JP6843099B2 - Evaporative gas treatment equipment and treatment method for ships - Google Patents

Evaporative gas treatment equipment and treatment method for ships Download PDF

Info

Publication number
JP6843099B2
JP6843099B2 JP2018169653A JP2018169653A JP6843099B2 JP 6843099 B2 JP6843099 B2 JP 6843099B2 JP 2018169653 A JP2018169653 A JP 2018169653A JP 2018169653 A JP2018169653 A JP 2018169653A JP 6843099 B2 JP6843099 B2 JP 6843099B2
Authority
JP
Japan
Prior art keywords
evaporative gas
gas
reliquefaction
supply line
evaporative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018169653A
Other languages
Japanese (ja)
Other versions
JP2019038533A (en
Inventor
イ,ウォンドゥ
ユン,ホビョン
チェー,ジェウン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Heavy Industries Co Ltd
Original Assignee
Samsung Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150017239A external-priority patent/KR101617020B1/en
Priority claimed from KR1020150080542A external-priority patent/KR101672196B1/en
Application filed by Samsung Heavy Industries Co Ltd filed Critical Samsung Heavy Industries Co Ltd
Publication of JP2019038533A publication Critical patent/JP2019038533A/en
Application granted granted Critical
Publication of JP6843099B2 publication Critical patent/JP6843099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0287Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/061Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0635Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/066Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/90Boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は船舶の蒸発ガス処理装置および処理方法に関するものであって、さらに詳細には船舶の貯蔵タンクで発生する蒸発ガスを効果的に処理できる船舶の蒸発ガス処理装置および処理方法に関するものである。 The present invention relates to a ship's evaporative gas treatment device and a treatment method, and more particularly to a ship's evaporative gas treatment device and a treatment method capable of effectively treating the evaporative gas generated in a ship's storage tank. ..

温室ガスおよび各種大気汚染物質の排出に対する国際海事機関(IMO)の規制が強化されるにつれて、造船および海運業系では既存の燃料である重油、軽油を利用する代わりに、清浄エネルギー源である天然ガスを船舶の燃料ガスとして利用する場合が多くなっている。 As the International Maritime Organization (IMO) regulations on the emission of greenhouse gases and various air pollutants are tightened, the shipbuilding and shipping industries will use natural gas as a clean energy source instead of using existing fuels such as heavy oil and light oil. Gas is often used as fuel gas for ships.

天然ガス(Natural Gas)は通常、貯蔵および輸送の容易性のために、天然ガスを略摂氏−162度に冷却してその体積を1/600に減らした無色透明な超低温液体である液化天然ガス(Liquefied Natural Gas)に相変化して管理および運用を遂行している。 Natural Gas is usually a liquefied natural gas that is a clear, colorless, ultra-low temperature liquid that has been cooled to approximately -162 degrees Celsius to reduce its volume to 1/600 for ease of storage and transportation. (Liquefied Natural Gas) has changed phase to carry out management and operation.

このような液化天然ガスは、船体に断熱処理されて設置される貯蔵タンクに収容されて貯蔵および輸送される。しかし、液化天然ガスを完全に断熱させて収容することは実質的に不可能であるため、外部の熱が貯蔵タンクの内部に持続的に伝達されて液化天然ガスが自然に気化して発生する蒸発ガスが貯蔵タンクの内部に蓄積される。蒸発ガスは貯蔵タンクの内部圧力を上昇させて貯蔵タンクの変形および毀損を誘発する恐れがあるので蒸発ガスを処理および除去する必要がある。 Such liquefied natural gas is stored and transported in a storage tank that is heat-insulated and installed on the hull. However, since it is virtually impossible to completely insulate and store liquefied natural gas, external heat is continuously transferred to the inside of the storage tank, and liquefied natural gas is naturally vaporized and generated. Evaporative gas accumulates inside the storage tank. Evaporative gas must be treated and removed as it can increase the internal pressure of the storage tank and induce deformation and damage to the storage tank.

そこで、従来は貯蔵タンクの上側に設けられるベントマスト(Vent mast)に蒸発ガスを流すか、GCU(Gas Combustion Unit)を利用して蒸発ガスを焼く方案などが利用されていた。しかし、これはエネルギー効率の面で好ましくないため、蒸発ガスを液化天然ガスとともにまたはそれぞれ船舶のエンジンに燃料ガスとして供給するか、冷凍サイクルなどからなる再液化装置を利用して蒸発ガスを再液化させて活用する方案が利用されている。 Therefore, conventionally, a method of flowing evaporative gas through a vent mast provided on the upper side of the storage tank or burning evaporative gas using GCU (Gas Combustion Unit) has been used. However, this is not preferable in terms of energy efficiency, so the evaporative gas is supplied together with the liquefied natural gas or as fuel gas to the engine of the ship, or the evaporative gas is reliquefied using a reliquefaction device consisting of a refrigeration cycle or the like. A plan to let them use it is being used.

一方、天然ガスはメタン(Methane)の他にもエタン(Ethane)、プロパン(Propane)、ブタン(Butane)、窒素(Nitrogen)などを含む混合物である。このうち窒素の沸点は摂氏約−195.8度であり、それ以外の成分であるメタン(沸点摂氏−161.5度)、エタン(沸点摂氏−89度)などに比べて非常に低い。 On the other hand, natural gas is a mixture containing ethane, propane, butane, nitrogen, and the like in addition to methane. Of these, the boiling point of nitrogen is about -195.8 degrees Celsius, which is much lower than the other components such as methane (boiling point -161.5 degrees Celsius) and ethane (boiling point -89 degrees Celsius).

これに伴い、貯蔵タンク内部で自然に気化して発生する蒸発ガスは相対的に沸点が低い窒素成分を多く含有し、これは蒸発ガスの再液化効率を低下させる原因となって蒸発ガスの活用および処理に影響を及ぼす。 Along with this, the evaporative gas generated by spontaneous vaporization inside the storage tank contains a large amount of nitrogen component having a relatively low boiling point, which causes a decrease in the reliquefaction efficiency of the evaporative gas and utilizes the evaporative gas. And affect processing.

また、蒸発ガスを船舶のエンジンなどに燃料ガスとして供給する場合には、蒸発ガスの窒素成分が燃料ガスの発熱量の低下に影響を及ぼすところ、蒸発ガスの再液化効率および燃料ガス発熱量を向上させるものの、燃料ガスの効率的な引用および管理を図り得る方案が要求される。 Further, when the evaporative gas is supplied to the engine of a ship as a fuel gas, the nitrogen component of the evaporative gas affects the decrease in the calorific value of the fuel gas. Although it will be improved, a plan that can efficiently cite and manage fuel gas is required.

本発明の実施例は蒸発ガスの再液化効率を向上させ、蒸発ガスの効率的な利用を図り得る船舶の蒸発ガス処理装置および処理方法を提供しようとする。 An embodiment of the present invention attempts to provide a ship's evaporative gas treatment apparatus and treatment method capable of improving the reliquefaction efficiency of the evaporative gas and achieving efficient use of the evaporative gas.

本発明の実施例はエンジンに供給される燃料ガスの発熱量を効果的に調節および維持し、単純な構造で効率的な設備運用を図り得る船舶の蒸発ガス処理装置および処理方法を提供しようとする。 An embodiment of the present invention is intended to provide a ship's evaporative gas treatment device and treatment method capable of effectively adjusting and maintaining the calorific value of the fuel gas supplied to the engine and achieving efficient equipment operation with a simple structure. To do.

本発明の実施例はエネルギー効率を向上させることができる船舶の蒸発ガス処理装置および処理方法を提供しようとする。 Embodiments of the present invention seek to provide ship evaporative gas treatment devices and treatment methods that can improve energy efficiency.

本発明の一側面によれば、液化ガスおよび蒸発ガスを収容する貯蔵タンク、前記貯蔵タンクの蒸発ガスを加圧する圧縮部を具備する蒸発ガス供給ライン、前記圧縮部を通過して加圧された蒸発ガスを第1濃度の窒素成分を含有する第1ガスの流れと第2濃度の窒素成分を含有する第2ガスの流れとに分離する窒素分離器、前記第1ガスの流れを第1消費手段に供給する第1燃料ガス供給ラインおよび前記第2ガスの流れを供給受けて再液化させる再液化ラインを含んで提供され得る。 According to one aspect of the present invention, the gas is pressurized through a storage tank that houses the liquefied gas and the evaporative gas, an evaporative gas supply line that includes a compression unit that pressurizes the evaporative gas of the storage tank, and the compression unit. A nitrogen separator that separates the evaporative gas into a flow of a first gas containing a first concentration of nitrogen component and a flow of a second gas containing a second concentration of nitrogen component, the first consumption of the flow of the first gas. It may be provided including a first fuel gas supply line for supplying the means and a reliquefaction line for receiving and reliquefying the flow of the second gas.

前記窒素分離器はメンブレンフィルターを含んで提供され得る。 The nitrogen separator may be provided including a membrane filter.

前記再液化ラインは、前記第2ガスの流れを前記圧縮部前段の蒸発ガスと熱交換する熱交換部と、前記熱交換部を通過して熱交換された前記第2ガスの流れを減圧させる膨張バルブと、前記膨張バルブを通過して減圧された前記第2ガスの流れを気体成分と液体成分とに分離する気液分離器と、前記気液分離器で分離された第2ガスの流れの液体成分を前記貯蔵タンクに供給する液化ガス回収ラインおよび前記気液分離器で分離された第2ガスの流れの気体成分を前記貯蔵タンクまたは前記蒸発ガス供給ライン上の前記圧縮部前段に供給する蒸発ガス循環ラインを含んで提供され得る。 The reliquefaction line reduces the pressure of the heat exchange section that exchanges heat with the evaporative gas in the previous stage of the compression section and the flow of the second gas that has passed through the heat exchange section and exchanged heat. An expansion valve, a gas-liquid separator that separates the flow of the second gas that has passed through the expansion valve and is decompressed into a gas component and a liquid component, and a flow of the second gas that is separated by the gas-liquid separator. The gas component of the liquefied gas recovery line for supplying the liquid component of the above to the storage tank and the gas component of the flow of the second gas separated by the gas-liquid separator is supplied to the storage tank or the stage before the compression unit on the evaporative gas supply line. It may be provided including an evaporative gas circulation line.

前記圧縮部の中段部から分岐されて前記圧縮部によって加圧された蒸発ガスを第2消費手段またはGCU(Gas Combustion Unit)に供給する第2燃料ガス供給ラインをさらに含んで提供され得る。 A second fuel gas supply line that is branched from the middle portion of the compression unit and supplies the evaporative gas pressurized by the compression unit to the second consuming means or the GCU (Gas Combustion Unit) may be further provided.

貯蔵タンクに収容された蒸発ガスを蒸発ガス消費手段に提供する蒸発ガス供給ライン、前記蒸発ガス供給ラインに具備されて前記蒸発ガスを加圧する圧縮部、前記蒸発ガス供給ラインから分岐され、分岐されて流れる蒸発ガスを再液化する再液化ライン、前記再液化ラインと前記蒸発ガス供給ラインを熱交換させる熱交換部;および前記再液化ラインに具備されて前記熱交換部に進入する前の蒸発ガスを膨張させる再液化膨張部を含んで提供され得る。 An evaporative gas supply line that provides the evaporative gas contained in the storage tank to the evaporative gas consumption means, a compression unit provided in the evaporative gas supply line to pressurize the evaporative gas, and a branch from the evaporative gas supply line. A reliquefaction line that reliquefies the flowing evaporative gas, a heat exchange unit that exchanges heat between the reliquefaction line and the evaporative gas supply line; and an evaporative gas provided in the reliquefaction line before entering the heat exchange unit. May include a reliquefaction swelling portion that swells the gas.

前記熱交換部を通過した蒸発ガスを減圧させる膨張バルブと、前記膨張バルブを通過して再液化された蒸発ガスを気体成分と液体成分とに分離する気液分離器をさらに含んで提供され得る。 It may be further provided with an expansion valve that depressurizes the evaporative gas that has passed through the heat exchange section, and a gas-liquid separator that separates the reliquefied evaporative gas that has passed through the expansion valve into a gas component and a liquid component. ..

前記再液化ラインは前記気液分離器で分離された液体成分を前記貯蔵タンクに供給する液化ガス回収ラインおよび前記気液分離器で分離された気体成分を前記貯蔵タンクまたは前記蒸発ガス供給ライン上の前記圧縮部前段に供給する蒸発ガス循環ラインをさらに含んで提供され得る。 The reliquefaction line is a liquefied gas recovery line that supplies the liquid component separated by the gas-liquid separator to the storage tank and a gas component separated by the gas-liquid separator on the storage tank or the evaporative gas supply line. The evaporative gas circulation line supplied to the pre-stage of the compression unit of the above may be further included.

前記再液化膨張部は前記蒸発ガス供給ラインから分岐されて流れる蒸発ガスを50bar〜160barに減圧するように設けられ得る。 The reliquefaction expansion unit may be provided so as to reduce the pressure of the evaporative gas branched and flowing from the evaporative gas supply line to 50 bar to 160 bar.

前記再液化膨張部は、前記貯蔵タンク内の蒸発ガスの窒素成分の含量に応じて前記蒸発ガス供給ラインから分岐されて流れる蒸発ガスの減圧程度が異なるように設けられ得る。 The reliquefaction expansion portion may be provided so that the degree of depressurization of the evaporative gas branched from the evaporative gas supply line differs depending on the content of the nitrogen component of the evaporative gas in the storage tank.

前記再液化膨張部は、前記貯蔵タンク内の蒸発ガスの窒素成分の含量が10mole%である場合に前記蒸発ガス供給ラインから分岐されて流れる蒸発ガスを140bar〜160barに減圧し、前記貯蔵タンク内の蒸発ガスの窒素成分の含量が0mole%である場合に前記蒸発ガス供給ラインから分岐されて流れる蒸発ガスを50bar〜70barに減圧するように設けられ得る。 When the content of the nitrogen component of the evaporative gas in the storage tank is 10 mole%, the reliquefaction expansion unit reduces the evaporative gas branched from the evaporative gas supply line to 140 bar to 160 bar and reduces the pressure in the storage tank to 140 bar to 160 bar. When the content of the nitrogen component of the evaporative gas is 0 mole%, the evaporative gas branched from the evaporative gas supply line may be reduced to 50 bar to 70 bar.

前記再液化膨張部は、蒸発ガス供給ラインから分岐されて流れる蒸発ガスの膨張程度を異ならせ得るように設けられ、前記熱交換部に進入する蒸発ガスの圧力を調節するように設けられ得る。 The reliquefaction expansion unit may be provided so that the degree of expansion of the evaporative gas branched from the evaporative gas supply line and flowing may be different, and may be provided so as to adjust the pressure of the evaporative gas entering the heat exchange unit.

船舶の蒸発ガス処理装置を利用して蒸発ガスを処理する船舶の蒸発ガス処理方法において、前記蒸発ガス供給ラインの流量を測定し、前記再液化膨張部の減圧程度をいずれか一方向(増加させる方向または減少させる方向)に調節した時、前記蒸発ガス供給ラインで測定された流量が大きくなるのであれば前記再液化膨張部の減圧程度を他の方向に調節し、前記再液化膨張部の減圧程度をいずれか一方向(増加させる方向または減少させる方向)に調節した時、前記蒸発ガス供給ラインで測定された流量が小さくなるのであれば前記再液化膨張部の減圧程度を前記一方向に継続して調節するように設けられ得る。 In a ship's evaporative gas treatment method for treating evaporative gas using a ship's evaporative gas treatment device, the flow rate of the evaporative gas supply line is measured, and the degree of decompression of the reliquefaction expansion portion is increased in one direction (increased). If the flow rate measured in the evaporative gas supply line becomes large when adjusted in the direction (direction or decreasing direction), the degree of decompression of the reliquefaction expansion part is adjusted in another direction, and the decompression of the reliquefaction expansion part is reduced. When the degree is adjusted in any one direction (increase direction or decrease direction), if the flow rate measured by the evaporative gas supply line becomes smaller, the degree of decompression of the reliquefaction expansion portion is continued in the one direction. Can be provided to adjust.

前記再液化膨張部を通じて減圧された蒸発ガスの圧力が前記蒸発ガス供給ラインで測定される流量を最小にする目標圧力となるまで調節するように設けられ得る。 It may be provided so that the pressure of the evaporative gas depressurized through the reliquefaction expansion section is adjusted to a target pressure that minimizes the flow rate measured at the evaporative gas supply line.

前記貯蔵タンクに貯蔵された液化ガスの貯蔵量が変わるにつれて、前記再液化膨張部を通じて減圧された蒸発ガスの前記目標圧力が変わり、前記変わった目標圧力に前記再液化膨張部の減圧程度を調節するように設けられ得る。 As the amount of liquefied gas stored in the storage tank changes, the target pressure of the evaporated gas decompressed through the reliquefaction expansion unit changes, and the degree of decompression of the reliquefaction expansion unit is adjusted to the changed target pressure. Can be provided to do so.

本発明の実施例による船舶の蒸発ガス処理装置および処理方法は蒸発ガスの再液化効率および性能を向上させ、蒸発ガスを効率的に利用および管理できる効果を有する。 The ship's evaporative gas treatment apparatus and treatment method according to the embodiment of the present invention have the effect of improving the reliquefaction efficiency and performance of the evaporative gas and efficiently utilizing and managing the evaporative gas.

本発明の実施例による船舶の蒸発ガス処理装置および処理方法は燃料ガスの発熱量を効果的に調節および維持し、エネルギー効率を向上させることができる効果を有する。 The ship's evaporative gas treatment apparatus and treatment method according to the embodiment of the present invention have the effect of effectively adjusting and maintaining the calorific value of the fuel gas and improving energy efficiency.

本発明の実施例による船舶の蒸発ガス処理装置および処理方法は単純な構造で効率的な設備運用を図り得る効果を有する。 The ship's evaporative gas treatment device and treatment method according to the embodiment of the present invention have an effect of achieving efficient equipment operation with a simple structure.

