JP6843086B2 - 画像処理システム、画像においてマルチラベル意味エッジ検出を行う方法、および、非一時的コンピューター可読記憶媒体 - Google Patents

画像処理システム、画像においてマルチラベル意味エッジ検出を行う方法、および、非一時的コンピューター可読記憶媒体 Download PDF

Info

Publication number
JP6843086B2
JP6843086B2 JP2018040369A JP2018040369A JP6843086B2 JP 6843086 B2 JP6843086 B2 JP 6843086B2 JP 2018040369 A JP2018040369 A JP 2018040369A JP 2018040369 A JP2018040369 A JP 2018040369A JP 6843086 B2 JP6843086 B2 JP 6843086B2
Authority
JP
Japan
Prior art keywords
edge
neural network
image
semantic
label
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018040369A
Other languages
English (en)
Japanese (ja)
Other versions
JP2018195293A5 (enExample
JP2018195293A (ja
Inventor
チェン・フェン
ジディン・ユ
スリクマール・ラマリンガム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JP2018195293A publication Critical patent/JP2018195293A/ja
Publication of JP2018195293A5 publication Critical patent/JP2018195293A5/ja
Application granted granted Critical
Publication of JP6843086B2 publication Critical patent/JP6843086B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • G06F18/2155Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the incorporation of unlabelled data, e.g. multiple instance learning [MIL], semi-supervised techniques using expectation-maximisation [EM] or naïve labelling
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/2431Multiple classes
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Image Analysis (AREA)
JP2018040369A 2017-05-18 2018-03-07 画像処理システム、画像においてマルチラベル意味エッジ検出を行う方法、および、非一時的コンピューター可読記憶媒体 Active JP6843086B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762507922P 2017-05-18 2017-05-18
US62/507,922 2017-05-18
US15/718,554 US10410353B2 (en) 2017-05-18 2017-09-28 Multi-label semantic boundary detection system
US15/718,554 2017-09-28

Publications (3)

Publication Number Publication Date
JP2018195293A JP2018195293A (ja) 2018-12-06
JP2018195293A5 JP2018195293A5 (enExample) 2021-01-21
JP6843086B2 true JP6843086B2 (ja) 2021-03-17

Family

ID=64272525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018040369A Active JP6843086B2 (ja) 2017-05-18 2018-03-07 画像処理システム、画像においてマルチラベル意味エッジ検出を行う方法、および、非一時的コンピューター可読記憶媒体

Country Status (2)

