hot water equipment, m5: Low cold water equipment, m6: Hot water supply system equipment, m7: Cooling tower system equipment (group cooling tower), m8: Heat storage system equipment, m9: Pump system equipment, mh: Heat source equipment, R: Heat medium, HF: Outward header, HB: Return header, B: Bypass, p: Pump, m1a: Gas turbine cogeneration, m2a: Low pressure boiler, m3a: Absorption type refrigerator, m3b: Turbo refrigerator, m1a1: Exhaust heat boiler

Claims (8)

熱負荷側機器群が使用する熱媒体を製造する複数の熱源機器と、各熱源機器に対応する複数のポンプと、前記複数の熱源機器及び前記複数のポンプが並列に接続され且つ前記熱負荷側機器群と前記複数の熱源機器との間で前記熱媒体を流通させる往ヘッダ及び還ヘッダと、前記往ヘッダと前記還ヘッダとを接続するバイパスとを備えた熱源設備における前記各熱源機器の負荷率を決定する熱源機器の負荷率決定方法であって、
前記複数のポンプは、定流量ポンプ及び変流量ポンプを少なくとも1機ずつ含み、
前記熱負荷側機器群が使用する熱媒体の必要流量を算出すると共に前記定流量ポンプの定流量合計流量を算出し、
前記必要流量と前記バイパスのバイパス流量の和から前記定流量合計流量を引くことで前記変流量ポンプの変流量合計流量を算出し、
前記変流量合計流量が0より大となるまで、運転優先順位の低い前記定流量ポンプを前記変流量ポンプに変更して前記変流量合計流量を繰り返し算出し、
前記変流量合計流量を前記変流量ポンプの定格合計流量で割ることで前記変流量ポンプの変流量負荷率を求め、
前記変流量負荷率が予め設定された前記変流量ポンプの運転下限負荷率より小である場合には、前記変流量負荷率を前記運転下限負荷率に置換すると共に置換した変流量負荷率で前記バイパス流量を計算し、
前記複数の熱源機器の平均出口温度を算出すると共に前記各熱源機器の入口温度を算出し、
前記各熱源機器の出口温度、前記入口温度、設計温度差及び前記変流量負荷率並びに予め設定された前記定流量ポンプの定流量負荷率から前記各熱源機器の負荷率を求め、
前記負荷率が前記各熱源機器の最大負荷率を超える場合、前記各熱源機器の全ての前記負荷率が前記最大負荷率以下となるまで、該当する熱源機器の出口温度を当該機器の最大負荷率で運転した際の出口温度に変更すると共に前記平均出口温度及び前記入口温度を求めて前記負荷率を繰り返し算出し、
算出した負荷率を前記各熱源機器の負荷率とする熱源機器の負荷率決定方法。
A plurality of heat source devices for producing a heat medium used by a heat load side device group, a plurality of pumps corresponding to each heat source device, the plurality of heat source devices, and the plurality of pumps are connected in parallel and the heat load side. Load of each heat source device in a heat source facility including a forward header and a return header for circulating the heat medium between the device group and the plurality of heat source devices, and a bypass connecting the forward header and the return header. It is a method of determining the load factor of heat source equipment that determines the rate.
The plurality of pumps include at least one constant flow rate pump and one variable flow rate pump.
The required flow rate of the heat medium used by the heat load side equipment group was calculated, and the total constant flow rate of the constant flow pump was calculated.
The total variable flow rate of the variable flow pump is calculated by subtracting the total constant flow rate from the sum of the required flow rate and the bypass flow rate of the bypass.
Until the total flow rate of the variable flow rate becomes larger than 0, the constant flow rate pump having a low operation priority is changed to the variable flow rate pump, and the total flow rate of the variable flow rate is repeatedly calculated.
By dividing the total flow rate of the variable flow rate by the total rated flow rate of the variable flow rate pump, the variable flow rate load factor of the variable flow rate pump is obtained.
When the variable flow rate load factor is smaller than the preset operating lower limit load factor of the variable flow rate pump, the variable flow rate load factor is replaced with the operating lower limit load factor, and the replaced variable flow rate load factor is used. Calculate the bypass flow rate and
The average outlet temperature of the plurality of heat source devices is calculated, and the inlet temperature of each heat source device is calculated.
The load factor of each heat source device is obtained from the outlet temperature of each heat source device, the inlet temperature, the design temperature difference, the variable flow rate load factor, and the preset constant flow rate load factor of the constant flow rate pump.
When the load factor exceeds the maximum load factor of each heat source device, the outlet temperature of the heat source device is set to the maximum load factor of the device until all the load factors of each heat source device are equal to or less than the maximum load factor. The load factor was repeatedly calculated by obtaining the average outlet temperature and the inlet temperature while changing to the outlet temperature when operating in.
