JP6843086B2 - 画像処理システム、画像においてマルチラベル意味エッジ検出を行う方法、および、非一時的コンピューター可読記憶媒体 - Google Patents
画像処理システム、画像においてマルチラベル意味エッジ検出を行う方法、および、非一時的コンピューター可読記憶媒体 Download PDFInfo
- Publication number
- JP6843086B2 JP6843086B2 JP2018040369A JP2018040369A JP6843086B2 JP 6843086 B2 JP6843086 B2 JP 6843086B2 JP 2018040369 A JP2018040369 A JP 2018040369A JP 2018040369 A JP2018040369 A JP 2018040369A JP 6843086 B2 JP6843086 B2 JP 6843086B2
- Authority
- JP
- Japan
- Prior art keywords
- edge
- neural network
- image
- semantic
- label
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
- G06F18/2155—Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the incorporation of unlabelled data, e.g. multiple instance learning [MIL], semi-supervised techniques using expectation-maximisation [EM] or naïve labelling
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/2431—Multiple classes
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/12—Edge-based segmentation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Multimedia (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Image Analysis (AREA)
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762507922P | 2017-05-18 | 2017-05-18 | |
| US62/507,922 | 2017-05-18 | ||
| US15/718,554 US10410353B2 (en) | 2017-05-18 | 2017-09-28 | Multi-label semantic boundary detection system |
| US15/718,554 | 2017-09-28 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2018195293A JP2018195293A (ja) | 2018-12-06 |
| JP2018195293A5 JP2018195293A5 (enExample) | 2021-01-21 |
| JP6843086B2 true JP6843086B2 (ja) | 2021-03-17 |
Family
ID=64272525
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2018040369A Active JP6843086B2 (ja) | 2017-05-18 | 2018-03-07 | 画像処理システム、画像においてマルチラベル意味エッジ検出を行う方法、および、非一時的コンピューター可読記憶媒体 |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US10410353B2 (enExample) |
| JP (1) | JP6843086B2 (enExample) |
Families Citing this family (75)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10354391B2 (en) * | 2016-10-27 | 2019-07-16 | Peter Jin-Pyong Yim | Method and system for multi-label image segmentation |
| JP7146372B2 (ja) | 2017-06-21 | 2022-10-04 | キヤノン株式会社 | 画像処理装置、撮像装置、画像処理方法、プログラム、および、記憶媒体 |
| JP6865866B2 (ja) | 2017-09-27 | 2021-04-28 | グーグル エルエルシーGoogle LLC | 高解像度画像セグメンテーションのためのエンドツーエンドネットワークモデル |
| WO2019136760A1 (zh) * | 2018-01-15 | 2019-07-18 | 深圳鲲云信息科技有限公司 | 图像语义分割方法、可编程逻辑电路、系统及电子设备 |
| US11551032B1 (en) * | 2018-03-14 | 2023-01-10 | United States Of America As Represented By The Secretary Of The Navy | Machine learning based automated object recognition for unmanned autonomous vehicles |
| US11020206B2 (en) * | 2018-05-22 | 2021-06-01 | Align Technology, Inc. | Tooth segmentation based on anatomical edge information |