本発明の第1実施例による船舶の蒸発ガス処理装置を示す概念図。The conceptual diagram which shows the evaporative gas processing apparatus of a ship by 1st Embodiment of this invention. 本発明の第2実施例による船舶の蒸発ガス処理装置を示す概念図。The conceptual diagram which shows the evaporative gas processing apparatus of a ship by 2nd Embodiment of this invention. 本発明の第3実施例による船舶の蒸発ガス処理装置を示す概念図。The conceptual diagram which shows the evaporative gas processing apparatus of a ship according to 3rd Example of this invention. 本発明の第4実施例による船舶の蒸発ガス処理装置を示す概念図。The conceptual diagram which shows the evaporative gas processing apparatus of a ship according to 4th Embodiment of this invention. 熱交換部に進入する蒸発ガスの圧力による圧縮部に進入する蒸発ガスの質量流量および圧縮部で必要とされるエネルギーの相関関係を示すグラフ。The graph which shows the correlation between the mass flow rate of the evaporative gas entering a compression part by the pressure of the evaporative gas entering a heat exchange part, and the energy required by a compression part. 蒸発ガス消費手段で必要とされる蒸発ガスの質量流量による再液化される蒸発ガスの質量流量の相関関係を示すグラフ。The graph which shows the correlation of the mass flow rate of the evaporative gas to be reliquefied by the mass flow rate of the evaporative gas required by the evaporative gas consumption means. 蒸発ガス消費手段で必要とされる蒸発ガスの質量流量による圧縮部に進入する蒸発ガスの質量流量の相関関係を示すグラフ。The graph which shows the correlation of the mass flow rate of the evaporative gas entering the compression part by the mass flow rate of the evaporative gas required by the evaporative gas consumption means. 蒸発ガス消費手段で必要とされる蒸発ガスの質量流量による圧縮部で必要とされるエネルギーの相関関係を示すグラフ。The graph which shows the correlation of the energy required in the compression part by the mass flow rate of the evaporative gas required by the evaporative gas consumption means. 熱交換部に進入する蒸発ガスの圧力によるフラッシュガスの質量流量の相関関係を示すグラフ。The graph which shows the correlation of the mass flow rate of the flash gas by the pressure of the evaporative gas entering the heat exchange part. 熱交換部に進入する蒸発ガスの圧力によるフラッシュガスの質量流量の相関関係を示すグラフ。The graph which shows the correlation of the mass flow rate of the flash gas by the pressure of the evaporative gas entering the heat exchange part.

以下、本発明の実施例を添付図面を参照して詳細に説明する。以下の実施例は本発明が属する技術分野で通常の知識を有した者に本発明の思想を十分に伝達するために提示するものである。本発明はここに提示された実施例だけに限定されず、他の形態でも具体化され得る。図面は本発明を明確にするために、説明にかかわらない部分の図示は省略し、理解を助けるために構成要素の大きさは多少誇張して表現され得る。 Hereinafter, examples of the present invention will be described in detail with reference to the accompanying drawings. The following examples are presented in order to fully convey the idea of the present invention to a person who has ordinary knowledge in the technical field to which the present invention belongs. The present invention is not limited to the examples presented herein, but may be embodied in other embodiments. In order to clarify the present invention, the drawings may omit the illustration of parts not related to the explanation, and the size of the components may be exaggerated to help understanding.

本発明の実施例による船舶の蒸発ガス処理装置および処理方法に対する説明において、船舶は多様な海洋構造物を含む意味で理解され得る。船舶は液化ガスを輸送する液化ガス輸送船だけでなく、液化ガスを燃料に使って推進または発電できる多様な構造の海洋構造物を含む。また、液化ガスを燃料に使用できるものであればその形態を問わず、本発明の船舶に含まれ得る。一例として、LNG運搬船、LNG RVのような船舶をはじめとして、LNG FPSO、LNG FSRUのような海洋プラン卜などをすべて含む概念で理解されるべきである。 In the description of the ship's evaporative gas treatment apparatus and treatment method according to the embodiments of the present invention, the ship can be understood in the sense that it includes various marine structures. Vessels include not only liquefied gas transport vessels that transport liquefied gas, but also marine structures of various structures that can be propelled or generated using liquefied gas as fuel. Further, any form of liquefied gas that can be used as fuel can be included in the ship of the present invention. As an example, it should be understood by a concept that includes all vessels such as LNG carriers and LNG RVs, as well as marine plans such as LNG FPSO and LNG FSRU.

また、本実施例による船舶の蒸発ガス処理装置および処理方法に対する説明では、本発明に対する理解を助けるための一例として、液化天然ガスおよびこれから発生する蒸発ガスを適用して説明したが、これに限定されるものではなく、液化エタンガス、液化炭化水素ガスなどの多様な液化ガスおよびこれから発生する蒸発ガスが適用される場合にも同じ技術的思想と理解されるべきである。 Further, in the description of the ship's evaporative gas treatment apparatus and treatment method according to the present embodiment, as an example for assisting the understanding of the present invention, liquefied natural gas and evaporative gas generated from the liquefied natural gas have been applied, but the description is limited to this. It should be understood as the same technical idea when various liquefied gases such as liquefied ethane gas and liquefied hydrocarbon gas and the evaporative gas generated from the gas are applied.

図1は本発明の第1実施例による船舶の蒸発ガス処理装置100を示す概念図である。 FIG. 1 is a conceptual diagram showing a ship's evaporative gas treatment device 100 according to the first embodiment of the present invention.

図1を参照すれば、本発明の第1実施例による船舶の蒸発ガス処理装置100は、貯蔵タンク110、貯蔵タンク110の蒸発ガスを加圧する圧縮部121を具備する蒸発ガス供給ライン120、圧縮部121によって加圧された蒸発ガスに含まれた窒素成分を分離する窒素分離器130、窒素分離器130によって分離された第1濃度の窒素成分を含有する第1ガスの流れを第1消費手段11に供給する第1燃料ガス供給ライン150、窒素分離器130によって分離された第2濃度の窒素成分を含有する第2ガスの流れを再液化させる再液化ライン140、圧縮部121の中段から分岐されて圧縮部121によって一部加圧された蒸発ガスを第2消費手段12またはGCU15(Gas Combustion Unit、15)に供給する第2燃料ガス供給ライン170、第1消費手段11に供給される燃料ガスの発熱量を測定および調節する発熱量調節部160を含んで設けられ得る。 Referring to FIG. 1, the ship's evaporative gas treatment apparatus 100 according to the first embodiment of the present invention includes a storage tank 110, an evaporative gas supply line 120 including a compression unit 121 for pressurizing the evaporative gas of the storage tank 110, and compression. The flow of the nitrogen separator 130 for separating the nitrogen component contained in the evaporative gas pressurized by the unit 121 and the first gas containing the first concentration nitrogen component separated by the nitrogen separator 130 is the first consuming means. Branch from the middle stage of the first fuel gas supply line 150 supplied to 11, the reliquefaction line 140 for reliquefying the flow of the second gas containing the second concentration nitrogen component separated by the nitrogen separator 130, and the compression unit 121. The fuel supplied to the second consumption means 12, the second fuel gas supply line 170, and the first consumption means 11 that supply the evaporative gas partially pressurized by the compression unit 121 to the second consumption means 12 or the GCU 15 (Gas Communication Unit, 15). It may include a calorific value adjusting unit 160 that measures and adjusts the calorific value of the gas.

以下の実施例では本発明に対する理解を助けるための一例として、液化天然ガスおよびこれから発生する蒸発ガスを適用して説明したが、これに限定されるものではなく、液化エタンガス、液化炭化水素ガスなどの多様な液化ガスおよびこれから発生する蒸発ガスが適用される場合にも同じ技術的思想と理解されるべきである。 In the following examples, liquefied natural gas and evaporative gas generated from the liquefied natural gas have been applied and described as an example for assisting the understanding of the present invention, but the present invention is not limited to this, and liquefied ethane gas, liquefied hydrocarbon gas, etc. It should be understood as the same technical idea when various liquefied gases and evaporative gases generated from the above are applied.

貯蔵タンク110は液化天然ガスおよびこれから発生する蒸発ガスを収容または貯蔵するように設けられる。貯蔵タンク110は外部の熱侵入による液化天然ガスの気化を最小化できるように断熱処理されたメンブレンタイプの貨物倉で設けられ得る。貯蔵タンク110は天然ガスの生産地などから液化天然ガスを供給受けて収容または貯蔵して目的地に到着して荷下ろしするまで液化天然ガスおよび蒸発ガスを安定的に保管するものの、後述するように船舶の推進用消費手段または船舶の発電用消費手段などの燃料ガスに利用されるように設けられ得る。 The storage tank 110 is provided to store or store liquefied natural gas and evaporative gas generated from the liquefied natural gas. The storage tank 110 may be provided in a membrane-type cargo hold that has been heat-insulated to minimize vaporization of liquefied natural gas due to external heat intrusion. The storage tank 110 receives and stores liquefied natural gas from a natural gas producing area or the like, stores or stores the liquefied natural gas, and stably stores the liquefied natural gas and the evaporative gas until it arrives at the destination and is unloaded. Can be provided for use in fuel gas such as a ship's propulsion consumption means or a ship's power generation consumption means.

貯蔵タンク110は一般に断熱処理されて設置されるが、外部の熱侵入を完全に遮断することは実質的に難しいため、貯蔵タンク110の内部には液化天然ガスが自然に気化して発生する蒸発ガスが存在する。このような蒸発ガスは、貯蔵タンク110の内部圧力を上昇させて貯蔵タンク110の変形および爆発などの危険が潜在されているため、蒸発ガスを貯蔵タンク110から除去または処理する必要性がある。これに伴い、貯蔵タンク110の内部に発生した蒸発ガスは、本発明の実施例のように、第1燃料ガス供給ライン150または第2燃料ガス供給ライン170によって蒸発ガス消費手段の燃料ガスに利用されるか再液化ライン140によって再液化されて貯蔵タンク110に再供給され得る。また、図示してはいないが、貯蔵タンク110の上部に設けられるベントマスト(図示せず)に供給して蒸発ガスを処理または消耗させることもできる。 The storage tank 110 is generally installed with heat insulation treatment, but since it is practically difficult to completely block external heat intrusion, liquefied natural gas naturally evaporates and evaporates inside the storage tank 110. There is gas. Since such an evaporative gas raises the internal pressure of the storage tank 110 and has a potential risk of deformation and explosion of the storage tank 110, it is necessary to remove or treat the evaporative gas from the storage tank 110. Along with this, the evaporative gas generated inside the storage tank 110 is used as the fuel gas of the evaporative gas consuming means by the first fuel gas supply line 150 or the second fuel gas supply line 170 as in the embodiment of the present invention. It can be reliquefied or reliquefied by the reliquefaction line 140 and resupplied to the storage tank 110. Further, although not shown, it is also possible to supply the evaporative gas to a vent mast (not shown) provided on the upper part of the storage tank 110 to process or consume the evaporative gas.

蒸発ガス消費手段は貯蔵タンク110に収容された液化天然ガスおよび蒸発ガスなどの燃料ガスを供給受けて船舶の推進力を発生させるか船舶の内部設備などの発電用電源を発生させることができる。蒸発ガス消費手段は、相対的に高圧の燃料ガスを供給受けて出力を発生させる第1消費手段11と、相対的に低圧の燃料ガスを供給受けて出力を発生させる第2消費手段12で構成され得る。一例として、第1消費手段11は相対的に高圧の燃料ガスで出力を発生させることができるME−GIエンジンまたはX−DFエンジンで構成され、第2消費手段12は相対的に低圧の燃料ガスで出力を発生させることができるDFDEエンジンなどで構成され得る。しかし、これに限定されず、多様な数のエンジンおよび多様な種類の消費手段が利用される場合にも同一に理解されるべきである。 The evaporative gas consuming means can supply fuel gas such as liquefied natural gas and evaporative gas contained in the storage tank 110 to generate propulsive force for the ship, or generate a power source for power generation such as internal equipment of the ship. The evaporative gas consuming means includes a first consuming means 11 that receives a relatively high pressure fuel gas and generates an output, and a second consuming means 12 that receives a relatively low pressure fuel gas and generates an output. Can be done. As an example, the first consuming means 11 is composed of a ME-GI engine or an X-DF engine capable of generating an output with a relatively high pressure fuel gas, and the second consuming means 12 is composed of a relatively low pressure fuel gas. It can be configured with a DFDE engine or the like that can generate output with. However, it is not limited to this, and it should be understood equally when various numbers of engines and various kinds of consumption means are utilized.

蒸発ガス供給ライン120は、貯蔵タンク110に存在する蒸発ガスを加圧して第2消費手段12に燃料ガスとして供給するか、窒素分離器130を経て第1消費手段11および再液化ライン140に供給するように設けられ得る。蒸発ガス供給ライン120は入口側端部が貯蔵タンク110の内部に連結されて設けられ、出口側端部は後述する窒素分離器130を経て第1燃料ガス供給ライン150および再液化ライン140に連結されるように設けられ得る。蒸発ガス供給ライン120には蒸発ガスを第1消費手段が要求する条件に合わせて処理することができるように複数段のコンプレッサー121aを具備する圧縮部121が設けられる。 The evaporative gas supply line 120 pressurizes the evaporative gas existing in the storage tank 110 and supplies it as fuel gas to the second consumption means 12, or supplies it to the first consumption means 11 and the reliquefaction line 140 via the nitrogen separator 130. Can be provided to do so. The evaporative gas supply line 120 is provided with the inlet side end connected to the inside of the storage tank 110, and the outlet side end is connected to the first fuel gas supply line 150 and the reliquefaction line 140 via the nitrogen separator 130 described later. Can be provided to be. The evaporative gas supply line 120 is provided with a compression unit 121 including a plurality of stages of compressors 121a so that the evaporative gas can be processed according to the conditions required by the first consuming means.

圧縮部121は蒸発ガスを圧縮するコンプレッサー121aと圧縮されながら加熱した蒸発ガスを冷却させるクーラー121bを含むことができる。蒸発ガス消費手段が互いに異なる圧力条件を有する複数個のエンジンなどからなる場合には、圧縮部121の中段部から後述する第2燃料ガス供給ライン170が分岐されて第2消費手段12またはGCU15に一部加圧された蒸発ガスを供給するように設けられ得る。 The compression unit 121 can include a compressor 121a that compresses the evaporative gas and a cooler 121b that cools the evaporative gas that is heated while being compressed. When the evaporative gas consuming means includes a plurality of engines having different pressure conditions, the second fuel gas supply line 170 described later is branched from the middle part of the compression unit 121 to the second consuming means 12 or the GCU 15. It may be provided to supply a partially pressurized evaporative gas.

圧縮部121は後述するように、圧縮部121によって加圧された蒸発ガスが窒素分離器130を通過しながらその圧力が低下する恐れがあるため、これを勘案して第1消費手段11が要求する燃料ガス圧力条件よりも所定の大きさ高い圧力で蒸発ガスを加圧して供給するように設けられ得る。 As will be described later, the pressure of the evaporative gas pressurized by the compression unit 121 may decrease while passing through the nitrogen separator 130. Therefore, the first consuming means 11 requires the compression unit 121 in consideration of this. It may be provided to pressurize and supply the evaporative gas at a pressure that is a predetermined magnitude higher than the fuel gas pressure condition.

図1では圧縮部121が5段のコンプレッサー121aおよびクーラー121bからなるものと図示されているが、これは一例に過ぎず、エンジンの要求圧力条件および温度にしたがって圧縮部121は多様な数のコンプレッサー121aおよびクーラー121bで構成され得る。また、蒸発ガス供給ライン120上の圧縮部121前段には後述する再液化ライン140の熱交換部141が設置され得、これに対する詳細な説明は後述する。 In FIG. 1, the compression unit 121 is shown to consist of a five-stage compressor 121a and a cooler 121b, but this is only an example, and the compression unit 121 has various numbers of compressors according to the required pressure conditions and temperature of the engine. It may consist of 121a and a cooler 121b. Further, a heat exchange section 141 of the reliquefaction line 140, which will be described later, may be installed in front of the compression section 121 on the evaporative gas supply line 120, and a detailed description thereof will be described later.

窒素分離器130は圧縮部121を通過して加圧された蒸発ガスに含まれた窒素成分を分離するように蒸発ガス供給ライン120の出口側端部に設けられ得る。窒素分離器130は加圧された蒸発ガスを第1濃度の窒素成分を含有する第1ガスの流れおよび相対的に第2濃度の窒素成分を含有する第2ガスの流れに分類し、第1ガスの流れを第1燃料ガス供給ライン150に供給して第1消費手段11に燃料ガスとして利用されるようにし、第2ガスの流れは後述する再液化ライン140に供給するように設けられる。 The nitrogen separator 130 may be provided at the outlet side end of the evaporative gas supply line 120 so as to pass through the compression section 121 and separate the nitrogen component contained in the pressurized evaporative gas. The nitrogen separator 130 classifies the pressurized evaporative gas into a flow of a first gas containing a first concentration of nitrogen component and a flow of a second gas containing a relatively second concentration of nitrogen component, and first. The gas flow is provided so as to be supplied to the first fuel gas supply line 150 so that the first consumption means 11 can be used as fuel gas, and the second gas flow is supplied to the reliquefaction line 140 described later.

本実施例で説明する第1濃度の窒素成分および第2濃度の窒素成分はそれぞれ高濃度の窒素成分および低濃度の窒素成分を意味するものであって、第1濃度の窒素成分は第2濃度の窒素成分と比較して相対的に高濃度の窒素成分を有し、第2濃度の窒素成分は第1濃度の窒素成分と比較して相対的に低濃度の窒素成分を有する。第1濃度および第2濃度は特定数値に限定されるものではなく、第1濃度と第2濃度間の濃度差による相対的な意味と理解されるべきである。 The first concentration nitrogen component and the second concentration nitrogen component described in this example mean a high concentration nitrogen component and a low concentration nitrogen component, respectively, and the first concentration nitrogen component is a second concentration. It has a relatively high concentration of nitrogen component as compared with the nitrogen component of the above, and the second concentration nitrogen component has a relatively low concentration nitrogen component as compared with the first concentration nitrogen component. The first concentration and the second concentration are not limited to specific numerical values, and should be understood as a relative meaning due to the difference in concentration between the first concentration and the second concentration.

天然ガスは主成分であるメタン(Methane)の他にもエタン(Ethane)、プロパン(Propane)、ブタン(Butane)、窒素(Nitrogen)などを含む混合物である。このうち窒素の沸点は摂氏約−195.8度であり、それ以外の成分であるメタン(沸点摂氏−161.5度)、エタン(沸点摂氏−89度)などに比べて非常に低い。これに伴い、貯蔵タンク110の内部で自然に気化して発生する自然蒸発ガスは沸点が低い窒素成分が多く気化して窒素成分を多く含有することになる。このような蒸発ガスを再液化しようとする場合、窒素成分は沸点が低いため再液化が非常に難しく、蒸発ガスの窒素成分の濃度が増加するほど再液化効率が低下する。 Natural gas is a mixture containing ethane, propane, butane, nitrogen, and the like in addition to methane, which is the main component. Of these, the boiling point of nitrogen is about -195.8 degrees Celsius, which is much lower than the other components such as methane (boiling point -161.5 degrees Celsius) and ethane (boiling point -89 degrees Celsius). Along with this, the natural evaporative gas generated by spontaneous vaporization inside the storage tank 110 vaporizes a large amount of nitrogen components having a low boiling point and contains a large amount of nitrogen components. When trying to reliquefy such an evaporative gas, it is very difficult to reliquefy the nitrogen component because the boiling point is low, and the reliquefaction efficiency decreases as the concentration of the nitrogen component of the evaporative gas increases.