Country Link
US (1) US10410353B2 (enExample)
JP (1) JP6843086B2 (enExample)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10354391B2 (en) * 2016-10-27 2019-07-16 Peter Jin-Pyong Yim Method and system for multi-label image segmentation
JP7146372B2 (ja) 2017-06-21 2022-10-04 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法、プログラム、および、記憶媒体
JP6865866B2 (ja) 2017-09-27 2021-04-28 グーグル エルエルシーGoogle LLC 高解像度画像セグメンテーションのためのエンドツーエンドネットワークモデル
WO2019136760A1 (zh) * 2018-01-15 2019-07-18 深圳鲲云信息科技有限公司 图像语义分割方法、可编程逻辑电路、系统及电子设备
US11551032B1 (en) * 2018-03-14 2023-01-10 United States Of America As Represented By The Secretary Of The Navy Machine learning based automated object recognition for unmanned autonomous vehicles
US11020206B2 (en) * 2018-05-22 2021-06-01 Align Technology, Inc. Tooth segmentation based on anatomical edge information
KR102718664B1 (ko) * 2018-05-25 2024-10-18 삼성전자주식회사 영상 처리를 위한 네트워크 조정 방법 및 장치
US11120228B2 (en) * 2018-07-03 2021-09-14 Tata Consultancy Services Limited Method and system for generating ground truth labels for ambiguous domain specific tasks
US11055854B2 (en) * 2018-08-23 2021-07-06 Seoul National University R&Db Foundation Method and system for real-time target tracking based on deep learning
US10748033B2 (en) * 2018-12-11 2020-08-18 Industrial Technology Research Institute Object detection method using CNN model and object detection apparatus using the same
WO2020176064A1 (en) * 2018-12-31 2020-09-03 Didi Research America, Llc Method and system of annotation densification for semantic segmentation
US10872275B2 (en) * 2019-03-22 2020-12-22 Nokia Technologies Oy Semantic segmentation based on a hierarchy of neural networks
KR102073873B1 (ko) * 2019-03-22 2020-02-05 주식회사 루닛 시맨틱 세그먼테이션 방법 및 그 장치
WO2020204051A1 (ja) 2019-04-02 2020-10-08 富士フイルム株式会社 画像処理装置とその作動方法および作動プログラム、運用装置とその作動方法および作動プログラム、並びに機械学習システム
US10546216B1 (en) * 2019-04-11 2020-01-28 Seetree Systems Ltd. Recurrent pattern image classification and registration
CN110334724B (zh) * 2019-04-16 2022-06-17 武汉理工大学 基于lstm的遥感对象自然语言描述及多尺度矫正方法
CN110210515B (zh) * 2019-04-25 2021-04-20 浙江大学 一种图像数据多标签分类方法
CN110443254B (zh) * 2019-08-02 2023-06-20 上海联影医疗科技股份有限公司 图像中金属区域的检测方法、装置、设备和存储介质
EP4428818A3 (en) * 2019-05-24 2024-12-18 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for processing x-ray images
CN112116596B (zh) * 2019-06-19 2024-09-17 深圳Tcl新技术有限公司 图像分割模型的训练方法、图像分割方法、介质及终端
CN110298397A (zh) * 2019-06-25 2019-10-01 东北大学 基于压缩卷积神经网络的加热金属图像的多标签分类方法
US11068748B2 (en) * 2019-07-17 2021-07-20 Harris Geospatial Solutions, Inc. Image processing system including training model based upon iteratively biased loss function and related methods
CN110458051A (zh) * 2019-07-25 2019-11-15 中移(杭州)信息技术有限公司 一种设备控制的方法、装置、服务器及可读存储介质
US11416998B2 (en) 2019-07-30 2022-08-16 Microsoft Technology Licensing, Llc Pixel classification to reduce depth-estimation error
CN110516727B (zh) * 2019-08-20 2022-12-06 西安电子科技大学 基于fpga深度边缘滤波器的高光谱图像分类方法
WO2021061135A1 (en) * 2019-09-26 2021-04-01 Hewlett-Packard Development Company, L.P. Labeling pixels having defects
CN110852325B (zh) * 2019-10-31 2023-03-31 上海商汤智能科技有限公司 图像的分割方法及装置、电子设备和存储介质
CN110827963A (zh) * 2019-11-06 2020-02-21 杭州迪英加科技有限公司 针对病理图像的语义分割方法和电子设备
CN110766690B (zh) * 2019-11-07 2020-08-14 四川农业大学 基于深度学习点监督思想的麦穗检测和计数方法
US11423544B1 (en) 2019-11-14 2022-08-23 Seg AI LLC Segmenting medical images
US10762629B1 (en) 2019-11-14 2020-09-01 SegAI LLC Segmenting medical images
US11416772B2 (en) 2019-12-02 2022-08-16 International Business Machines Corporation Integrated bottom-up segmentation for semi-supervised image segmentation
CN111242223B (zh) * 2020-01-15 2020-11-13 中国科学院地理科学与资源研究所 一种基于街景影像多特征融合的街道空间品质评价方法
US11763478B1 (en) 2020-01-17 2023-09-19 Apple Inc. Scan-based measurements
US11922580B2 (en) * 2020-01-17 2024-03-05 Apple Inc. Floorplan generation based on room scanning
KR102204956B1 (ko) * 2020-01-30 2021-01-19 주식회사 루닛 시맨틱 세그먼테이션 방법 및 그 장치
US11282293B2 (en) * 2020-04-17 2022-03-22 Tianlong Chen Methods and apparatus for border-ownership representation of occluding contours for images
CN111667455B (zh) * 2020-04-28 2023-10-24 广东三三智能科技有限公司 一种刷具多种缺陷的ai检测方法
CN113570052B (zh) * 2020-04-28 2023-10-31 北京达佳互联信息技术有限公司 图像处理方法、装置、电子设备及存储介质
CN111797893B (zh) * 2020-05-26 2021-09-14 华为技术有限公司 一种神经网络的训练方法、图像分类系统及相关设备
US20210383534A1 (en) * 2020-06-03 2021-12-09 GE Precision Healthcare LLC System and methods for image segmentation and classification using reduced depth convolutional neural networks
US11417097B2 (en) * 2020-09-02 2022-08-16 Hewlett Packard Enterprise Development Lp Video annotation system for deep learning based video analytics
US12347038B2 (en) * 2020-09-22 2025-07-01 Bentley Systems, Incorporated Crack detection, assessment and visualization using deep learning with 3D mesh model
CN112085001B (zh) * 2020-09-23 2024-04-23 清华大学苏州汽车研究院(相城) 一种基于多尺度边缘特征检测的隧道识别模型及方法
CN112184585B (zh) * 2020-09-29 2024-03-29 中科方寸知微(南京)科技有限公司 一种基于语义边缘融合的图像补全方法及系统
CN112308870B (zh) * 2020-10-16 2022-06-14 易思维(杭州)科技有限公司 基于深度学习的边缘检测滤波器优化方法
CN112347977B (zh) * 2020-11-23 2021-07-20 深圳大学 一种诱导性多能干细胞的自动检测方法、存储介质及装置
KR20220116800A (ko) 2021-02-15 2022-08-23 에스케이하이닉스 주식회사 영역 정보를 활용한 가장자리 탐지 장치 및 그 방법
US11989897B2 (en) * 2021-03-16 2024-05-21 International Business Machines Corporation Depth map generation from sparse depth samples in an augmented reality environment
CN113095405B (zh) * 2021-04-13 2024-04-30 沈阳雅译网络技术有限公司 基于预训练及双层注意力的图像描述生成系统的构建方法
CN113971743B (zh) * 2021-05-24 2024-04-05 华东理工大学 一种基于先验信息的语义补充网络的多标签图像分类方法
CN113538484B (zh) * 2021-07-01 2022-06-10 广西科技大学 一种深度细化的多重信息嵌套边缘检测方法
CN113807293B (zh) * 2021-09-24 2024-02-09 纵目科技(重庆)有限公司 减速带的检测方法、系统、设备及计算机可读存储介质
CN113989311B (zh) * 2021-10-28 2024-11-22 中南大学 一种基于边缘检测的微观组织图像分割处理方法和装置
CN114972835B (zh) * 2021-12-02 2024-08-02 湘潭大学 一种混合抑制数据增强方法
CN114299281B (zh) * 2021-12-31 2025-08-12 中山大学 一种基于跨层注意力机制特征融合的目标检测方法及系统
US12118788B2 (en) * 2022-02-03 2024-10-15 Robert Bosch Gmbh Learning semantic segmentation models in the absence of a portion of class labels
CN114612544B (zh) * 2022-03-11 2024-01-02 北京百度网讯科技有限公司 图像处理方法、装置、设备和存储介质
CN114581806B (zh) * 2022-03-18 2024-03-19 重庆科技学院 一种基于主干边缘特征提取的工业零件空载率计算方法
CN114387523B (zh) * 2022-03-23 2022-06-03 成都理工大学 基于dcnn边界引导的遥感图像建筑物提取方法
CN114782530B (zh) * 2022-03-28 2025-07-15 杭州国辰机器人科技有限公司 室内场景下的三维语义地图构建方法、装置、设备及介质
CN114882279B (zh) * 2022-05-10 2024-03-19 西安理工大学 基于直推式半监督深度学习的多标签图像分类方法
CN114998612B (zh) * 2022-06-02 2024-08-30 长光卫星技术股份有限公司 基于边缘检测的建筑物语义分割后处理方法、系统以及设备
CN115565165B (zh) * 2022-09-09 2025-06-13 福州大学 一种基于语义分割和Transformer的集装箱号检测识别方法
JP2024129938A (ja) * 2023-03-14 2024-09-30 株式会社Jvcケンウッド 画像分類装置、画像分類方法、および画像分類プログラム
US20250005637A1 (en) * 2023-06-30 2025-01-02 International Business Machines Corporation Reconciliation of disputes in virtual world transactions
CN119672044A (zh) * 2023-09-20 2025-03-21 北京三星通信技术研究有限公司 由电子设备执行的方法、电子设备、存储介质及程序产品
JPWO2025062547A1 (enExample) * 2023-09-21 2025-03-27
CN117274815B (zh) * 2023-10-10 2025-09-19 湖南大学 一种基于多标签策略的植物疾病和严重程度识别方法
CN117079103B (zh) * 2023-10-16 2024-01-02 暨南大学 一种用于神经网络训练的伪标签生成方法及系统
WO2025141421A1 (ja) * 2023-12-27 2025-07-03 株式会社半導体エネルギー研究所 表示装置
CN118447324B (zh) * 2024-05-17 2025-04-18 北华航天工业学院 一种基于深度学习的多标签图像分类方法
CN118314605B (zh) * 2024-06-06 2024-10-11 陕西安康玮创达信息技术有限公司 基于图像增强的病虫害分类识别方法
CN118823587B (zh) * 2024-09-10 2024-11-22 台州市凯国市政工程有限公司 基于无人机航拍的建筑工程面积测量方法及系统
CN118864862B (zh) * 2024-09-23 2024-11-22 湖南大学 一种基于可供性分割网络的厨房场景工具理解方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060072302A1 (en) 2004-10-01 2006-04-06 Chien Tseng L Electro-luminescent (EL) illuminated wall plate device with push-tighten frame means
US9053537B2 (en) 2011-09-21 2015-06-09 Tandent Vision Science, Inc. Classifier for use in generating a diffuse image
US9292787B2 (en) * 2012-08-29 2016-03-22 Microsoft Technology Licensing, Llc Computer-implemented deep tensor neural network
CN104346620B (zh) 2013-07-25 2017-12-29 佳能株式会社 对输入图像中的像素分类的方法和装置及图像处理系统
EP3171297A1 (en) * 2015-11-18 2017-05-24 CentraleSupélec Joint boundary detection image segmentation and object recognition using deep learning
KR102592076B1 (ko) * 2015-12-14 2023-10-19 삼성전자주식회사 딥러닝 기반 영상 처리 장치 및 방법, 학습 장치
US10402700B2 (en) * 2016-01-25 2019-09-03 Deepmind Technologies Limited Generating images using neural networks
US9916522B2 (en) * 2016-03-11 2018-03-13 Kabushiki Kaisha Toshiba Training constrained deconvolutional networks for road scene semantic segmentation
US10402697B2 (en) * 2016-08-01 2019-09-03 Nvidia Corporation Fusing multilayer and multimodal deep neural networks for video classification

Also Published As

Publication number Publication date
US20180336683A1 (en) 2018-11-22
US10410353B2 (en) 2019-09-10
JP2018195293A (ja) 2018-12-06

Similar Documents

Publication Publication Date Title
JP6843086B2 (ja) 画像処理システム、画像においてマルチラベル意味エッジ検出を行う方法、および、非一時的コンピューター可読記憶媒体
JP7723159B2 (ja) 自己注意ベースのニューラルネットワークを使用した画像処理
US10860837B2 (en) Deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition
Yang et al. Layered object models for image segmentation
US9633282B2 (en) Cross-trained convolutional neural networks using multimodal images
CN102667859B (zh) 由排他性分类器进行的一般物体的图像识别装置及方法
US20220180624A1 (en) Method and device for automatic identification of labels of an image
WO2018108129A1 (zh) 用于识别物体类别的方法及装置、电子设备
JP2025504056A (ja) 顔姿勢推定方法、装置、電子機器及び記憶媒体
CN117036948B (zh) 一种基于注意力机制的致敏植物识别方法
JP6989450B2 (ja) 画像解析装置、画像解析方法及びプログラム
US12293555B2 (en) Method and device of inputting annotation of object boundary information
CN110020653A (zh) 图像语义分割方法、装置及计算机可读存储介质
CN110827236A (zh) 基于神经网络的脑组织分层方法、装置、计算机设备
JP6389742B2 (ja) 画像セグメンテーション方法、装置、及びプログラム
WO2024103997A1 (zh) 手写体识别方法、手写体识别模型的训练方法及装置
Wang et al. TGF-Net: Transformer and gist CNN fusion network for multi-modal remote sensing image classification
JP7737127B2 (ja) ピラミッドプーリングモジュール、およびプーリング処理の実行方法
JP7335204B2 (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JP2019125128A (ja) 情報処理装置、制御方法、及びプログラム
HK40019666B (zh) 基於神经网络的脑组织分层方法、装置、计算机设备
CN120766136A (zh) 一种基于MTA-YOLOv11的玉米病虫害检测方法
WO2024216763A1 (zh) 图像处理方法、装置、电子设备及存储介质
CN118057473A (zh) 影像识别边缘设备以及方法
CN120766098A (zh) 一种农作物病害检测方法、终端设备及存储介质

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201204

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201204

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R150 Certificate of patent or registration of utility model

Ref document number: 6843086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250