| KR102718664B1 (ko) * | 2018-05-25 | 2024-10-18 | 삼성전자주식회사 | 영상 처리를 위한 네트워크 조정 방법 및 장치 |
| US11120228B2 (en) * | 2018-07-03 | 2021-09-14 | Tata Consultancy Services Limited | Method and system for generating ground truth labels for ambiguous domain specific tasks |
| US11055854B2 (en) * | 2018-08-23 | 2021-07-06 | Seoul National University R&Db Foundation | Method and system for real-time target tracking based on deep learning |
| US10748033B2 (en) * | 2018-12-11 | 2020-08-18 | Industrial Technology Research Institute | Object detection method using CNN model and object detection apparatus using the same |
| WO2020176064A1 (en) * | 2018-12-31 | 2020-09-03 | Didi Research America, Llc | Method and system of annotation densification for semantic segmentation |
| US10872275B2 (en) * | 2019-03-22 | 2020-12-22 | Nokia Technologies Oy | Semantic segmentation based on a hierarchy of neural networks |
| KR102073873B1 (ko) * | 2019-03-22 | 2020-02-05 | 주식회사 루닛 | 시맨틱 세그먼테이션 방법 및 그 장치 |
| WO2020204051A1 (ja) | 2019-04-02 | 2020-10-08 | 富士フイルム株式会社 | 画像処理装置とその作動方法および作動プログラム、運用装置とその作動方法および作動プログラム、並びに機械学習システム |
| US10546216B1 (en) * | 2019-04-11 | 2020-01-28 | Seetree Systems Ltd. | Recurrent pattern image classification and registration |
| CN110334724B (zh) * | 2019-04-16 | 2022-06-17 | 武汉理工大学 | 基于lstm的遥感对象自然语言描述及多尺度矫正方法 |
| CN110210515B (zh) * | 2019-04-25 | 2021-04-20 | 浙江大学 | 一种图像数据多标签分类方法 |
| CN110443254B (zh) * | 2019-08-02 | 2023-06-20 | 上海联影医疗科技股份有限公司 | 图像中金属区域的检测方法、装置、设备和存储介质 |
| EP4428818A3 (en) * | 2019-05-24 | 2024-12-18 | Shanghai United Imaging Healthcare Co., Ltd. | Systems and methods for processing x-ray images |
| CN112116596B (zh) * | 2019-06-19 | 2024-09-17 | 深圳Tcl新技术有限公司 | 图像分割模型的训练方法、图像分割方法、介质及终端 |
| CN110298397A (zh) * | 2019-06-25 | 2019-10-01 | 东北大学 | 基于压缩卷积神经网络的加热金属图像的多标签分类方法 |
| US11068748B2 (en) * | 2019-07-17 | 2021-07-20 | Harris Geospatial Solutions, Inc. | Image processing system including training model based upon iteratively biased loss function and related methods |
| CN110458051A (zh) * | 2019-07-25 | 2019-11-15 | 中移(杭州)信息技术有限公司 | 一种设备控制的方法、装置、服务器及可读存储介质 |
| US11416998B2 (en) | 2019-07-30 | 2022-08-16 | Microsoft Technology Licensing, Llc | Pixel classification to reduce depth-estimation error |
| CN110516727B (zh) * | 2019-08-20 | 2022-12-06 | 西安电子科技大学 | 基于fpga深度边缘滤波器的高光谱图像分类方法 |
| WO2021061135A1 (en) * | 2019-09-26 | 2021-04-01 | Hewlett-Packard Development Company, L.P. | Labeling pixels having defects |
| CN110852325B (zh) * | 2019-10-31 | 2023-03-31 | 上海商汤智能科技有限公司 | 图像的分割方法及装置、电子设备和存储介质 |
| CN110827963A (zh) * | 2019-11-06 | 2020-02-21 | 杭州迪英加科技有限公司 | 针对病理图像的语义分割方法和电子设备 |
| CN110766690B (zh) * | 2019-11-07 | 2020-08-14 | 四川农业大学 | 基于深度学习点监督思想的麦穗检测和计数方法 |