そこで、窒素分離器130が蒸発ガス供給ライン120を通過して加圧された蒸発ガスに含まれた窒素成分を分離して、第1濃度の窒素成分を含有する第1ガスの流れは第1消費手段11の燃料ガスとして供給するものの、第2濃度の窒素成分を再液化ライン140に供給することによって、再液化ライン140の蒸発ガス再液化性能および効率を向上させることができる。 Therefore, the nitrogen separator 130 passes through the evaporative gas supply line 120 to separate the nitrogen component contained in the pressurized evaporative gas, and the flow of the first gas containing the first concentration nitrogen component is the first. Although it is supplied as the fuel gas of the consuming means 11, by supplying the nitrogen component of the second concentration to the reliquefaction line 140, the evaporative gas reliquefaction performance and efficiency of the reliquefaction line 140 can be improved.

窒素分離器130はメンブレンフィルターで構成され得る。メンブレンフィルターは窒素成分との親和度が高い物質を具備し、加圧された蒸発ガスがその圧力によってメンブレンフィルターを通過することによって、窒素成分はメンブレンフィルターによってろ過されて第1燃料ガス供給ライン150に供給され、メタンなどの窒素以外の成分はそのまま通過して再液化ライン140に供給され得る。 The nitrogen separator 130 may consist of a membrane filter. The membrane filter comprises a substance having a high affinity with the nitrogen component, and the pressurized evaporative gas passes through the membrane filter by the pressure, so that the nitrogen component is filtered by the membrane filter and the first fuel gas supply line 150 The non-nitrogen component such as methane can pass through as it is and be supplied to the reliquefaction line 140.

第1燃料ガス供給ライン150は、窒素分離器130によって分離された第1濃度の窒素成分を含有する第1ガスの流れを第1消費手段11に燃料ガスとして供給するように設けられる。前述した通り、加圧された蒸発ガスは窒素分離器130を経ながら相対的に高濃度である第1濃度の窒素成分を含有する第1ガスの流れおよび相対的に低濃度である第2濃度の窒素成分を含有する第2ガスの流れに分離されるところ、第1燃料ガス供給ライン150はこのうち再液化効率が低い第1ガスの流れを供給受けて第1消費手段11に燃料ガスとして供給および利用することによって、燃料ガスの効率的な利用を図るとともに第2ガスの流れの再液化効率を増大させることができる。 The first fuel gas supply line 150 is provided so as to supply the flow of the first gas containing the nitrogen component of the first concentration separated by the nitrogen separator 130 to the first consumption means 11 as the fuel gas. As described above, the pressurized evaporative gas passes through the nitrogen separator 130 and has a flow of a first gas containing a first concentration nitrogen component having a relatively high concentration and a second concentration having a relatively low concentration. When separated into the flow of the second gas containing the nitrogen component of the above, the first fuel gas supply line 150 receives the flow of the first gas having a low reliquefaction efficiency and feeds the first consumption means 11 as a fuel gas. By supplying and using the fuel gas, it is possible to efficiently use the fuel gas and increase the reliquefaction efficiency of the second gas flow.

再液化ライン140は窒素分離器130によって分離されて第2濃度の窒素成分を含有する第2ガスの流れを供給受けて再液化させるように設けられる。再液化しようとする蒸発ガスに窒素含量が多いほど、窒素成分の低い沸点によって蒸発ガスの再液化効率が低下するところ、再液化ライン140は窒素分離器130によって分離された低濃度の窒素成分を含有する第2ガスの流れを供給受けて再液化させるように設けられ、蒸発ガスの再液化効率を向上させることができる。 The reliquefaction line 140 is provided so as to be separated by the nitrogen separator 130 and supplied with a flow of a second gas containing a nitrogen component having a second concentration to be reliquefied. The higher the nitrogen content of the evaporative gas to be reliquefied, the lower the reliquefaction efficiency of the evaporative gas due to the lower boiling point of the nitrogen component. It is provided so as to receive the flow of the contained second gas and reliquefy it, and the reliquefaction efficiency of the evaporative gas can be improved.

再液化ライン140は窒素分離器130によって分離された第2ガスの流れを熱交換および冷却させる熱交換部141、熱交換部141を通過した第2ガスの流れを減圧させる膨張バルブ142、膨張バルブ142を通過して減圧された第2ガスの流れを収容する気液分離器143、気液分離器143で分離された液体成分を貯蔵タンク110に再供給する液化ガス回収ライン144および気液分離器143で分離された気体成分を貯蔵タンク110または蒸発ガス供給ライン120側に再供給する蒸発ガス循環ライン145を含むことができる。 The reliquefaction line 140 includes a heat exchange unit 141 that heat exchanges and cools the flow of the second gas separated by the nitrogen separator 130, an expansion valve 142 that reduces the pressure of the second gas flow that has passed through the heat exchange unit 141, and an expansion valve. A gas-liquid separator 143 that accommodates the flow of the second gas that has passed through 142 and is decompressed, a liquefied gas recovery line 144 that resupplyes the liquid component separated by the gas-liquid separator 143 to the storage tank 110, and gas-liquid separation. The evaporative gas circulation line 145 that re-supplies the gas component separated by the vessel 143 to the storage tank 110 or the evaporative gas supply line 120 side can be included.

熱交換部141は再液化ライン140に供給される第2ガスの流れと蒸発ガス供給ライン120に沿って移送される圧縮部121前段の蒸発ガスが互いに熱交換するように設けられる。第2ガスの流れは圧縮部121によって加圧されて温度および圧力が上昇した状態であるから、蒸発ガス供給ライン120の圧縮部121を通過する前の低温の蒸発ガスと互いに熱交換することによって、再液化ライン140に沿って流れる加圧された第2ガスの流れを冷却させることができる。このように別途の冷却装置がなくても圧縮部121および窒素分離器130を通過して加圧された第2ガスの流れを蒸発ガス供給ライン120を通過する低温の蒸発ガスと熱交換して冷却させることができるので、電源の無駄使いが防止され、設備が単純化され、設備運用の効率性を図ることができる。 The heat exchange unit 141 is provided so that the flow of the second gas supplied to the reliquefaction line 140 and the evaporative gas in the first stage of the compression unit 121 transferred along the evaporative gas supply line 120 exchange heat with each other. Since the flow of the second gas is in a state of being pressurized by the compression unit 121 to increase the temperature and pressure, the flow of the second gas is exchanged with each other by the low temperature evaporative gas before passing through the compression unit 121 of the evaporative gas supply line 120. , The flow of the pressurized second gas flowing along the reliquefaction line 140 can be cooled. In this way, even if there is no separate cooling device, the flow of the second gas pressurized through the compression unit 121 and the nitrogen separator 130 is exchanged with the low-temperature evaporative gas passing through the evaporative gas supply line 120. Since it can be cooled, wasteful use of the power source can be prevented, the equipment can be simplified, and the efficiency of equipment operation can be improved.

膨張バルブ142は熱交換部141の後段に設けられ得る。膨張バルブ142は圧縮部121、窒素分離器130および熱交換部141を順次通過して加圧および冷却された第2ガスの流れを減圧して追加的に冷却および膨張させて第2ガスの流れを再液化させることができる。膨張バルブ142は一例として、ジュール−トムソンバルブ(Joule−Thomson Valve)で構成され得る。 The expansion valve 142 may be provided after the heat exchange section 141. The expansion valve 142 sequentially passes through the compression unit 121, the nitrogen separator 130, and the heat exchange unit 141 to depressurize the flow of the pressurized and cooled second gas, and additionally cool and expand the flow of the second gas. Can be reliquefied. As an example, the expansion valve 142 may be composed of a Joule-Thomson valve.

気液分離器143は膨張バルブ142を通過しながら冷却および減圧されて再液化された第2ガスの流れを収容して再液化された第2ガスの流れの液体成分および気体成分を分離するように設けられる。第2ガスの流れは膨張バルブ142を通過する際にそのほとんどが再液化されるものの、減圧する過程でフラッシュガス(Flash Gas)が発生することによって気体成分が発生する可能性がある。したがって、熱交換部141および膨張バルブ142を通過して気液分離器143に供給された第2ガスの流れのうち分離された液体成分は後述する液化ガス回収ライン144を通じて貯蔵タンク110に再供給し、分離された気体成分は後述する蒸発ガス循環ライン145により貯蔵タンク110または蒸発ガス供給ライン120に再供給するように設けられ得る。 The gas-liquid separator 143 accommodates the flow of the second gas that has been cooled and depressurized and reliquefied while passing through the expansion valve 142 so as to separate the liquid component and the gas component of the reliquefied second gas flow. It is provided in. Although most of the flow of the second gas is reliquefied when it passes through the expansion valve 142, there is a possibility that a gas component is generated due to the generation of flash gas in the process of depressurizing. Therefore, the separated liquid component of the flow of the second gas supplied to the gas-liquid separator 143 through the heat exchange unit 141 and the expansion valve 142 is resupplied to the storage tank 110 through the liquefied gas recovery line 144 described later. However, the separated gas component may be provided so as to be resupplied to the storage tank 110 or the evaporative gas supply line 120 by the evaporative gas circulation line 145 described later.

液化ガス回収ライン144は気液分離器143によって分離された蒸発ガスの液体成分を貯蔵タンク110に再供給するように、気液分離器143と貯蔵タンク110の間に設けられ得る。液化ガス回収ライン144はその入口側端部が気液分離器143の下側に連通して設けられ、出口側端部が貯蔵タンク110の内部に連通して設けられ得る。液化ガス回収ライン144には貯蔵タンク110に回収される再液化された第2ガスの流れの供給量を調節する開閉バルブ(図示せず)が設けられ得る。 The liquefied gas recovery line 144 may be provided between the gas-liquid separator 143 and the storage tank 110 so as to resupply the liquid component of the evaporative gas separated by the gas-liquid separator 143 to the storage tank 110. The liquefied gas recovery line 144 may be provided with its inlet-side end communicating with the lower side of the gas-liquid separator 143 and its outlet-side end communicating with the inside of the storage tank 110. The liquefied gas recovery line 144 may be provided with an on-off valve (not shown) for adjusting the supply amount of the flow of the reliquefied second gas recovered in the storage tank 110.

蒸発ガス循環ライン145は気液分離器143によって分離された蒸発ガスの気体成分を貯蔵タンク110または蒸発ガス供給ライン120に再供給するように、気液分離器143と貯蔵タンク110または気液分離器143と蒸発ガス供給ライン120の間に設けられ得る。図1では蒸発ガス循環ライン145が、気液分離器143内部の気体成分が蒸発ガス供給ライン120上の圧縮部121前段に再供給するものと図示されているが、この他にも気液分離器143から貯蔵タンク110に再供給するか、蒸発ガス供給ライン120および貯蔵タンク110に共に再供給する場合をすべて含む。 The evaporative gas circulation line 145 separates the gas-liquid separator and the storage tank 110 or the gas-liquid so as to resupply the gas component of the evaporative gas separated by the gas-liquid separator 143 to the storage tank 110 or the evaporative gas supply line 120. It may be provided between the vessel 143 and the evaporative gas supply line 120. In FIG. 1, the evaporative gas circulation line 145 is shown in which the gas component inside the gas-liquid separator 143 is resupplied to the front stage of the compression unit 121 on the evaporative gas supply line 120, but in addition to this, gas-liquid separation is performed. This includes all cases where the container 143 is resupplied to the storage tank 110, or the evaporative gas supply line 120 and the storage tank 110 are resupplied together.

第2燃料ガス供給ライン170は、第1燃料ガス供給ライン150の圧縮部121の中段部から分岐されて設けられ、一部加圧された蒸発ガスを第2消費手段12またはGCU15に供給するように設けられる。第2燃料ガス供給ライン170は入口側端部が圧縮部121の中段部に連結されて設けられ、出口側端部は分岐されて一側は第2消費手段12、他側はGCU15に連結されて設けられ得る。 The second fuel gas supply line 170 is provided so as to be branched from the middle portion of the compression portion 121 of the first fuel gas supply line 150 so as to supply the partially pressurized evaporative gas to the second consumption means 12 or the GCU 15. It is provided in. The second fuel gas supply line 170 is provided so that the inlet side end is connected to the middle stage of the compression portion 121, the outlet side end is branched, one side is connected to the second consumption means 12, and the other side is connected to the GCU 15. Can be provided.

第2消費手段12は相対的に低圧の燃料ガスを供給受けて出力を発生させるので、蒸発ガスを圧縮する圧縮部121の中段部から分岐されて設けられることによって、一部加圧された蒸発ガスを燃料ガスとして供給受けて作動され得る。GCU15は第2消費手段12が要求する燃料ガスの供給量よりも第2燃料ガス供給ライン170を通じて供給される一部加圧された蒸発ガスの供給量が多い場合、余剰の一部加圧された蒸発ガスを供給受けて消耗させるように設けられる。 Since the second consuming means 12 is supplied with a relatively low-pressure fuel gas to generate an output, the second consuming means 12 is provided by being branched from the middle portion of the compression unit 121 that compresses the evaporation gas, so that the evaporation is partially pressurized. It can be operated by supplying and receiving gas as fuel gas. When the supply amount of the partially pressurized evaporative gas supplied through the second fuel gas supply line 170 is larger than the supply amount of the fuel gas required by the second consumption means 12, the GCU 15 is partially pressurized. It is provided so as to receive and consume the evaporated gas.

発熱量調節部160は、第1消費手段11に供給される燃料ガスの発熱量を測定および調節するように設けられる。 The calorific value adjusting unit 160 is provided so as to measure and adjust the calorific value of the fuel gas supplied to the first consumption means 11.

発熱量(Heating Value)とは、単位質量の燃料ガスが完全燃焼した時に放出する熱量を意味する。天然ガスのうちメタン、ブタンおよびプロパンは相対的に発熱量が高いため燃料ガスの発熱量を上昇させる成分(メタンの発熱量:約12,000kcal/kg、ブタンの発熱量:約11,863kcal/kg、プロパンの発熱量:約2,000kcal/kg)である反面、窒素の発熱量は非常に低いため(窒素の発熱量:約60kcal/kg)、窒素成分の絶対的な含量または濃度が高いほど燃料ガスの総発熱量は低くなる。この時、蒸発ガス消費手段に供給される燃料ガスの総発熱量が過度に低いため蒸発ガス消費手段が要求する最小条件発熱量を満たすことができない場合には、蒸発ガス消費手段の出力に影響を及ぼし、蒸発ガス消費手段に不要な負荷を発生させる原因となる。 The heating value means the amount of heat released when a unit mass of fuel gas is completely burned. Of the natural gases, methane, butane and propane have relatively high calorific values, so components that increase the calorific value of fuel gas (methane calorific value: about 12,000 kcal / kg, butane calorific value: about 11,863 kcal /). Although the calorific value of kg and propane is about 2,000 kcal / kg), the calorific value of nitrogen is very low (calorific value of nitrogen: about 60 kcal / kg), so the absolute content or concentration of the nitrogen component is high. The lower the total calorific value of fuel gas. At this time, if the total calorific value of the fuel gas supplied to the evaporative gas consuming means is excessively low and the minimum calorific value required by the evaporative gas consuming means cannot be satisfied, the output of the evaporative gas consuming means is affected. This causes an unnecessary load on the means for consuming evaporative gas.

前述した通り、再液化ライン140の再液化効率上昇のために、窒素分離器130が加圧された蒸発ガスのうち低濃度の窒素成分を含有する第2ガスの流れは再液化ライン140に供給し、第1ガスの流れは第1燃料ガス供給ライン150に供給するところ、第1ガスの流れに含まれる高濃度の窒素成分によって第1ガスの流れの発熱量が、第1消費手段11が要求する条件発熱量より低くなる恐れがある。 As described above, in order to increase the reliquefaction efficiency of the reliquefaction line 140, the flow of the second gas containing a low concentration nitrogen component among the pressurized evaporative gas is supplied to the reliquefaction line 140. Then, when the flow of the first gas is supplied to the first fuel gas supply line 150, the calorific value of the flow of the first gas is generated by the high concentration nitrogen component contained in the flow of the first gas, and the first consuming means 11 It may be lower than the required condition calorific value.

図1を参照すれば、本発明の第1実施例による船舶の蒸発ガス処理装置100の発熱量調節部160は、第1消費手段11に供給される燃料ガスの発熱量を測定または算出する発熱量測定機161および圧縮部121によって加圧された蒸発ガスを第1燃料ガス供給ライン150に供給する発熱量上昇ライン162を含むことができる。 With reference to FIG. 1, the calorific value adjusting unit 160 of the evaporative gas treatment device 100 of the ship according to the first embodiment of the present invention measures or calculates the calorific value of the fuel gas supplied to the first consuming means 11. The calorific value riser line 162 for supplying the evaporative gas pressurized by the quantity measuring machine 161 and the compression unit 121 to the first fuel gas supply line 150 can be included.

発熱量測定機161は第1燃料ガス供給ライン150に第1消費手段11に供給される第1ガスの流れを含んだ燃料ガスの発熱量をリアルタイムで測定することができる。発熱量測定機161はディスプレイなどからなる表示部(図示せず)に測定された燃料ガスの発熱量情報を伝送して船舶の搭乗者にこれを通知するか、測定された燃料ガスの発熱量情報を制御部(図示せず)に伝送し、制御部は既入力された第1消費手段11の条件発熱量と発熱量測定機161から伝送された燃料ガスの発熱量情報を比較分析して後述する発熱量上昇ライン162に設けられる流量調節バルブ163の開閉程度を制御することができる。 The calorific value measuring machine 161 can measure the calorific value of the fuel gas including the flow of the first gas supplied to the first consumption means 11 in the first fuel gas supply line 150 in real time. The calorific value measuring machine 161 transmits the measured calorific value information of the fuel gas to a display unit (not shown) including a display or the like to notify the passengers of the ship of this, or the calorific value of the measured fuel gas. The information is transmitted to the control unit (not shown), and the control unit compares and analyzes the already input conditional calorific value of the first consumption means 11 and the calorific value information of the fuel gas transmitted from the calorific value measuring machine 161. It is possible to control the degree of opening and closing of the flow rate adjusting valve 163 provided in the calorific value increasing line 162, which will be described later.

図1では発熱量測定機161が第1燃料ガス供給ライン150上に設けられて燃料ガスの発熱量を測定するものと図示されているが、第1消費手段11に供給される燃料ガスの発熱量の測定ができるのであればその位置は多様に変形され得る。 Although it is shown in FIG. 1 that a calorific value measuring machine 161 is provided on the first fuel gas supply line 150 to measure the calorific value of the fuel gas, the calorific value of the fuel gas supplied to the first consuming means 11 is generated. If the quantity can be measured, its position can be deformed in various ways.

発熱量上昇ライン162は入口側端部が蒸発ガス供給ライン120上の圧縮部121後段に連結され、出口側端部が第1燃料ガス供給ライン150に連結されて設けられ得る。発熱量上昇ライン162は、圧縮部121を通過して加圧された蒸発ガスを、窒素分離器130を経ることなくそのまま第1燃料ガス供給ライン150を流れる第1ガスの流れに合流するようにする。これにより、第1消費手段11に供給される第1ガスの流れおよび加圧された蒸発ガスからなる燃料ガスの窒素成分の濃度は下げ、メタンおよびブタンなどの高発熱量を有する成分の濃度は上昇させて燃料ガスの総発熱量を上昇させることができる。 The calorific value rising line 162 may be provided with the inlet side end connected to the rear stage of the compression portion 121 on the evaporative gas supply line 120 and the outlet side end connected to the first fuel gas supply line 150. The calorific value rise line 162 joins the evaporated gas pressurized through the compression unit 121 with the flow of the first gas flowing through the first fuel gas supply line 150 as it is without passing through the nitrogen separator 130. To do. As a result, the flow of the first gas supplied to the first consuming means 11 and the concentration of the nitrogen component of the fuel gas composed of the pressurized evaporative gas are lowered, and the concentration of the components having a high calorific value such as methane and butane is reduced. It can be increased to increase the total calorific value of the fuel gas.

発熱量上昇ライン162には発熱量上昇ライン162に沿って流れる加圧された蒸発ガスの供給量を調節する流量調節バルブ163が設けられ得る。流量調節バルブ163は発熱量測定機161によって測定された燃料ガスの発熱量情報および第1消費手段11の条件発熱量情報に基づいて作業者による手動または制御部によって自動的にその開閉程度が調節されて発熱量上昇ライン162に沿って流れる加圧された蒸発ガスの供給量を制御することができる。 The calorific value rise line 162 may be provided with a flow rate adjusting valve 163 for adjusting the supply amount of the pressurized evaporative gas flowing along the calorific value rise line 162. The opening / closing degree of the flow rate adjusting valve 163 is automatically adjusted by the operator manually or by the control unit based on the calorific value information of the fuel gas measured by the calorific value measuring machine 161 and the conditional calorific value information of the first consuming means 11. It is possible to control the supply amount of the pressurized evaporative gas flowing along the calorific value rise line 162.

以下では本発明の第2実施例による船舶の蒸発ガス処理装置200について説明する。 Hereinafter, the ship's evaporative gas treatment device 200 according to the second embodiment of the present invention will be described.

図2は本発明の第2実施例による船舶の蒸発ガス処理装置200を示す概念図である。図2を参照すれば本発明の第2実施例による船舶の蒸発ガス処理装置200の発熱量調節部260は第1消費手段に供給される燃料ガスの発熱量を測定または算出する発熱量測定機261、圧縮部121によって加圧された蒸発ガスを第1燃料ガス供給ライン150に供給する発熱量上昇ライン262および第1燃料ガス供給ライン150に沿って供給される第1ガスの流れを再液化ライン140に循環させる発熱量調節ライン264を含むことができる。 FIG. 2 is a conceptual diagram showing an evaporative gas treatment device 200 for a ship according to a second embodiment of the present invention. Referring to FIG. 2, the calorific value adjusting unit 260 of the evaporative gas treatment device 200 of the ship according to the second embodiment of the present invention is a calorific value measuring machine that measures or calculates the calorific value of the fuel gas supplied to the first consuming means. 261 Reliquefaction of the flow of the first gas supplied along the calorific value rise line 262 and the first fuel gas supply line 150 for supplying the evaporative gas pressurized by the compression unit 121 to the first fuel gas supply line 150. A calorific value adjusting line 264 circulated through the line 140 can be included.

以下で説明する本発明の第2実施例による船舶の蒸発ガス処理装置200に対する説明において、別途の図面番号を付して追加的に説明する構成の他には前述した第1実施例による船舶の蒸発ガス処理装置100に対する説明と同じであり、内容の重複を防止するために説明を省略する。 In the description of the ship's evaporative gas treatment device 200 according to the second embodiment of the present invention described below, in addition to the configuration additionally described with a separate drawing number, the ship according to the first embodiment described above The description is the same as that for the evaporative gas processing apparatus 100, and the description is omitted in order to prevent duplication of contents.

発熱量測定機261は第1燃料ガス供給ライン150に第1消費手段に供給される第1ガスの流れの一部を含んだ燃料ガスの発熱量をリアルタイムで測定することができる。発熱量測定機261はディスプレイなどからなる表示部(図示せず)に測定された燃料ガスの発熱量情報を伝送して船舶の搭乗者にこれを通知するか、測定された燃料ガスの発熱量情報を制御部(図示せず)に伝送し、制御部は既入力された第1消費手段の条件発熱量と発熱量測定機261から伝送された燃料ガスの発熱量情報を比較分析して後述する発熱量上昇ライン262または発熱量調節ライン264に設けられる各流量調節バルブ263、265の開閉程度を制御することができる。 The calorific value measuring machine 261 can measure the calorific value of the fuel gas including a part of the flow of the first gas supplied to the first consumption means to the first fuel gas supply line 150 in real time. The calorific value measuring machine 261 transmits the measured calorific value information of the fuel gas to a display unit (not shown) including a display or the like to notify the passengers of the ship of this, or the calorific value of the measured fuel gas. The information is transmitted to the control unit (not shown), and the control unit compares and analyzes the input conditional calorific value of the first consumption means and the calorific value information of the fuel gas transmitted from the calorific value measuring machine 261, which will be described later. It is possible to control the degree of opening and closing of each flow rate adjusting valve 263 and 265 provided in the calorific value rising line 262 or the calorific value adjusting line 264.

図2では発熱量測定機261が第1燃料ガス供給ライン150上に設けられて燃料ガスの発熱量を測定するものと図示されているが、第1消費手段に供給される燃料ガスの発熱量の測定ができるのであればその位置は多様に変形され得る。 In FIG. 2, it is shown that a calorific value measuring machine 261 is provided on the first fuel gas supply line 150 to measure the calorific value of the fuel gas, but the calorific value of the fuel gas supplied to the first consuming means is shown. If it can be measured, its position can be deformed in various ways.

発熱量上昇ライン262は入口側端部が蒸発ガス供給ライン120上の圧縮部121後段に連結され、出口側端部が第1燃料ガス供給ライン150に連結されて設けられ得る。発熱量上昇ライン262は、圧縮部121を通過して加圧された蒸発ガスを、窒素分離器130を経ることなくそのまま第1燃料ガス供給ライン150を流れる第1ガスの流れに合流するようにする。これにより、第1消費手段に供給される燃料ガスの窒素成分の濃度は下げ、メタンおよびブタンなどの高発熱量を有する成分の濃度は上昇させて燃料ガスの総発熱量を上昇させることができる。 The calorific value rising line 262 may be provided with the inlet side end connected to the rear stage of the compression portion 121 on the evaporative gas supply line 120 and the outlet side end connected to the first fuel gas supply line 150. The calorific value rise line 262 joins the evaporated gas pressurized through the compression unit 121 with the flow of the first gas flowing through the first fuel gas supply line 150 as it is without passing through the nitrogen separator 130. To do. As a result, the concentration of the nitrogen component of the fuel gas supplied to the first consumption means can be lowered, the concentration of the component having a high calorific value such as methane and butane can be increased, and the total calorific value of the fuel gas can be increased. ..

発熱量上昇ライン262には発熱量上昇ライン262に沿って流れる加圧された蒸発ガスの供給量を調節する流量調節バルブ263が設けられ得る。流量調節バルブ263は発熱量測定機261によって測定された燃料ガスの発熱量情報および第1消費手段の条件発熱量情報に基づいて作業者による手動または制御部によって自動的にその開閉程度が調節されて発熱量上昇ライン262に沿って流れる加圧された蒸発ガスの供給量を制御することができる。 The calorific value rise line 262 may be provided with a flow rate adjusting valve 263 that adjusts the supply amount of the pressurized evaporative gas flowing along the calorific value rise line 262. The opening / closing degree of the flow rate adjusting valve 263 is automatically adjusted manually by an operator or by a control unit based on the calorific value information of the fuel gas measured by the calorific value measuring machine 261 and the conditional calorific value information of the first consuming means. It is possible to control the supply amount of the pressurized evaporative gas flowing along the calorific value rise line 262.

発熱量調節ライン264は、入口側端部が第1燃料ガス供給ライン150上に連結されるものの、発熱量上昇ライン262が合流する地点の前段に連結されて設けられ、出口側端部が再液化ライン140上に連結されて設けられ得る。前述した通り、第1ガスの流れは高濃度の窒素成分を含有するところ、加圧された蒸発ガスに比べて発熱量が低い。したがって第1燃料ガス供給ライン150に沿って流れる第1ガスの流れの一部を再液化ライン140側に循環させて第1消費手段に供給される燃料ガスの総発熱量を上昇および調節することができる。これとともに、発熱量調節ライン264が第1ガスの流れの一部を再液化ライン140に回収することによって、第1消費手段の燃料ガスの要求供給量に対応して発熱量上昇ライン262を通した加圧された蒸発ガスの合流による燃料ガスの総供給量の過度な上昇を防止し、燃料ガスの供給量を効率的に調節することができる。 The calorific value adjusting line 264 is provided so that the inlet side end is connected on the first fuel gas supply line 150, but is connected to the front stage of the point where the calorific value rising line 262 joins, and the outlet side end is re-established. It may be connected and provided on the liquefaction line 140. As described above, where the flow of the first gas contains a high concentration of nitrogen components, the calorific value is lower than that of the pressurized evaporative gas. Therefore, a part of the flow of the first gas flowing along the first fuel gas supply line 150 is circulated to the reliquefaction line 140 side to increase and adjust the total calorific value of the fuel gas supplied to the first consumption means. Can be done. At the same time, the calorific value adjusting line 264 recovers a part of the flow of the first gas to the reliquefaction line 140, so that the calorific value increasing line 262 is passed through in accordance with the required supply amount of the fuel gas of the first consuming means. It is possible to prevent an excessive increase in the total fuel gas supply amount due to the confluence of the pressurized evaporative gas, and to efficiently adjust the fuel gas supply amount.

発熱量調節ライン264には発熱量調節ライン264に沿って流れる一部の第1ガスの流れの供給量を調節する流量調節バルブ265が設けられ得る。流量調節バルブ265は発熱量測定機261によって測定された燃料ガスの発熱量情報および第1消費手段の条件発熱量情報に基づいて作業者による手動または制御部によって自動的にその開閉程度が調節されて発熱量調節ライン264に沿って流れる一部の第1ガスの流れの供給量を制御することができる。また、これとは違って、図示してはいないが、第1燃料ガス供給ライン150または第1消費手段に設置される流量感知部(図示せず)によって測定された燃料ガス供給量情報に基づいて発熱量調節ライン264に設けられる流量調節バルブ265の開閉程度lを制御することもできる。 The calorific value adjusting line 264 may be provided with a flow rate adjusting valve 265 that regulates the supply amount of a part of the flow of the first gas flowing along the calorific value adjusting line 264. The opening / closing degree of the flow rate adjusting valve 265 is automatically adjusted manually by an operator or by a control unit based on the calorific value information of the fuel gas measured by the calorific value measuring machine 261 and the conditional calorific value information of the first consuming means. It is possible to control the supply amount of a part of the flow of the first gas flowing along the calorific value adjusting line 264. Further, unlike this, although not shown, it is based on fuel gas supply amount information measured by a flow rate sensing unit (not shown) installed in the first fuel gas supply line 150 or the first consumption means. It is also possible to control the opening / closing degree l of the flow rate adjusting valve 265 provided in the calorific value adjusting line 264.

以下では本発明の第3実施例による船舶の蒸発ガス処理装置200について説明する。 Hereinafter, the ship's evaporative gas treatment device 200 according to the third embodiment of the present invention will be described.

図3は本発明の第3実施例による船舶の蒸発ガス処理装置300を示す概念図であって、図3を参照すれば、本発明の第3実施例による船舶の蒸発ガス処理装置300は貯蔵タンク310から発生する蒸発ガスを蒸発ガス消費手段11、12に供給する蒸発ガス供給ライン320、蒸発ガス供給ライン320を通過する蒸発ガスの一部を再液化させる再液化ライン330および貯蔵タンク310の液化ガスを蒸発ガス消費手段11、12に供給する液化ガス供給ライン340を含むことができる。 FIG. 3 is a conceptual diagram showing the ship's evaporative gas treatment device 300 according to the third embodiment of the present invention. With reference to FIG. 3, the ship's evaporative gas treatment device 300 according to the third embodiment of the present invention is stored. The evaporative gas supply line 320 for supplying the evaporative gas generated from the tank 310 to the evaporative gas consumption means 11 and 12, the reliquefaction line 330 for reliquefying a part of the evaporative gas passing through the evaporative gas supply line 320, and the storage tank 310. A liquefied gas supply line 340 that supplies the liquefied gas to the evaporative gas consuming means 11 and 12 can be included.

蒸発ガス供給ライン320は貯蔵タンク310から発生する蒸発ガスを蒸発ガス消費手段11、12に提供する流路である。 The evaporative gas supply line 320 is a flow path that provides the evaporative gas generated from the storage tank 310 to the evaporative gas consuming means 11 and 12.

蒸発ガス供給ライン320の一端は貯蔵タンク310の内部に連結され、他端は後述する液化ガス供給ライン340と合流して蒸発ガス消費手段11、12に連結されるように設けられる。そして、蒸発ガス供給ライン320は貯蔵タンク310内部の蒸発ガスを供給受けることができるように入口側端部が貯蔵タンク310内部の上側に配置され得る。 One end of the evaporative gas supply line 320 is connected to the inside of the storage tank 310, and the other end is provided so as to merge with the liquefied gas supply line 340 described later and be connected to the evaporative gas consuming means 11 and 12. Then, the evaporative gas supply line 320 may be arranged on the upper side inside the storage tank 310 so that the evaporative gas supply line 320 can receive the evaporative gas inside the storage tank 310.

貯蔵タンク310は液化天然ガスおよび蒸発ガスを収容または貯蔵するように設けられる。貯蔵タンク310は外部の熱侵入による液化天然ガスの気化を最小化できるように断熱処理されたメンブレンタイプの貨物倉で設けられ得る。貯蔵タンク310は天然ガスの生産地などから液化天然ガスを供給受けて収容または貯蔵して目的地に到着して荷下ろしするまで液化天然ガスおよび蒸発ガスを安定的に保管するものの、後述するように、船舶の推進用エンジンまたは船舶の発電用エンジンなどの燃料ガスに利用されるように設けられ得る。 The storage tank 310 is provided to accommodate or store liquefied natural gas and evaporative gas. The storage tank 310 may be provided in a membrane-type cargo hold that has been heat-insulated to minimize vaporization of liquefied natural gas due to external heat intrusion. The storage tank 310 receives and stores liquefied natural gas from a natural gas producing area or the like, stores or stores the liquefied natural gas, and stably stores the liquefied natural gas and the evaporative gas until it arrives at the destination and is unloaded. It may be provided to be used as a fuel gas for a ship's propulsion engine or a ship's power generation engine.

貯蔵タンク310は液化天然ガスを液体状態に維持するために内部圧力を1barに維持するか燃料供給条件を考慮してそれよりも高い圧力に維持することができ、内部温度を−163度以下に維持できるように設けられ得る。 The storage tank 310 can maintain an internal pressure of 1 bar to maintain the liquefied natural gas in a liquid state or a higher pressure in consideration of fuel supply conditions, and keep the internal temperature below -163 degrees. It can be provided so that it can be maintained.

貯蔵タンク310は一般に断熱処理されて設置されるが、外部の熱侵入を完全に遮断することは実質的に難しいため、貯蔵タンク310内部には液化天然ガスが自然に気化して発生する蒸発ガスが存在する。このような蒸発ガスは、貯蔵タンク310の内部圧力を上昇させて貯蔵タンク310を変形または爆発させるなどの危険が潜在されているため、蒸発ガスを貯蔵タンク310から除去または処理する必要性がある。 The storage tank 310 is generally installed with heat insulation treatment, but since it is practically difficult to completely block heat intrusion from the outside, the evaporative gas generated by the natural vaporization of liquefied natural gas inside the storage tank 310. Exists. Since such evaporative gas has a potential risk of increasing the internal pressure of the storage tank 310 to deform or explode the storage tank 310, it is necessary to remove or dispose of the evaporative gas from the storage tank 310. ..

これに伴い、貯蔵タンク310内部に発生した蒸発ガスは、本発明の実施例のように、蒸発ガス供給ライン320によって蒸発ガス消費手段11、12で消費されるか再液化ライン330によって再液化されて貯蔵タンク310に再供給され得る。 Along with this, the evaporative gas generated inside the storage tank 310 is consumed by the evaporative gas consuming means 11 and 12 by the evaporative gas supply line 320 or reliquefied by the reliquefaction line 330 as in the embodiment of the present invention. Can be resupplied to the storage tank 310.

または、図面に図示してはいないが、これとは違って、貯蔵タンク310の上部に設けられるベントマスト(図示せず)またはGCU(Gas Combustion Unit、図示せず)に蒸発ガスを供給することによって蒸発ガスを追加的に処理または消耗させることもできる。しかし、本発明の実施例に係る海洋構造物は蒸発ガスを消耗させる代わりに蒸発ガスを蒸発ガス消費手段11、12に提供して効率的に利用する一方、余剰の蒸発ガスを再液化して貯蔵タンク310に復帰させることができる。 Alternatively, although not shown in the drawing, unlike this, the evaporative gas is supplied to a vent mast (not shown) or a GCU (Gas Combustion Unit, not shown) provided on the upper part of the storage tank 310. Evaporative gas can also be additionally processed or consumed by. However, in the marine structure according to the embodiment of the present invention, instead of consuming the evaporative gas, the evaporative gas is provided to the evaporative gas consuming means 11 and 12 for efficient use, while the surplus evaporative gas is reliquefied. It can be returned to the storage tank 310.

図面には一つの貯蔵タンク310が図示されているが、これは便宜上示したものに過ぎず、貯蔵タンク310の個数および種類は多様に設けられ得る。 Although one storage tank 310 is shown in the drawings, this is only shown for convenience, and the number and types of storage tanks 310 can be variously provided.

蒸発ガス消費手段11、12はエンジン、ジェネレーター、タービンなどを含み、蒸発ガスを原料にするかこれを利用してエネルギーなどを生産することができる。蒸発ガスを原料にするエンジンは貯蔵タンク310に収容された液化天然ガスおよび/または蒸発ガスなどの燃料を供給受けて船舶の推進力を発生させるか船舶の内部設備などの発電用電源を発生させることができる。 The evaporative gas consuming means 11 and 12 include an engine, a generator, a turbine and the like, and can produce energy and the like by using the evaporative gas as a raw material or using the evaporative gas. An engine using evaporative gas as a raw material receives fuel such as liquefied natural gas and / or evaporative gas contained in a storage tank 310 to generate propulsive force for the ship or generate a power source for power generation such as internal equipment of the ship. be able to.

一例として、エンジンは低圧の燃料(約5〜8bar)で出力を発生させることができるDFDEエンジン、中圧の燃料ガス(約15〜20bar)で出力を発生させることができるX−DFエンジン、高圧の燃料ガス(約150〜300bar)で出力を発生させることができるME−GIエンジンなどを含むことができる。しかし、これに限定されず、多様な数のエンジンおよび多様な種類のエンジンが利用される場合にも同一に理解されるべきである。 As an example, the engine is a DFDE engine that can generate output with low pressure fuel (about 5 to 8 bar), an X-DF engine that can generate output with medium pressure fuel gas (about 15 to 20 bar), and high pressure. An ME-GI engine or the like capable of generating an output with the fuel gas (about 150 to 300 bar) of the above can be included. However, it is not limited to this, and it should be understood equally when various numbers of engines and various types of engines are used.

本発明の第3実施例に係る蒸発ガス消費手段11、12は高圧の天然ガスを利用する第1消費手段11と、中圧または低圧の天然ガスを利用する第2消費手段12を含む。一例として、第1消費手段11はME−GIエンジンであり得、第2消費手段12はDFDEエンジンであり得る。 The evaporative gas consuming means 11 and 12 according to the third embodiment of the present invention include a first consuming means 11 that uses high-pressure natural gas and a second consuming means 12 that uses medium-pressure or low-pressure natural gas. As an example, the first consuming means 11 can be a ME-GI engine and the second consuming means 12 can be a DFDE engine.

本発明の第3実施例に係る船舶の蒸発ガス処理装置300は蒸発ガス供給ライン320に具備されて蒸発ガスを加圧および冷却する圧縮部321を含む。そして、圧縮部321は蒸発ガス供給ライン320上で後述する再液化ライン330が分岐される地点の前段に設けられて蒸発ガスを加圧することができる。しかし、必要によっては再液化ライン330が分岐される地点の後段に圧縮部321を設けることも可能である。 The ship's evaporative gas treatment device 300 according to the third embodiment of the present invention includes a compression unit 321 provided in the evaporative gas supply line 320 to pressurize and cool the evaporative gas. Then, the compression unit 321 is provided on the evaporative gas supply line 320 in front of the point where the reliquefaction line 330, which will be described later, is branched, and can pressurize the evaporative gas. However, if necessary, the compression unit 321 can be provided after the point where the reliquefaction line 330 is branched.

圧縮部321は蒸発ガスを圧縮する圧縮機321aと圧縮過程の間に温度が上昇した蒸発ガスを冷却する冷却器321bを含むことができる。 The compression unit 321 can include a compressor 321a that compresses the evaporative gas and a cooler 321b that cools the evaporative gas whose temperature has risen during the compression process.

この時、圧縮部321は多端に設けられ得る。すなわち、多段圧縮機321aとそれぞれの圧縮機321aの間に設けられる冷却器321bを含むことができる。一方、一部の冷却器321bは省略され得、最後の圧縮機321aの後段に冷却器321bが設けられるものを含む。 At this time, the compression unit 321 may be provided at multiple ends. That is, a cooler 321b provided between the multi-stage compressor 321a and each compressor 321a can be included. On the other hand, some coolers 321b may be omitted, including those in which the cooler 321b is provided after the last compressor 321a.

図3では圧縮部321が3段の圧縮機321aおよび冷却器321bからなるものと図示されているが、これは一例に過ぎず、蒸発ガス消費手段11、12が要求する圧力条件および/または温度により圧縮部321を構成する圧縮機321aおよび/または冷却器321bの構成は変わり得る。 In FIG. 3, the compressor 321 is shown to consist of a three-stage compressor 321a and a cooler 321b, but this is only an example, and the pressure conditions and / or temperatures required by the evaporative gas consuming means 11 and 12 are only examples. The configuration of the compressor 321a and / or the cooler 321b constituting the compression unit 321 can be changed accordingly.

一方、前述したように、第1消費手段11〜第2消費手段12はそれぞれ要求する燃料の条件が異なり得る。一例として、第1消費手段11は高圧状態の天然ガスを原料にし、第2消費手段12は低圧状態の天然ガスを原料にすることができる。この時、多段で設けられる圧縮部321は蒸発ガスを加圧および冷却して消費手段11、12が要求する圧力および温度状態に調節することができる。 On the other hand, as described above, the fuel conditions required by the first consuming means 11 to the second consuming means 12 may differ from each other. As an example, the first consumption means 11 can use natural gas in a high pressure state as a raw material, and the second consumption means 12 can use natural gas in a low pressure state as a raw material. At this time, the compression unit 321 provided in multiple stages can pressurize and cool the evaporative gas to adjust the pressure and temperature to the pressure and temperature states required by the consumption means 11 and 12.

また、蒸発ガス供給ライン320上の圧縮部321前段には後述する再液化ライン330の熱交換部332が設置され得、これに対する詳細な説明は後述する。 Further, a heat exchange section 332 of the reliquefaction line 330, which will be described later, may be installed in front of the compression section 321 on the evaporative gas supply line 320, and a detailed description thereof will be described later.

蒸発ガス供給ライン320は高圧蒸発ガス供給ライン322と低圧蒸発ガス供給ライン323を含むことができる。高圧蒸発ガス供給ライン322は圧縮部321の後段に連結されて第1消費手段11と連結される。高圧蒸発ガス供給ライン322を通じて第1消費手段11に提供される蒸発ガスは、多段圧縮機321aを具備する圧縮部321を通過しながら高圧に圧縮が完了した状態であるため、高圧天然ガスを原料にする第1消費手段11が要求する状態の蒸発ガスを提供することができる。 The evaporative gas supply line 320 can include a high-pressure evaporative gas supply line 322 and a low-pressure evaporative gas supply line 323. The high-pressure evaporative gas supply line 322 is connected to the subsequent stage of the compression unit 321 and is connected to the first consumption means 11. Since the evaporative gas provided to the first consuming means 11 through the high-pressure evaporative gas supply line 322 is in a state of being compressed to a high pressure while passing through the compression unit 321 provided with the multi-stage compressor 321a, the high-pressure natural gas is used as a raw material. It is possible to provide the evaporative gas in the state required by the first consuming means 11 to be used.

そして、低圧蒸発ガス供給ライン323は圧縮部321の中間で分岐されて第2消費手段12と連結される。低圧蒸発ガス供給ライン323を通じて第2消費手段12に提供される蒸発ガスは、圧縮機321aの一部だけを通過した状態であるため、第2消費手段12が要求する低圧状態で分岐され得る。 Then, the low-pressure evaporative gas supply line 323 is branched in the middle of the compression unit 321 and connected to the second consumption means 12. Since the evaporative gas provided to the second consuming means 12 through the low-pressure evaporative gas supply line 323 has passed only a part of the compressor 321a, it can be branched in the low-pressure state required by the second consuming means 12.

一方、低圧蒸発ガス供給ライン323が分岐される地点は、図面とは異なって設けられ得る。すなわち、第2消費手段12が必要とする蒸発ガスの圧力および温度条件によって低圧蒸発ガス供給ライン323は多段で設けられる圧縮部321の中間の一地点で分岐され得る。 On the other hand, the point at which the low-pressure evaporative gas supply line 323 is branched may be provided different from the drawing. That is, the low-pressure evaporative gas supply line 323 may be branched at one point in the middle of the compression unit 321 provided in multiple stages depending on the evaporative gas pressure and temperature conditions required by the second consuming means 12.

一方、高圧蒸発ガス供給ライン322は第1開閉バルブ322aを含み、低圧蒸発ガス供給ライン323は第2開閉バルブ323aを含むことができる。第1開閉バルブ322aは第1消費手段11を稼動する時に開放されるように高圧蒸発ガス供給ライン322の開閉を調節することができる。そして、第2開閉バルブ323aは第2消費手段12を稼動する時に開放されるように低圧蒸発ガス供給ライン323の開閉を調節することができる。 On the other hand, the high-pressure evaporative gas supply line 322 may include a first on-off valve 322a, and the low-pressure evaporative gas supply line 323 may include a second on-off valve 323a. The opening / closing of the high-pressure evaporative gas supply line 322 can be adjusted so that the first opening / closing valve 322a is opened when the first consuming means 11 is operated. Then, the opening / closing of the low-pressure evaporative gas supply line 323 can be adjusted so that the second opening / closing valve 323a is opened when the second consumption means 12 is operated.

再液化ライン330は蒸発ガス供給ライン320で分岐された高圧の蒸発ガスを膨張させる再液化膨張部331、再液化膨張部331を通過した蒸発ガスを熱交換および冷却させる熱交換部332、熱交換部332を通過して再液化された蒸発ガスを収容する気液分離器334、気液分離器334で分離された液体成分の蒸発ガスを貯蔵タンク310に再供給する液化ガス回収ライン335および気液分離器334で分離された気体成分の蒸発ガスを貯蔵タンク310または蒸発ガス供給ライン320に供給する蒸発ガス循環ライン336を具備することができる。 The reliquefaction line 330 includes a reliquefaction expansion unit 331 that expands the high-pressure evaporative gas branched by the evaporative gas supply line 320, a heat exchange unit 332 that heat-exchanges and cools the evaporative gas that has passed through the re-liquefaction expansion unit 331, and heat exchange. A gas-liquid separator 334 that passes through the unit 332 and stores the reliquefied evaporative gas, a liquefied gas recovery line 335 that resupplyes the evaporative gas of the liquid component separated by the gas-liquid separator 334 to the storage tank 310, and the gas. The evaporative gas circulation line 336 that supplies the evaporative gas of the gas component separated by the liquid separator 334 to the storage tank 310 or the evaporative gas supply line 320 can be provided.

再液化ライン330は、第1消費手段11および第2消費手段12で消費されずに残った余剰の蒸発ガスを再液化させた後貯蔵タンク310に復帰させることができる。すなわち、蒸発ガスは再液化ライン330を通過しながら減圧および冷却されて液化ガスに相変化された後貯蔵タンク310に復帰することができる。 The reliquefaction line 330 can reliquefy the excess evaporative gas remaining unconsumed by the first consuming means 11 and the second consuming means 12 and then return it to the storage tank 310. That is, the evaporative gas can be returned to the storage tank 310 after being decompressed and cooled while passing through the reliquefaction line 330 and undergoing a phase change to the liquefied gas.

再液化ライン330は蒸発ガス供給ライン320から分岐され得る。一例として、圧縮部321後段と第1開閉バルブ322aの間で分岐され得る。 The reliquefaction line 330 may be branched from the evaporative gas supply line 320. As an example, it may be branched between the rear stage of the compression unit 321 and the first opening / closing valve 322a.

再液化ライン330と蒸発ガス供給ライン320が分岐される地点には、三方バルブ(図示せず)が設けられ得、三方バルブは第1消費手段11または再液化ライン330に供給される蒸発ガスの供給量を調節することができる。三方バルブは作業者が手動で開閉の可否および開閉程度を調節するか、制御部(図示せず)によりその作動が自動的に具現されることもある。 A three-way valve (not shown) may be provided at the point where the reliquefaction line 330 and the evaporative gas supply line 320 are branched, and the three-way valve is for the evaporative gas supplied to the first consumption means 11 or the reliquefaction line 330. The supply amount can be adjusted. The three-way valve may be manually opened / closed by the operator and the degree of opening / closing may be adjusted, or its operation may be automatically realized by a control unit (not shown).

一方、図面とは異なり、再液化ライン330は圧縮部321の途中からも分岐され得る。または再液化ライン330は圧縮部321の後段から分岐される第1再液化ライン(図示せず)と圧縮部321の途中から分岐される第2再液化ライン(図示せず)をすべて含むこともできる。一方、第1再液化ラインと第2再液化ラインはそれぞれ貯蔵タンク310に流入するか一つの流路で合流した後貯蔵タンク310に流入することができる。後者の場合、第1再液化ラインと第2再液化ラインを通る蒸発ガスの圧力が互いに異なるため、両再液化ラインが合流する前にそれぞれの再液化ラインを通る蒸発ガスの圧力を同一に調節できる圧力調節手段(図示せず)がさらに設けられ得る。 On the other hand, unlike the drawing, the reliquefaction line 330 may be branched from the middle of the compression unit 321. Alternatively, the reliquefaction line 330 may include all the first reliquefaction line (not shown) branched from the subsequent stage of the compression unit 321 and the second reliquefaction line (not shown) branched from the middle of the compression unit 321. it can. On the other hand, the first reliquefaction line and the second reliquefaction line can flow into the storage tank 310 or merge in one flow path and then flow into the storage tank 310, respectively. In the latter case, since the pressures of the evaporative gas passing through the first reliquefaction line and the second reliquefaction line are different from each other, the pressure of the evaporative gas passing through the respective reliquefaction lines is adjusted to be the same before the two reliquefaction lines merge. Further possible pressure regulating means (not shown) may be provided.

再液化膨張部331は圧縮部321で高圧に圧縮された蒸発ガスを膨張させることによって減圧することができる。図面には再液化膨張部331の一例として、膨張バルブを図示したが、再液化膨張部331は蒸発ガスを減圧できる多様な装置で設けられ得る。 The reliquefaction expansion unit 331 can reduce the pressure by expanding the evaporative gas compressed to a high pressure by the compression unit 321. Although the expansion valve is shown as an example of the reliquefaction expansion unit 331 in the drawing, the reliquefaction expansion unit 331 can be provided by various devices capable of reducing the pressure of the evaporated gas.

熱交換部332は再液化膨張部331を通過して減圧された蒸発ガスと蒸発ガス供給ライン320を通過する圧縮部321前段の蒸発ガスを互いに熱交換するように設けられ得る。再液化膨張部331を通過した蒸発ガスは、圧縮部321を通りながら加圧されて温度が上昇するので、蒸発ガス供給ライン320の圧縮部321を通過する前の低温の蒸発ガスと互いに熱交換することによって、再液化ライン330を通過する蒸発ガスを冷却させることができる。 The heat exchange unit 332 may be provided so as to exchange heat between the evaporated gas decompressed through the reliquefaction expansion unit 331 and the evaporative gas in the previous stage of the compression unit 321 passing through the evaporative gas supply line 320. The evaporative gas that has passed through the reliquefaction expansion unit 331 is pressurized while passing through the compression unit 321 and the temperature rises. Therefore, heat is exchanged with the low-temperature evaporative gas before passing through the compression unit 321 of the evaporation gas supply line 320. By doing so, the evaporative gas passing through the reliquefaction line 330 can be cooled.

このように別途の冷却装置なしに、再液化膨張部331を通過して減圧された蒸発ガスを、蒸発ガス供給ライン320を通過する蒸発ガスと熱交換して冷却させることができるので、電源の無駄使いが防止され、設備運用の効率性を図ることができる。 In this way, the evaporative gas that has passed through the reliquefaction expansion unit 331 and is decompressed can be cooled by exchanging heat with the evaporative gas that passes through the evaporative gas supply line 320 without a separate cooling device. Waste can be prevented and equipment operation efficiency can be improved.

一方、熱交換部332は再液化ライン330を通過する蒸発ガスを蒸発ガス供給ライン320の蒸発ガスと熱交換させる代わりに、再液化ライン330を通過する蒸発ガスを別途の冷却装置を利用して冷却することもできる。一例として、液化窒素を利用する冷却装置を利用して再液化ライン330を通過する蒸発ガスを冷却することができる。 On the other hand, the heat exchange unit 332 uses a separate cooling device to exchange the evaporative gas passing through the reliquefaction line 330 with the evaporative gas of the evaporative gas supply line 320 instead of exchanging heat with the evaporative gas passing through the reliquefaction line 330. It can also be cooled. As an example, a cooling device utilizing liquefied nitrogen can be used to cool the evaporative gas passing through the reliquefaction line 330.

一方、熱交換部332は再液化ライン330を通過する蒸発ガスを冷却するために蒸発ガス供給ライン320の蒸発ガスと熱交換させることに加えて別途の冷却装置をさらに利用することもできる。 On the other hand, the heat exchange unit 332 can further utilize a separate cooling device in addition to exchanging heat with the evaporative gas of the evaporative gas supply line 320 in order to cool the evaporative gas passing through the reliquefaction line 330.

再液化ライン330に沿って流れる蒸発ガスは再液化膨張部331と熱交換部332を通過して再液化され得る。この時、蒸発ガスの再液化は全量が再液化されるものと一部のみが再液化されるものを含む。 The evaporative gas flowing along the reliquefaction line 330 can pass through the reliquefaction expansion unit 331 and the heat exchange unit 332 and be reliquefied. At this time, the reliquefaction of the evaporative gas includes one in which the entire amount is reliquefied and one in which only a part is reliquefied.

蒸発ガスは温度が下がりながら再液化され、再液化された蒸発ガスは減圧過程で一部気化が発生する。貯蔵タンク310に注入するためには、蒸発ガスを減圧すべきであるが、蒸発ガスを液化した後減圧する場合、液化した蒸発ガスが気化する量が増加する可能性がある。したがって、適切な温度および圧力条件に合わせて減圧と冷却をすべて実施することが好ましい。 The evaporative gas is reliquefied while the temperature drops, and the reliquefied evaporative gas partially vaporizes during the depressurization process. In order to inject into the storage tank 310, the evaporative gas should be depressurized, but when the evaporative gas is liquefied and then depressurized, the amount of the liquefied evaporative gas vaporized may increase. Therefore, it is preferable to carry out all depressurization and cooling according to appropriate temperature and pressure conditions.

再液化ライン330に沿って流れる蒸発ガスは再液化膨張部331を通りながら減圧されると同時に熱交換部332を通りながら冷却されるため、再液化が発生する。 Since the evaporative gas flowing along the reliquefaction line 330 is depressurized while passing through the reliquefaction expansion section 331 and at the same time cooled while passing through the heat exchange section 332, reliquefaction occurs.

気液分離器334は再液化膨張部331と熱交換部332を通過しながら部分再液化された蒸発ガスを収容して再液化された蒸発ガスの液体成分と気体成分とを分離する。加圧された蒸発ガスが減圧および冷却されて多くの蒸発ガスの再液化がなされるか、この過程でフラッシュガス(Flash Gas)が発生することによって再液化された蒸発ガスの気体成分が発生する可能性があるためである。 The gas-liquid separator 334 accommodates the partially reliquefied evaporative gas while passing through the reliquefaction expansion unit 331 and the heat exchange unit 332, and separates the liquid component and the gas component of the reliquefied evaporative gas. The pressurized evaporative gas is depressurized and cooled to reliquefy a large amount of evaporative gas, or a flash gas (Flash Gas) is generated in this process to generate a gas component of the reliquefied evaporative gas. Because there is a possibility.

気液分離器334によって分離された再液化された蒸発ガスの液体成分は後述する液化ガス回収ライン335により貯蔵タンク310に再供給され、分離された再液化された蒸発ガスの気体成分は後述する蒸発ガス循環ライン336により貯蔵タンク310または蒸発ガス供給ライン320に再供給されるように設けられ得る。 The liquid component of the reliquefied evaporative gas separated by the gas-liquid separator 334 is resupplied to the storage tank 310 by the liquefied gas recovery line 335 described later, and the gas component of the separated reliquefied evaporative gas is described later. It may be provided to be resupplied to the storage tank 310 or the evaporative gas supply line 320 by the evaporative gas circulation line 336.

液化ガス回収ライン335は気液分離器334によって分離された蒸発ガスの液体成分を貯蔵タンク310に再供給するように、気液分離器334と貯蔵タンク310を連結することができる。液化ガス回収ライン335はその入口側端部が気液分離器334の下側に連結されて設けられ、出口側端部が貯蔵タンク310内部に連結されて設けられ得る。液化ガス回収ライン335には貯蔵タンク310に回収される再液化された蒸発ガスの供給量を調節する開閉バルブ(図示せず)が設けられ得る。 The liquefied gas recovery line 335 can connect the gas-liquid separator 334 and the storage tank 310 so as to resupply the liquid component of the evaporative gas separated by the gas-liquid separator 334 to the storage tank 310. The liquefied gas recovery line 335 may be provided with its inlet-side end connected to the lower side of the gas-liquid separator 334 and its outlet-side end connected to the inside of the storage tank 310. The liquefied gas recovery line 335 may be provided with an on-off valve (not shown) for adjusting the supply amount of the reliquefied evaporative gas recovered in the storage tank 310.

蒸発ガス循環ライン336は気液分離器334によって分離された再液化された蒸発ガスの気体成分を貯蔵タンク310または蒸発ガス供給ライン320に再供給するように、気液分離器334と貯蔵タンク310または気液分離器334と蒸発ガス供給ライン320を連結するように設けられ得る。図面では蒸発ガス循環ライン336が気液分離器334内部の気体成分が蒸発ガス供給ライン320上の圧縮部321前段に再供給するものと図示されているが、この他にも蒸発ガス循環ライン336は気液分離器334内部の気体成分を気液分離器334から貯蔵タンク310に再供給するか、蒸発ガス供給ライン320および貯蔵タンク310に共に再供給する場合を含む。 The evaporative gas circulation line 336 resupplys the gas component of the reliquefied evaporative gas separated by the gas-liquid separator 334 to the storage tank 310 or the evaporative gas supply line 320, so that the gas-liquid separator 334 and the storage tank 310 Alternatively, it may be provided so as to connect the gas-liquid separator 334 and the evaporative gas supply line 320. In the drawing, the evaporative gas circulation line 336 is shown in which the gas component inside the gas-liquid separator 334 is resupplied to the front stage of the compression unit 321 on the evaporative gas supply line 320, but in addition to this, the evaporative gas circulation line 336 Includes the case where the gas component inside the gas-liquid separator 334 is re-supplied from the gas-liquid separator 334 to the storage tank 310, or both the evaporative gas supply line 320 and the storage tank 310 are re-supplied.

液化ガス供給ライン340は貯蔵タンク310に収容または貯蔵された液化天然ガスをエンジン、ジェネレーター、および/またはタービンなどに供給するように設けられ得る。 The liquefied gas supply line 340 may be provided to supply the liquefied natural gas contained or stored in the storage tank 310 to an engine, a generator, and / or a turbine or the like.

図面には液化ガス供給ライン340が液化天然ガスを蒸発ガス消費手段11、12に供給することを図示した。ただし、これは一例を示したものに過ぎず、液化ガス供給ライン340は蒸発ガス消費手段11、12と別途の装置に液化天然ガスを供給するように設けられ得る。 The drawings show that the liquefied gas supply line 340 supplies liquefied natural gas to the evaporative gas consuming means 11 and 12. However, this is only an example, and the liquefied gas supply line 340 may be provided so as to supply the liquefied natural gas to a device separate from the evaporative gas consuming means 11 and 12.

以下では液化ガス供給ライン340が第1消費手段11と第2消費手段12にそれぞれ連結されるものを例にして説明する。この時、第1消費手段11と第2消費手段12はエンジンを例にして説明する。 Hereinafter, the liquefied gas supply line 340 will be described as an example in which the liquefied gas supply line 340 is connected to the first consumption means 11 and the second consumption means 12, respectively. At this time, the first consumption means 11 and the second consumption means 12 will be described by taking an engine as an example.

液化ガス供給ライン340はその一端が貯蔵タンク310の内部に連結されて設けられ、他端は後述する蒸発ガス供給ライン320と合流してエンジン11、12に連結されるように設けられ得る。液化ガス供給ライン340の入口側端部は貯蔵タンク310内部の下側に配置され得、液化天然ガスをエンジン11、12側に供給するための送出ポンプ341が設けられ得る。 One end of the liquefied gas supply line 340 may be connected to the inside of the storage tank 310, and the other end may be provided so as to merge with the evaporative gas supply line 320 described later and be connected to the engines 11 and 12. The inlet side end of the liquefied gas supply line 340 may be located below the interior of the storage tank 310 and may be provided with a delivery pump 341 for supplying the liquefied natural gas to the engines 11 and 12.

前述した通り、エンジン11、12が相対的に高圧の燃料ガスを供給受けて出力を発生させる第1エンジン11および相対的に低圧の燃料ガスを供給受けて出力を発生させる第2エンジン12からなる場合には液化ガス供給ライン340は各エンジン11、12の燃料ガス要求条件に合わせて液化天然ガスを処理することができるように第2液化ガス供給ライン340bおよび第1液化ガス供給ライン340aを含んで設けられ得る。 As described above, the engines 11 and 12 are composed of a first engine 11 that receives a relatively high pressure fuel gas and generates an output, and a second engine 12 that receives a relatively low pressure fuel gas and generates an output. In some cases, the liquefied gas supply line 340 includes a second liquefied gas supply line 340b and a first liquefied gas supply line 340a so that the liquefied natural gas can be processed according to the fuel gas requirements of the engines 11 and 12, respectively. Can be provided in.

第1液化ガス供給ライン340aは送出ポンプ341によって送出された液化天然ガスを相対的に高圧の燃料ガスを供給受けて出力を発生させる第1エンジン11に供給することができる。このために、第1液化ガス供給ライン340aには液化天然ガスを圧縮する加圧ポンプ342が設けられ得る。加圧ポンプ342は第1エンジン11が要求する燃料ガスの圧力条件に合わせて液化天然ガスを圧縮することができ、一例として、第1エンジン11がME−GIエンジンからなる場合には加圧ポンプ342は液化天然ガスを約250−300barの圧力条件で圧縮させて供給することができる。加圧ポンプ342によって圧縮された液化天然ガスは気化器343を通過しながら強制気化された後、蒸発ガス供給ライン320と合流して第1エンジン11に燃料ガスとして供給され得る。 The first liquefied gas supply line 340a can supply the liquefied natural gas delivered by the delivery pump 341 to the first engine 11 that receives a relatively high pressure fuel gas and generates an output. For this purpose, the first liquefied gas supply line 340a may be provided with a pressurizing pump 342 for compressing the liquefied natural gas. The pressurizing pump 342 can compress the liquefied natural gas according to the pressure condition of the fuel gas required by the first engine 11, and as an example, when the first engine 11 is composed of a ME-GI engine, the pressurizing pump 342 is used. 342 can supply liquefied natural gas by compressing it under a pressure condition of about 250-300 bar. The liquefied natural gas compressed by the pressurizing pump 342 can be forcibly vaporized while passing through the vaporizer 343 and then merged with the evaporative gas supply line 320 and supplied to the first engine 11 as fuel gas.

一方、加圧ポンプ342のメンテナンスが要求されるか加圧ポンプ342に負荷が加重されて電源を遮断しなければならない場合に、加圧ポンプ342の電源を一時に遮断すると圧縮された液化天然ガスが加圧ポンプ342またはその他の構成に影響を及ぼして加圧ポンプ342の故障または安全事故などが発生する恐れがある。また、加圧ポンプ342のメンテナンスが要求されるか、加圧ポンプ342に負荷が加重されて電源を遮断すべきであるが、エンジンの持続的な作動が要求される場合があり得る。 On the other hand, when maintenance of the pressurizing pump 342 is required or a load is applied to the pressurizing pump 342 and the power supply must be shut off, if the power supply of the pressurizing pump 342 is temporarily shut off, compressed liquefied natural gas is used. May affect the pressurizing pump 342 or other configurations, resulting in failure of the pressurizing pump 342 or a safety accident. In addition, maintenance of the pressurizing pump 342 should be required, or a load should be applied to the pressurizing pump 342 to shut off the power supply, but continuous operation of the engine may be required.

このために、第1液化ガス供給ライン340aにはバイパスライン340cが設けられ得る。バイパスライン340cの入口側端部は第1液化ガス供給ライン340a上の加圧ポンプ342前段に連結され、出口側端部は第1液化ガス供給ライン340a上の加圧ポンプ342後段に連結されるものの、別途の加圧ポンプ342を追加的に具備し、加圧ポンプ342が並列に連結されるように設けられ得る。 For this purpose, a bypass line 340c may be provided in the first liquefied gas supply line 340a. The inlet side end of the bypass line 340c is connected to the front stage of the pressurizing pump 342 on the first liquefied gas supply line 340a, and the outlet side end is connected to the rear stage of the pressurizing pump 342 on the first liquefied gas supply line 340a. However, a separate pressurizing pump 342 may be additionally provided so that the pressurizing pumps 342 are connected in parallel.

別途の加圧ポンプ342を具備するバイパスライン340cによって複数個の加圧ポンプ342が第1液化ガス供給ライン340a上に並列に設けられるため、前述した状況でも加圧ポンプ342およびその他の構成の故障や安全事故の発生を防止することができ、エンジンの長時間の持続的な運行を具現することができる。 Since a plurality of pressurizing pumps 342 are provided in parallel on the first liquefied gas supply line 340a by a bypass line 340c provided with a separate pressurizing pump 342, the pressurizing pump 342 and other configurations fail even in the above-mentioned situation. It is possible to prevent the occurrence of safety accidents and to realize long-term continuous operation of the engine.

第2液化ガス供給ライン340bは送出ポンプ341によって送出された液化天然ガスを相対的に低圧の燃料ガスを供給受けて出力を発生させる第2エンジン12に供給することができる。送出ポンプ341が液化天然ガスを送出する過程で液化天然ガスは低圧(約3bar〜5bar)で圧縮されるので、第2エンジン12がDFDEエンジンからなる場合には別途の加圧ポンプなしに、気化器344が送出ポンプ341によって送出された液化天然ガスを強制気化させて第2エンジン12が要求する燃料条件に合わせて燃料ガスを供給することができる。 The second liquefied gas supply line 340b can supply the liquefied natural gas delivered by the delivery pump 341 to the second engine 12 that receives a relatively low pressure fuel gas and generates an output. Since the liquefied natural gas is compressed at a low pressure (about 3 bar to 5 bar) in the process of the delivery pump 341 delivering the liquefied natural gas, if the second engine 12 is composed of a DFDE engine, it is vaporized without a separate pressurizing pump. The vessel 344 can forcibly vaporize the liquefied natural gas delivered by the delivery pump 341 to supply the fuel gas in accordance with the fuel conditions required by the second engine 12.

気化器344後段には気液分離器345が設けられ得る。第2エンジン12がDFDEエンジンからなる場合には、燃料ガスが気体状態で供給されないと正常な出力を発生させることができず、エンジンの故障を防止することもできない。したがって気化器344を通過した液化天然ガスを気液分離器345に供給し、気液分離器345で気体状態の燃料ガスのみを第2エンジン12に供給することによって、船舶の蒸発ガス処理装置300の信頼性を向上させることができる。 A gas-liquid separator 345 may be provided after the vaporizer 344. When the second engine 12 is composed of a DFDE engine, normal output cannot be generated unless the fuel gas is supplied in a gaseous state, and engine failure cannot be prevented. Therefore, the liquefied natural gas that has passed through the vaporizer 344 is supplied to the gas-liquid separator 345, and only the gaseous fuel gas is supplied to the second engine 12 by the gas-liquid separator 345. The reliability of the gas can be improved.

以下では本発明の第4実施例による船舶の蒸発ガス処理装置400について説明する。以下で説明する本発明の第4実施例による船舶の蒸発ガス処理装置400に対する説明において、別途の図面番号を付して追加的に説明する構成の他には前述した第3実施例による船舶の蒸発ガス処理装置300に対する説明と同じものであって、内容の重複を防止するために説明を省略する。 Hereinafter, the ship's evaporative gas treatment device 400 according to the fourth embodiment of the present invention will be described. In the description of the ship's evaporative gas treatment device 400 according to the fourth embodiment of the present invention described below, in addition to the configuration additionally described with a separate drawing number, the ship according to the third embodiment described above The description is the same as that for the evaporative gas processing apparatus 300, and the description is omitted in order to prevent duplication of contents.

図4は本発明の第4実施例による船舶の蒸発ガス処理装置400を示す概念図であって、図4を参照すれば、本発明の第4実施例による船舶の蒸発ガス処理装置400は再液化ライン330上に設けられ、熱交換部332を通過した蒸発ガスを減圧させる膨張バルブ433をさらに含むことができる。 FIG. 4 is a conceptual diagram showing the ship's evaporative gas treatment device 400 according to the fourth embodiment of the present invention. With reference to FIG. 4, the ship's evaporative gas treatment device 400 according to the fourth embodiment of the present invention is reconstructed. An expansion valve 433, which is provided on the liquefaction line 330 and depressurizes the evaporative gas that has passed through the heat exchange unit 332, can be further included.

膨張バルブ433は熱交換部332の後段に設けられ得る。膨張バルブ433は再液化膨張部331および熱交換部332を通過した蒸発ガスを減圧することによって追加的に冷却および膨張させて再液化効率を向上させることができる。一例として、膨張バルブ433はジュール−トムソンバルブ(Joule−Thomson Valve)を使うことができる。ジュール−トムソンバルブは、ジュール−トムソン効果、すなわち仕事の生産や熱の伝達がない状態で流体を膨張させると温度が低下する現象を利用したバルブを意味する。したがって、熱交換部332を通過しながら冷却された蒸発ガスは膨張バルブ433を通過しながら断熱膨張および冷却され、このとき全体または一部蒸発ガスの再液化が起こり得る。 The expansion valve 433 may be provided after the heat exchange unit 332. The expansion valve 433 can be additionally cooled and expanded by reducing the pressure of the evaporative gas that has passed through the reliquefaction expansion unit 331 and the heat exchange unit 332 to improve the reliquefaction efficiency. As an example, the expansion valve 433 can use a Joule-Thomson valve. A Joule-Thomson valve means a valve that utilizes the Joule-Thomson effect, that is, the phenomenon in which the temperature drops when a fluid is expanded in the absence of work production or heat transfer. Therefore, the evaporative gas cooled while passing through the heat exchange unit 332 is adiabatically expanded and cooled while passing through the expansion valve 433, and at this time, reliquefaction of the evaporative gas in whole or in part may occur.

以下では図5〜図10を参照して本発明の第3実施例および第4実施例による船舶の蒸発ガス処理装置300、400の効率性について説明する。 Hereinafter, the efficiency of the evaporative gas treatment devices 300 and 400 for ships according to the third and fourth embodiments of the present invention will be described with reference to FIGS. 5 to 10.

図5は熱交換部332に進入する蒸発ガスの圧力(Pb:Pressure before BOG)による圧縮部321に進入する蒸発ガスの質量流量(Mc:Mass flow to Compressor)および圧縮部321で必要とされるエネルギー(Ec:Energy for Compressor)の相関関係を示すグラフである。 FIG. 5 is required for the mass flow rate (Mc: Mass flow to Compressor) and the compression unit 321 of the evaporative gas entering the compression unit 321 due to the pressure of the evaporative gas entering the heat exchange unit 332 (Pb: Pressure before BOG). It is a graph which shows the correlation of energy (Ec: Energy for Compressor).

図5を参照すれば、熱交換部332に進入する蒸発ガスの圧力(Pb)によって圧縮部321に進入する蒸発ガスの質量流量(Mc)と圧縮部321で必要とされるエネルギー(Ec)が変わる。この時、熱交換部332に進入する蒸発ガスの圧力(Pb)が最適圧力(Pb1)の場合に圧縮部321に進入する蒸発ガスの質量流量(Mc)と圧縮部321で必要とされるエネルギー(Ec)が最小となる。すなわち、熱交換部332に進入する蒸発ガスの圧力(Pb)が最適圧力(Pb1)より小さい場合に圧縮部321に進入する蒸発ガスの質量流量(Mc)と圧縮部で必要とされるエネルギー(Ec)が大きくなり、熱交換部332に進入する蒸発ガスの圧力(Pb)が最適圧力(Pb1)より大きい場合に圧縮部321に進入する蒸発ガスの質量流量(Mc)と圧縮部321で必要とされるエネルギー(Ec)が大きくなる。 Referring to FIG. 5, the mass flow rate (Mc) of the evaporative gas entering the compression unit 321 and the energy (Ec) required by the compression unit 321 are determined by the pressure (Pb) of the evaporative gas entering the heat exchange unit 332. change. At this time, when the pressure (Pb) of the evaporative gas entering the heat exchange unit 332 is the optimum pressure (Pb1), the mass flow rate (Mc) of the evaporative gas entering the compression unit 321 and the energy required by the compression unit 321. (Ec) is the minimum. That is, when the pressure (Pb) of the evaporative gas entering the heat exchange unit 332 is smaller than the optimum pressure (Pb1), the mass flow rate (Mc) of the evaporative gas entering the compression unit 321 and the energy required by the compression unit (Mc). When the Ec) becomes large and the pressure (Pb) of the evaporative gas entering the heat exchange unit 332 is larger than the optimum pressure (Pb1), the mass flow rate (Mc) of the evaporative gas entering the compression unit 321 and the compression unit 321 are required. The energy (Ec) that is said to be increased.

したがって、熱交換部332に進入する蒸発ガスの圧力(Pb)を最適圧力(Pb1)に調節して圧縮部321に進入する蒸発ガスの質量流量(Mc)を減少させることによって、圧縮機321aと冷却器321bの大きさを減らし、設備単価を低減させることができる。従って、よりコンパクトで経済的な船舶の蒸発ガス処理装置を製作することができる。 Therefore, by adjusting the pressure (Pb) of the evaporative gas entering the heat exchange unit 332 to the optimum pressure (Pb1) and reducing the mass flow rate (Mc) of the evaporative gas entering the compression unit 321, the compressor 321a and the compressor 321a The size of the cooler 321b can be reduced, and the equipment unit price can be reduced. Therefore, a more compact and economical ship evaporative gas treatment device can be manufactured.

また、熱交換部332に進入する蒸発ガスの圧力(Pb)を最適圧力(Pb1)に調節して圧縮部321で必要とされるエネルギー(Ec)を低くすることによって、船舶の蒸発ガス処理装置の効率を向上させることができる。すなわち、圧縮部321後段の圧力を同一に維持しながらも蒸発ガスの圧縮に使われるエネルギーを低減することができる。 Further, by adjusting the pressure (Pb) of the evaporative gas entering the heat exchange unit 332 to the optimum pressure (Pb1) and lowering the energy (Ec) required by the compression unit 321, the evaporative gas treatment device of the ship Efficiency can be improved. That is, it is possible to reduce the energy used for compressing the evaporative gas while maintaining the same pressure in the subsequent stage of the compression unit 321.

次いで、図6〜図8を参照して熱交換部332に進入する蒸発ガスの圧力(Pb)を減圧することによる効果について説明する。 Next, the effect of reducing the pressure (Pb) of the evaporative gas entering the heat exchange unit 332 will be described with reference to FIGS. 6 to 8.

図6は蒸発ガス消費手段11、12で必要とされる蒸発ガスの質量流量(Mf:Mass flow of Fuel Consumption)による再液化される蒸発ガスの質量流量(Mr:Mass flow of Re−Liquified BOG)の相関関係を示すグラフである。 FIG. 6 shows the mass flow rate (Mr: Mass flow of Re-Liquified BOG) of the evaporative gas reliquefied by the mass flow rate (Mf: Mass flow of Full Connection) of the evaporative gas required by the evaporative gas consuming means 11 and 12. It is a graph which shows the correlation of.

図6を参照すれば、消費手段11、12で必要とされる蒸発ガスの質量流量(Mf)によって再液化される蒸発ガスの質量流量(Mr)が変わる。この時、消費手段11、12で必要とされる蒸発ガスの質量流量(Mf)と再液化される蒸発ガスの質量流量(Mr)は反比例関係にある。すなわち、消費手段11、12で必要とされる蒸発ガスの質量流量(Mf)が増加するほど再液化される蒸発ガスの質量流量(Mr)は減少する。 With reference to FIG. 6, the mass flow rate (Mr) of the evaporative gas reliquefied changes depending on the mass flow rate (Mf) of the evaporative gas required by the consumption means 11 and 12. At this time, the mass flow rate (Mf) of the evaporative gas required by the consuming means 11 and 12 and the mass flow rate (Mr) of the evaporative gas to be reliquefied are in an inverse proportional relationship. That is, as the mass flow rate (Mf) of the evaporative gas required by the consuming means 11 and 12 increases, the mass flow rate (Mr) of the evaporative gas reliquefied decreases.

一方、熱交換部332に進入する蒸発ガスの圧力(Pb)は再液化膨張部331を経ながら減圧されるが、再液化膨張部331前段の圧力をPb1とし、再液化膨張部331後段の圧力をPb2とする時、Pb1>Pb2の関係が成立する。 On the other hand, the pressure (Pb) of the evaporative gas entering the heat exchange section 332 is reduced while passing through the reliquefaction expansion section 331. When is Pb2, the relationship of Pb1> Pb2 is established.

再び図6を参照すれば、再液化膨張部331で蒸発ガスの減圧とかかわらず再液化される蒸発ガスの質量流量(Mr)が一定であることが分かる。すなわち、再液化膨張部331を通じて熱交換部332に進入する蒸発ガスの圧力(Pb)を低くすることは再液化率を低下させない。 With reference to FIG. 6 again, it can be seen that the mass flow rate (Mr) of the evaporative gas reliquefied in the reliquefaction expansion unit 331 is constant regardless of the decompression of the evaporative gas. That is, lowering the pressure (Pb) of the evaporative gas entering the heat exchange unit 332 through the reliquefaction expansion unit 331 does not reduce the reliquefaction rate.

図7は蒸発ガス消費手段11、12で必要とされる蒸発ガスの質量流量(Mf)による圧縮部321に進入する蒸発ガスの質量流量(Mc)の相関関係を示すグラフである。 FIG. 7 is a graph showing the correlation between the mass flow rate (Mf) of the evaporative gas required by the evaporative gas consuming means 11 and 12 and the mass flow rate (Mc) of the evaporative gas entering the compression unit 321.

図7を参照すれば、消費手段11、12で必要とされる蒸発ガスの質量流量(Mf)によって圧縮部321に進入する蒸発ガスの質量流量(Mc)が変わる。この時、消費手段11、12で必要とされる蒸発ガスの質量流量(Mf)と圧縮部321に進入する蒸発ガスの質量流量(Mc)は反比例関係にある。すなわち、消費手段11、12で必要とされる蒸発ガスの質量流量(Mf)が増加するほど圧縮部321に進入する蒸発ガスの質量流量(Mc)は減少する。 Referring to FIG. 7, the mass flow rate (Mc) of the evaporative gas entering the compression unit 321 changes depending on the mass flow rate (Mf) of the evaporative gas required by the consumption means 11 and 12. At this time, the mass flow rate (Mf) of the evaporative gas required by the consuming means 11 and 12 and the mass flow rate (Mc) of the evaporative gas entering the compression unit 321 are inversely proportional to each other. That is, as the mass flow rate (Mf) of the evaporative gas required by the consuming means 11 and 12 increases, the mass flow rate (Mc) of the evaporative gas entering the compression unit 321 decreases.

再び図7を参照すれば、熱交換部332に進入する蒸発ガスの圧力(Pb)がP1からP2に減圧されながら圧縮部321に進入する蒸発ガスの質量流量(Mc)が減少することが分かる。すなわち、再液化膨張部331を利用して蒸発ガスの圧力(Pb)を減圧して圧縮部321に進入する蒸発ガスの質量流量(Mc)を減少させることによって、圧縮機321aと冷却器321bの大きさを減らし、設備単価を低減させることができる。従って、よりコンパクトで経済的な船舶の蒸発ガス処理装置を製作することができる。 With reference to FIG. 7 again, it can be seen that the mass flow rate (Mc) of the evaporative gas entering the compression unit 321 decreases while the pressure (Pb) of the evaporative gas entering the heat exchange unit 332 is reduced from P1 to P2. .. That is, the pressure (Pb) of the evaporative gas is reduced by using the reliquefaction expansion unit 331 to reduce the mass flow rate (Mc) of the evaporative gas entering the compressor 321 so that the compressor 321a and the cooler 321b The size can be reduced and the equipment unit price can be reduced. Therefore, a more compact and economical ship evaporative gas treatment device can be manufactured.

図8は蒸発ガス消費手段11、12で必要とされる蒸発ガスの質量流量(Mf)による圧縮部321で必要とされるエネルギー(Ec)の相関関係を示すグラフである。 FIG. 8 is a graph showing the correlation of the energy (Ec) required by the compression unit 321 with the mass flow rate (Mf) of the evaporative gas required by the evaporative gas consuming means 11 and 12.

図8を参照すれば、消費手段11、12で必要とされる蒸発ガスの質量流量(Mf)により圧縮部321で必要とされるエネルギー(Ec)が変わる。この時、消費手段11、12で必要とされる蒸発ガスの質量流量(Mf)と圧縮部321で必要とされるエネルギー(Ec)は反比例関係にある。すなわち、消費手段11、12で必要とされる蒸発ガスの質量流量(Mf)が増加するほど圧縮部321で必要とされるエネルギー(Ec)は減少する。 Referring to FIG. 8, the energy (Ec) required by the compression unit 321 changes depending on the mass flow rate (Mf) of the evaporative gas required by the consumption means 11 and 12. At this time, the mass flow rate (Mf) of the evaporative gas required by the consuming means 11 and 12 and the energy (Ec) required by the compression unit 321 are inversely proportional to each other. That is, as the mass flow rate (Mf) of the evaporative gas required by the consumption means 11 and 12 increases, the energy (Ec) required by the compression unit 321 decreases.

再び図8を参照すれば、熱交換部332に進入する蒸発ガスの圧力(Pb)がP1からP2に減圧されながら圧縮部321で必要とされるエネルギー(Ec)が減少することが分かる。すなわち、再液化膨張部331を利用して蒸発ガスの圧力(Pb)を減圧して圧縮部321で必要とされるエネルギー(Ec)を低くすることによって、船舶の蒸発ガス処理装置の効率を向上させることができる。すなわち、圧縮部321後段の圧力を同一に維持しながらも蒸発ガスの圧縮に使われるエネルギーを低減することができる。 With reference to FIG. 8 again, it can be seen that the energy (Ec) required by the compression unit 321 decreases while the pressure (Pb) of the evaporative gas entering the heat exchange unit 332 is reduced from P1 to P2. That is, the efficiency of the evaporative gas treatment device of the ship is improved by reducing the pressure (Pb) of the evaporative gas by using the reliquefaction expansion unit 331 to lower the energy (Ec) required by the compression unit 321. Can be made to. That is, the energy used for compressing the evaporative gas can be reduced while maintaining the same pressure in the subsequent stage of the compression unit 321.

図9と図10は熱交換部332に進入する蒸発ガスの圧力(Pb)によるフラッシュガスの質量流量(Mg:Mass flow of Flash Gas)の相関関係を示すグラフである。図9のグラフは蒸発ガスに含まれた窒素成分の含量がamole%である場合を示し、図10のグラフは蒸発ガスに含まれた窒素成分の含量がbmole%である場合を示す。この時、a<bの関係が成立する。 9 and 10 are graphs showing the correlation between the mass flow rate (Mg: Mass flow of Flash Gas) of the flash gas due to the pressure (Pb) of the evaporative gas entering the heat exchange unit 332. The graph of FIG. 9 shows the case where the content of the nitrogen component contained in the evaporative gas is amole%, and the graph of FIG. 10 shows the case where the content of the nitrogen component contained in the evaporative gas is bmore%. At this time, the relationship of a <b is established.

フラッシュガスの質量流量(Mg)が減少すると、圧縮部321に進入する蒸発ガスの質量流量(Mc)が減少する。したがって、圧縮部321のサイズを減らすことができ、圧縮部321で必要とされるエネルギー(Ec)を低減させることができる。 When the mass flow rate (Mg) of the flash gas decreases, the mass flow rate (Mc) of the evaporative gas entering the compression unit 321 decreases. Therefore, the size of the compression unit 321 can be reduced, and the energy (Ec) required by the compression unit 321 can be reduced.

フラッシュガスの質量流量(Mg)は熱交換部332に進入する蒸発ガスの圧力(Pb)により変わる。この時、熱交換部332に進入する蒸発ガスの圧力(Pb)が最適圧力(Pb1)の場合に発生するフラッシュガスの質量流量(Mg)が最小となる。すなわち、熱交換部332に進入する蒸発ガスの圧力(Pb)が最適圧力(Pb1)より小さい場合に発生するフラッシュガスの質量流量(Mg)が増加し、熱交換部332に進入する蒸発ガスの圧力(Pb)が最適圧力(Pb1)より大きい場合にも発生するフラッシュガスの質量流量(Mg)が増加する。 The mass flow rate (Mg) of the flash gas changes depending on the pressure (Pb) of the evaporative gas entering the heat exchange unit 332. At this time, the mass flow rate (Mg) of the flash gas generated when the pressure (Pb) of the evaporative gas entering the heat exchange unit 332 is the optimum pressure (Pb1) is minimized. That is, when the pressure (Pb) of the evaporative gas entering the heat exchange unit 332 is smaller than the optimum pressure (Pb1), the mass flow rate (Mg) of the flash gas generated increases, and the evaporative gas entering the heat exchange unit 332 increases. The mass flow rate (Mg) of the flash gas generated also increases when the pressure (Pb) is larger than the optimum pressure (Pb1).

したがって、熱交換部332に進入する蒸発ガスの圧力(Pb)を最適圧力(Pb1)に調節して発生するフラッシュガスの質量流量(Mg)を減少させることができる。 Therefore, the mass flow rate (Mg) of the flash gas generated by adjusting the pressure (Pb) of the evaporative gas entering the heat exchange unit 332 to the optimum pressure (Pb1) can be reduced.

フラッシュガスの発生量は圧力だけでなく温度と関係がある。すなわち、圧力が落ちて液化ガスが気化してフラッシュガスが形成され、温度が上がって液化ガスが気化してフラッシュガスが形成される。 The amount of flash gas generated is related not only to pressure but also to temperature. That is, the pressure drops and the liquefied gas vaporizes to form a flash gas, and the temperature rises and the liquefied gas vaporizes to form a flash gas.

万一、熱交換部332に進入する蒸発ガスの圧力(Pb)が最適圧力(Pb1)より小さくなると、減圧によるフラッシュガスの発生量は減少するが、反対に熱交換部332での温度下降程度が減ってしまい、全体的なフラッシュガスの発生量が増加する。熱交換部332の温度下降は減圧過程と同時に起きるため減圧程度が小さい場合、温度の下降程度も減少するからである。 If the pressure (Pb) of the evaporative gas entering the heat exchange unit 332 becomes smaller than the optimum pressure (Pb1), the amount of flash gas generated due to decompression decreases, but on the contrary, the temperature drops in the heat exchange unit 332. Will decrease, and the overall amount of flash gas generated will increase. This is because the temperature drop of the heat exchange unit 332 occurs at the same time as the depressurization process, so that when the decompression degree is small, the temperature drop degree also decreases.

反対に、熱交換部332に進入する蒸発ガスの圧力(Pb)が最適圧力(Pb1)より大きくなると、減圧程度が充分であるため、温度がかなり下降するか、かえって減圧過程で発生するフラッシュガスが増加して全体的なフラッシュガスの発生量は増加する。 On the contrary, when the pressure (Pb) of the evaporative gas entering the heat exchange unit 332 becomes higher than the optimum pressure (Pb1), the decompression degree is sufficient, so that the temperature drops considerably, or rather the flash gas generated in the decompression process. Increases and the overall amount of flash gas generated increases.

一方、図9と図10を比較すると、窒素成分の含量が変わるにつれて、フラッシュガスの質量流量(Mg)を最小にする最適圧力(Pb1)が変わることが分かる。すなわち、窒素成分の含量が大きくなりながら(a<b)最適圧力(Pb1)も大きくなる。 On the other hand, when FIG. 9 and FIG. 10 are compared, it can be seen that as the content of the nitrogen component changes, the optimum pressure (Pb1) that minimizes the mass flow rate (Mg) of the flash gas changes. That is, as the content of the nitrogen component increases (a <b), the optimum pressure (Pb1) also increases.

蒸発ガスの窒素成分の含量は貯蔵タンク310に貯蔵された液化天然ガスの貯蔵量と関係する。貯蔵タンク310に貯蔵された液化天然ガスの貯蔵量が大きい満船航海の場合には窒素成分の含量が大きい。 The content of the nitrogen component of the evaporative gas is related to the amount of liquefied natural gas stored in the storage tank 310. In the case of a full-ship voyage in which the amount of liquefied natural gas stored in the storage tank 310 is large, the content of the nitrogen component is large.

しかし、時間の経過につれて、継続的に蒸発ガスが発生して蒸発ガス消費手段11、12で消費する蒸発ガスまたは液化天然ガスの消費量も増加し、貯蔵タンク310に貯蔵された液化天然ガスの貯蔵量が減少することになる。このような空船航海の場合には窒素成分の含量が小さくなる。 However, as time elapses, evaporative gas is continuously generated and the consumption of evaporative gas or liquefied natural gas consumed by the evaporative gas consuming means 11 and 12 also increases, and the liquefied natural gas stored in the storage tank 310 increases. Storage will be reduced. In the case of such an airship voyage, the content of the nitrogen component becomes small.

一方、窒素成分の含量は蒸発ガスが発生する初期には急激に減少するが、ある程度蒸発ガスが発生した後にはゆるやかな傾きで減少する。窒素成分の含量は一般に0mole%から10mole%の間である。このような窒素成分の含量によって再液化膨張部331前段の圧力(約300bar)を最小50barから最大160barの間の値に調節する。 On the other hand, the content of the nitrogen component decreases sharply at the initial stage when the evaporative gas is generated, but decreases with a gentle slope after the evaporative gas is generated to some extent. The content of the nitrogen component is generally between 0 mole% and 10 mole%. The pressure (about 300 bar) in the pre-stage of the reliquefaction expansion portion 331 is adjusted to a value between a minimum of 50 bar and a maximum of 160 bar by the content of such a nitrogen component.

一例として、窒素成分の含量が10mole%である場合に最適圧力(Pb1)は140bar〜160bar程度である。したがって、再液化膨張部331前段の圧力(約300bar)を約150bar程度に調節する。また、窒素成分の含量が0mole%である場合に最適圧力(Pb1)は50bar〜70bar程度である。したがって、再液化膨張部331前段の圧力(約300bar)を約60bar程度に調節する。 As an example, when the content of the nitrogen component is 10 mole%, the optimum pressure (Pb1) is about 140 bar to 160 bar. Therefore, the pressure (about 300 bar) in the pre-stage of the reliquefaction expansion unit 331 is adjusted to about 150 bar. Further, when the content of the nitrogen component is 0 mole%, the optimum pressure (Pb1) is about 50 bar to 70 bar. Therefore, the pressure (about 300 bar) in the pre-stage of the reliquefaction expansion unit 331 is adjusted to about 60 bar.

以上で詳察した通り、貯蔵タンク310に貯蔵された液化天然ガスの貯蔵量が変動しながらフラッシュガスの発生量を最小にできる最適圧力(Pb1)が変動する。したがって、変動する最適圧力(Pb1)に合うように再液化膨張部331に減圧される程度を調節する必要がある。 As described in detail above, the optimum pressure (Pb1) that can minimize the amount of flash gas generated fluctuates while the amount of liquefied natural gas stored in the storage tank 310 fluctuates. Therefore, it is necessary to adjust the degree of depressurization by the reliquefaction expansion unit 331 so as to match the fluctuating optimum pressure (Pb1).

本発明の第3実施例および第4実施例による船舶の蒸発ガス処理装置300、400は、圧縮部321に進入する蒸発ガスの流量を測定することができるように蒸発ガス供給ライン320に設置されるセンサ351と、貯蔵タンク310で発生して熱交換部332に進入する蒸発ガスの流量を測定することができるように蒸発ガス供給ライン320に設置されるセンサ352と、気液分離器334で発生して蒸発ガス供給ライン320に合流するフラッシュガスの流量を測定することができるように蒸発ガス循環ライン336に設置されるセンサ353を含むことができる。センサ351、352、353の位置は図面と変わり得る。 The ship's evaporative gas treatment devices 300 and 400 according to the third and fourth embodiments of the present invention are installed in the evaporative gas supply line 320 so that the flow rate of the evaporative gas entering the compression unit 321 can be measured. Sensor 351, a sensor 352 installed in the evaporative gas supply line 320 so that the flow rate of the evaporative gas generated in the storage tank 310 and entering the heat exchange unit 332 can be measured, and a gas-liquid separator 334. A sensor 353 installed on the evaporative gas circulation line 336 can be included so that the flow rate of the flash gas generated and merged with the evaporative gas supply line 320 can be measured. The positions of the sensors 351 and 352, 353 can vary from the drawings.

一方、フラッシュガスの流量は蒸発ガス循環ライン336に設置されるセンサ353のみならず、蒸発ガス供給ライン320に設置されるセンサ351、352を利用して測定することができる。センサ351、352、353のうちいずれか一つの測定量が増加する場合、フラッシュガスの発生量が増加したと判断することができる。 On the other hand, the flow rate of the flash gas can be measured not only by using the sensors 353 installed in the evaporative gas circulation line 336 but also by using the sensors 351 and 352 installed in the evaporative gas supply line 320. When the measured amount of any one of the sensors 351, 352, and 353 increases, it can be determined that the amount of flash gas generated has increased.

再液化膨張部331は減圧程度を調節することができるように設けられ得る。すなわち、同じ圧力の蒸発ガスが流入する場合に再液化膨張部331を通じて熱交換部332に流入する蒸発ガスの圧力を異にすることができる。したがって、再液化膨張部331を通過した蒸発ガスの圧力を調節してフラッシュガスの流量を調節することができる。 The reliquefaction expansion unit 331 may be provided so that the degree of decompression can be adjusted. That is, when the evaporative gas of the same pressure flows in, the pressure of the evaporative gas flowing into the heat exchange unit 332 through the reliquefaction expansion unit 331 can be different. Therefore, the flow rate of the flash gas can be adjusted by adjusting the pressure of the evaporative gas that has passed through the reliquefaction expansion unit 331.

具体的には、再液化膨張部331の減圧程度を増加させた時にセンサ351、352、353のうちいずれか一つの流量が増加するのであれば、熱交換部332に進入する蒸発ガスの圧力(Pb)が最適圧力(Pb1)から遠くなる方向に変わったと判断して再液化膨張部331の減圧程度を減少させる。反対に、再液化膨張部331の減圧程度を増加させた時にセンサ351、352、353のうちいずれか一つの流量が減少するのであれば、熱交換部332に進入する蒸発ガスの圧力(Pb)が最適圧力(Pb1)に近づく方向に変わったと判断して再液化膨張部331の減圧程度を継続して増加させる。 Specifically, if the flow rate of any one of the sensors 351, 352, and 353 increases when the depressurization degree of the reliquefaction expansion unit 331 is increased, the pressure of the evaporative gas entering the heat exchange unit 332 ( It is determined that Pb) has changed in the direction farther from the optimum pressure (Pb1), and the degree of depressurization of the reliquefaction expansion unit 331 is reduced. On the contrary, if the flow rate of any one of the sensors 351, 352, and 353 decreases when the depressurization degree of the reliquefaction expansion unit 331 is increased, the pressure (Pb) of the evaporative gas entering the heat exchange unit 332. Is determined to have changed in the direction approaching the optimum pressure (Pb1), and the depressurization degree of the reliquefaction expansion unit 331 is continuously increased.

このような制御方法は再液化膨張部331の減圧程度を減少した時にも同一に適用され得る。 Such a control method can be similarly applied even when the degree of depressurization of the reliquefaction expansion unit 331 is reduced.

これとは違って、本発明の第3実施例および第4実施例による船舶の蒸発ガス処理装置300、400は、気液分離器334から貯蔵タンク310に再供給される再液化された蒸発ガスの供給量を測定するように液化ガス回収ライン335に設置されるセンサ355をさらに含み、当該センサ355の測定量に基づいて再液化膨張部331の減圧程度を調節することもできる。 Unlike this, the ship's evaporative gas treatment devices 300 and 400 according to the third and fourth embodiments of the present invention are the reliquefied evaporative gas resupplied from the gas-liquid separator 334 to the storage tank 310. A sensor 355 installed in the liquefied gas recovery line 335 is further included to measure the supply amount of the gas, and the degree of depressurization of the reliquefaction expansion unit 331 can be adjusted based on the measurement amount of the sensor 355.

具体的には、再液化膨張部331の減圧程度を増加させた時にセンサ355の流量が増加するのであれば、フラッシュガスの発生量が減少したことから、熱交換部332に進入する蒸発ガスの圧力(Pb)が最適圧力(Pb1)に近づく方向に変わったと判断して再液化膨張部3311の減圧程度を継続して増加させる。反対に、再液化膨張部331の減圧程度を増加させた時にセンサ355の流量が減少するのであれば、フラッシュガスの発生量が増加したことから、熱交換部332に進入する蒸発ガスの圧力(Pb)が最適圧力(Pb1)から遠くなる方向に変わったと判断して再液化膨張部331の減圧程度を減少させる。 Specifically, if the flow rate of the sensor 355 increases when the depressurization degree of the reliquefaction expansion unit 331 is increased, the amount of flash gas generated has decreased, so that the evaporative gas entering the heat exchange unit 332 has decreased. It is determined that the pressure (Pb) has changed in the direction approaching the optimum pressure (Pb1), and the depressurization degree of the reliquefaction expansion unit 3311 is continuously increased. On the contrary, if the flow rate of the sensor 355 decreases when the depressurization degree of the reliquefaction expansion unit 331 is increased, the amount of flash gas generated has increased, and the pressure of the evaporative gas entering the heat exchange unit 332 ( It is determined that Pb) has changed in the direction farther from the optimum pressure (Pb1), and the degree of depressurization of the reliquefaction expansion unit 331 is reduced.

このような制御方法は再液化膨張部331の減圧程度を減少した時にも同一に適用され得る。 Such a control method can be similarly applied even when the degree of depressurization of the reliquefaction expansion unit 331 is reduced.

以上、実施例では本発明に対する理解を助けるための一例として、液化天然ガスと液化エタンガスの相対的関係およびこれから発生する蒸発ガスを適用して説明したが、これに限定されるものではなく、メタン成分の比率が相対的に相異する異種の液化ガスについても同じ技術的思想で同一に適用可能である。 In the above examples, as an example for assisting the understanding of the present invention, the relative relationship between liquefied natural gas and liquefied ethane gas and the evaporative gas generated from the relative relationship have been described, but the description is not limited to this, and methane is not limited thereto. The same technical idea can be applied to different types of liquefied gases having relatively different component ratios.

本発明は添付された図面に図示された一実施例を参照して説明されたが、これは例示的なものに過ぎず、当該技術分野で通常の知識を有した者のであればこれから多様な変形および均等な他の実施例が可能であることを理解できるはずである。したがって、本発明の真の範囲は添付された特許請求の範囲によってのみ定められるべきである。 The present invention has been described with reference to an embodiment illustrated in the accompanying drawings, but this is merely exemplary and will vary from those who have ordinary knowledge in the art. It should be understood that other embodiments of modification and equality are possible. Therefore, the true scope of the invention should be defined only by the appended claims.

Claims (6)

貯蔵タンクに収容された蒸発ガスを蒸発ガス消費手段に提供する蒸発ガス供給ライン;
前記蒸発ガス供給ラインに具備されて前記蒸発ガスを加圧する圧縮部;
前記蒸発ガス供給ラインから分岐され、分岐されて流れる蒸発ガスを再液化する再液化ライン;
前記再液化ラインと前記蒸発ガス供給ラインを熱交換させる熱交換部;および
前記再液化ラインに具備されて前記熱交換部に進入する前の蒸発ガスを膨張させ、前記蒸発ガス供給ラインの流量を減少させる方向に前記蒸発ガスの減圧程度を調節する再液化膨張部;を含み、
前記再液化膨張部は、前記蒸発ガス供給ラインから分岐されて流れる蒸発ガスを50bar〜160barに減圧するように設けられ、
前記再液化膨張部は、前記貯蔵タンク内の蒸発ガスの窒素成分の含量が10mole%である場合に前記蒸発ガス供給ラインから分岐されて流れる蒸発ガスを140bar〜160barに減圧し、前記貯蔵タンク内の蒸発ガスの窒素成分の含量が0mole%である場合に前記蒸発ガス供給ラインから分岐されて流れる蒸発ガスを50bar〜70barに減圧するように設けられる、
船舶の蒸発ガス処理装置。
Evaporative gas supply line that provides the evaporative gas contained in the storage tank to the evaporative gas consumption means;
A compression unit provided in the evaporative gas supply line to pressurize the evaporative gas;
A reliquefaction line that is branched from the evaporative gas supply line and reliquefies the branched and flowing evaporative gas;
A heat exchange unit that exchanges heat between the reliquefaction line and the evaporative gas supply line; and the evaporative gas provided in the reliquefaction line before entering the heat exchange unit is expanded to reduce the flow rate of the evaporative gas supply line. reliquefaction expansion unit for adjusting the vacuum degree of the evaporator gas in a direction to decrease; only contains,
The reliquefaction expansion unit is provided so as to reduce the pressure of the evaporative gas branched from the evaporative gas supply line to 50 bar to 160 bar.
When the content of the nitrogen component of the evaporative gas in the storage tank is 10 mole%, the reliquefaction expansion unit reduces the evaporative gas branched from the evaporative gas supply line to 140 bar to 160 bar and reduces the pressure in the storage tank to 140 bar to 160 bar. When the content of the nitrogen component of the evaporative gas is 0 mole%, the evaporative gas branched from the evaporative gas supply line is reduced to 50 bar to 70 bar.
Evaporative gas treatment equipment for ships.
前記熱交換部を通過した蒸発ガスを減圧させる膨張バルブと、前記膨張バルブを通過して再液化された蒸発ガスを気体成分と液体成分とに分離する気液分離器をさらに含む、請求項1に記載の船舶の蒸発ガス処理装置。 Claim 1 further includes an expansion valve that reduces the pressure of the evaporative gas that has passed through the heat exchange unit, and a gas-liquid separator that separates the reliquefied evaporative gas that has passed through the expansion valve into a gas component and a liquid component. Evaporative gas treatment device for ships according to. 前記再液化ラインは前記気液分離器で分離された液体成分を前記貯蔵タンクに供給する液化ガス回収ラインおよび前記気液分離器で分離された気体成分を前記貯蔵タンクまたは前記蒸発ガス供給ライン上の前記圧縮部前段に供給する蒸発ガス循環ラインをさらに含む、請求項2に記載の船舶の蒸発ガス処理装置。 The reliquefaction line is a liquefied gas recovery line that supplies the liquid component separated by the gas-liquid separator to the storage tank and a gas component separated by the gas-liquid separator on the storage tank or the evaporative gas supply line. The ship's evaporative gas treatment apparatus according to claim 2, further comprising an evaporative gas circulation line supplied to the pre-stage of the compression unit. 貯蔵タンクに収容された蒸発ガスを蒸発ガス消費手段に提供する蒸発ガス供給ライン;前記蒸発ガス供給ラインに具備されて前記蒸発ガスを加圧する圧縮部;前記蒸発ガス供給ラインから分岐され、分岐されて流れる蒸発ガスを再液化する再液化ライン;前記再液化ラインと前記蒸発ガス供給ラインを熱交換させる熱交換部;および前記再液化ラインに具備されて前記熱交換部に進入する前の蒸発ガスを膨張させ、前記蒸発ガス供給ラインの流量を減少させる方向に前記蒸発ガスの減圧程度を調節する再液化膨張部;を含む船舶の蒸発ガス処理装置を利用して蒸発ガスを処理する船舶の蒸発ガス処理方法において、
前記蒸発ガス供給ラインの流量を測定し、
前記再液化膨張部の減圧程度をいずれか一方向(増加させる方向または減少させる方向)に調節した時、前記蒸発ガス供給ラインで測定された流量が大きくなるのであれば前記再液化膨張部の減圧程度を他の方向に調節し、
前記再液化膨張部の減圧程度をいずれか一方向(増加させる方向または減少させる方向)に調節した時、前記蒸発ガス供給ラインで測定された流量が小さくなるのであれば前記再液化膨張部の減圧程度を前記一方向に継続して調節する、船舶の蒸発ガス処理方法。
Evaporative gas supply line that provides the evaporative gas contained in the storage tank to the evaporative gas consumption means; a compression unit provided in the evaporative gas supply line to pressurize the evaporative gas; branched from the evaporative gas supply line and branched. A reliquefaction line that reliquefies the flowing evaporative gas; a heat exchange unit that exchanges heat between the reliquefaction line and the evaporative gas supply line; and an evaporative gas provided in the reliquefaction line before entering the heat exchange unit. Evaporation of a ship that treats the evaporative gas using the evaporative gas treatment device of the ship including the reliquefaction expansion part; which adjusts the degree of decompression of the evaporative gas in the direction of reducing the flow rate of the evaporative gas supply line In the gas treatment method
Measure the flow rate of the evaporative gas supply line and
If the flow rate measured by the evaporative gas supply line increases when the degree of decompression of the reliquefaction expansion unit is adjusted in any one direction (increase or decrease direction), the decompression of the reliquefaction expansion unit is reduced. Adjust the degree in the other direction,
If the flow rate measured in the evaporative gas supply line becomes smaller when the degree of decompression of the reliquefaction expansion part is adjusted in any one direction (increase direction or decrease direction), the decompression of the reliquefaction expansion part is reduced. A method for treating evaporative gas on a ship, in which the degree is continuously adjusted in the above-mentioned one direction.
前記再液化膨張部を通じて減圧された蒸発ガスの圧力が前記蒸発ガス供給ラインで測定される流量を最小にする目標圧力となるまで調節する、請求項に記載の船舶の蒸発ガス処理方法。 The method for treating evaporative gas on a ship according to claim 4 , wherein the pressure of the evaporative gas decompressed through the reliquefaction expansion unit is adjusted to a target pressure that minimizes the flow rate measured in the evaporative gas supply line. 前記貯蔵タンクに貯蔵された液化ガスの貯蔵量が変わるにつれて、前記再液化膨張部を通じて減圧された蒸発ガスの前記目標圧力が変わり、
前記変わった目標圧力に前記再液化膨張部の減圧程度を調節する、請求項に記載の船舶の蒸発ガス処理方法。
As the amount of liquefied gas stored in the storage tank changes, the target pressure of the evaporated gas decompressed through the reliquefaction expansion unit changes.
The method for treating evaporative gas on a ship according to claim 5 , wherein the degree of decompression of the reliquefaction expansion portion is adjusted to the changed target pressure.
JP2018169653A 2015-02-04 2018-09-11 Evaporative gas treatment equipment and treatment method for ships Active JP6843099B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020150017239A KR101617020B1 (en) 2015-02-04 2015-02-04 Apparatus for retreating boil off gas
KR10-2015-0017239 2015-02-04
KR1020150080542A KR101672196B1 (en) 2015-06-08 2015-06-08 Fuel gas supplying system in ships
KR10-2015-0080542 2015-06-08

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017557258A Division JP6498785B2 (en) 2015-02-04 2016-01-26 Ship evaporative gas processing apparatus and processing method

Publications (2)

Publication Number Publication Date
JP2019038533A JP2019038533A (en) 2019-03-14
JP6843099B2 true JP6843099B2 (en) 2021-03-17

Family

ID=56564321

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017557258A Active JP6498785B2 (en) 2015-02-04 2016-01-26 Ship evaporative gas processing apparatus and processing method
JP2018169653A Active JP6843099B2 (en) 2015-02-04 2018-09-11 Evaporative gas treatment equipment and treatment method for ships

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017557258A Active JP6498785B2 (en) 2015-02-04 2016-01-26 Ship evaporative gas processing apparatus and processing method

Country Status (3)

Country Link
JP (2) JP6498785B2 (en)
CN (1) CN107848605B (en)
WO (1) WO2016126037A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150852A (en) * 2017-03-10 2018-09-27 三井E&S造船株式会社 Liquefied gas fuel supply system
US20190056175A1 (en) * 2017-08-21 2019-02-21 GE Oil & Gas, LLC Refrigerant and nitrogen recovery
JP7179650B2 (en) * 2019-02-27 2022-11-29 三菱重工マリンマシナリ株式会社 Boil-off gas treatment system and ship
FR3100055B1 (en) * 2019-08-19 2021-07-23 Gaztransport Et Technigaz Gas treatment system contained in a tank for storing and / or transporting gas in the liquid state and in the gaseous state fitted to a ship
CN110614008A (en) * 2019-10-30 2019-12-27 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) Method for treating and recycling evaporation gas of cargo hold of oil tanker
CN112628593B (en) * 2020-12-11 2022-07-05 江南造船(集团)有限责任公司 Liquid hydrogen evaporation gas treatment system and control method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338093A (en) * 1999-05-25 2000-12-08 Osaka Gas Co Ltd Method and apparatus for measuring nitrogen gas content in methane gas
JP2002188460A (en) * 2000-12-21 2002-07-05 Mitsubishi Heavy Ind Ltd Heat quantity control method of fuel gas, and fuel control system
FI118680B (en) * 2003-12-18 2008-02-15 Waertsilae Finland Oy A gas supply arrangement in a craft and a method for controlling gas pressure in a craft gas supply arrangement
KR20080057461A (en) * 2006-12-20 2008-06-25 신영중공업주식회사 Lng bog reliquefaction apparatus and method
KR101106089B1 (en) * 2011-03-11 2012-01-18 대우조선해양 주식회사 Method for supplying fuel for high pressure natural gas injection engine
KR101106088B1 (en) * 2011-03-22 2012-01-18 대우조선해양 주식회사 Non-flammable mixed refrigerant using for reliquifaction apparatus in system for supplying fuel for high pressure natural gas injection engine
KR20120107835A (en) * 2011-03-22 2012-10-04 대우조선해양 주식회사 System for supplying fuel for a marine structure having a reliquefaction apparatus and a high pressure natural gas injection engine
KR101386543B1 (en) * 2012-10-24 2014-04-18 대우조선해양 주식회사 System for treating boil-off gas for a ship
KR101593970B1 (en) * 2012-12-11 2016-02-16 대우조선해양 주식회사 BOG Multi-Step Reliquefaction System And Method For Boiled Off Gas
JP6037846B2 (en) * 2013-01-23 2016-12-07 三菱重工業株式会社 Gas removal equipment, gas removal ship, gas removal method from tank
KR101640768B1 (en) * 2013-06-26 2016-07-29 대우조선해양 주식회사 Method for building a ship

Also Published As

Publication number Publication date
WO2016126037A1 (en) 2016-08-11
CN107848605B (en) 2020-05-08
JP2018504324A (en) 2018-02-15
JP2019038533A (en) 2019-03-14
JP6498785B2 (en) 2019-04-10
CN107848605A (en) 2018-03-27

Similar Documents

Publication Publication Date Title
JP6843099B2 (en) Evaporative gas treatment equipment and treatment method for ships
JP6628328B2 (en) Ships including gas treatment systems
CN107407231B (en) Gas supply system for ship
JP6533311B2 (en) Fuel gas supply system
KR101751340B1 (en) Fuel gas supplying system in ships
KR101784842B1 (en) Fuel gas supplying system in ships
KR101751331B1 (en) Fuel gas supplying system in ships
JP6986159B2 (en) Evaporative gas treatment device and evaporative gas treatment method for liquefied gas revaporization system
KR101732554B1 (en) Fuel gas supplying system in ships
KR101661929B1 (en) Fuel gas supplying system in ships
KR102548332B1 (en) Fuel gas treating system in ships
KR101722369B1 (en) Fuel gas supplying system in ships
KR102189807B1 (en) Apparatus for retreating boil off gas
KR101751339B1 (en) Fuel gas supplying system in ships
KR101661938B1 (en) Fuel gas supplying system in ships
KR101732551B1 (en) Fuel gas supplying system in ships
KR102516615B1 (en) Fuel gas treating system in ships
KR101617020B1 (en) Apparatus for retreating boil off gas
KR101824427B1 (en) Fuel gas supplying system in ships
KR101672196B1 (en) Fuel gas supplying system in ships
KR101751332B1 (en) Fuel gas supplying system in ships
KR101751337B1 (en) Fuel gas supplying system in ships
KR20200050480A (en) Fuel gas treating system in ships
KR20200050481A (en) Fuel gas treating system in ships
KR102142114B1 (en) Fuel gas supplying system in ships

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201211

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201228

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R150 Certificate of patent or registration of utility model

Ref document number: 6843099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250