JP6842292B2 - Swivel simulation method, equipment and program - Google Patents

Swivel simulation method, equipment and program Download PDF

Info

Publication number
JP6842292B2
JP6842292B2 JP2016240469A JP2016240469A JP6842292B2 JP 6842292 B2 JP6842292 B2 JP 6842292B2 JP 2016240469 A JP2016240469 A JP 2016240469A JP 2016240469 A JP2016240469 A JP 2016240469A JP 6842292 B2 JP6842292 B2 JP 6842292B2
Authority
JP
Japan
Prior art keywords
tire
friction coefficient
slip
speed
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016240469A
Other languages
Japanese (ja)
Other versions
JP2018096785A (en
Inventor
幸司 荒川
幸司 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2016240469A priority Critical patent/JP6842292B2/en
Publication of JP2018096785A publication Critical patent/JP2018096785A/en
Application granted granted Critical
Publication of JP6842292B2 publication Critical patent/JP6842292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Description

本発明は、旋回シミュレーション方法、装置及びプログラムに関する。 The present invention relates to turning simulation methods, devices and programs.

コンピュータが解析可能なタイヤFEM(FEM;Finite Element Method)モデルを作成し、タイヤの特性値をシミュレーションする方法が提案され、実用化されつつある。路面と接触するタイヤの性能を予測する主要な方法としては、タイヤを複数要素に分割して要素毎に運動方程式を解く有限要素法等の数値解析手法を用い、所定荷重及び所定内圧等の解析条件の下で接触解析を実施する。 A method of creating a tire FEM (FEM; Finite Element Method) model that can be analyzed by a computer and simulating the characteristic values of the tire has been proposed and is being put into practical use. As a main method for predicting the performance of a tire that comes into contact with the road surface, a numerical analysis method such as a finite element method that divides the tire into multiple elements and solves the equation of motion for each element is used to analyze a predetermined load and a predetermined internal pressure. Perform contact analysis under conditions.

特許文献1には、タイヤFEMモデルを用いて、接地圧、すべり速度を算出し、対応する摩擦係数を特定し、接地面に生じる力を算出する記載がある。 Patent Document 1 describes that the tire FEM model is used to calculate the contact pressure and the slip speed, specify the corresponding friction coefficient, and calculate the force generated on the contact patch.

特許文献2には、タイヤFEMモデルを用いて、タイヤの過渡的なコーナリング特性を予測することについての記載がある。 Patent Document 2 describes predicting transient cornering characteristics of a tire using a tire FEM model.

特開2012−37280号公報Japanese Unexamined Patent Publication No. 2012-37280 特開2016−45798号公報Japanese Unexamined Patent Publication No. 2016-45798

接地面に生じる力を算出するにあたり摩擦係数が用いられるが、摩擦係数は温度依存性がある。しかし、いずれの文献においても温度依存性を考慮する記載がない。 The coefficient of friction is used to calculate the force generated on the ground plane, but the coefficient of friction is temperature-dependent. However, there is no description in any of the documents that considers temperature dependence.

本発明は、このような課題に着目してなされたものであって、その目的は、精度を向上させた旋回シミュレーション方法、装置及びプログラムを提供することである。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a turning simulation method, an apparatus, and a program with improved accuracy.

本発明は、上記目的を達成するために、次のような手段を講じている。 The present invention takes the following measures in order to achieve the above object.

すなわち、本発明の旋回シミュレーション方法は、接地面における温度を予測するステップと、スリップ角、タイヤに対する路面速度及びタイヤ回転速度を含む所定の解析条件の下、タイヤを複数の要素に分割したタイヤFEMモデルを所定荷重で接地及び転動させるシミュレーションを実行し、圧力、すべり速度、摩擦係数及び温度の対応関係を示す摩擦係数データから接地圧及びすべり速度と、予測した温度とに対応する摩擦係数を特定し、特定した摩擦係数を更に入力パラメータとして、平衡状態に至るまで演算を行い、接地面における接地圧分布、すべり速度分布、摩擦係数を算出するステップと、前記摩擦係数に基づき接地面に生じる3分力を要素毎に算出し、タイヤ軸にかかる横力又はコーナリングフォースを算出するステップと、を含む。 That is, in the turning simulation method of the present invention, a tire FEM in which a tire is divided into a plurality of elements under predetermined analysis conditions including a step of predicting a temperature on a contact patch, a slip angle, a road surface speed with respect to the tire, and a tire rotation speed. Execute a simulation of grounding and rolling the model with a predetermined load, and obtain the contact patch and slip speed and the friction coefficient corresponding to the predicted temperature from the friction coefficient data showing the correspondence between pressure, slip speed, friction coefficient and temperature. The step of calculating the contact pressure distribution, slip speed distribution, and friction coefficient on the contact patch by specifying and further using the specified friction coefficient as an input parameter and performing calculations up to the equilibrium state, and the step that occurs on the contact patch based on the friction coefficient. It includes a step of calculating the three-component force for each element and calculating the lateral force or cornering force applied to the tire shaft.

また、本発明の旋回シミュレーション装置は、接地面における温度を予測する温度予測部と、スリップ角、タイヤに対する路面速度及びタイヤ回転速度を含む所定の解析条件の下、タイヤを複数の要素に分割したタイヤFEMモデルを所定荷重で接地及び転動させるシミュレーションを実行し、圧力、すべり速度、摩擦係数及び温度の対応関係を示す摩擦係数データから接地圧及びすべり速度と、予測した温度とに対応する摩擦係数を特定し、特定した摩擦係数を更に入力パラメータとして、平衡状態に至るまで演算を行い、接地面における接地圧分布、すべり速度分布、摩擦係数を算出するシミュレーション実行部と、前記摩擦係数に基づき接地面に生じる3分力を要素毎に算出し、タイヤ軸にかかる横力又はコーナリングフォースを算出する力算出部と、を備える。 Further, the turning simulation device of the present invention divides the tire into a plurality of elements under predetermined analysis conditions including a temperature prediction unit that predicts the temperature on the ground contact surface, a slip angle, a road surface speed with respect to the tire, and a tire rotation speed. A simulation of grounding and rolling the tire FEM model with a predetermined load is executed, and the friction corresponding to the contact pressure and slip speed and the predicted temperature is performed from the friction coefficient data showing the correspondence between the pressure, the slip speed, the friction coefficient and the temperature. Based on the simulation execution unit that specifies the coefficient, further uses the specified friction coefficient as an input parameter, performs calculations up to the equilibrium state, and calculates the contact pressure distribution, slip speed distribution, and friction coefficient on the ground surface, and the friction coefficient. It is provided with a force calculation unit that calculates the three-component force generated on the ground contact surface for each element and calculates the lateral force or cornering force applied to the tire shaft.

このように、接地面の温度を予測し、温度に対応する摩擦係数を使用するので、温度の影響を考慮でき、タイヤに対して垂直に発生する横力又は進行方向に対して垂直に発生するコーナリングフォースを、より精度を向上させることが可能となる。 In this way, since the temperature of the ground plane is predicted and the friction coefficient corresponding to the temperature is used, the influence of the temperature can be taken into consideration, and the lateral force generated perpendicular to the tire or generated perpendicular to the traveling direction. It is possible to improve the accuracy of the cornering force.

本発明の旋回シミュレーション装置を模式的に示すブロック図。The block diagram which shows typically the turning simulation apparatus of this invention. 本発明の旋回シミュレーション処理を示すフローチャート。The flowchart which shows the turning simulation processing of this invention. 他の例の旋回シミュレーション処理を示すフローチャート。The flowchart which shows the turning simulation processing of another example. 他の例の旋回シミュレーション処理を示すフローチャート。The flowchart which shows the turning simulation processing of another example.

以下、本発明の一実施形態を、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

[旋回シミュレーション装置]
図1に示す装置1は、予め与えられた解析条件(スリップ角、所定荷重、所定内圧、タイヤに対する路面速度(車速)、タイヤ回転速度)において、タイヤを接地及び転動させるシミュレーションを実行する装置である。
[Swirl simulation device]
The device 1 shown in FIG. 1 is a device that executes a simulation of grounding and rolling a tire under predetermined analysis conditions (slip angle, predetermined load, predetermined internal pressure, road surface speed (vehicle speed) with respect to the tire, tire rotation speed). Is.

具体的に、装置1は、図1に示すように、設定部10と、シミュレーション実行部11と、力算出部13と、スリップ率設定部14と、温度予測部16と、スリップ角設定部17と、を有する。シミュレーション実行部11は摩擦係数特定部12を有する。これら各部10〜17は、CPU、メモリ、各種インターフェイス等を備えたパソコン等の情報処理装置においてCPUが予め記憶されている図示しない処理ルーチンを実行することによりソフトウェア及びハードウェアが協働して実現される。 Specifically, as shown in FIG. 1, the apparatus 1 includes a setting unit 10, a simulation execution unit 11, a force calculation unit 13, a slip rate setting unit 14, a temperature prediction unit 16, and a slip angle setting unit 17. And have. The simulation execution unit 11 has a friction coefficient specifying unit 12. Each of these parts 10 to 17 is realized in cooperation with software and hardware by executing a processing routine (not shown) in which the CPU is stored in advance in an information processing device such as a personal computer equipped with a CPU, a memory, various interfaces, and the like. Will be done.

図1に示す設定部10は、キーボードやマウス等の既知の操作部を介してユーザからの操作を受け付け、解析対象となるタイヤ有限要素(Finite Element)モデルデータ、解析で利用する各種設定値(例えば、タイヤモデルにかける荷重値、回転速度、タイヤに対する路面速度(車速)、内圧、荷重、タイヤの進行方向に対するタイヤの向きであるスリップ角)などの有限要素法を用いたシミュレーションに必要な各種解析条件の設定を実行し、これら設定値をメモリに記憶する。タイヤFEMモデルデータは、有限要素法に対応した要素分割(例えば、メッシュ分割)により分割された有限個の要素で構成される。要素の境界には節点が定義され、節点毎に運動方程式が演算される。タイヤモデルは、主溝及び横溝で形成されるパターンを有する。なお、単純な旋回シミュレーションでは、タイヤに対する路面速度とタイヤ回転速度が同じにすることが挙げられる。回転速度及びタイヤに対する路面速度として、解析手法によるが、変位や力を代わりに用いても良い。 The setting unit 10 shown in FIG. 1 receives an operation from a user via a known operation unit such as a keyboard or a mouse, and tire finite element model data to be analyzed, and various setting values used in the analysis ( For example, various types required for simulation using the finite element method such as load value applied to the tire model, rotation speed, road surface speed (vehicle speed) with respect to the tire, internal pressure, load, slip angle which is the direction of the tire with respect to the traveling direction of the tire). Executes the setting of analysis conditions and stores these setting values in the memory. The tire FEM model data is composed of a finite number of elements divided by element division (for example, mesh division) corresponding to the finite element method. Nodes are defined at the boundaries of the elements, and the equation of motion is calculated for each node. The tire model has a pattern formed by a main groove and a lateral groove. In a simple turning simulation, the road surface speed with respect to the tire and the tire rotation speed may be the same. As the rotation speed and the road surface speed with respect to the tire, although it depends on the analysis method, displacement or force may be used instead.

シミュレーション実行部11は、スリップ角、タイヤに対する路面速度(車速)及びタイヤ回転速度を含む上記所定の解析条件の下、タイヤFEMモデルを所定荷重で接地及び転動させるシミュレーションを実行する。シミュレーションでは、摩擦係数特定部12により特定された摩擦係数を更に入力パラメータとして、平衡状態に至るまで演算を行う。この演算では、圧力、すべり速度及び摩擦係数がそれぞれ影響しあうため、平衡状態となるまで演算を行う。シミュレーションの結果、接地面における接地圧分布、すべり速度分布、摩擦係数を算出する。結果は要素毎に算出される。本実施形態では、定常輸送解析を行っているが、これに限定されず、種々の解析法を利用できる。 The simulation execution unit 11 executes a simulation of grounding and rolling the tire FEM model with a predetermined load under the above-mentioned predetermined analysis conditions including the slip angle, the road surface speed (vehicle speed) with respect to the tire, and the tire rotation speed. In the simulation, the friction coefficient specified by the friction coefficient specifying unit 12 is further used as an input parameter, and the calculation is performed until the equilibrium state is reached. In this calculation, pressure, slip speed, and friction coefficient affect each other, so the calculation is performed until an equilibrium state is reached. As a result of the simulation, the ground pressure distribution, slip velocity distribution, and friction coefficient on the ground plane are calculated. The result is calculated for each element. In the present embodiment, steady transport analysis is performed, but the present invention is not limited to this, and various analysis methods can be used.

摩擦係数特定部12は、摩擦係数データ15を用いる。摩擦係数データ15は、圧力、すべり速度、摩擦係数及び温度の対応関係を示す。摩擦係数データ15は、圧力、すべり速度、摩擦係数及び温度の4つからなるデータであり、次のように関数で表現することができる。
摩擦係数=F(圧力,すべり速度,温度)
The friction coefficient specifying unit 12 uses the friction coefficient data 15. The friction coefficient data 15 shows the correspondence between pressure, slip speed, friction coefficient and temperature. The friction coefficient data 15 is data composed of four data of pressure, slip speed, friction coefficient and temperature, and can be expressed by a function as follows.
Coefficient of friction = F (pressure, slip speed, temperature)

摩擦係数データ15の構築方法は、種々存在する。例えば、温度に応じて摩擦係数が変化する数式モデルを設けてもよい。また、少なくとも2つの温度について圧力、すべり速度、摩擦係数の対応関係を示すデータを有し、データが存在する温度以外の温度を参照する場合には、存在するデータから線形補間した値を用いることが挙げられる。 There are various methods for constructing the friction coefficient data 15. For example, a mathematical model in which the coefficient of friction changes according to the temperature may be provided. In addition, when there is data showing the correspondence between pressure, slip speed, and friction coefficient for at least two temperatures, and when referring to a temperature other than the temperature at which the data exists, use a value linearly interpolated from the existing data. Can be mentioned.

摩擦係数データ15は、実験値に基づく値である。ドライ路面、ウエット路面、アイス路面、スノー路面などの環境が異なる毎に複数用意してもよく、路面粗さ違いの路面を複数用意することが考えられる。摩擦係数の計測は、ターンテーブル上に例えば研磨布路面を設け、その上をゴムサンプルを転動させて圧力及びすべり速度を異ならせて計測する。
または、ブロック状のサンプルを用いて路面上を一方向に滑らせる形で圧力及びすべり速度を異ならせて計測する。
研磨布路面よりも、骨材を並べて構成した路面や実際のアスファルト路面の方が好ましい。
The friction coefficient data 15 is a value based on an experimental value. A plurality of road surfaces having different road surface roughness may be prepared for each environment such as a dry road surface, a wet road surface, an ice road surface, and a snow road surface. The coefficient of friction is measured by providing, for example, a polishing pad road surface on a turntable, and rolling a rubber sample on the polishing pad to make the pressure and the sliding speed different.
Alternatively, using a block-shaped sample, the pressure and the slip speed are measured by sliding on the road surface in one direction.
A road surface formed by arranging aggregates or an actual asphalt road surface is preferable to a polished cloth road surface.

温度予測部16は、接地面における温度を予測する。温度予測部16は、設定された環境温度をそのまま接地面の温度として設定するように構成してもよい。また、実測の接地面温度分布に基づき設定しても良い。さらには、シミュレーション実行部11での計算結果に基づき接地面の温度分布を予測するように構成してもよい。 The temperature prediction unit 16 predicts the temperature on the ground plane. The temperature prediction unit 16 may be configured to set the set environmental temperature as it is as the temperature of the ground plane. Further, it may be set based on the measured contact patch temperature distribution. Further, the temperature distribution of the ground plane may be predicted based on the calculation result of the simulation execution unit 11.

摩擦係数特定部12は、摩擦係数データ15を用い、シミュレーション実行部11で算出した接地圧及びすべり速度と、温度予測部16で予測した温度とに対応する摩擦係数を、要素毎に特定する。 The friction coefficient specifying unit 12 uses the friction coefficient data 15 to specify the friction coefficient corresponding to the contact pressure and slip speed calculated by the simulation execution unit 11 and the temperature predicted by the temperature prediction unit 16 for each element.

力算出部13は、摩擦係数に基づき接地面に生じる3分力を要素毎に算出し、タイヤ軸にかかる横力を算出する。具体的に、横力分布を得ることができる。各々の要素での横力を合計することでタイヤ全体での横力を算出する。摩擦係数と接地圧とすべり速度に基づき、タイヤの横方向の力(横力;Fy)と、タイヤ前後方向の力(制動力又は駆動力;Fx)とが算出できる。 The force calculation unit 13 calculates the three-component force generated on the ground contact surface for each element based on the friction coefficient, and calculates the lateral force applied to the tire shaft. Specifically, the lateral force distribution can be obtained. The lateral force of the entire tire is calculated by summing the lateral forces of each element. Based on the coefficient of friction, the contact pressure, and the slip speed, the lateral force of the tire (lateral force; Fy) and the force in the front-rear direction of the tire (braking force or driving force; Fx) can be calculated.

スリップ率設定部14は、タイヤに対する路面速度(車速V)及びタイヤの回転速度Vで定まるスリップ率Sを異ならせるために、路面速度(車速V)及びタイヤの回転速度Vを変更する。スリップ率Sは(V−V)/Vで表現される。ある実施例では、スリップ率設定部14を設けずに、スリップ率を一定にしてもよい。 Slip ratio setting unit 14, in order to vary the slip ratio S determined by the road speed (vehicle speed V V) and the rotational speed V T of the tire to the tire, the road speed (vehicle speed V V) and change the rotational speed V T of the tire To do. Slip ratio S is expressed by (V V -V T) / V V. In a certain embodiment, the slip ratio may be constant without providing the slip ratio setting unit 14.

スリップ角設定部17は、スリップ角を変更する。 The slip angle setting unit 17 changes the slip angle.

シミュレーション実行部11、摩擦係数特定部12、及び、力算出部13の処理それぞれを、スリップ角SAを異ならせて複数回実行し、スリップ角SAと横力Fyの関係を複数組取得する。 The processing of the simulation execution unit 11, the friction coefficient specifying unit 12, and the force calculation unit 13 is executed a plurality of times with different slip angles SA, and a plurality of sets of relationships between the slip angle SA and the lateral force Fy are acquired.

さらには、スリップ率設定部14がスリップ率を変更することによって、スリップ角SAと横力Fyの関係を複数組取得することを、スリップ率を異ならせて複数回実行してもよい。そうすれば、複合コーナリング状態を再現でき、摩擦円を算出可能となる。 Further, the slip rate setting unit 14 may change the slip rate to acquire a plurality of sets of relationships between the slip angle SA and the lateral force Fy a plurality of times with different slip rates. Then, the composite cornering state can be reproduced and the friction circle can be calculated.

[旋回シミュレーション方法]
上記装置1の動作について図2、図3、図4を参照しつつ説明する。図2は、別途に予め定めた温度分布を設定する例である。図3は、前の解析で求めた温度分布を用いて、前後力シミュレーションの前に熱解析を行い、その結果を反映した前後力シミュレーションを行う例である。図4は、前後力シミュレーションと熱解析を同時に行う例であり、駆動・制動状態により発生する熱を摩擦係数に反映させる例である。
[Turning simulation method]
The operation of the device 1 will be described with reference to FIGS. 2, 3, and 4. FIG. 2 is an example of setting a separately predetermined temperature distribution. FIG. 3 shows an example in which the thermal analysis is performed before the front-back force simulation using the temperature distribution obtained in the previous analysis, and the front-back force simulation reflecting the result is performed. FIG. 4 shows an example in which the front-rear force simulation and the thermal analysis are performed at the same time, and the heat generated by the driving / braking state is reflected in the friction coefficient.

まず、ステップST1において、設定部10は、解析対象となるタイヤ有限要素(Finite Element)モデルデータ、解析で利用する各種設定値(例えば、タイヤモデルにかける荷重値、回転速度、タイヤに対する路面速度(車速)、内圧、荷重、スリップ角)などの有限要素法を用いたシミュレーションに必要な各種解析条件の設定を実行し、これら設定値をメモリに記憶する。使用する摩擦係数データ15を指定してもよい。 First, in step ST1, the setting unit 10 uses the tire finite element model data to be analyzed, various set values used in the analysis (for example, a load value applied to the tire model, a rotation speed, and a road surface speed with respect to the tire (for example). Various analysis conditions required for simulation using the finite element method such as vehicle speed), internal pressure, load, slip angle) are set, and these set values are stored in the memory. The friction coefficient data 15 to be used may be specified.

次のステップST2において、温度予測部16は、接地面における温度を予測する。図2では、予め設定された温度分布を利用する。図3では、設定された解析条件にて熱解析を行い、接地面の温度を予測する。図4では、ステップST2とST3を同時に行う。 In the next step ST2, the temperature prediction unit 16 predicts the temperature on the ground plane. In FIG. 2, a preset temperature distribution is used. In FIG. 3, thermal analysis is performed under the set analysis conditions to predict the temperature of the ground plane. In FIG. 4, steps ST2 and ST3 are performed at the same time.

次のステップST3において、シミュレーション実行部11は、スリップ角、タイヤに対する路面速度及びタイヤ回転速度を含む所定解析条件の下、タイヤを複数の要素に分割したタイヤFEMモデルを所定荷重で接地及び転動させるシミュレーションを実行し、圧力、すべり速度、摩擦係数及び温度の対応関係を示す摩擦係数データ15から接地圧及びすべり速度と、予測した温度とに対応する摩擦係数を特定し、特定した摩擦係数を更に入力パラメータとして、平衡状態に至るまで演算を行い、接地面における接地圧分布、すべり速度分布、摩擦係数を算出する。詳細には、所定内圧でインフレート解析を行って内圧付与による変形を算出し、所定荷重をかけた接地解析を行って接地による変形を算出し、解析条件(タイヤに対する路面速度及びタイヤ回転速度)で転動させた制動解析を行い、接地面に生じる接地圧、すべり速度、摩擦係数を要素毎算出する。ここで、摩擦係数特定部12は、摩擦係数データ15を用い、シミュレーション実行部11で算出した接地圧及びすべり速度と、温度予測部16で予測した温度とに対応する摩擦係数を、要素毎に特定することになる。 In the next step ST3, the simulation execution unit 11 touches and rolls the tire FEM model in which the tire is divided into a plurality of elements with a predetermined load under predetermined analysis conditions including the slip angle, the road surface speed with respect to the tire, and the tire rotation speed. The friction coefficient corresponding to the contact pressure and the slip speed and the predicted temperature is specified from the friction coefficient data 15 showing the correspondence relationship between the pressure, the slip speed, the friction coefficient and the temperature, and the specified friction coefficient is obtained. Furthermore, as input parameters, calculations are performed up to the equilibrium state, and the contact pressure distribution, slip speed distribution, and friction coefficient on the contact surface are calculated. Specifically, an inflator analysis is performed at a predetermined internal pressure to calculate the deformation due to internal pressure application, a ground contact analysis with a predetermined load is performed to calculate the deformation due to ground contact, and analysis conditions (road surface speed with respect to the tire and tire rotation speed). The braking analysis that was rolled in is performed, and the contact pressure, slip speed, and friction coefficient generated on the contact patch are calculated for each element. Here, the friction coefficient specifying unit 12 uses the friction coefficient data 15 to obtain the friction coefficient corresponding to the contact pressure and slip speed calculated by the simulation execution unit 11 and the temperature predicted by the temperature prediction unit 16 for each element. Will be identified.

次のステップST4において、力算出部13は、摩擦係数に基づき接地面に生じる3分力を要素毎に算出し、タイヤ軸にかかる横力を算出する。 In the next step ST4, the force calculation unit 13 calculates the three-component force generated on the ground contact surface for each element based on the friction coefficient, and calculates the lateral force applied to the tire shaft.

次のステップST5では、得られたスリップ角と横力のデータが条件(回数、データ数など)を満たすかを判定する。条件を満たすまで、ステップST2〜4を、スリップ角SAを異ならせて複数回実行する。スリップ角SAは、スリップ角設定部17が変更する。このようにすれば、スリップ角SAと横力Fyのデータが複数組取得でき、スリップ角−横力(SA−Fy)カーブをプロットすることが可能となる。 In the next step ST5, it is determined whether the obtained slip angle and lateral force data satisfy the conditions (number of times, number of data, etc.). Steps ST2 to 4 are executed a plurality of times with different slip angles SA until the conditions are satisfied. The slip angle SA is changed by the slip angle setting unit 17. In this way, a plurality of sets of data of the slip angle SA and the lateral force Fy can be acquired, and the slip angle-lateral force (SA-Fy) curve can be plotted.

ステップST5にて、条件を満たす場合には、次のステップST6に進む。ステップST6では、得られたスリップ率のデータが条件(回数、データ数)を満たすかを判定する。条件を満たすまでステップST2〜4を、スリップ率を異ならせて複数回実行する。スリップ率(タイヤに対する路面速度及びタイヤ回転速度)は、スリップ率設定部14が変更する。このようにすれば、ST2〜4,ST5:NOのステップを繰り返し実行することで、或るスリップ率におけるSA−Fyカーブが得られ、ST2〜4,ST5:YES,ST6:NOのステップを繰り返し実行することで、SA−Fyカーブを複数のスリップ率について得ることが可能となる。 If the conditions are satisfied in step ST5, the process proceeds to the next step ST6. In step ST6, it is determined whether the obtained slip ratio data satisfies the conditions (number of times, number of data). Steps ST2 to 4 are executed a plurality of times with different slip ratios until the conditions are satisfied. The slip ratio (road surface speed with respect to the tire and tire rotation speed) is changed by the slip ratio setting unit 14. By doing so, the SA-Fy curve at a certain slip ratio can be obtained by repeatedly executing the steps of ST2, 4, ST5: NO, and the steps of ST2, 4, ST5: YES, ST6: NO are repeated. By doing so, it is possible to obtain SA-Fy curves for multiple slip rates.

本実施形態において、タイヤに対して垂直に発生する横力Fyを算出するようにしているが、進行方向に対して垂直に発生するコーナリングフォースを算出するように構成してもよい。 In the present embodiment, the lateral force Fy generated perpendicular to the tire is calculated, but the cornering force generated perpendicular to the traveling direction may be calculated.

以上のように、本実施形態の旋回シミュレーション方法は、接地面における温度を予測するステップ(ST2)と、スリップ角、タイヤに対する路面速度及びタイヤ回転速度を含む所定の解析条件の下、タイヤを複数の要素に分割したタイヤFEMモデルを所定荷重で接地及び転動させるシミュレーションを実行し、圧力、すべり速度、摩擦係数及び温度の対応関係を示す摩擦係数データ15から接地圧及びすべり速度と、予測した温度とに対応する摩擦係数を特定し、特定した摩擦係数を更に入力パラメータとして、平衡状態に至るまで演算を行い、接地面における接地圧分布、すべり速度分布、摩擦係数を算出するステップ(ST3)と、摩擦係数に基づき接地面に生じる3分力を要素毎に算出し、タイヤ軸にかかる横力又はコーナリングフォースを算出するステップ(ST4)と、を含む。 As described above, in the turning simulation method of the present embodiment, a plurality of tires are used under predetermined analysis conditions including the step (ST2) of predicting the temperature on the ground contact surface, the slip angle, the road surface speed with respect to the tire, and the tire rotation speed. A tire FEM model divided into the above elements was grounded and rolled under a predetermined load, and the contact pressure and slip speed were predicted from the friction coefficient data 15 showing the correspondence between pressure, slip speed, friction coefficient and temperature. Step (ST3) to specify the friction coefficient corresponding to the temperature, use the specified friction coefficient as an input parameter, perform calculations until the equilibrium state is reached, and calculate the contact pressure distribution, slip speed distribution, and friction coefficient on the ground surface. And the step (ST4) of calculating the three-component force generated on the ground contact surface based on the friction coefficient for each element and calculating the lateral force or cornering force applied to the tire shaft.

本実施形態の旋回シミュレーション装置は、接地面における温度を予測する温度予測部16と、スリップ角、タイヤに対する路面速度及びタイヤ回転速度を含む所定の解析条件の下、タイヤを複数の要素に分割したタイヤFEMモデルを所定荷重で接地及び転動させるシミュレーションを実行し、圧力、すべり速度、摩擦係数及び温度の対応関係を示す摩擦係数データ15から接地圧及びすべり速度と、予測した温度とに対応する摩擦係数を特定し、特定した摩擦係数を更に入力パラメータとして、平衡状態に至るまで演算を行い、接地面における接地圧分布、すべり速度分布、摩擦係数を算出するシミュレーション実行部11と、摩擦係数に基づき接地面に生じる3分力を要素毎に算出し、タイヤ軸にかかる横力又はコーナリングフォースを算出する力算出部13と、を備える。 The turning simulation device of the present embodiment divides the tire into a plurality of elements under predetermined analysis conditions including a temperature prediction unit 16 that predicts the temperature on the ground contact surface, a slip angle, a road surface speed with respect to the tire, and a tire rotation speed. A simulation of grounding and rolling the tire FEM model under a predetermined load is executed, and the ground contact pressure and the slip speed correspond to the predicted temperature from the friction coefficient data 15 showing the correspondence relationship between the pressure, the slip speed, the friction coefficient and the temperature. The friction coefficient is specified, and the specified friction coefficient is used as an input parameter to perform calculations up to the equilibrium state, and the simulation execution unit 11 for calculating the contact pressure distribution, slip speed distribution, and friction coefficient on the ground surface, and the friction coefficient. A force calculation unit 13 for calculating the three-component force generated on the ground contact surface for each element and calculating the lateral force or cornering force applied to the tire shaft is provided.

この構成によれば、接地面の温度を予測し、温度に対応する摩擦係数を使用するので、温度の影響を考慮でき、タイヤに対して垂直に発生する横力又は進行方向に対して垂直に発生するコーナリングフォースを、より精度を向上させることが可能となる。 According to this configuration, the temperature of the ground plane is predicted and the coefficient of friction corresponding to the temperature is used, so that the influence of the temperature can be taken into consideration, and the lateral force generated perpendicular to the tire or perpendicular to the traveling direction can be taken into consideration. It is possible to improve the accuracy of the generated cornering force.

本実施形態では、摩擦係数データ15は、少なくとも2つの異なる温度について、圧力、すべり速度及び摩擦係数の対応関係を示すデータを有し、データが存在する温度以外の温度を参照する場合には、存在するデータから線形補間した値を用いる。 In the present embodiment, the friction coefficient data 15 has data indicating the correspondence between the pressure, the slip speed and the friction coefficient for at least two different temperatures, and when referring to a temperature other than the temperature at which the data exists, the friction coefficient data 15 may be used. Use the value linearly interpolated from the existing data.

この構成によれば、摩擦係数データ15のデータ量を或る程度抑制しつつ、精度も或る程度担保することができ、実装上では有用である。 According to this configuration, the amount of friction coefficient data 15 can be suppressed to some extent and the accuracy can be guaranteed to some extent, which is useful in mounting.

本実施形態では、温度の予測、シミュレーションの実行、力の算出をそれぞれ、スリップ角を異ならせて複数回繰り返し実行し、スリップ角と力の関係を複数組取得する。 In the present embodiment, the temperature prediction, the simulation execution, and the force calculation are repeatedly executed a plurality of times with different slip angles, and a plurality of sets of relationships between the slip angles and the forces are acquired.

このように、スリップ角を異ならせて繰り返し演算するので、スリップ角−横力(SA−Fy)カーブを適切に得ることが可能となる。 Since the calculation is repeated with different slip angles in this way, it is possible to appropriately obtain the slip angle-lateral force (SA-Fy) curve.

本実施形態では、スリップ角と力の関係を複数組取得することを、タイヤに対する路面速度及びタイヤの回転速度で定まるスリップ率Sを異ならせて複数回繰り返し実行する。 In the present embodiment, the acquisition of a plurality of sets of the relationship between the slip angle and the force is repeatedly executed a plurality of times with different slip ratios S determined by the road surface speed with respect to the tire and the rotation speed of the tire.

このようにすれば、SA−Fyカーブを複数のスリップ率について得ることが可能となり、例えば摩擦円などのデータを得ることも可能になる。 In this way, it is possible to obtain the SA-Fy curve for a plurality of slip ratios, and it is also possible to obtain data such as a friction circle.

本実施形態のプログラムは、上記方法を構成する各ステップをコンピュータに実行させるプログラムである。
これらプログラムを実行することによっても、上記方法の奏する作用効果を得ることが可能となる。言い換えると、上記方法を使用しているとも言える。
The program of this embodiment is a program that causes a computer to execute each step constituting the above method.
By executing these programs, it is possible to obtain the effects of the above method. In other words, it can be said that the above method is used.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 Although the embodiments of the present invention have been described above with reference to the drawings, it should be considered that the specific configuration is not limited to these embodiments. The scope of the present invention is shown not only by the description of the above-described embodiment but also by the scope of claims, and further includes all modifications within the meaning and scope equivalent to the scope of claims.

上記の各実施形態で採用している構造を他の任意の実施形態に採用することは可能である。各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 It is possible to adopt the structure adopted in each of the above embodiments in any other embodiment. The specific configuration of each part is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

11…シミュレーション実行部
13…力算出部
15…摩擦係数データ
16…温度予測部
11 ... Simulation execution unit 13 ... Force calculation unit 15 ... Friction coefficient data 16 ... Temperature prediction unit

Claims (9)

(1)接地面における温度を予測するステップと、
(2)スリップ角、タイヤに対する路面速度タイヤ回転速度及び摩擦係数を含む所定の解析条件の下、タイヤを複数の要素に分割したタイヤFEMモデルを所定荷重で接地及び転動させるシミュレーションを実行し、要素毎に接地圧、すべり速度及び摩擦係数を算出するステップと、
(3)圧力、すべり速度、摩擦係数及び温度の対応関係を示す摩擦係数データから、シミュレーションで得られた接地圧及びすべり速度と、予測した温度とに対応する摩擦係数を特定するステップと、
(4)前記(3)で特定された摩擦係数を入力パラメータに含め、スリップ角、タイヤに対する路面速度及びタイヤ回転速度を含む所定の解析条件の下、タイヤを複数の要素に分割したタイヤFEMモデルを所定荷重で接地及び転動させるシミュレーションを実行し、要素毎に接地圧、すべり速度及び摩擦係数を算出するステップと、
(5)前記(3)及び前記(4)のステップを平衡状態に至るまで繰り返す定常解析を実行し、平衡状態における接地面における接地圧分布、すべり速度分布、摩擦係数を算出するステップと、
(6)前記摩擦係数に基づき接地面に生じる3分力を要素毎に算出し、タイヤ軸にかかる横力又はコーナリングフォースを算出するステップと、
を含む、旋回シミュレーション方法。
(1) Steps to predict the temperature on the ground plane and
(2) Under predetermined analysis conditions including slip angle, road surface speed with respect to the tire, tire rotation speed and friction coefficient , a simulation is executed in which a tire FEM model in which a tire is divided into a plurality of elements is grounded and rolled with a predetermined load. , Steps to calculate ground pressure, slip speed and friction coefficient for each element,
(3) A step of specifying the friction coefficient corresponding to the contact pressure and the slip speed obtained by the simulation and the predicted temperature from the friction coefficient data showing the correspondence relationship between the pressure, the slip speed, the friction coefficient and the temperature.
(4) the (3) the identified friction coefficient included in the input parameters, the slip angle, under a predetermined analysis conditions including road speed and the tire rotational speed for the tire, a tire FEM obtained by dividing the tire into a plurality of elements A step of executing a simulation of grounding and rolling the model with a predetermined load and calculating the ground pressure, slip speed, and friction coefficient for each element.
(5) A step of performing a steady-state analysis in which the steps (3) and (4) are repeated until an equilibrium state is performed, and a step of calculating the ground pressure distribution, the slip velocity distribution, and the friction coefficient on the ground plane in the equilibrium state.
(6) A step of calculating the three-component force generated on the ground contact surface based on the friction coefficient for each element and calculating the lateral force or cornering force applied to the tire shaft.
A turning simulation method, including.
前記摩擦係数データは、少なくとも2つの異なる温度について、圧力、すべり速度及び摩擦係数の対応関係を示すデータを有し、データが存在する温度以外の温度を参照する場合には、存在するデータから線形補間した値を用いる、請求項1に記載の方法。 The coefficient of friction data has data showing the correspondence between pressure, slip speed and coefficient of friction for at least two different temperatures, and is linear from the existing data when referring to a temperature other than the temperature at which the data exists. The method of claim 1, wherein the interpolated values are used. 前記(1)〜(6)のステップそれぞれ、スリップ角を異ならせて複数回繰り返し実行し、スリップ角と力の関係を複数組取得する、請求項1又は2に記載の方法。 Steps, respectively, with different slip angles repeatedly executed multiple times, a plurality of sets obtaining a relationship between the slip angle and power The method according to claim 1 or 2 of (1) to (6). 前記スリップ角と力の関係を複数組取得することを、前記タイヤに対する路面速度及びタイヤの回転速度で定まるスリップ率を異ならせて複数回繰り返し実行する請求項3に記載の方法。 The method according to claim 3, wherein acquiring a plurality of sets of the relationship between the slip angle and the force is repeatedly executed a plurality of times with different slip rates determined by the road surface speed and the rotation speed of the tire with respect to the tire. 接地面における温度を予測する温度予測部と、
(1)スリップ角、タイヤに対する路面速度タイヤ回転速度及び摩擦係数を含む所定の解析条件の下、タイヤを複数の要素に分割したタイヤFEMモデルを所定荷重で接地及び転動させるシミュレーションを実行し、要素毎に接地圧、すべり速度及び摩擦係数を算出するステップと、
(2)圧力、すべり速度、摩擦係数及び温度の対応関係を示す摩擦係数データから接地圧及びすべり速度と、予測した温度とに対応する摩擦係数を特定するステップと、
(3)前記(2)で特定した摩擦係数を入力パラメータに含め、スリップ角、タイヤに対する路面速度及びタイヤ回転速度を含む所定の解析条件の下、タイヤを複数の要素に分割したタイヤFEMモデルを所定荷重で接地及び転動させるシミュレーションを実行し、要素毎に接地圧、すべり速度及び摩擦係数を算出するステップと、
(4)前記(2)及び前記(3)のステップを平衡状態に至るまで繰り返す定常解析を実行し、平衡状態における接地面における接地圧分布、すべり速度分布、摩擦係数を算出するステップと、を実行する、シミュレーション実行部と、
前記摩擦係数に基づき接地面に生じる3分力を要素毎に算出し、タイヤ軸にかかる横力又はコーナリングフォースを算出する力算出部と、
を備える、旋回シミュレーション装置。
A temperature prediction unit that predicts the temperature on the ground plane,
(1) Under predetermined analysis conditions including slip angle, road surface speed with respect to the tire, tire rotation speed and friction coefficient , a simulation is executed in which a tire FEM model in which a tire is divided into a plurality of elements is grounded and rolled with a predetermined load. , Steps to calculate ground pressure, slip speed and friction coefficient for each element,
(2) A step of specifying the friction coefficient corresponding to the contact pressure and the slip speed and the predicted temperature from the friction coefficient data showing the correspondence relationship between the pressure, the slip speed, the friction coefficient and the temperature.
(3) the including the identified friction coefficient to the input parameter (2), the slip angle, under a predetermined analysis conditions including road speed and the tire rotation speed with respect to the tire, tire FEM model divided the tire into a plurality of elements A step to calculate the contact pressure, slip speed and friction coefficient for each element by executing a simulation of grounding and rolling with a predetermined load.
(4) A step of performing a steady-state analysis in which the steps (2) and (3) are repeated until an equilibrium state is performed, and a step of calculating the ground pressure distribution, the slip velocity distribution, and the friction coefficient on the ground plane in the equilibrium state. The simulation execution part to execute,
A force calculation unit that calculates the three-component force generated on the contact patch based on the friction coefficient for each element and calculates the lateral force or cornering force applied to the tire shaft.
A swivel simulation device.
前記摩擦係数データは、少なくとも2つの異なる温度について、圧力、すべり速度及び摩擦係数の対応関係を示すデータを有し、データが存在する温度以外の温度を参照する場合には、存在するデータから線形補間した値を用いる、請求項5に記載の装置。 The coefficient of friction data has data showing the correspondence between pressure, slip speed and coefficient of friction for at least two different temperatures, and is linear from the existing data when referring to a temperature other than the temperature at which the data exists. The apparatus according to claim 5, wherein the interpolated value is used. 前記温度予測部による温度の予測、前記シミュレーション実行部による前記(1)〜(4)のステップの実行、前記力算出部による力の算出をそれぞれ、スリップ角を異ならせて複数回繰り返し実行し、スリップ角と力の関係を複数組取得する、請求項5又は6に記載の装置。 The temperature prediction unit predicts the temperature, the simulation execution unit executes the steps (1) to (4), and the force calculation unit calculates the force, each of which is repeatedly executed a plurality of times with different slip angles. The device according to claim 5 or 6, wherein a plurality of sets of relationships between a slip angle and a force are acquired. 前記スリップ角と力の関係を複数組取得することを、前記タイヤに対する路面速度及びタイヤの回転速度で定まるスリップ率を異ならせて複数回繰り返し実行する、請求項7に記載の装置。 The device according to claim 7, wherein a plurality of sets of the relationship between the slip angle and the force are repeatedly executed a plurality of times with different slip rates determined by the road surface speed and the rotation speed of the tire with respect to the tire. 請求項1〜4のいずれかに記載の方法をコンピュータに実行させるプログラム。 A program that causes a computer to execute the method according to any one of claims 1 to 4.
JP2016240469A 2016-12-12 2016-12-12 Swivel simulation method, equipment and program Active JP6842292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016240469A JP6842292B2 (en) 2016-12-12 2016-12-12 Swivel simulation method, equipment and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016240469A JP6842292B2 (en) 2016-12-12 2016-12-12 Swivel simulation method, equipment and program

Publications (2)

Publication Number Publication Date
JP2018096785A JP2018096785A (en) 2018-06-21
JP6842292B2 true JP6842292B2 (en) 2021-03-17

Family

ID=62633445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016240469A Active JP6842292B2 (en) 2016-12-12 2016-12-12 Swivel simulation method, equipment and program

Country Status (1)

Country Link
JP (1) JP6842292B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264698B2 (en) * 2019-04-02 2023-04-25 株式会社ブリヂストン CONTINUUM BEHAVIOR ANALYSIS DEVICE, CONTINUUM BEHAVIOR ANALYSIS METHOD, AND PROGRAM
US20220366107A1 (en) * 2019-10-31 2022-11-17 Siemens Industry Software Netherlands B.V. Computer implemented method for simulation of tire performance
JP2021089164A (en) * 2019-12-02 2021-06-10 Toyo Tire株式会社 Driving support system and driving support method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294586A (en) * 2002-04-04 2003-10-15 Sumitomo Rubber Ind Ltd Simulation method for tire
JP2006076404A (en) * 2004-09-08 2006-03-23 Bridgestone Corp Tire model, tire behavior simulation method, program, and recording medium
EP1637863A1 (en) * 2004-09-20 2006-03-22 PIRELLI PNEUMATICI S.p.A. Method for calculating a friction-slippage curve for a tire
JP2012037280A (en) * 2010-08-04 2012-02-23 Bridgestone Corp Method, apparatus and program for simulating tire performance

Also Published As

Publication number Publication date
JP2018096785A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP4608306B2 (en) Tire simulation method
Farroni et al. TRT: thermo racing tyre a physical model to predict the tyre temperature distribution
JP6842292B2 (en) Swivel simulation method, equipment and program
US20080250843A1 (en) Method For Calculating a Friction-Slippage Curve For a Tire
JP2005186900A (en) Simulation method for tire
KR20090050092A (en) Method for simulating the thermomechanical behaviour of a tyre rolling on the ground
Carcaterra et al. Tire grip identification based on strain information: Theory and simulations
Boere et al. Tyre/road interaction model for the prediction of road texture influence on rolling resistance
JP4285991B2 (en) Tire temporal change prediction method, tire characteristic prediction method, tire design method, tire manufacturing method, and program
JP2009078618A (en) Production method of tire model, and simulation method of tire
JP3431818B2 (en) Simulation method of tire performance
JP5515779B2 (en) Method for predicting physical quantity that tire contact surface receives from road surface, method for predicting tire wear, tire wear prediction device, and program
JP2012037280A (en) Method, apparatus and program for simulating tire performance
Sharma et al. Multi-physical model for tyre–road contact–the effect of surface texture
JP6845677B2 (en) Front-rear force simulation method, equipment and program
JP2018091709A (en) Braking distance calculation method, device, and program
JP2006076404A (en) Tire model, tire behavior simulation method, program, and recording medium
Jung et al. Verification of tire hydroplaning phenomenon using coupled FSI simulation by CFD and FEM
Li et al. An integrated approach for friction and wear simulation of tire tread rubber. Part I: friction test, characterization, and modeling
JP2001282873A (en) Finite element method analyis model, tire model generation method, tire performance simulation method and device thereof
KR101671330B1 (en) Method for analysing free rolling of tire
JP2008296811A (en) Rolling property predicting method for pneumatic tire
US20220366107A1 (en) Computer implemented method for simulation of tire performance
JP2003220808A (en) Tire characteristics predicting method, tire manufacturing method, and program for executing pneumatic tire and tire characteristics predicting method
JP2004340849A (en) Tire model generating method, and tire performance predicting method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210219

R150 Certificate of patent or registration of utility model

Ref document number: 6842292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250