| US11423544B1 (en) | 2019-11-14 | 2022-08-23 | Seg AI LLC | Segmenting medical images |
| US10762629B1 (en) | 2019-11-14 | 2020-09-01 | SegAI LLC | Segmenting medical images |
| US11416772B2 (en) | 2019-12-02 | 2022-08-16 | International Business Machines Corporation | Integrated bottom-up segmentation for semi-supervised image segmentation |
| CN111242223B (zh) * | 2020-01-15 | 2020-11-13 | 中国科学院地理科学与资源研究所 | 一种基于街景影像多特征融合的街道空间品质评价方法 |
| US11763478B1 (en) | 2020-01-17 | 2023-09-19 | Apple Inc. | Scan-based measurements |
| US11922580B2 (en) * | 2020-01-17 | 2024-03-05 | Apple Inc. | Floorplan generation based on room scanning |
| KR102204956B1 (ko) * | 2020-01-30 | 2021-01-19 | 주식회사 루닛 | 시맨틱 세그먼테이션 방법 및 그 장치 |
| US11282293B2 (en) * | 2020-04-17 | 2022-03-22 | Tianlong Chen | Methods and apparatus for border-ownership representation of occluding contours for images |
| CN111667455B (zh) * | 2020-04-28 | 2023-10-24 | 广东三三智能科技有限公司 | 一种刷具多种缺陷的ai检测方法 |
| CN113570052B (zh) * | 2020-04-28 | 2023-10-31 | 北京达佳互联信息技术有限公司 | 图像处理方法、装置、电子设备及存储介质 |
| CN111797893B (zh) * | 2020-05-26 | 2021-09-14 | 华为技术有限公司 | 一种神经网络的训练方法、图像分类系统及相关设备 |
| US20210383534A1 (en) * | 2020-06-03 | 2021-12-09 | GE Precision Healthcare LLC | System and methods for image segmentation and classification using reduced depth convolutional neural networks |
| US11417097B2 (en) * | 2020-09-02 | 2022-08-16 | Hewlett Packard Enterprise Development Lp | Video annotation system for deep learning based video analytics |
| US12347038B2 (en) * | 2020-09-22 | 2025-07-01 | Bentley Systems, Incorporated | Crack detection, assessment and visualization using deep learning with 3D mesh model |
| CN112085001B (zh) * | 2020-09-23 | 2024-04-23 | 清华大学苏州汽车研究院(相城) | 一种基于多尺度边缘特征检测的隧道识别模型及方法 |
| CN112184585B (zh) * | 2020-09-29 | 2024-03-29 | 中科方寸知微(南京)科技有限公司 | 一种基于语义边缘融合的图像补全方法及系统 |
| CN112308870B (zh) * | 2020-10-16 | 2022-06-14 | 易思维(杭州)科技有限公司 | 基于深度学习的边缘检测滤波器优化方法 |
| CN112347977B (zh) * | 2020-11-23 | 2021-07-20 | 深圳大学 | 一种诱导性多能干细胞的自动检测方法、存储介质及装置 |
| KR20220116800A (ko) | 2021-02-15 | 2022-08-23 | 에스케이하이닉스 주식회사 | 영역 정보를 활용한 가장자리 탐지 장치 및 그 방법 |
| US11989897B2 (en) * | 2021-03-16 | 2024-05-21 | International Business Machines Corporation | Depth map generation from sparse depth samples in an augmented reality environment |
| CN113095405B (zh) * | 2021-04-13 | 2024-04-30 | 沈阳雅译网络技术有限公司 | 基于预训练及双层注意力的图像描述生成系统的构建方法 |
| CN113971743B (zh) * | 2021-05-24 | 2024-04-05 | 华东理工大学 | 一种基于先验信息的语义补充网络的多标签图像分类方法 |
| CN113538484B (zh) * | 2021-07-01 | 2022-06-10 | 广西科技大学 | 一种深度细化的多重信息嵌套边缘检测方法 |
| CN113807293B (zh) * | 2021-09-24 | 2024-02-09 | 纵目科技(重庆)有限公司 | 减速带的检测方法、系统、设备及计算机可读存储介质 |
| CN113989311B (zh) * | 2021-10-28 | 2024-11-22 | 中南大学 | 一种基于边缘检测的微观组织图像分割处理方法和装置 |
| CN114972835B (zh) * | 2021-12-02 | 2024-08-02 | 湘潭大学 | 一种混合抑制数据增强方法 |
