JP6842113B2 - Thermoelectric converter - Google Patents

Thermoelectric converter Download PDF

Info

Publication number
JP6842113B2
JP6842113B2 JP2017089924A JP2017089924A JP6842113B2 JP 6842113 B2 JP6842113 B2 JP 6842113B2 JP 2017089924 A JP2017089924 A JP 2017089924A JP 2017089924 A JP2017089924 A JP 2017089924A JP 6842113 B2 JP6842113 B2 JP 6842113B2
Authority
JP
Japan
Prior art keywords
current
magnetic
magnetic field
magnetic material
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017089924A
Other languages
Japanese (ja)
Other versions
JP2018190780A (en
Inventor
健一 内田
健一 内田
俊介 大門
俊介 大門
亮 井口
亮 井口
英治 齊藤
英治 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2017089924A priority Critical patent/JP6842113B2/en
Publication of JP2018190780A publication Critical patent/JP2018190780A/en
Application granted granted Critical
Publication of JP6842113B2 publication Critical patent/JP6842113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、熱電変換装置に関する。 The present invention relates to a thermoelectric conversion device.

従来の熱電変換装置は、ペルチェ素子などによるゼーベック効果やペルチェ効果を利用して電子冷却や電子加熱等を行っている(例えば、特許文献1または2参照)。 Conventional thermoelectric converters perform electronic cooling, electronic heating, and the like by utilizing the Seebeck effect and the Peltier effect of a Peltier element or the like (see, for example, Patent Document 1 or 2).

特開2003−174204号公報Japanese Unexamined Patent Publication No. 2003-174204 特開2000−252527号公報Japanese Unexamined Patent Publication No. 2000-252527

しかしながら、特許文献1や2に記載のような従来の熱電変換装置では、ゼーベック効果やペルチェ効果を発生させるために、異なる種類の物質を接合させる必要があった。このため、応用範囲に限界が生じてしまうという課題があった。 However, in the conventional thermoelectric conversion device as described in Patent Documents 1 and 2, it is necessary to join different kinds of substances in order to generate the Seebeck effect and the Peltier effect. Therefore, there is a problem that the range of application is limited.

本発明は、このような課題に着目してなされたもので、接合界面の無い単一の物質を用いて電子冷却や電子加熱を行うことができ、応用範囲を拡げることができる熱電変換装置を提供することを目的とする。 The present invention has focused on such a problem, and provides a thermoelectric conversion device capable of performing electron cooling and electron heating using a single substance having no bonding interface and expanding the range of applications. The purpose is to provide.

上記目的を達成するために、本発明に係る熱電変換装置は、磁性体と、前記磁性体に電流を印加可能に設けられた電流印加手段とを有し、前記磁性体は単一の物質からなり、前記電流印加手段で前記磁性体に電流を印加したとき、前記磁性体の内部で、磁化の向きと前記電流の向きとの相対角度が異なる領域が複数存在するよう構成されていることを特徴とする。
In order to achieve the above object, the thermoelectric conversion device according to the present invention has a magnetic material and a current application means provided so that a current can be applied to the magnetic material, and the magnetic material is made of a single substance. Therefore, when a current is applied to the magnetic material by the current applying means, there are a plurality of regions inside the magnetic material in which the relative angles between the direction of magnetization and the direction of the current are different. It is a feature.

本発明に係る熱電変換装置は、磁性体の内部で、磁化の向きと電流の向きとの相対角度が異なる領域が複数存在するよう、電流印加手段で電流を印加することにより、各領域の境界で熱の吸収や放出を発生させることができる。通常のペルチェ効果(Peltier effect)では、ペルチェ係数が異なる導電体を接合して電流を流したとき、その接合部で熱の吸収や放出が発生するのに対し、本発明に係る熱電変換装置では、磁性体が単一の物質から成っていても、各領域の境界で熱の吸収や放出を発生させることができる。 The thermoelectric conversion device according to the present invention has a boundary between each region by applying a current with a current application means so that there are a plurality of regions inside the magnetic material in which the relative angles between the magnetization direction and the current direction are different. Can generate heat absorption and release. In the normal Peltier effect, when conductors with different Peltier coefficients are joined and an electric current is passed through them, heat is absorbed or released at the joint, whereas in the thermoelectric converter according to the present invention. Even if the magnetic material is composed of a single substance, heat absorption and release can be generated at the boundary of each region.

なお、ここで、磁化の向きと電流の向きとの相対角度が異なる複数の領域を作り出すためには、非一様な磁化構造を有する磁性体に電流を流しても良く、磁化が一方向に揃っていて少なくとも一か所の曲がり・折れ形状を有する磁性体に電流を流しても良い。または、磁性体に局所的に磁場を印加して、一部のみが磁化している磁性体に電流を流しても良い。すなわち、「相対角度が異なる」場合には、2つの領域のうち、一方の領域は磁化が存在して相対角度を有し、他方の領域は磁化が存在せず相対角度が無い場合も含むものとする。 Here, in order to create a plurality of regions in which the relative angles between the magnetization direction and the current direction are different, a current may be passed through a magnetic material having a non-uniform magnetization structure, and the magnetization is unidirectional. An electric current may be passed through a magnetic material that is aligned and has at least one bent / bent shape. Alternatively, a magnetic field may be locally applied to the magnetic material to allow an electric current to flow through the magnetic material that is partially magnetized. That is, when "relative angles are different", it is assumed that one of the two regions has magnetization and has a relative angle, and the other region has no magnetization and no relative angle. ..

本発明に係る熱電変換装置で、磁性体は、強磁性体やフェリ磁性体から成ることが好ましく、特に強磁性金属から成ることが好ましい。なお、以下では、本発明に係る熱電変換装置による、単一の物質から成る磁性体で熱の吸収や放出を発生させる効果を、通常のペルチェ効果に対比させて、異方性磁気ペルチェ効果(Anisotropic magneto-Peltier effect)と呼ぶ。これは、ペルチェ係数が磁化と電流との相対角度に依存する現象である。なお、原理的には、磁気秩序の方向と電流の向きとの相対角度が異なる複数の領域を作り出すことができれば、強磁性体やフェリ磁性体のみならず、正味の磁化を持たない反強磁性体を用いても、本発明に係る熱電変換装置を構成することができる。 In the thermoelectric conversion apparatus according to the present invention, the magnetic material is preferably made of a ferromagnetic material or a ferrimagnetic material, and particularly preferably made of a ferromagnetic metal. In the following, the effect of generating heat absorption and release by a magnetic material composed of a single substance by the thermoelectric conversion device according to the present invention is compared with the normal Peltier effect, and the anisotropic magnetic Peltier effect ( It is called Anisotropic magneto-Peltier effect). This is a phenomenon in which the Peltier coefficient depends on the relative angle between the magnetization and the current. In principle, if it is possible to create a plurality of regions in which the relative angles between the direction of magnetic order and the direction of current are different, not only ferromagnets and ferrimagnets, but also antiferromagnetism without net magnetization. The thermoelectric conversion device according to the present invention can also be configured by using a body.

本発明に係る熱電変換装置は、前記電流を印加したとき、前記磁性体の隣り合う領域の間で、前記磁化の向きおよび前記電流の向きのうちの少なくともいずれか一方が異なるよう構成されていることが好ましい。この場合、異方性磁気ペルチェ効果を効果的に発生させることができる。 The thermoelectric conversion device according to the present invention is configured such that when the current is applied, at least one of the direction of magnetization and the direction of the current differs between adjacent regions of the magnetic material. Is preferable. In this case, the anisotropic magnetic Peltier effect can be effectively generated.

本発明に係る熱電変換装置で、前記磁性体は、磁化方向が隣り合う領域の間で異なる状態を作り出すために、結晶磁気異方性や形状磁気異方性を有する材料から成っていてもよい。この場合、磁性体に対し一定方向に電流を流すだけで、異方性磁気ペルチェ効果を容易に発生させることができる。 In the thermoelectric conversion device according to the present invention, the magnetic material may be made of a material having magnetocrystalline anisotropy or shape magnetic anisotropy in order to create different states in regions where the magnetization directions are adjacent to each other. .. In this case, the anisotropic magnetic Peltier effect can be easily generated only by passing a current through the magnetic material in a certain direction.

また、本発明に係る熱電変換装置は、磁性体が結晶磁気異方性や形状磁気異方性を有していない材料の場合であっても、前記磁性体の一部または全体が磁化されるよう、前記磁性体に磁場を印加可能に設けられた磁場印加手段を有していることが好ましい。この場合、前記磁性体は、前記電流の向きが変化するよう、前記電流が流れる電流路に沿って曲がった形状を成し、前記磁場印加手段は、前記磁性体の全体が一定の方向に磁化されるよう前記磁場を印加可能に設けられていてもよい。また、前記磁場印加手段は、前記磁性体の一部が磁化されるよう前記磁場を印加可能に設けられていてもよい。これらの場合でも、異方性磁気ペルチェ効果を効果的に発生させることができる。 Further, in the thermoelectric conversion device according to the present invention, even if the magnetic material is a material that does not have crystal magnetic anisotropy or shape magnetic anisotropy, a part or the whole of the magnetic material is magnetized. As described above, it is preferable to have a magnetic field applying means provided so that a magnetic field can be applied to the magnetic material. In this case, the magnetic material has a curved shape along the current path through which the current flows so that the direction of the current changes, and the magnetic field applying means magnetizes the entire magnetic material in a certain direction. The magnetic field may be applied so as to be applied. Further, the magnetic field applying means may be provided so that the magnetic field can be applied so that a part of the magnetic material is magnetized. Even in these cases, the anisotropic magnetic Peltier effect can be effectively generated.

このように、本発明に係る熱電変換装置は、接合界面の無い単一の物質を用いて電子冷却や電子加熱を行うことができる。このため、異なる種類の物質を接合させる場合と比べて、応用範囲を拡げることができる。そのような応用範囲としては、例えば、集積回路の配線を、本発明に係る熱電変換装置の磁性体で構成して電流を流すことにより、局所的に素子を加熱・冷却させることができる。このとき、冷却・加熱箇所の磁化の向きを、磁場印加手段で制御することにより、冷却・加熱を容易に制御することができる。また、熱電変換装置を構成する磁性体内に物理的な接合面がないため、長寿命化も期待できる。 As described above, the thermoelectric conversion device according to the present invention can perform electron cooling and electron heating using a single substance having no bonding interface. Therefore, the range of application can be expanded as compared with the case of joining different types of substances. As such an application range, for example, the wiring of an integrated circuit can be locally heated and cooled by forming the wiring of an integrated circuit with a magnetic material of the thermoelectric conversion device according to the present invention and passing an electric current through it. At this time, the cooling / heating can be easily controlled by controlling the direction of magnetization of the cooling / heating portion by the magnetic field applying means. Further, since there is no physical joint surface in the magnetic body constituting the thermoelectric conversion device, a long life can be expected.

本発明に係る熱電変換装置で、前記磁性体は、ニッケルまたは、ニッケルを40wt%以上含むNi−Fe合金などの合金から成ることが好ましい。この場合、特に異方性磁気ペルチェ効果を効果的に発生させることができる。 In the thermoelectric conversion apparatus according to the present invention, the magnetic material is preferably made of nickel or an alloy such as a Ni—Fe alloy containing 40 wt% or more of nickel. In this case, the anisotropic magnetic Peltier effect can be effectively generated.

本発明によれば、接合界面の無い単一の物質を用いて電子冷却や電子加熱を行うことができ、応用範囲を拡げることができる熱電変換装置を提供することができる。 According to the present invention, it is possible to provide a thermoelectric conversion device capable of performing electronic cooling and electronic heating using a single substance having no bonding interface and expanding the range of applications.

(a)本発明の実施の形態の熱電変換装置の、磁性体が非一様な磁化構造を有する材料から成る構成を示す平面図、(b)本発明の実施の形態の熱電変換装置の、磁性体がU字型であり、磁場印加手段を有する構成を示す平面図、(c)本発明の実施の形態の熱電変換装置の、磁場印加手段が磁性体の一部に磁場を印加する構成を示す平面図、(d)比較例のペルチェ効果を説明する平面図である。(A) A plan view showing the structure of the thermoelectric conversion device according to the embodiment of the present invention, in which the magnetic material is made of a material having a non-uniform magnetizing structure, and (b) the thermoelectric conversion device according to the embodiment of the present invention. A plan view showing a configuration in which the magnetic material is U-shaped and has a magnetic field applying means, (c) a configuration in which the magnetic field applying means applies a magnetic field to a part of the magnetic material in the thermoelectric conversion device according to the embodiment of the present invention. It is a plan view which shows (d), and is a plan view explaining the Perche effect of the comparative example. 図1(b)に示す熱電変換装置の、(a)異方性磁気ペルチェ効果を調べる実験の構成を示す平面図、(b)印加電流Jを 1.00 A、印加磁場Hを 12.0 kOe、(c)印加電流Jを 1.00 A、印加磁場Hを 0.0 kOe、(d)印加電流Jを 1.00 A、印加磁場Hを -12.0 kOe としたときの、印加電流に応答して発生した磁性体の温度変化の振幅Aの像および、印加電流に対する温度変化の位相φの像である。FIG. 1 (b) is a plan view showing the configuration of an experiment for investigating the anisotropic magnetic Pelche effect of the thermoelectric converter shown in FIG. 1 (b), (b) the applied current J c is 1.00 A, and the applied magnetic field H is 12.0 kOe, ( c) Magnetic material generated in response to the applied current when the applied current J c is 1.00 A, the applied magnetic field H is 0.0 kOe, (d) the applied current J c is 1.00 A, and the applied magnetic field H is -12.0 kOe. It is an image of the amplitude A of the temperature change of the above and an image of the phase φ of the temperature change with respect to the applied current. (a) 図2(b)と図2(d)とを加えて2で割った振幅Aeven像、(b) 図2(b)と図2(d)とを加えて2で割った位相φeven像、(c) 図2(b)と図2(d)との差をとって2で割った振幅Aodd像、(d) 図2(b)と図2(d)との差をとって2で割った位相φodd像である。 (A) Amplitude A even image obtained by adding FIGS. 2 (b) and 2 (d) and dividing by 2, (b) Phase by adding FIG. 2 (b) and FIG. 2 (d) and dividing by 2. φ even image, (c) Amplitude A odd image obtained by taking the difference between FIG. 2 (b) and FIG. 2 (d) and dividing by 2, (d) Difference between FIG. 2 (b) and FIG. 2 (d). It is a phase φ odd image obtained by taking and dividing by 2. 図1(b)に示す熱電変換装置の、印加電流Jの大きさを 1.00 Aとし、印加磁場Hの大きさを 0.7 〜12.0 kOeの範囲で変化させたときの、(a)各印加磁場Hの大きさでの振幅Aeven像、(b)各印加磁場Hの大きさでの位相φeven像、(c) (a)中のLおよびRの位置での振幅Aevenと、印加磁場Hの大きさとの関係を示すグラフ、(d) (b)中のLおよびRの位置での位相φevenと、印加磁場Hの大きさとの関係を示すグラフである。 When the magnitude of the applied current J c of the thermoelectric converter shown in FIG. 1 (b) is 1.00 A and the magnitude of the applied magnetic field H is changed in the range of 0.7 to 12.0 kOe, (a) each applied magnetic field The amplitude A even image at the magnitude of H , (b) the phase φ even image at the magnitude of each applied magnetic field H , the amplitude A even at the positions L and R in (c) (a), and the applied magnetic field. It is a graph which shows the relationship with the magnitude of H, and is a graph which shows the relationship between the phase φ even at the position of L and R in (d) and (b), and the magnitude of the applied magnetic field H. 図1(b)に示す熱電変換装置の、印加電流Jの大きさを 0.16 〜1.00 Aの範囲で変化させ、印加磁場Hの大きさを 12.0 kOeとしたときの、(a)各印加電流Jの大きさでの振幅Aeven像、(b)各印加電流Jの大きさでの位相φeven像、(c) (a)中のLおよびRの位置での振幅Aevenと、印加電流Jの大きさとの関係を示すグラフ、(d) (b)中のLおよびRの位置での位相φevenと、印加電流Jの大きさとの関係を示すグラフである。 (A) Each applied current when the magnitude of the applied current J c of the thermoelectric converter shown in FIG. 1 (b) is changed in the range of 0.16 to 1.00 A and the magnitude of the applied magnetic field H is 12.0 kOe. Amplitude A even image at the magnitude of J c , (b) Phase φ even image at the magnitude of each applied current J c , (c) Amplitude A even at the positions of L and R in (a), It is a graph which shows the relationship with the magnitude of the applied current J c , and is a graph which shows the relationship between the phase φ even at the position of L and R in (d) and (b), and the magnitude of the applied current J c. 図1(b)に示す熱電変換装置の、印加電流Jの大きさを 1.00 Aとし、印加磁場Hの大きさを 12.0 kOeとしたときの、(a)振幅Aeven像、(b)位相φeven像、(c)印加磁場Hの方向を90度回転させたときの振幅Aeven像、(d)そのときの位相φeven像である。 (A) Amplitude A even image, (b) Phase when the magnitude of the applied current J c is 1.00 A and the magnitude of the applied magnetic field H is 12.0 kOe in the thermoelectric converter shown in FIG. 1 (b). The φ even image, (c) the amplitude A even image when the direction of the applied magnetic field H is rotated by 90 degrees, and (d) the phase φ even image at that time. 図1(b)に示す熱電変換装置の、複数種類の磁性体を用い、印加電流Jの大きさを 1.00 Aとし、印加磁場Hの大きさを 12.0 kOeとしたときの、磁性体の種類ごとの(a)振幅Aeven像、(b)位相φeven像である。Types of magnetic materials when a plurality of types of magnetic materials of the thermoelectric conversion device shown in FIG. 1 (b) are used, the magnitude of the applied current J c is 1.00 A, and the magnitude of the applied magnetic field H is 12.0 kOe. Each is (a) an amplitude A even image and (b) a phase φ even image. 図7(a)および(b)に示すNi、Fe、PB-45パーマロイ(Ni45Fe55)の結果から求めた、磁性体の中央部と各端部との境界位置での(a)振幅Aevenおよび(b)位相φevenと、Niの配合量(x)との関係を示すグラフである。(A) Amplitude at the boundary position between the central portion and each end portion of the magnetic material, which was obtained from the results of Ni, Fe, and PB-45 permalloy (Ni 45 Fe 55 ) shown in FIGS. 7 (a) and 7 (b). It is a graph which shows the relationship between A even and (b) phase φ even, and the compounding amount (x) of Ni. 本発明の実施の形態の熱電変換装置の、直線状の磁性体を用いた、(a)異方性磁気ペルチェ効果を調べる実験の構成を示す斜視図、(b)その実験結果を示す振幅Aeven像および(c)位相φeven像である。A perspective view showing the configuration of an experiment for investigating the anisotropic magnetic Peltier effect using a linear magnetic material of the thermoelectric conversion device according to the embodiment of the present invention, and (b) an amplitude A showing the experimental result. It is an even image and (c) a phase φ even image.

以下、図面に基づいて、本発明の実施の形態について説明する。
図1乃至図9は、本発明の実施の形態の熱電変換装置を示している。
図1(a)に示すように、熱電変換装置10は、磁性体11と電流印加手段12とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 9 show a thermoelectric conversion device according to an embodiment of the present invention.
As shown in FIG. 1A, the thermoelectric conversion device 10 includes a magnetic material 11 and a current applying means 12.

磁性体11は、強磁性金属から成っている。磁性体11は、結晶磁気異方性や形状磁気異方性、非一様磁場などにより、隣り合う領域の間で異なる向きの磁化を有する材料から成っている。電流印加手段12は、磁性体11に電流を印加可能に設けられている。 The magnetic body 11 is made of a ferromagnetic metal. The magnetic material 11 is made of a material having magnetizations in different directions between adjacent regions due to magnetocrystalline anisotropy, shape magnetic anisotropy, non-uniform magnetic field, and the like. The current applying means 12 is provided so that a current can be applied to the magnetic body 11.

図1(a)に示す具体的な一例では、磁性体11は、細長く、磁化Mの向き(図1(a)中の矢印)が異なる複数の領域が、長さ方向に沿って順に並んで配置されている。電流印加手段12は、磁性体11の長さ方向に沿って、電流Jを流すよう構成されている。熱電変換装置10は、電流印加手段12で磁性体11に一定の方向の電流Jを流すことにより、隣り合う領域の間で、磁化Mの向きと電流Jの向きとの相対角度が異なるようになっている。 In a specific example shown in FIG. 1 (a), the magnetic body 11 is elongated, and a plurality of regions having different directions of magnetization M (arrows in FIG. 1 (a)) are arranged in order along the length direction. Have been placed. The current applying means 12 is configured to allow a current Jc to flow along the length direction of the magnetic body 11. In the thermoelectric conversion device 10, the current J c is passed through the magnetic body 11 in a certain direction by the current applying means 12, so that the relative angles between the directions of the magnetization M and the directions of the current J c are different between the adjacent regions. It has become like.

次に、作用について説明する。
熱電変換装置10は、電流印加手段12で電流を流したとき、磁性体11の内部で、磁化の向きと電流の向きとの相対角度が異なる領域が複数存在しているため、各領域の境界で熱の吸収や放出を発生させることができる。通常のペルチェ効果では、図1(d)に示すように、ペルチェ係数が異なる導電体A,Bを接合して電流を流したとき、その接合部で熱の吸収や放出が発生するのに対し、熱電変換装置10では、図1(a)に示すように、異方性磁気ペルチェ効果により、磁性体11が単一の物質から成っていても、各領域の境界で熱の吸収や放出を発生させることができる。
Next, the action will be described.
When a current is passed through the current application means 12, the thermoelectric conversion device 10 has a plurality of regions inside the magnetic body 11 in which the relative angles between the magnetization directions and the current directions are different. Can generate heat absorption and release. In the normal Peltier effect, as shown in FIG. 1 (d), when conductors A and B having different Peltier coefficients are joined and an electric current is passed, heat absorption and release occur at the joint. As shown in FIG. 1A, the thermoelectric conversion device 10 absorbs and releases heat at the boundary of each region even if the magnetic material 11 is made of a single substance due to the anisotropic magnetic Peltier effect. Can be generated.

このように、熱電変換装置10は、接合界面の無い単一の物質を用いて電子冷却や電子加熱を行うことができる。このため、異なる種類の物質を接合させる場合と比べて、応用範囲を拡げることができる。例えば、従来素子の場合は、材料や構造で熱電特性が決まってしまうが、異方性磁気ペルチェ効果に基づく素子の場合は、材料の曲げ方や磁化配置を変えることで熱電特性や電子冷却・加熱を行う箇所を変更することができるため、汎用性が高い。適用方法としては、電子デバイスの配線材料を、異方性磁気ペルチェ効果を示す材料にすることなどが考えられ、材料の曲げ方や磁化配置に応じて局所的にデバイスを加熱・冷却することができる。 As described above, the thermoelectric conversion device 10 can perform electron cooling and electron heating using a single substance having no bonding interface. Therefore, the range of application can be expanded as compared with the case of joining different types of substances. For example, in the case of a conventional device, the thermoelectric characteristics are determined by the material and structure, but in the case of an element based on the anisotropic magnetic Peltier effect, the thermoelectric characteristics and electronic cooling can be achieved by changing the bending method and magnetization arrangement of the material. It is highly versatile because the heating location can be changed. As an application method, it is conceivable that the wiring material of the electronic device is a material exhibiting an anisotropic magnetic Peltier effect, and the device can be locally heated and cooled according to the bending method and the magnetization arrangement of the material. it can.

なお、図1(b)に示すように、熱電変換装置10は、磁性体11の全体に磁場を印加可能な磁場印加手段13を有し、磁性体11が磁気異方性を有する材料ではなく、電流Jの向きが変化するよう、電流Jが流れる電流路に沿って曲がった形状(図1(b)ではU字型)を成していてもよい。この場合、磁場印加手段13で磁性体11に一定の方向の磁場を印加することにより、電流路の向きが異なる領域の間で、磁化Mの向きと電流Jの向きとの相対角度が異なるようになっている。これにより、電流路の向きが変化する位置で、異方性磁気ペルチェ効果により熱の吸収や放出を発生させることができる。 As shown in FIG. 1B, the thermoelectric conversion device 10 has a magnetic field applying means 13 capable of applying a magnetic field to the entire magnetic body 11, and the magnetic body 11 is not a material having magnetic anisotropy. , so that the direction of the current J c changes may have a shape bent along a current path through which current J c (the U-shape Figure 1 (b)). In this case, by applying a magnetic field in the predetermined direction to the magnetic body 11 by the magnetic field applying unit 13, between the region where the direction of the current path is different, different relative angle between the direction of orientation and the current J c of the magnetization M It has become like. As a result, heat absorption and release can be generated by the anisotropic magnetic Peltier effect at the position where the direction of the current path changes.

また、図1(c)に示すように、熱電変換装置10は、磁性体11が磁気異方性を有する材料ではなく、磁場印加手段13が磁性体11の一部に磁場を印加可能に設けられていてもよい。この場合、電流印加手段12で磁性体11に一定の方向の電流Jを流すことにより、磁性体11のうち、磁場の印加により磁化した領域では、磁化Mの向きと電流Jの向きとの相対角度が得られるのに対し、その他の領域では、磁化が存在しないため、磁化の向きと電流Jの向きとの相対角度が得られず、各領域間で相対角度が異なるようになっている。これにより、各領域の境界で、異方性磁気ペルチェ効果により熱の吸収や放出を発生させることができる。 Further, as shown in FIG. 1 (c), in the thermoelectric conversion device 10, the magnetic body 11 is not a material having magnetic anisotropy, and the magnetic field applying means 13 is provided so that a magnetic field can be applied to a part of the magnetic body 11. It may be. In this case, by passing a current J c in a certain direction through the magnetic body 11 by the current applying means 12, the direction of the magnetization M and the direction of the current J c are determined in the region of the magnetic body 11 magnetized by the application of the magnetic field. while the relative angle obtained in the other regions, the magnetization does not exist, can not be obtained relative angle between the magnetization direction and the direction of the current J c, it becomes a relative angle different between the regions ing. As a result, heat absorption and release can be generated at the boundary of each region by the anisotropic magnetic Peltier effect.

図1(b)に示す熱電変換装置10を用いて、異方性磁気ペルチェ効果を調べる実験を行った。実験では、ニッケル(Ni)製の磁性体11を用いた。図1(b)および図2(a)に示すように、磁性体11は、中央部11aに対して、両方の端部11bが同じ方向に垂直に伸びたU字型の形状を成している。実験では、磁性体11のU字の形状に沿って電流が流れるよう、磁性体11の両端に電流印加手段12を接続した。 An experiment was conducted to investigate the anisotropic magnetic Peltier effect using the thermoelectric conversion device 10 shown in FIG. 1 (b). In the experiment, a magnetic material 11 made of nickel (Ni) was used. As shown in FIGS. 1 (b) and 2 (a), the magnetic body 11 has a U-shape in which both end portions 11b extend vertically in the same direction with respect to the central portion 11a. There is. In the experiment, the current application means 12 were connected to both ends of the magnetic body 11 so that the current flowed along the U-shape of the magnetic body 11.

実験は、ロックインサーモグラフィ(Lock-in thermography)により行った。すなわち、実験中は、電流印加手段12により、1〜25Hzで電流Jを流す方向を切り換え、その切換時間間隔よりも早い100Hzのフレームレートで磁性体11の温度を赤外線カメラで撮影し、電流変化に応答して発生した温度変化を観測した。また、実験中は、磁場印加手段13により、磁性体11の中央部11aの長さ方向に沿って、磁場Hを印加した。なお、磁場の印加方向は変更可能になっている。 The experiment was performed by Lock-in thermography. That is, during the experiment, the current applying means 12, switches the direction of current flow J c in 1~25Hz, the temperature of the magnetic body 11 captured by the infrared camera in the early 100Hz frame rate than the distance between the switching time, current The temperature change that occurred in response to the change was observed. Further, during the experiment, the magnetic field H was applied by the magnetic field applying means 13 along the length direction of the central portion 11a of the magnetic body 11. The direction of application of the magnetic field can be changed.

赤外線カメラで得られた複数の画像から、フーリエ変換により、振幅画像および位相画像を求めた。振幅画像が、電流変化に応答して発生した温度変化の大きさの絶対値(以下、振幅A)を示し、位相画像が電流の切り換えに対する、温度変化の遅れ(以下、位相φ)を示している。印加電流と温度変化とが同位相で変化している場合は、発熱信号を表し、逆位相で変化している場合は、吸熱信号を表す。なお、熱電効果を高感度に観測できるため、本実験ではロックインサーモグラフィ法を用いたが、異方性磁気ペルチェ効果によって発生した温度変化の観測手段は、通常のサーモグラフィ法でも良いし、磁性体に直接、熱電対や測温抵抗体などの温度センサーを取り付ける方法であっても良い。 Amplitude images and phase images were obtained by Fourier transform from a plurality of images obtained by an infrared camera. The amplitude image shows the absolute value of the magnitude of the temperature change generated in response to the current change (hereinafter, amplitude A), and the phase image shows the delay of the temperature change (hereinafter, phase φ) with respect to the switching of the current. There is. When the applied current and the temperature change change in the same phase, it represents a heat generation signal, and when it changes in the opposite phase, it represents an endothermic signal. Since the thermoelectric effect can be observed with high sensitivity, the lock-in thermography method was used in this experiment, but the means for observing the temperature change generated by the anisotropic magnetic Peltier effect may be the ordinary thermography method or a magnetic material. A method of directly attaching a temperature sensor such as a thermocouple or a resistance temperature detector may be used.

印加電流Jを 1.00 A、印加磁場Hをそれぞれ、12.0 kOe、0.0 kOe、-12.0 kOe としたときの、磁性体11の振幅Aの像および位相φの像を、図2(b)乃至(d)に示す。なお、印加磁場のプラスとマイナスは、印加方向が逆であることを表し、印加磁場の方向は、それぞれ図中に示している(以下同じ)。図2(b)乃至(d)に示すように、磁場を印加したとき(図2(b)および(d)のとき)に、磁性体11の中央部11aと各端部11bとの境界位置で発熱・吸熱していることが確認された。 When the applied current J c is 1.00 A and the applied magnetic field H is 12.0 kOe, 0.0 kOe, and -12.0 kOe, respectively, the image of the amplitude A and the image of the phase φ of the magnetic material 11 are shown in FIGS. Shown in d). The plus and minus of the applied magnetic field indicate that the applied magnetic fields are opposite to each other, and the directions of the applied magnetic fields are shown in the drawings (the same applies hereinafter). As shown in FIGS. 2 (b) to 2 (d), when a magnetic field is applied (when FIGS. 2 (b) and 2 (d)), the boundary position between the central portion 11a and each end portion 11b of the magnetic body 11 It was confirmed that it generated heat and absorbed heat.

印加磁場の方向が逆の図2(b)の振幅像および位相像と図2(d)の振幅像および位相像とを加えて2で割って得られた振幅Aeven像および位相φeven像を、それぞれ図3(a)および図3(b)に示す。また、図2(b)の振幅像および位相像と図2(d)の振幅像および位相像との差をとって2で割って得られた振幅Aodd像および位相φodd像を、それぞれ図3(c)および図3(d)に示す。Aevenおよびφevenは、異方性磁気ペルチェ効果による温度変化の振幅および位相のずれを示し、Aoddおよびφoddは、異常エッチングスハウゼン効果(Anomalous Ettingshausen effect)による温度変化の振幅および位相のずれを示している。なお、異常エッチングスハウゼン効果とは、導電性を有する強磁性体11に、磁化と直交する方向に電流を印加すると、磁化と電流の両方に直交する方向に熱流が誘起される現象であり、異常ネルンスト効果の逆の効果を示すものである。 Amplitude A even image and phase φ even image obtained by adding the amplitude image and phase image of FIG. 2 (b) and the amplitude image and phase image of FIG. 2 (d) in which the directions of the applied magnetic fields are opposite to each other and dividing by 2. Are shown in FIGS. 3 (a) and 3 (b), respectively. Further, the amplitude A odd image and the phase φ odd image obtained by taking the difference between the amplitude image and the phase image of FIG. 2 (b) and the amplitude image and the phase image of FIG. 2 (d) and dividing by 2 are obtained, respectively. It is shown in FIG. 3 (c) and FIG. 3 (d). A even and φ even indicate the amplitude and phase shift of the temperature change due to the anisotropic magnetic Peltier effect, and A odd and φ odd indicate the amplitude and phase shift of the temperature change due to the anomalous Ettingshausen effect. It shows the deviation. The anomalous Ettingshausen effect is a phenomenon in which when a current is applied to the conductive ferromagnetic material 11 in a direction orthogonal to the magnetization, a heat flow is induced in a direction orthogonal to both the magnetization and the current. It shows the opposite effect of the abnormal Nernst effect.

図3(a)および(b)に示すように、磁性体11の中央部11aと各端部11bとの境界位置で、振幅Aeven像および、位相φeven像に温度変化信号が認められ、異方性磁気ペルチェ効果による温度変化が生じていることが確認できる。ここで、電流が磁性体11の端部11bから中央部11aに向かって流れる境界位置と、磁性体11の中央部11aから端部11bに向かって流れる境界位置とでは、位相が180°異なっており、前者は異方性磁気ペルチェ効果による吸熱信号、後者は発熱信号に対応している。また、図3(c)および(d)に示すように、磁性体11の各端部11bに、振幅Aeven像および位相φeven像に温度変化信号が認められ、異常エッチングスハウゼン効果による温度変化が生じていることが確認できる。 As shown in FIGS. 3A and 3B, a temperature change signal was observed in the amplitude A even image and the phase φ even image at the boundary position between the central portion 11a of the magnetic body 11 and each end portion 11b. It can be confirmed that the temperature change is caused by the anisotropic magnetic Peltier effect. Here, the phase is 180 ° different between the boundary position where the current flows from the end portion 11b of the magnetic body 11 toward the central portion 11a and the boundary position where the current flows from the central portion 11a to the end portion 11b of the magnetic body 11. The former corresponds to the heat absorption signal due to the anisotropic magnetic Peltier effect, and the latter corresponds to the heat generation signal. Further, as shown in FIGS. 3 (c) and 3 (d) , temperature change signals are observed in the amplitude A even image and the phase φ even image at each end 11b of the magnetic body 11, and the temperature due to the abnormal etching Schauzen effect. It can be confirmed that the change has occurred.

以下の実施例では、異方性磁気ペルチェ効果について調べるため、印加磁場Hを反転させて実験を行い、Aevenおよびφevenを求めている。 In the following examples, in order to investigate the anisotropic magnetic Peltier effect, the applied magnetic field H is inverted and an experiment is performed to obtain A even and φ even.

異方性磁気ペルチェ効果の磁場依存性を調べるために、印加磁場Hの大きさを変えて実験を行った。実験は、印加電流Jおよび印加磁場Hの大きさ以外は、実施例1と同じ条件で行った。実験では、印加電流Jの大きさを 1.00 Aとし、印加磁場Hの大きさを 0.7 〜12.0 kOeの範囲で変化させた。 In order to investigate the magnetic field dependence of the anisotropic magnetic Peltier effect, experiments were conducted by changing the magnitude of the applied magnetic field H. The experiment was carried out under the same conditions as in Example 1 except for the magnitudes of the applied current Jc and the applied magnetic field H. In the experiment, the magnitude of the applied current J c was set to 1.00 A, and the magnitude of the applied magnetic field H was changed in the range of 0.7 to 12.0 kOe.

実験結果のうち、印加磁場Hの大きさを変えたときの振幅Aeven像および位相φeven像を、それぞれ図4(a)および(b)に示す。また、図4(a)中のLおよびRの位置での振幅Aevenと、印加磁場Hの大きさとの関係を、それぞれ図4(c)に示す。また、図4(b)中のLおよびRの位置での位相φevenと、印加磁場Hの大きさとの関係を、それぞれ図4(d)に示す。 Among the experimental results, the amplitude A even image and the phase φ even image when the magnitude of the applied magnetic field H is changed are shown in FIGS. 4 (a) and 4 (b), respectively. Further, the relationship between the amplitude A even at the positions L and R in FIG. 4A and the magnitude of the applied magnetic field H is shown in FIG. 4C, respectively. Further, the relationship between the phase φ even at the positions of L and R in FIG. 4 (b) and the magnitude of the applied magnetic field H is shown in FIG. 4 (d), respectively.

図4(a)乃至(d)に示すように、磁性体11の中央部11aと各端部11bとの境界位置で、振幅Aeven像および位相φeven像に温度変化信号が認められ、異方性磁気ペルチェ効果による温度変化が生じていることが確認された。図4(a)および(c)に示すように、異方性磁気ペルチェ効果による振幅Aevenは、印加磁場Hの大きさが約5 kOe までは、印加磁場Hの増加に伴って増加するが、約5 kOe より大きくなると飽和することが確認された。これは、磁性体11の磁化過程を反映したものであり、異方性磁気ペルチェ効果の信号が磁性体11の磁化の大きさに比例していることを示している。 As shown in FIGS. 4A to 4D, temperature change signals are observed in the amplitude A even image and the phase φ even image at the boundary position between the central portion 11a and each end portion 11b of the magnetic body 11, which are different. It was confirmed that the temperature change due to the directional magnetic Peltier effect occurred. As shown in FIGS. 4A and 4C, the amplitude A even due to the anisotropic magnetic Peltier effect increases as the applied magnetic field H increases until the magnitude of the applied magnetic field H is about 5 kOe. , It was confirmed that it saturates when it becomes larger than about 5 kOe. This reflects the magnetization process of the magnetic body 11, and indicates that the signal of the anisotropic magnetic Peltier effect is proportional to the magnitude of the magnetization of the magnetic body 11.

異方性磁気ペルチェ効果の電流依存性を調べるために、印加電流Jの大きさを変えて実験を行った。実験は、印加電流Jおよび印加磁場Hの大きさ以外は、実施例1と同じ条件で行った。実験では、印加電流Jの大きさを 0.16 〜1.00 Aの範囲で変化させ、印加磁場Hの大きさを 12.0 kOeとした。 In order to investigate the current dependence of the anisotropic magnetic Peltier effect, experiments were conducted by changing the magnitude of the applied current J c. The experiment was carried out under the same conditions as in Example 1 except for the magnitudes of the applied current Jc and the applied magnetic field H. In the experiment, the magnitude of the applied current J c was changed in the range of 0.16 to 1.00 A, and the magnitude of the applied magnetic field H was set to 12.0 kOe.

実験結果のうち、印加電流Jの大きさを変えたときの振幅Aeven像および位相φeven像を、それぞれ図5(a)および(b)に示す。また、図5(a)中のLおよびRの位置での振幅Aevenと、印加電流Jの大きさとの関係を、それぞれ図5(c)に示す。また、図5(b)中のLおよびRの位置での位相φevenと、印加電流Jの大きさとの関係を、それぞれ図5(d)に示す。 Among the experimental results, the amplitude A even image and the phase φ even image when the magnitude of the applied current J c is changed are shown in FIGS. 5 (a) and 5 (b), respectively. Also, the amplitude A the even at the position of L and R in FIG. 5 (a), the relationship between the magnitude of the applied current J c, shown in FIGS 5 (c). Further, the relationship between the phase φ even at the positions L and R in FIG. 5 (b) and the magnitude of the applied current J c is shown in FIG. 5 (d), respectively.

図5(a)乃至(d)に示すように、磁性体11の中央部11aと各端部11bとの境界位置で、振幅Aeven像および位相φeven像に温度変化信号が認められ、異方性磁気ペルチェ効果による温度変化が生じていることが確認された。図5(a)および(c)に示すように、異方性磁気ペルチェ効果による振幅Aevenは、印加電流Jに比例し、印加電流Jが大きくなるに従って増加することが確認された。 As shown in FIGS. 5A to 5D, temperature change signals are observed in the amplitude A even image and the phase φ even image at the boundary position between the central portion 11a and each end portion 11b of the magnetic body 11, which are different. It was confirmed that the temperature change due to the directional magnetic Peltier effect occurred. As shown in FIG. 5 (a) and (c), the amplitude A the even by anisotropic magneto Peltier effect is proportional to the applied current J c, applied current J c be increased in accordance with increases were confirmed.

異方性磁気ペルチェ効果の印加磁場の方向依存性を調べるために、印加磁場Hの方向を変えて実験を行った。実験は、印加電流Jの大きさ、ならびに、印加磁場Hの大きさおよび向き以外は、実施例1と同じ条件で行った。実験では、印加電流Jの大きさを 1.00 Aとし、印加磁場Hの大きさを 12.0 kOeとした。また、印加磁場Hの方向を、磁性体11の中央部11aの長さ方向に沿った方向、および、そこから90度回転させた方向、すなわち磁性体11の両端部11bの伸長方向に沿った方向の2種類とした。 In order to investigate the direction dependence of the applied magnetic field of the anisotropic magnetic Peltier effect, an experiment was conducted in which the direction of the applied magnetic field H was changed. The experiment was carried out under the same conditions as in Example 1 except for the magnitude of the applied current Jc and the magnitude and direction of the applied magnetic field H. In the experiment, the magnitude of the applied current J c was 1.00 A, and the magnitude of the applied magnetic field H was 12.0 kOe. Further, the direction of the applied magnetic field H is along the length direction of the central portion 11a of the magnetic body 11 and the direction rotated by 90 degrees from the central portion 11a, that is, along the extension direction of both end portions 11b of the magnetic body 11. There are two types of directions.

実験結果のうち、磁性体11の中央部11aの長さ方向に沿った方向に磁場Hを印加したときの振幅Aeven像および位相φeven像を、それぞれ図6(a)および(b)に示す。また、磁性体11の両端部11bの伸長方向に沿った方向に磁場Hを印加したときの振幅Aeven像および位相φeven像を、それぞれ図6(c)および(d)に示す。 Among the experimental results, the amplitude A even image and the phase φ even image when the magnetic field H is applied in the direction along the length direction of the central portion 11a of the magnetic body 11 are shown in FIGS. 6 (a) and 6 (b), respectively. Shown. Further, FIGS. 6 (c) and 6 (d) show an amplitude A even image and a phase φ even image when the magnetic field H is applied in the direction along the extension direction of both end portions 11b of the magnetic body 11.

図6(a)乃至(d)に示すように、磁性体11の中央部11aと各端部11bとの境界位置で、振幅Aeven像および位相φeven像に温度変化信号が認められ、異方性磁気ペルチェ効果による温度変化が生じていることが確認された。図6(a)および(c)に示すように、印加磁場Hの方向を90度回転させても、異方性磁気ペルチェ効果による振幅Aevenはほとんど変化しないが、図6(b)および(d)に示すように、印加磁場Hの方向を90度回転させることにより、異方性磁気ペルチェ効果による位相φevenが180°変化することが確認された。これは、印加磁場Hの方向を90度回転させると、磁性体11の中央部11aにおける電流と磁化の相対角度と、両端部11bにおける電流と磁化の相対角度とが入れ替わり、温度変化の符号が反転するためである。 As shown in FIGS. 6A to 6D, temperature change signals are observed in the amplitude A even image and the phase φ even image at the boundary position between the central portion 11a and each end portion 11b of the magnetic body 11, which are different. It was confirmed that the temperature change due to the directional magnetic Peltier effect occurred. As shown in FIGS. 6 (a) and 6 (c), even if the direction of the applied magnetic field H is rotated by 90 degrees, the amplitude A even due to the anisotropic magnetic Perche effect hardly changes, but FIGS. 6 (b) and 6 (b) and ( As shown in d), it was confirmed that the phase φ even changed by 180 ° due to the anisotropic magnetic Pelche effect by rotating the direction of the applied magnetic field H by 90 degrees. This is because when the direction of the applied magnetic field H is rotated by 90 degrees, the relative angle between the current and the magnetization at the central portion 11a of the magnetic body 11 and the relative angle between the current and the magnetization at both end portions 11b are exchanged, and the sign of the temperature change is changed. This is to reverse.

異方性磁気ペルチェ効果の磁性体11の材質依存性を調べるために、複数種類の磁性体11に対して実験を行った。実験は、印加電流Jおよび印加磁場Hの大きさ以外は、実施例1と同じ条件で行った。実験では、印加電流Jの大きさを 1.00 Aとし、印加磁場Hの大きさを 12.0 kOeとした。また、磁性体11の材質として、Ni、Fe、Co、PC-78パーマロイ(PC-78 permalloy)、PB-45パーマロイ(PB-45 permalloy)、42アロイ(42-alloy)、スーパーインバー(Super invar)の7種類とした。 In order to investigate the material dependence of the magnetic material 11 of the anisotropic magnetic Peltier effect, experiments were conducted on a plurality of types of magnetic materials 11. The experiment was carried out under the same conditions as in Example 1 except for the magnitudes of the applied current Jc and the applied magnetic field H. In the experiment, the magnitude of the applied current J c was 1.00 A, and the magnitude of the applied magnetic field H was 12.0 kOe. The materials of the magnetic material 11 include Ni, Fe, Co, PC-78 permalloy, PB-45 permalloy, 42-alloy, and Super invar. ) 7 types.

実験結果のうち、磁性体11の種類ごとの振幅Aeven像および位相φeven像を、それぞれ図7(a)および(b)に示す。図7に示すように、異方性磁気ペルチェ効果は、Niでは顕著に認められるのに対し、FeやCoではほとんど認められないことが確認された。また、Fe−Ni合金では、Niほどではないが、PB-45パーマロイの方がPC-78パーマロイよりも、異方性磁気ペルチェ効果が大きいことが確認された。また、42アロイとスーパーインバーでは、不規則な振幅や位相のパターンとなっており、異方性磁気ペルチェ効果は明瞭には認められなかった。 Among the experimental results, the amplitude A even image and the phase φ even image for each type of the magnetic material 11 are shown in FIGS. 7 (a) and 7 (b), respectively. As shown in FIG. 7, it was confirmed that the anisotropic magnetic Peltier effect was remarkably observed in Ni, but hardly observed in Fe and Co. It was also confirmed that, in the Fe-Ni alloy, the PB-45 permalloy had a larger anisotropic magnetic Peltier effect than the PC-78 permalloy, though not as much as Ni. In addition, 42 alloys and superinvar had irregular amplitude and phase patterns, and the anisotropic magnetic Peltier effect was not clearly observed.

図7に示すNi、Fe、PB-45パーマロイの結果から、磁性体11の中央部11aと各端部11bとの境界位置での振幅Aevenおよび位相φevenと、Niの配合量(x)との関係を求め、それぞれ図8(a)および(b)に示す。図8に示すように、Fe−Ni合金では、Niの配合量が大きくなるほど、振幅Aevenが大きくなり、異方性磁気ペルチェ効果が効果的に現れることが確認された。また、Niの配合量が40%以上のときに、異方性磁気ペルチェ効果が認められることが確認された。 From the results of Ni, Fe, and PB-45 permalloy shown in FIG. 7, the amplitude A even and the phase φ even at the boundary position between the central portion 11a and each end portion 11b of the magnetic material 11 and the blending amount of Ni (x) The relationship with is obtained and shown in FIGS. 8 (a) and 8 (b), respectively. As shown in FIG. 8, in the Fe—Ni alloy, it was confirmed that the larger the blending amount of Ni, the larger the amplitude A even , and the anisotropic magnetic Peltier effect effectively appears. It was also confirmed that the anisotropic magnetic Peltier effect was observed when the amount of Ni was 40% or more.

図1(c)に示すように、磁性体11に局所的に磁場を印加できれば、磁性体11の形状は必ずしも曲げ・折れ構造を有している必要はない。そこで、図9(a)に示すように、直線状のNi製の磁性体11を用いて、異方性磁気ペルチェ効果を調べる実験を行った。実験では、磁性体11の一端から他端に向かって電流が流れるよう、磁性体11の両端に電流印加手段12を接続した。また、磁性体11の中央部11aのみに磁場を印加するよう、永久磁石から成る磁場印加手段13を磁性体11の中央部11aに接触させて配置した。実験は、印加電流Jおよび印加磁場H以外は、実施例1と同じ条件で行った。実験では、印加電流Jの大きさを 1.00 Aとした。なお、磁場印加手段13である永久磁石の表面での磁場強度Hは、約 5 kOeである。 As shown in FIG. 1 (c), if a magnetic field can be locally applied to the magnetic body 11, the shape of the magnetic body 11 does not necessarily have to have a bent / bent structure. Therefore, as shown in FIG. 9A, an experiment was conducted to investigate the anisotropic magnetic Peltier effect using a linear magnetic material 11 made of Ni. In the experiment, the current application means 12 were connected to both ends of the magnetic body 11 so that the current flowed from one end to the other end of the magnetic body 11. Further, the magnetic field applying means 13 made of a permanent magnet was arranged in contact with the central portion 11a of the magnetic body 11 so that the magnetic field was applied only to the central portion 11a of the magnetic body 11. The experiment was carried out under the same conditions as in Example 1 except for the applied current Jc and the applied magnetic field H. In the experiment, the magnitude of the applied current J c was set to 1.00 A. The magnetic field strength H on the surface of the permanent magnet, which is the magnetic field applying means 13, is about 5 kOe.

実験結果のうち、振幅Aeven像および位相φeven像を、それぞれ図9(b)および(c)に示す。図9(b)および(c)に示すように、磁場印加手段13である永久磁石の境界位置で、振幅Aeven像および位相φeven像に温度変化信号が認められ、異方性磁気ペルチェ効果による温度変化が生じていることが確認された。 Of the experimental results, the amplitude A even image and the phase φ even image are shown in FIGS. 9 (b) and 9 (c), respectively. As shown in FIGS. 9 (b) and 9 (c), temperature change signals are observed in the amplitude A even image and the phase φ even image at the boundary position of the permanent magnet which is the magnetic field applying means 13, and the anisotropic magnetic Perche effect. It was confirmed that the temperature was changed due to the above.

10 熱電変換装置
11 磁性体
11a 中央部
11b 端部
12 電流印加手段
13 磁場印加手段
10 Thermoelectric converter 11 Magnetic material 11a Central part 11b End part 12 Current application means 13 Magnetic field application means

Claims (9)

磁性体と、
前記磁性体に電流を印加可能に設けられた電流印加手段とを有し、
前記磁性体は単一の物質からなり、
前記電流印加手段で前記磁性体に電流を印加したとき、前記磁性体の内部で、磁化の向きと前記電流の向きとの相対角度が異なる領域が複数存在するよう構成されていることを
特徴とする熱電変換装置。
With magnetic material
It has a current applying means provided so that a current can be applied to the magnetic material.
The magnetic material consists of a single substance
When a current is applied to the magnetic material by the current applying means, a plurality of regions having different relative angles between the direction of magnetization and the direction of the current exist inside the magnetic material. Thermoelectric converter.
前記電流を印加したとき、前記磁性体の隣り合う領域の間で、前記磁化の向きおよび前記電流の向きのうちの少なくともいずれか一方が異なるよう構成されていることを特徴とする請求項1記載の熱電変換装置。 The first aspect of the present invention, wherein when the current is applied, at least one of the direction of the magnetization and the direction of the current is different between adjacent regions of the magnetic material. Thermoelectric converter. 前記磁性体は、隣り合う領域の間で異なる向きの磁化を有していることを特徴とする請求項1または2記載の熱電変換装置。 The thermoelectric conversion device according to claim 1 or 2, wherein the magnetic material has magnetizations in different directions between adjacent regions. 前記磁性体の一部または全体が磁化されるよう、前記磁性体に磁場を印加可能に設けられた磁場印加手段を有することを特徴とする請求項1または2記載の熱電変換装置。 The thermoelectric conversion apparatus according to claim 1 or 2, further comprising a magnetic field applying means provided so that a magnetic field can be applied to the magnetic material so that a part or the whole of the magnetic material is magnetized. 前記磁性体は、前記電流の向きが変化するよう、前記電流が流れる電流路に沿って曲がった形状を成し、
前記磁場印加手段は、前記磁性体の全体が一定の方向に磁化されるよう前記磁場を印加可能に設けられていることを
特徴とする請求項4記載の熱電変換装置。
The magnetic material has a curved shape along the current path through which the current flows so that the direction of the current changes.
The thermoelectric conversion device according to claim 4, wherein the magnetic field applying means is provided so that the magnetic field can be applied so that the entire magnetic material is magnetized in a certain direction.
前記磁場印加手段は、前記磁性体の一部が磁化されるよう前記磁場を印加可能に設けられていることを特徴とする請求項4記載の熱電変換装置。 The thermoelectric conversion device according to claim 4, wherein the magnetic field applying means is provided so that the magnetic field can be applied so that a part of the magnetic material is magnetized. 前記磁性体は、強磁性体、フェリ磁性体または反強磁性体から成ることを特徴とする請求項1乃至のいずれか1項に記載の熱電変換装置。 The thermoelectric conversion device according to any one of claims 1 to 6 , wherein the magnetic material is made of a ferromagnetic material, a ferrimagnetic material or an antiferromagnetic material. 前記磁性体は、ニッケルまたは、ニッケルを40wt%以上含む合金から成ることを特徴とする請求項1乃至のいずれか1項に記載の熱電変換装置。 The thermoelectric conversion apparatus according to any one of claims 1 to 6 , wherein the magnetic material is made of nickel or an alloy containing 40 wt% or more of nickel. 前記磁性体は、ニッケルまたは、ニッケルを40wt%以上含むNi−Fe合金から成ることを特徴とする請求項1乃至のいずれか1項に記載の熱電変換装置。
The thermoelectric conversion apparatus according to any one of claims 1 to 6 , wherein the magnetic material is made of nickel or a Ni—Fe alloy containing 40 wt% or more of nickel.
JP2017089924A 2017-04-28 2017-04-28 Thermoelectric converter Active JP6842113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017089924A JP6842113B2 (en) 2017-04-28 2017-04-28 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017089924A JP6842113B2 (en) 2017-04-28 2017-04-28 Thermoelectric converter

Publications (2)

Publication Number Publication Date
JP2018190780A JP2018190780A (en) 2018-11-29
JP6842113B2 true JP6842113B2 (en) 2021-03-17

Family

ID=64478986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017089924A Active JP6842113B2 (en) 2017-04-28 2017-04-28 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JP6842113B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7539125B2 (en) * 2018-12-28 2024-08-23 国立研究開発法人物質・材料研究機構 Thermopile type temperature control element
JP7507481B2 (en) 2020-10-07 2024-06-28 国立研究開発法人産業技術総合研究所 Power generation element using the anomalous Nernst effect
JP7520298B2 (en) 2020-12-25 2024-07-23 国立研究開発法人物質・材料研究機構 Thermoelectric conversion characteristic evaluation method, thermoelectric conversion characteristic analysis device and analysis program, and thermoelectric conversion characteristic evaluation system
JP2024048521A (en) * 2022-09-28 2024-04-09 ダイキン工業株式会社 Refrigeration device and refrigerator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011982A (en) * 2003-06-19 2005-01-13 Matsushita Electric Ind Co Ltd Cooling element
JP5630230B2 (en) * 2010-11-17 2014-11-26 日本電気株式会社 Thermoelectric conversion element
WO2012161336A1 (en) * 2011-05-23 2012-11-29 日本電気株式会社 Thermoelectric conversion element and thermoelectric conversion method
WO2013011971A1 (en) * 2011-07-15 2013-01-24 日本電気株式会社 Layered body for magnetic substance element, thermoelectric conversion element comprising said layered body, and method of manufacturing same
WO2013153949A1 (en) * 2012-04-11 2013-10-17 日本電気株式会社 Magnetic field measurement device and magnetic field measurement method
US9859486B2 (en) * 2012-07-19 2018-01-02 Nec Corporation Thermoelectric conversion element and manufacturing method for same
JP6143051B2 (en) * 2012-10-19 2017-06-07 国立大学法人東北大学 Spintronics device
JP2015179773A (en) * 2014-03-19 2015-10-08 株式会社東芝 Thermoelectric transducer

Also Published As

Publication number Publication date
JP2018190780A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6842113B2 (en) Thermoelectric converter
Sakuraba Potential of thermoelectric power generation using anomalous Nernst effect in magnetic materials
US10879452B2 (en) Magnetic tunnel junction device and magnetic memory device
JP6972221B2 (en) Magnetoresistive sensor
Niimi et al. Reciprocal spin Hall effects in conductors with strong spin–orbit coupling: a review
JP6949834B2 (en) Magnetic memory element
JP5267967B2 (en) Spin current heat conversion element and thermoelectric conversion element
JP6611167B2 (en) Thermoelectric conversion device and thermoelectric conversion element
JP4978553B2 (en) Oscillation device, communication apparatus, and oscillation method using magnetic element
JP6926666B2 (en) Spin current magnetization reversing element
Bose et al. Recent advances in the spin Nernst effect
Prudnikov et al. Monte Carlo simulation of multilayer magnetic structures and calculation of the magnetoresistance coefficient
Hu et al. Spin‐Dependent Thermoelectric Transport in Cobalt‐Based Heusler Alloys
JP7095434B2 (en) Spin current magnetoresistive element and magnetic memory
JP4790448B2 (en) Magnetoresistive element and method for forming the same
JP2010229477A (en) Heusler alloy material, magnetoresistive element and magnetic device
Isshiki et al. Determination of spin Hall angle in the Weyl ferromagnet Co 2 MnGa by taking into account the thermoelectric contributions
US9995798B2 (en) MLU based magnetic sensor having improved programmability and sensitivity
Singh et al. Giant anomalous Hall and anomalous Nernst conductivities in antiperovskites and their tunability via magnetic fields
Kim et al. Amplification of spin thermoelectric signals in multilayer spin thermopiles
WO2018139252A1 (en) Tunnel magnetoresistive element, and magnetization direction correcting circuit
JP6777364B2 (en) Switching of perpendicularly magnetized nanomagnets by spin-orbit torque in the absence of external magnetic field
Nakayama et al. Direct observation of magneto-Peltier effect in current-in-plane giant magnetoresistive spin valve
JP2007235051A (en) Magnetoresistive effect element, substrate for magnetoresistive effect element, and manufacturing method of magnetoresistive effect element
WO2020027268A1 (en) Inductor element and apparatus including same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20201116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20201120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210204

R150 Certificate of patent or registration of utility model

Ref document number: 6842113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250