A method for determining a load factor of a heat source device, wherein the calculated load factor is the load factor of each heat source device.
前記変流量負荷率は、複数の変流量ポンプにおいて同一値である請求項1記載の熱源機器の負荷率決定方法。 The method for determining a load factor of a heat source device according to claim 1, wherein the variable flow rate load factor is the same value in a plurality of variable flow rate pumps. 前記バイパス流量の計算は、下記式(4)に基づいて行われる請求項1又は2記載の熱源機器の負荷率決定方法。
Figure 0006847428
The method for determining the load factor of the heat source device according to claim 1 or 2, wherein the calculation of the bypass flow rate is performed based on the following formula (4).
Figure 0006847428
前記複数の熱源機器は、冷水系機器、温水系機器又は低冷水系機器のいずれかであり、前記熱媒体は、冷水、温水、低冷水のいずれかである請求項1〜3のいずれかに記載の熱源機器の負荷率決定方法。 The plurality of heat source devices are any of cold water devices, hot water devices, and low cold water devices, and the heat medium is any of cold water, hot water, and low cold water, according to any one of claims 1 to 3. The method for determining the load factor of the heat source equipment described. 熱負荷側機器群が使用する熱媒体を製造する複数の熱源機器と、各熱源機器に対応する複数のポンプと、前記複数の熱源機器及び前記複数のポンプが並列に接続され且つ前記熱負荷側機器群と前記複数の熱源機器との間で前記熱媒体を流通させる往ヘッダ及び還ヘッダと、前記往ヘッダと前記還ヘッダとを接続するバイパスとを備えた熱源設備において、少なくとも前記複数の熱源機器の運転条件と前記熱媒体の使用量又は製造量との関係を求める熱源設備におけるシミュレーションシステムであって、
前記複数のポンプは、定流量ポンプ及び変流量ポンプを少なくとも1機ずつ含み、
日別で時間帯毎に前記熱負荷側機器群で必要とされる前記熱媒体の熱負荷量を設定する熱負荷量設定部と、
時間帯別の前記熱源機器毎の運転可否及び運転優先順位を設定する運転条件設定部と、
前記運転条件設定部の運転条件に従い前記熱源設備を運転させた結果の内の少なくとも前記熱媒体の製造量を計算する演算部と、
前記熱負荷側機器群が使用する熱媒体の必要流量を算出すると共に前記定流量ポンプの定流量合計流量を算出する第一流量算出部と、
前記必要流量と前記バイパスのバイパス流量の和から前記定流量合計流量を引くことで前記変流量ポンプの変流量合計流量を算出する第二流量算出部と、
前記変流量合計流量を前記変流量ポンプの定格合計流量で割ることで前記変流量ポンプの変流量負荷率を求める流量負荷率算出部と、
前記複数の熱源機器の平均出口温度を算出すると共に前記各熱源機器の入口温度を算出する温度算出部と、
前記各熱源機器の出口温度、前記入口温度、設計温度差及び前記変流量負荷率並びに予め設定された前記定流量ポンプの定流量負荷率から前記各熱源機器の負荷率を求める負荷率算出部とを備え、
前記第二流量算出部は、前記変流量合計流量が0より大となるまで、前記運転優先順位の低い前記定流量ポンプを前記変流量ポンプに変更して前記変流量合計流量を繰り返し算出し、
前記流量負荷率算出部は、前記変流量負荷率が予め設定された前記変流量ポンプの運転下限負荷率より小である場合には、前記変流量負荷率を前記運転下限負荷率に置換すると共に置換した変流量負荷率で前記バイパス流量を計算し、
前記負荷率算出部は、前記負荷率が前記各熱源機器の最大負荷率を超える場合、前記各熱源機器の全ての前記負荷率が前記最大負荷率以下となるまで、該当する熱源機器の出口温度を当該機器の機器上限負荷率で運転した際の出口温度に変更すると共に前記平均出口温度及び前記入口温度を求めて前記負荷率を繰り返し算出し、
前記演算部は、算出した負荷率に基づいて前記熱媒体の製造量を計算する熱源設備におけるシミュレーションシステム。
A plurality of heat source devices for producing a heat medium used by a heat load side device group, a plurality of pumps corresponding to each heat source device, the plurality of heat source devices, and the plurality of pumps are connected in parallel and the heat load side. In a heat source facility including a forward header and a return header for circulating the heat medium between the device group and the plurality of heat source devices, and a bypass connecting the forward header and the return header, at least the plurality of heat sources. A simulation system in a heat source facility that finds the relationship between the operating conditions of the equipment and the amount of heat used or manufactured.
The plurality of pumps include at least one constant flow rate pump and one variable flow rate pump.
A heat load amount setting unit that sets the heat load amount of the heat medium required by the heat load side equipment group for each time zone on a daily basis.
An operation condition setting unit that sets the operation availability and operation priority for each of the heat source devices for each time zone, and
A calculation unit that calculates at least the production amount of the heat medium among the results of operating the heat source equipment according to the operating conditions of the operating condition setting unit.
A first flow rate calculation unit that calculates the required flow rate of the heat medium used by the heat load side equipment group and also calculates the total constant flow rate of the constant flow rate pump.
A second flow rate calculation unit that calculates the total flow rate of the variable flow rate pump by subtracting the total flow rate of the constant flow rate from the sum of the required flow rate and the bypass flow rate of the bypass.
A flow rate load factor calculation unit that obtains the variable flow rate load factor of the variable flow rate pump by dividing the total flow rate of the variable flow rate by the rated total flow rate of the variable flow rate pump.
A temperature calculation unit that calculates the average outlet temperature of the plurality of heat source devices and the inlet temperature of each heat source device,
With a load factor calculation unit that obtains the load factor of each heat source device from the outlet temperature of each heat source device, the inlet temperature, the design temperature difference, the variable flow rate load factor, and the preset constant flow rate load factor of the constant flow rate pump. With
The second flow rate calculation unit repeatedly calculates the total flow rate of the variable flow rate by changing the constant flow rate pump having a low operation priority to the variable flow rate pump until the total flow rate of the variable flow rate becomes larger than 0.
When the variable flow rate load factor is smaller than the preset operating lower limit load factor of the variable flow rate pump, the flow rate load factor calculation unit replaces the variable flow rate load factor with the operating lower limit load factor. The bypass flow rate is calculated from the replaced variable flow rate, and the bypass flow rate is calculated.
When the load factor exceeds the maximum load factor of each heat source device, the load factor calculation unit determines the outlet temperature of the heat source device until all the load factors of each heat source device become equal to or less than the maximum load factor. Is changed to the outlet temperature when operating at the device upper limit load factor of the device, and the average outlet temperature and the inlet temperature are obtained and the load factor is repeatedly calculated.
The calculation unit is a simulation system in a heat source facility that calculates the production amount of the heat medium based on the calculated load factor.
前記複数の熱源機器は、少なくとも冷水系機器、温水系機器又は低冷水系機器のいずれかを含み、前記熱源設備は、前記複数の熱源機器及び/又は前記熱負荷側機器群で使用される電力を供給する発電系機器と前記熱負荷側機器群で使用される蒸気を供給するボイラ系機器とをさらに備え、前記演算部は、前記負荷率に基づいて、前記電力の使用量又は製造量の計算の前に前記蒸気の使用量又は製造量の計算を行い、前記蒸気の使用量又は製造量の計算の前に前記熱媒体の製造量の計算を行う請求項5記載の熱源設備におけるシミュレーションシステム。 The plurality of heat source equipment includes at least one of a cold water system equipment, a hot water system equipment, and a low cold water system equipment, and the heat source equipment is a power source used in the plurality of heat source equipment and / or the heat load side equipment group. Further includes a power generation system equipment for supplying heat and a boiler system equipment for supplying steam used in the heat load side equipment group, and the calculation unit determines the amount of power used or manufactured based on the load factor. The simulation system in the heat source equipment according to claim 5, wherein the amount of steam used or the amount of production is calculated before the calculation, and the amount of heat medium produced is calculated before the amount of steam used or the amount of production is calculated. .. 請求項5又は6記載の熱源設備におけるシミュレーションシステムを実行させるためのコンピュータプログラム。 A computer program for executing a simulation system in the heat source equipment according to claim 5 or 6. 請求項7記載のコンピュータプログラムを記録した記録媒体。 A recording medium on which the computer program according to claim 7 is recorded.
JP2019025550A 2019-02-15 2019-02-15 A method for determining the load factor of heat source equipment, a simulation system in heat source equipment, a computer program for executing this, and a recording medium on which this program is recorded. Active JP6847428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019025550A JP6847428B2 (en) 2019-02-15 2019-02-15 A method for determining the load factor of heat source equipment, a simulation system in heat source equipment, a computer program for executing this, and a recording medium on which this program is recorded.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019025550A JP6847428B2 (en) 2019-02-15 2019-02-15 A method for determining the load factor of heat source equipment, a simulation system in heat source equipment, a computer program for executing this, and a recording medium on which this program is recorded.

Publications (2)

Publication Number Publication Date
JP2020133961A JP2020133961A (en) 2020-08-31
JP6847428B2 true JP6847428B2 (en) 2021-03-24

Family

ID=72278160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019025550A Active JP6847428B2 (en) 2019-02-15 2019-02-15 A method for determining the load factor of heat source equipment, a simulation system in heat source equipment, a computer program for executing this, and a recording medium on which this program is recorded.

Country Status (1)

Country Link
JP (1) JP6847428B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112083946B (en) * 2020-09-17 2024-02-06 南方电网科学研究院有限责任公司 Method, device, terminal and medium for predicting program load rate of direct current protection system

Also Published As

Publication number Publication date
JP2020133961A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
JP4564594B2 (en) Thermoelectric equipment simulation system
Zhou et al. Integrated power and heat dispatch considering available reserve of combined heat and power units
CN109165788B (en) Optimization method of combined cooling heating and power system
Wei et al. Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system
Rist et al. Economic dispatch of a single micro-gas turbine under CHP operation
JP6118973B2 (en) Thermoelectric equipment simulation system and thermoelectric equipment operating method
US20110066258A1 (en) System and Method for Energy Plant Optimization Using Mixed Integer-Linear Programming
CN111539584B (en) User-level comprehensive energy system planning method, system and equipment
CN103917928A (en) Thermo-economic modeling and optimization of a combined cooling, heating, and power plant
US20150159518A1 (en) Multistage hrsg control in a combined cycle unit
CN113947236A (en) Integrated energy scheduling method, computing device and medium
Iora et al. Exergy loss based allocation method for hybrid renewable-fossil power plants applied to an integrated solar combined cycle
JP6847428B2 (en) A method for determining the load factor of heat source equipment, a simulation system in heat source equipment, a computer program for executing this, and a recording medium on which this program is recorded.
Chong et al. Hybrid-timescale dispatch of heat and electricity integrated system considering dynamic heat flow
Aliehyaei Optimization of micro gas turbine by economic, exergy and environment analysis using genetic, bee colony and searching algorithms
Ferreira et al. Thermal-economic optimisation of a CHP gas turbine system by applying a fit-problem genetic algorithm
Ganesan et al. Multiobjective strategy for an industrial gas turbine: absorption chiller system
JP2012108691A (en) Carbon dioxide emission amount calculation device and carbon dioxide emission amount calculation method
Rigo‐Mariani et al. A Generic Method to Model CO2 Emission Performances of Combined‐Cycle Power Plants for Environmental Unit Commitment
Long et al. Optimization strategy of CCHP integrated energy system based on source-load coordination
Zlatkovikj et al. Influence of the transient operation of a large-scale thermal energy storage system on the flexibility provided by CHP plants
CN111415046A (en) Micro-grid group optimal scheduling method considering thermoelectric margin transaction
CN114595584B (en) Multi-energy complementary regional terminal energy utilization configuration method and device
Jiang Framework combining static optimization, dynamic scheduling and decision analysis applicable to complex primary HVAC&R systems
Davis et al. Modeling the Performance of Single-Duct VAV Systems that use Fan Powered Terminal Units.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R150 Certificate of patent or registration of utility model

Ref document number: 6847428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250