| CN114299281B (zh) * | 2021-12-31 | 2025-08-12 | 中山大学 | 一种基于跨层注意力机制特征融合的目标检测方法及系统 |
| US12118788B2 (en) * | 2022-02-03 | 2024-10-15 | Robert Bosch Gmbh | Learning semantic segmentation models in the absence of a portion of class labels |
| CN114612544B (zh) * | 2022-03-11 | 2024-01-02 | 北京百度网讯科技有限公司 | 图像处理方法、装置、设备和存储介质 |
| CN114581806B (zh) * | 2022-03-18 | 2024-03-19 | 重庆科技学院 | 一种基于主干边缘特征提取的工业零件空载率计算方法 |
| CN114387523B (zh) * | 2022-03-23 | 2022-06-03 | 成都理工大学 | 基于dcnn边界引导的遥感图像建筑物提取方法 |
| CN114782530B (zh) * | 2022-03-28 | 2025-07-15 | 杭州国辰机器人科技有限公司 | 室内场景下的三维语义地图构建方法、装置、设备及介质 |
| CN114882279B (zh) * | 2022-05-10 | 2024-03-19 | 西安理工大学 | 基于直推式半监督深度学习的多标签图像分类方法 |
| CN114998612B (zh) * | 2022-06-02 | 2024-08-30 | 长光卫星技术股份有限公司 | 基于边缘检测的建筑物语义分割后处理方法、系统以及设备 |
| CN115565165B (zh) * | 2022-09-09 | 2025-06-13 | 福州大学 | 一种基于语义分割和Transformer的集装箱号检测识别方法 |
| JP2024129938A (ja) * | 2023-03-14 | 2024-09-30 | 株式会社Jvcケンウッド | 画像分類装置、画像分類方法、および画像分類プログラム |
| US20250005637A1 (en) * | 2023-06-30 | 2025-01-02 | International Business Machines Corporation | Reconciliation of disputes in virtual world transactions |
| CN119672044A (zh) * | 2023-09-20 | 2025-03-21 | 北京三星通信技术研究有限公司 | 由电子设备执行的方法、电子设备、存储介质及程序产品 |
| JPWO2025062547A1 (enExample) * | 2023-09-21 | 2025-03-27 | ||
| CN117274815B (zh) * | 2023-10-10 | 2025-09-19 | 湖南大学 | 一种基于多标签策略的植物疾病和严重程度识别方法 |
| CN117079103B (zh) * | 2023-10-16 | 2024-01-02 | 暨南大学 | 一种用于神经网络训练的伪标签生成方法及系统 |
| WO2025141421A1 (ja) * | 2023-12-27 | 2025-07-03 | 株式会社半導体エネルギー研究所 | 表示装置 |
| CN118447324B (zh) * | 2024-05-17 | 2025-04-18 | 北华航天工业学院 | 一种基于深度学习的多标签图像分类方法 |
| CN118314605B (zh) * | 2024-06-06 | 2024-10-11 | 陕西安康玮创达信息技术有限公司 | 基于图像增强的病虫害分类识别方法 |
| CN118823587B (zh) * | 2024-09-10 | 2024-11-22 | 台州市凯国市政工程有限公司 | 基于无人机航拍的建筑工程面积测量方法及系统 |
| CN118864862B (zh) * | 2024-09-23 | 2024-11-22 | 湖南大学 | 一种基于可供性分割网络的厨房场景工具理解方法及系统 |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060072302A1 (en) | 2004-10-01 | 2006-04-06 | Chien Tseng L | Electro-luminescent (EL) illuminated wall plate device with push-tighten frame means |
| US9053537B2 (en) | 2011-09-21 | 2015-06-09 | Tandent Vision Science, Inc. | Classifier for use in generating a diffuse image |
| US9292787B2 (en) * | 2012-08-29 | 2016-03-22 | Microsoft Technology Licensing, Llc | Computer-implemented deep tensor neural network |
| CN104346620B (zh) | 2013-07-25 | 2017-12-29 | 佳能株式会社 | 对输入图像中的像素分类的方法和装置及图像处理系统 |
| EP3171297A1 (en) * | 2015-11-18 | 2017-05-24 | CentraleSupélec | Joint boundary detection image segmentation and object recognition using deep learning |
| KR102592076B1 (ko) * | 2015-12-14 | 2023-10-19 | 삼성전자주식회사 | 딥러닝 기반 영상 처리 장치 및 방법, 학습 장치 |
| US10402700B2 (en) * | 2016-01-25 | 2019-09-03 | Deepmind Technologies Limited | Generating images using neural networks |
| US9916522B2 (en) * | 2016-03-11 | 2018-03-13 | Kabushiki Kaisha Toshiba | Training constrained deconvolutional networks for road scene semantic segmentation |
| US10402697B2 (en) * | 2016-08-01 | 2019-09-03 | Nvidia Corporation | Fusing multilayer and multimodal deep neural networks for video classification |
-
2017
- 2017-09-28 US US15/718,554 patent/US10410353B2/en active Active
-
2018
- 2018-03-07 JP JP2018040369A patent/JP6843086B2/ja active Active
Also Published As
| Publication number | Publication date |
|---|---|
| US20180336683A1 (en) | 2018-11-22 |
| US10410353B2 (en) | 2019-09-10 |
| JP2018195293A (ja) | 2018-12-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6843086B2 (ja) | 画像処理システム、画像においてマルチラベル意味エッジ検出を行う方法、および、非一時的コンピューター可読記憶媒体 | |
| JP7723159B2 (ja) | 自己注意ベースのニューラルネットワークを使用した画像処理 | |
| US10860837B2 (en) | Deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition | |
| Yang et al. | Layered object models for image segmentation | |
| US9633282B2 (en) | Cross-trained convolutional neural networks using multimodal images | |
| CN102667859B (zh) | 由排他性分类器进行的一般物体的图像识别装置及方法 | |
| US20220180624A1 (en) | Method and device for automatic identification of labels of an image | |
| WO2018108129A1 (zh) | 用于识别物体类别的方法及装置、电子设备 | |
| JP2025504056A (ja) | 顔姿勢推定方法、装置、電子機器及び記憶媒体 | |
| CN117036948B (zh) | 一种基于注意力机制的致敏植物识别方法 | |
| JP6989450B2 (ja) | 画像解析装置、画像解析方法及びプログラム | |
| US12293555B2 (en) | Method and device of inputting annotation of object boundary information | |
| CN110020653A (zh) | 图像语义分割方法、装置及计算机可读存储介质 | |
| CN110827236A (zh) | 基于神经网络的脑组织分层方法、装置、计算机设备 | |
| JP6389742B2 (ja) | 画像セグメンテーション方法、装置、及びプログラム | |
| WO2024103997A1 (zh) | 手写体识别方法、手写体识别模型的训练方法及装置 | |
| Wang et al. | TGF-Net: Transformer and gist CNN fusion network for multi-modal remote sensing image classification | |
| JP7737127B2 (ja) | ピラミッドプーリングモジュール、およびプーリング処理の実行方法 | |
| JP7335204B2 (ja) | 画像処理装置、画像処理方法及び画像処理プログラム | |
| JP2019125128A (ja) | 情報処理装置、制御方法、及びプログラム | |
| HK40019666B (zh) | 基於神经网络的脑组织分层方法、装置、计算机设备 | |
| CN120766136A (zh) | 一种基于MTA-YOLOv11的玉米病虫害检测方法 | |
| WO2024216763A1 (zh) | 图像处理方法、装置、电子设备及存储介质 | |
| CN118057473A (zh) | 影像识别边缘设备以及方法 | |
| CN120766098A (zh) | 一种农作物病害检测方法、终端设备及存储介质 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201204 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201204 |
|
| A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20201204 |
|
| A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20210107 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210126 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210222 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6843086 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |