JP6838858B2 - Functional agent - Google Patents

Functional agent Download PDF

Info

Publication number
JP6838858B2
JP6838858B2 JP2015250759A JP2015250759A JP6838858B2 JP 6838858 B2 JP6838858 B2 JP 6838858B2 JP 2015250759 A JP2015250759 A JP 2015250759A JP 2015250759 A JP2015250759 A JP 2015250759A JP 6838858 B2 JP6838858 B2 JP 6838858B2
Authority
JP
Japan
Prior art keywords
low
temperature
carbonization
residue
tea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015250759A
Other languages
Japanese (ja)
Other versions
JP2016130234A (en
Inventor
勝重 猪飼
勝重 猪飼
有貴 西本
有貴 西本
君久 野田
君久 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiraimatsu Shinyaku KK
Original Assignee
Shiraimatsu Shinyaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiraimatsu Shinyaku KK filed Critical Shiraimatsu Shinyaku KK
Publication of JP2016130234A publication Critical patent/JP2016130234A/en
Application granted granted Critical
Publication of JP6838858B2 publication Critical patent/JP6838858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Cosmetics (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)

Description

本発明は、ツバキ科植物の「葉部」から特定の工程を経て分離取得した抽出分を有効成分とする抗酸化活性を有する機能剤(または抗酸化活性と共に他の活性も併せ有する機能剤)に関するものである。 The present invention is a functional agent having an antioxidant activity (or a functional agent having other activities in addition to the antioxidant activity) containing an extract separated and obtained from the "leaf part" of a Theaceae plant through a specific step as an active ingredient. It is about.

(特許文献1)
本出願人の出願にかかる特開2014−205658(特許文献1)の請求項1〜3には、下記の発明が示されている。本願発明の構成要件と紛らわしい点があるので、少し詳しく引用する。
(Patent Document 1)
The following inventions are shown in claims 1 to 3 of Japanese Patent Application Laid-Open No. 2014-205658 (Patent Document 1) according to the application of the present applicant. Since there are some points that are confusing with the constituent requirements of the present invention, they are quoted in a little more detail.

−1−
その請求項1:植物原料を減圧条件下に乾留して得られる減圧乾留物を有効成分とすることを特徴とするメイラード反応抑制剤。
念のため述べると、上記の「乾留物」とは、「減圧乾留装置の塔頂から留出する留出液」のことである。
-1-
Claim 1: A Maillard reaction inhibitor, which comprises a vacuum-dried product obtained by carbonizing a plant raw material under reduced pressure conditions as an active ingredient.
As a reminder, the above-mentioned "dry distillation product" is "distillate liquid distilled from the top of the vacuum carbonization device".

−2−
その請求項2:前記の減圧乾留物が、乾燥または非乾燥の状態にある植物原料を、常温から350℃の範囲内の温度条件下にかつ圧力100mmHg以下の減圧条件下に乾留して得られるものであること、を特徴とする請求項1記載のメイラード反応抑制剤。
-2-
The claim 2: The vacuum carbonization product is obtained by carbonizing a plant material in a dry or non-dry state under a temperature condition in the range of room temperature to 350 ° C. and a pressure reduction condition of 100 mmHg or less. The Maillard reaction inhibitor according to claim 1, wherein the product is a product.

−3−
その請求項3:ペントシジン生成阻害剤である請求項1または2記載のメイラード反応抑制剤。
-3-
3. The Maillard reaction inhibitor according to claim 1 or 2, which is a pentosidine production inhibitor.

−4−
その段落0025には、原料植物として用いられる植物の例として、「ショウガ、茶、ヨモギ、月桃、カキノハ、イグサ、シソヨウ(紫蘇葉)、ケイヒ、オレガノ、カモミール、セイジ、タイム、バジル、ペパーミント、ラベンダー、レモンバーム、ローズマリー、シークワーサー、バラ、ノニ、もみがら、米ぬか、そばがら、小麦ふすま、菜種油粕、椿油粕、ごま油粕、ごま、オウバク、ケイヒ、クマザサ、竹、ネギ、スダチ、秋ウコン、ユズ、カサブランカ、ミカン、ジャバラなど」があげられている。
-4-
In that paragraph 0025, as examples of plants used as raw materials, "ginger, tea, green onion, moon peach, kakinoha, igusa, shisoyo (shiso leaf), keihi, oregano, chamomile, sage, thyme, basil, peppermint, Lavender, lemon balm, rosemary, shikuwasa, rose, noni, fir tree, rice bran, buckwheat, wheat bran, rapeseed oil cake, camellia oil cake, sesame oil cake, sesame, sardines, keihi, kumazasa, bamboo, green onion, sudachi, autumn corn, Yuzu, Casablanca, Mikan, Jabara, etc. "

−5−
その段落0038には、原料植物からの減圧乾留液の調製につき記載がある。すなわち、植物を容器に入れ、精製水を加えてから、常圧下に220℃にて4時間加熱することにより「常圧蒸留液」を得、ついで容器内の液を常圧下にさらに220℃にて加熱し、このとき留出する水分に富む液は廃棄し、次に上記のように減水を行った容器内の液につき、25〜30mmHgの減圧条件下に300℃にて4時間加熱する減圧乾留操作を行って、この操作により留出した液である「減圧乾留液」を取得している。
-5-
Paragraph 0038 describes the preparation of vacuum dry distillates from raw material plants. That is, the plant is placed in a container, purified water is added, and then heated at 220 ° C. for 4 hours under normal pressure to obtain a “normal pressure distilled liquid”, and then the liquid in the container is further lowered to 220 ° C. under normal pressure. The water-rich liquid distilled at this time is discarded, and then the liquid in the container whose water has been reduced as described above is heated at 300 ° C. for 4 hours under a reduced pressure condition of 25 to 30 mmHg. A dry distillation operation is performed, and a "vacuum dry distillation solution", which is the liquid distilled by this operation, is obtained.

−6−
その段落0039以降には、先に述べた種々の植物を原料として用いたときの「常圧および減圧蒸留液」の収量、それらの「常圧および減圧蒸留液」の阻害率(ペントシジン生成阻害率)、切断率(AGE−タンパク質架橋形成物モデル切断活性)などについての実施例が示されている。
-6-
After that paragraph 0039, the yield of "normal pressure and vacuum distillation solution" when various plants described above were used as raw materials, and the inhibition rate of those "normal pressure and vacuum distillation solutions" (pentosidine production inhibition rate). ), Cleavage rate (AGE-protein cross-linking product model cleavage activity) and the like are shown.

−7−
その実施例の個所:表1には茶の常圧蒸留液および減圧蒸留液の収量、表2には茶の常圧蒸留液および減圧蒸留液の阻害率(ペントシジン生成阻害率)、表3には茶の減圧蒸留液の阻害率(ペントシジン生成阻害率)、表4には茶の減圧乾留液の収量、表5には茶の減圧乾留液の阻害率、表6には表2と表5における茶の阻害率の比較が示されている。表8には、参考例として、茶の減圧乾留液の阻害率が示されている。
-7-
Examples of the examples: Table 1 shows the yields of the atmospheric distillation solution and the vacuum distillation solution of tea, Table 2 shows the inhibition rate of the atmospheric distillation solution and the vacuum distillation solution of tea (pentocidin production inhibition rate), and Table 3 shows. Is the inhibition rate of the vacuum distillation solution of tea (pentocidin production inhibition rate), Table 4 shows the yield of the vacuum distillation solution of tea, Table 5 shows the inhibition rate of the vacuum distillation solution of tea, and Table 6 shows Tables 2 and 5. A comparison of the inhibition rates of tea in Japan is shown. Table 8 shows the inhibition rate of the vacuum dry distillate of tea as a reference example.

−8−
ところで、この特許文献1における「常圧蒸留液」(その段落0038を参照)とは、裁断した原料植物200gを容器に入れ、精製水400gを加えてから、常圧下に「220℃」にて4時間加熱することにより常圧蒸留を行って、蒸留液を得る方法である。水を加えたのは、水蒸気蒸留を行うためである。
「減圧乾留液」(その段落0038を参照)とは、上記の常圧蒸留において、容器内に残った液を常圧下に加熱して留出する水分に富む液を廃棄し、そのように減水を行った容器内の液につき、25〜30mmHgの減圧条件下に300℃にて4時間加熱する減圧乾留操作を行ったときに「留出する液」のことである。
-8-
By the way, the "normal pressure distilled solution" in Patent Document 1 (see paragraph 0038 of the distillate) refers to 200 g of a cut raw material plant in a container, 400 g of purified water, and then at "220 ° C." under normal pressure. This is a method of obtaining a distillate by performing atmospheric distillation by heating for 4 hours. Water was added for steam distillation.
The term "decompressed dry distillation solution" (see paragraph 0038 of the same) refers to the above-mentioned atmospheric distillation in which the solution remaining in the container is heated under atmospheric pressure to dispose of the distillate water-rich solution, and the water content is reduced as such. This is the “liquid to be distilled off” when the liquid in the container is subjected to the vacuum carbonization operation of heating at 300 ° C. for 4 hours under a reduced pressure condition of 25 to 30 mmHg.

−9−
上記のように、特許文献1においては、減圧乾留時に乾留装置内に残る残渣(つまり「缶残」)については、何の関心も払われておらず、説明もない。そのような缶残は、通常の蒸留の場合と同じく、廃棄物として処理されるわけである。
-9-
As described above, in Patent Document 1, no interest is paid to the residue remaining in the carbonization apparatus during carbonization under reduced pressure (that is, "can residue"), and there is no explanation. Such canned residue is treated as waste, as in the case of ordinary distillation.

(特許文献2)
−1−
本出願人の出願にかかる特開2011−006623(特許第5437709号)(特許文献2)の請求項1には、ヨモギを260〜350℃、100mmHg以下の減圧条件下で乾留して得られた乾留液を含有する抗酸化剤が示されている。
念のため述べると、この特許文献2における減圧乾留は、「260〜350℃という高温での減圧乾留」にかかるものである。また、この文献1における「乾留液」とは、その「高温減圧乾留時」に「塔頂から留出する留出液」のことである。
(Patent Document 2)
-1-
Claim 1 of Japanese Patent Application Laid-Open No. 2011-006623 (Patent No. 5437709) (Patent Document 2) according to the application of the present applicant was obtained by carbonizing mugwort under reduced pressure conditions of 260 to 350 ° C. and 100 mmHg or less. Antioxidants containing a dry distillation solution are shown.
As a reminder, the vacuum carbonization in Patent Document 2 is related to "vacuum carbonization at a high temperature of 260 to 350 ° C." Further, the "dry distillation solution" in this document 1 is a "distillate distillate from the top of the column" at the time of "high temperature vacuum carbonization".

−2−
この特許文献2の表1および表2には、実施例1として、「ヨモギ」を「300℃、25mmHg」という高温での減圧乾留を行った乾留液の抗酸化能が「1003nmol α−トコフェロール相当量/アッセイ」であることが示されている。
なお、その段落0021の表2およびその段落0022には、「ヨモギを220℃で乾留したときには、抗酸化能が15nmol α−トコフェロール相当量/アッセイとなったこと、原料として同じヨモギを用いた場合でも、乾留温度の違いにより抗酸化能が格段に異なることが分かった。」との説明がなされている。
-2-
In Tables 1 and 2 of Patent Document 2, as Example 1, the antioxidant capacity of the dry distillation solution obtained by carbonizing "mugwort" at a high temperature of "300 ° C., 25 mmHg" is equivalent to "1003 nmol α-tocopherol". It has been shown to be "quantity / assay".
In addition, in Table 2 of the paragraph 0021 and its paragraph 0022, "When the mugwort was carbonized at 220 ° C., the antioxidant capacity was 15 nmol α-tocopherol equivalent / assay, and when the same mugwort was used as the raw material. However, it was found that the antioxidant capacity was significantly different depending on the difference in carbonization temperature. "

−3−
この特許文献2の表1には、比較例1として、上記のヨモギの場合と同じ条件(300℃、100mmHg以下の減圧条件)で、「茶」を用いたときの抗酸化能が「301nmol α−トコフェロール相当量/アッセイ」であることが示されている。
茶を高温で減圧乾留したときの留出液の抗酸化能は、ヨモギの場合の3割にしかならないのである。
また、特許文献2の表1によれば、比較例2〜15の各種の植物にあっても、ヨモギに比しては抗酸化能がかなり低いことがわかる。
-3-
In Table 1 of Patent Document 2, as Comparative Example 1, the antioxidant capacity when "tea" is used under the same conditions as the above-mentioned mugwort (300 ° C., reduced pressure condition of 100 mmHg or less) is "301 nmol α". -Tocopherol equivalent / assay "has been shown.
The antioxidant capacity of the distillate when tea is carbonized at high temperature under reduced pressure is only 30% of that of mugwort.
Further, according to Table 1 of Patent Document 2, it can be seen that even in the various plants of Comparative Examples 2 to 15, the antioxidant ability is considerably lower than that of mugwort.

−4−
特許文献2に記載の発明は、上述のように「高温」減圧乾留時に「塔頂から留出する留出液」にかかるものである。
また、特許文献2においては、上述の特許文献1におけると同様に、減圧乾留時に乾留装置内に残る「残渣(つまり「缶残」)」については、何の関心も払われていない。
-4-
As described above, the invention described in Patent Document 2 relates to "distillate distillate from the top of the column" during carbonization under reduced pressure at "high temperature".
Further, in Patent Document 2, as in Patent Document 1 described above, no attention is paid to the "residue (that is," can residue ") remaining in the carbonization apparatus during carbonization under reduced pressure.

特開2014−205658JP-A-2014-205658 特開2011−006623JP 2011-006623

−1−(特許文献1について)
特許文献1においては、その請求項1に「植物原料を減圧条件下に乾留して得られる減圧乾留物を有効成分とすることを特徴とするメイラード反応抑制剤。」とあるように、「減圧乾留装置の塔頂から留出する留出液」につき記載があるものの、その減圧乾留時に塔内の底部に残存する残渣(缶残)については何の関心も払われていない。
-1- (About Patent Document 1)
In Patent Document 1, as stated in claim 1, "a Maillard reaction inhibitor characterized by containing a vacuum-dried product obtained by carbonizing a plant material under reduced pressure conditions as an active ingredient." Although there is a description about "distillate liquid distilled from the top of the carbonization device", no attention is paid to the residue (can residue) remaining at the bottom of the column during carbonization under reduced pressure.

−2−(特許文献2について)
特許文献2に記載の発明は、「高温」減圧乾留時に「塔頂から留出する留出液」にかかるものであるにとどまる。
特許文献1と同様に、特許文献2においても、その減圧乾留時に塔内の底部に残存する残渣(缶残)については何の関心も払われていない。
-2- (About Patent Document 2)
The invention described in Patent Document 2 is limited to the "distillate distilled from the top of the column" during carbonization under reduced pressure at "high temperature".
Similar to Patent Document 1, in Patent Document 2, no attention is paid to the residue (can residue) remaining at the bottom of the column during carbonization under reduced pressure.

−3−(特許文献1、2との基本的な相違点)
これらの特許文献1、2に記載の発明は、作用効果の優劣について比較対照するまでもなく、本願発明とは着眼点や技術思想が根本的に相違しているのである。
-3- (Basic differences from Patent Documents 1 and 2)
The inventions described in Patent Documents 1 and 2 are fundamentally different from the inventions of the present application in terms of points of view and technical ideas, without needing to compare and contrast the superiority or inferiority of the action and effect.

本発明の抗酸化活性を有する機能剤は、
減圧機構を備えた乾留装置を用いて含水状態にある植物原料を低温かつ減圧条件下に乾留したときに留出する成分を「低温減圧乾留留出分(D)」としかつその低温減圧乾留操作後にその乾留装置内に残る乾燥状態の粉末ないしフレーク状の缶残を「低温減圧乾留残渣(R)」と称するとき、
前記の植物原料がツバキ科植物の葉部であること、および、
そのツバキ科植物の葉部の低温減圧乾留残渣(R)を溶媒により抽出したときの抽出分(E)を有効成分とするものであること、
を特徴とするものである。
The functional agent having an antioxidant activity of the present invention is
The component that is distilled when a water-containing plant material is carbonized under low-temperature and low-pressure conditions using a carbonization device equipped with a decompression mechanism is defined as "low-temperature carbonization distillation (D)" and its low-temperature low-pressure dry distillation operation. When the dry powder or flake-like can residue that remains in the carbonization device later is referred to as "low temperature vacuum carbonization residue (R)",
The plant material is the leaves of Theaceae plants, and
The active ingredient is the extract (E) obtained by extracting the low-temperature carbonization residue (R) of the leaves of the Theaceae plant with a solvent.
It is characterized by.

(着想の特異性と作用効果について)
−1−
特許文献1のように、原料植物中の着目成分(「f」とする)は、蒸留により塔頂から留出する留分(留出液)に含まれるとするのが技術上の通念であり、乾留装置内に残る固体状の残渣(缶残)は、本来は廃棄物として処理されるべきものである。
(About the specificity of the idea and the effect)
-1-
As in Patent Document 1, it is a technical convention that the component of interest (referred to as "f") in the raw material plant is contained in the fraction (distillate) distilled from the top of the column by distillation. The solid residue (can residue) remaining in the carbonization device should be treated as waste.

−2−
蒸留操作により留出液中に移行するはずの着目成分fの一部が残渣(缶残)側に若干は残るおそれがあるので、その着目成分fを残渣側から少しでも回収しようとすることは考えられるが、残渣から回収した着目成分fは純度が劣りかつ不純物や着色物が入り込むおそれがあるので、人体に適用する使い方が想定されるケースにおいては、そのような回収はしないのが通常である。
たとえ回収するときでも、その回収物につき精製処理を施すことが必要となるため、かえってコスト的に割高になってしまうのである。
-2-
Since a part of the component f of interest that should be transferred to the distillate by the distillation operation may remain on the residue (can residue) side, it is not possible to recover the component f of interest from the residue side as much as possible. Although it is conceivable, the component f of interest recovered from the residue is inferior in purity and may contain impurities and colored substances. Therefore, in cases where it is expected to be used on the human body, such recovery is usually not performed. is there.
Even when it is recovered, it is necessary to carry out a refining process on the recovered product, which is rather expensive in terms of cost.

−3−
本出願人は、以前より茶葉を「高温で減圧乾留」したときの留出物を商品化しているが(消臭性を必要とする広範な用途に「フレッシュシライマツ」の登録商標で販売)、その高温減圧乾留を行ったときの残渣(缶残)は原料葉がそのまま炭化した状態のものであることから、廃棄処分するほかはなかった。というより、その破棄処分にも苦慮するほどであった。
-3-
The applicant has been commercializing the distillate obtained by carbonizing tea leaves under reduced pressure at high temperature (sold under the registered trademark of "Fresh Shiraimatsu" for a wide range of applications requiring deodorant properties). Since the residue (can residue) after carbonization at high temperature and reduced pressure is a carbonized raw material leaf as it is, there is no choice but to dispose of it. Rather, it was difficult to dispose of it.

−4−
さて、茶葉を「低温かつ減圧条件下に乾留」したときには、その塔頂からの留出液を製品として利用することを狙っていたわけであるが、本発明者らは、突然、「その低温減圧乾留を行ったときの残渣(缶残)は利用できるかも知れない」との予感を抱いた。研究にたずさわる者の直感である。
そこで、「考えるよりも試みよ」、「成功率がゼロであっても、そのことを確認できるだけでも意味がある(収穫がある)」ということで、その「残渣(缶残)そのもの」および「その残渣の溶媒による抽出分」につき検討を行い、後者の場合にはその溶媒についても種々検討したところ、低温減圧乾留時の「塔頂からの留出物」よりも「抗酸化活性」の点でむしろすぐれた結果が得られること(というより、格段にすぐれた結果が得られること)が判明した。
-4-
By the way, when the tea leaves were "carbonized under low temperature and reduced pressure conditions", the aim was to use the distillate from the top of the tower as a product. The residue (can residue) from carbonization may be available. " It is the intuition of those involved in research.
Therefore, "try rather than think" and "even if the success rate is zero, it is meaningful to be able to confirm that (there is a harvest)", and the "residue (can residue) itself" and " When the "extraction of the residue with a solvent" was examined, and in the latter case, the solvent was also examined in various ways. Rather, it turned out that excellent results can be obtained (rather, much better results can be obtained).

−5−
後述の実施例のように、「抗酸化活性」に関しては、低温減圧乾留の留出液の活性は事実上ゼロかゼロに近いものであるのに対し、上記の「低温減圧乾留残渣の溶媒による抽出分」はかなり高く、特に溶媒として50体積%のエタノール水を用いたときの上記の残渣(缶残)の抽出分は、後述の実施例のように、極めて高い「抗酸化活性」を示したのである。
加えて、抗酸化活性のほか、メイラード反応抑制活性(ペントシジン生成阻害)、AGE−タンパク質架橋形成物モデル切断活性、チロシナーゼ阻害活性についても、低温減圧乾留を行ったときの残渣(缶残)やその溶媒による抽出分は、好ましい結果を示すことが多いという知見が得られた。
-5-
As in the examples described later, with respect to the "antioxidant activity", the activity of the distillate of the low-temperature carbonization distillation is practically zero or close to zero, whereas the above-mentioned "low-temperature carbonization residue solvent" is used. The "extracted portion" is considerably high, and in particular, the extracted portion of the above residue (can residue) when 50% by volume of ethanol water is used as the solvent shows extremely high "antioxidant activity" as in the examples described later. It was.
In addition, in addition to antioxidant activity, Maillard reaction inhibitory activity (inhibition of pentosidine production), AGE-protein cross-linking product model cleavage activity, and tyrosinase inhibitory activity are also the residue (can residue) after carbonization at low temperature and reduced pressure. It was found that the solvent-based extract often gives favorable results.

(植物原料)
−1−
本発明においては、植物原料としてツバキ科植物の葉部を用いる。ツバキ科植物の葉部を用いたときに、本発明の目的に沿う有効成分を含む目的物が得られるからである。ただし、葉部以外の他の部位(茎部など)が多少混在していても、特に支障とはならない。
−2−
ツバキ科植物としては、茶、ツバキ、モッコク、サザンカ、サカキ、ヒサカキ、ヤブツバキ、ナツツバキ、ヒメシャラなどがあげられる。
これらの中では作用効果(抗酸化活性)の点で特に茶が重要であり、一番茶、二番茶、三番茶、四番茶のいずれもが好適に用いられる。四番茶であっても好適に用いることができるので、原料の入手量、原料の入手期間、原料の入手コストの点でも有利である。
なお、茶種については、普通煎茶、玉露茶・碾茶、玉緑茶、紅茶などがあり、かつそれぞれの茶種に属する品種数も相応の数があるが、本発明の目的にはこれらの茶種および品種のいずれもが用いられる。たとえば、品種の一例は普通煎茶に主に用いられる「やぶきた」であり、品種の他の一例は紅茶や半発酵茶に主に用いられる「べにふうき」である。
製茶工程において副生する粉状の部分、茶製品の流通過程において商品化されなかったものや回収されたものなども使用可能である。
ツバキも、茶ほどではないが、好ましい結果を示すので(後述の実施例を参照)、有用である。
(Plant raw material)
-1-
In the present invention, the leaves of Theaceae plants are used as plant raw materials. This is because when the leaves of Theaceae plants are used, a target product containing an active ingredient according to the object of the present invention can be obtained. However, even if some parts other than the leaves (stems, etc.) are mixed, there is no particular problem.
-2-
Examples of Theaceae plants include tea, camellia, ternstroemia, southern mosquito, cleyera japonica, eurya japonica, camellia japonica, stewartia japonica, and tall stewartia.
Among these, tea is particularly important in terms of action and effect (antioxidant activity), and any of the first tea, the second tea, the third tea, and the fourth tea is preferably used. Since even the fourth tea can be preferably used, it is advantageous in terms of the amount of raw materials obtained, the period of raw materials obtained, and the cost of obtaining raw materials.
As for tea types, there are ordinary sencha, gyokuro tea / tencha, tamaryokucha, black tea, etc., and the number of varieties belonging to each tea type is also appropriate. And varieties are used. For example, one example of the variety is "Yabukita", which is mainly used for ordinary sencha, and another example of the variety is "Benifuuki", which is mainly used for black tea and semi-fermented tea.
Powdery parts produced as a by-product in the tea making process, products not commercialized or recovered in the distribution process of tea products, etc. can also be used.
Camellia is also useful, though not as much as tea, because it gives favorable results (see Examples below).

(低温減圧乾留時の水分率の条件)
本発明においては、減圧機構を備えた乾留装置を用いて含水状態にあるツバキ科植物の葉部を低温かつ減圧条件下に乾留する。ただし、水分率が余りに高いときは乾留に長時間を要し、工業性を欠くことになるので、水分率は90重量%程度以下、特に70〜80重量%程度にとどめることが望ましい。ちなみに、生茶葉の水分率は、たとえば70〜80重量%程度であることが多く、放置により水分率が漸減していく。
(Conditions for moisture content during carbonization at low temperature and reduced pressure)
In the present invention, the leaves of a water-containing Theaceae plant are carbonized under low temperature and reduced pressure conditions by using a carbonization device provided with a decompression mechanism. However, if the water content is too high, it takes a long time for carbonization and lacks industriality. Therefore, it is desirable that the water content is about 90% by weight or less, particularly about 70 to 80% by weight. Incidentally, the water content of raw tea leaves is often, for example, about 70 to 80% by weight, and the water content gradually decreases when left unattended.

(低温減圧乾留時の温度条件と圧力条件)
−1−
低温減圧乾留を行うときの温度条件としては、60〜20℃の範囲内の低温が適当であり、より好ましい範囲は55〜25℃、さらに好ましい範囲は50〜30℃である。
温度条件が60℃を越えるような条件で減圧乾留を行うと、乾留装置内に残る粉末ないしフレーク状の残渣を溶媒で抽出しても、その抽出分(E)中の有効成分の量が少なくなる上、取得した抽出分(E)を用いたときの抗酸化機能やその他の機能(メイラード反応抑制機能など)が不足するようになる傾向がある。
−2−
低温減圧乾留を行うときの圧力条件(減圧条件)としては、ゲージ圧表記で、−88kPa以下(−660mmHg以下)、通常は−96〜−100kPa(−720〜−750mmHg)とすることが好ましい。
絶対圧表記では、13.3kPa以下(100mmHg以下)、通常は1.3〜5.3kPa(10〜40mmHg)とすることが好ましい。
減圧の度合いが上記範囲よりも緩くなると(減圧度が不足すると)乾留に長時間を要することになり、一方、減圧の度合いを余りに大きくすることは真空装置上の制約があるので、いずれも工業性を欠くことになる。
−3−
上述のような条件下での低温減圧乾留により、所期の目的物を工業的に効率良く取得できる。
(Temperature and pressure conditions during carbonization at low temperature and reduced pressure)
-1-
As the temperature condition for carbonization at low temperature and reduced pressure, a low temperature in the range of 60 to 20 ° C. is suitable, a more preferable range is 55 to 25 ° C., and a more preferable range is 50 to 30 ° C.
When carbonization under reduced pressure is performed under conditions where the temperature condition exceeds 60 ° C., even if the powder or flake-like residue remaining in the carbonization apparatus is extracted with a solvent, the amount of the active ingredient in the extracted portion (E) is small. In addition, the antioxidative function and other functions (such as the Maillard reaction suppressing function) when the obtained extract (E) is used tend to be insufficient.
-2-
The pressure condition (decompression condition) for carbonization at low temperature is preferably -88 kPa or less (-660 mmHg or less), usually -96 to -100 kPa (-720 to -750 mmHg) in gauge pressure notation.
In absolute pressure notation, it is preferably 13.3 kPa or less (100 mmHg or less), usually 1.3 to 5.3 kPa (10 to 40 mmHg).
If the degree of decompression becomes looser than the above range (if the degree of decompression is insufficient), it will take a long time for carbonization, while if the degree of decompression is too large, there are restrictions on the vacuum system, so both are industrial. It will lack sex.
-3-
By carbonization at low temperature and reduced pressure under the above-mentioned conditions, the desired product can be obtained industrially and efficiently.

(低温減圧乾留残渣(R)、その残渣からの抽出分(E))
−1−
上記のようにして低温減圧乾留を行ったときに、その低温減圧乾留操作後に乾留装置内に残る乾燥粒子状の缶残が「低温減圧乾留残渣(R)」であるが、その残渣からの溶媒による「抽出分(E)」が、本発明の目的物である。
(Low temperature vacuum carbonization residue (R), extract from the residue (E))
-1-
When the low-temperature carbonization is performed as described above, the dry particulate can residue remaining in the dry distillation apparatus after the low-temperature carbonization operation is the "low-temperature vacuum carbonization residue (R)", and the solvent from the residue. The "extracted component (E)" according to the above is the object of the present invention.

−2−
ここで溶媒としては種々の溶媒が使用できるが、人体に適用する機能剤を得ることについても考慮すると、水、エタノール、または水とエタノールとの混合物が好適である。特に、エタノールの重量割合が20〜80体積%(なかんずく30〜70体積%)である水とエタノールとの混合溶媒(つまり「エタノール水」)が最適である。
-2-
Here, various solvents can be used as the solvent, but water, ethanol, or a mixture of water and ethanol is preferable in consideration of obtaining a functional agent applicable to the human body. In particular, a mixed solvent of water and ethanol having a weight ratio of ethanol of 20 to 80% by volume (especially 30 to 70% by volume) (that is, "ethanol water") is optimal.

−3−
前者の「低温減圧乾留残渣(R)」はそれ自体が製品となるが、その製品の購入業者はその残渣(R)を用いて溶媒による抽出を行って抽出分(E)となし、その抽出分(E)を自ら使用して二次製品や三次製品を製造・販売したり、その抽出分(E)をさらに第三者に販売したりすることもできる。
-3-
The former "low temperature vacuum carbonization residue (R)" itself becomes a product, but the purchaser of the product uses the residue (R) to extract with a solvent to obtain an extract (E), and the extraction thereof. It is also possible to manufacture and sell secondary products and tertiary products by using the fraction (E) by itself, and to further sell the extracted portion (E) to a third party.

−4−
後者の「低温減圧乾留残渣(R)からの溶媒による抽出分(E)」は、抗酸化活性がすぐれているのみならず、メイラード反応抑制活性(ペントシジン生成阻害活性)、AGE−タンパク質架橋形成モデル切断活性、チロシナーゼ阻害活性の点でも好ましい活性を示すので、これらの活性(機能)を併せ有する機能剤としても、極めて有用である。
-4-
The latter "extracted from the low-temperature carbonization residue (R) with a solvent (E)" not only has excellent antioxidant activity, but also has excellent Maillard reaction inhibitory activity (pentosidine production inhibitory activity) and AGE-protein cross-linking formation model. Since it exhibits preferable activities in terms of cleavage activity and tyrosinase inhibitory activity, it is extremely useful as a functional agent having these activities (functions) at the same time.

(低温減圧乾留留出液(D))
なお、上記の低温減圧乾留時の留出液(低温減圧乾留留出液(D))は、本発明の目的物ではないが、抗菌成分や香気成分を含むので他の用途に使用することができ、無駄にはならないという利点もある。
(Low temperature decompression dry distillation liquid (D))
Although the above-mentioned carbonization liquid during low-temperature carbonization (low-temperature carbonization distillation (D)) is not the object of the present invention, it may be used for other purposes because it contains an antibacterial component and an aroma component. It can be done and has the advantage of not being wasted.

次に、実施例と参考例をあげて本発明をさらに説明する。 Next, the present invention will be further described with reference to Examples and Reference Examples.

(植物原料の準備)
−1−
植物原料として、普通煎茶に主に用いられる四番茶の「やぶきた」の生茶葉(生茶葉A)を準備した。生茶葉として四番茶を用いたのは、今回の試験開始時(9月)には四番茶しか入手できなかったからである。(もし四番茶で良好な結果が得られるときは、一番茶、二番茶、三番茶を用いたときには、四番茶を用いた場合との対比で、少なくとも同等か、それ以上の好ましい結果が得られるであろうことが期待できる。)
また、その後の実験においては、植物原料として、紅茶や半発酵茶に主に用いられる「べにふうき」の生茶葉(生茶葉B)を用いた。
準備したこれらの生茶葉A、Bは、文字通り全葉の形状をしており、その水分率はそれぞれ74.7%と75.0%であった。この生茶葉を、後述の低温減圧乾留に供した。(ちなみに、この生茶葉を乾燥すると細かな破砕片状となり、その破砕片をコーヒーミルで粉砕すると微粉状となる。)
−2−
また、対比のための植物原料として、青ミカン(果実の搾り滓、水分率は80重量%程度)、青ジソ(葉部)、ツバキ(葉部)、イヨカン(果実の搾り滓)、レモン(果実の搾り滓)、ゴーヤ(果実)を準備した。これらの植物原料の水分率は、いずれも60〜95重量%の範囲内にあった。
(Preparation of plant materials)
-1-
As a plant raw material, raw tea leaves (raw tea leaf A) of the fourth tea "Yabukita", which is mainly used for ordinary sencha, were prepared. The reason why we used No. 4 tea as raw tea leaves is that only No. 4 tea was available at the start of this test (September). (If good results are obtained with No. 4 tea, at least the same or better results can be obtained when using No. 1 tea, No. 2 tea, and No. 3 tea, in comparison with the case of using No. 4 tea. It can be expected that it will be.)
In subsequent experiments, raw tea leaves (raw tea leaves B) of "Benifuuki", which are mainly used for black tea and semi-fermented tea, were used as plant raw materials.
These prepared raw tea leaves A and B were literally in the shape of whole leaves, and their water content was 74.7% and 75.0%, respectively. The raw tea leaves were subjected to carbonization at low temperature and reduced pressure, which will be described later. (By the way, when this raw tea leaf is dried, it becomes fine crushed pieces, and when the crushed pieces are crushed with a coffee mill, it becomes fine powder.)
-2-
In addition, as plant raw materials for comparison, blue mandarin orange (squeezed fruit slag, water content is about 80% by weight), blue jiso (leaf part), bitter melon (leaf part), Iyokan (squeezed fruit slag), lemon ( Fruit squeezed slag) and bitter gourd (fruit) were prepared. The water content of these plant raw materials was in the range of 60 to 95% by weight.

(低温減圧乾留操作)
減圧機構を備えた槽状の乾留装置の槽内に、上記において準備した含水状態の植物原料(生の植物原料)を投入し、攪拌下、低温(35〜40℃)かつ減圧(ゲージ圧で−98kPa(−735mmHg)、絶対圧では3.3kPa(25mmHg))条件下に乾留操作を行った。乾留時間は、原料の仕込み時間、槽内の残渣の取り出しに要する時間、減圧に要する時間と常圧に戻す時間を除いて、おおよそ8時間であった。
これらの低温減圧乾留操作は、同じ減圧乾留装置(全体の高さが1.5メートル程度の実験装置)を用いて行った。
(Low temperature vacuum carbonization operation)
In the tank of the tank-shaped carbonization device equipped with a decompression mechanism, the water-containing plant raw material (raw plant raw material) prepared above is put into the tank, and the pressure is reduced (at a gauge pressure) at a low temperature (35-40 ° C) under stirring. The carbonization operation was carried out under the conditions of −98 kPa (-735 mmHg) and 3.3 kPa (25 mmHg) at absolute pressure. The carbonization time was approximately 8 hours, excluding the time required for charging the raw materials, the time required for removing the residue in the tank, the time required for depressurization, and the time required for returning to normal pressure.
These low-temperature vacuum carbonization operations were performed using the same vacuum carbonization device (experimental device with an overall height of about 1.5 meters).

(低温減圧乾留により得られた「残渣(缶残)(R)」と「その残渣(缶残)(R)の各種溶媒による抽出分(E)」)
−1−
上記の「生茶葉A、B、青ミカン、青ジソ、ツバキ、イヨカン、レモン、ゴーヤ」の8種のそれぞれを低温減圧乾留したときの「残渣(缶残)(R)」の性状は、いずれも乾燥粉末状(粉末またはフレーク状)であった。
−2−
得られた8種の「乾燥粉末状(粉末またはフレーク状)の残渣(缶残)(R)」については、それぞれの5.0gを秤量し、下記の抽出溶媒を50mL加えてから室温下に4時間撹拌することにより抽出を行った。
・抽出溶媒1:エタノール
・抽出溶媒2:50体積%エタノール水(以下「50%エタノール水」と略称)
・抽出溶媒3:水
これにより、上記の8種の「乾燥粉末状(粉末またはフレーク状)の残渣(缶残)(R)」のそれぞれについて抽出溶媒1、2、3のそれぞれにより抽出を行ったときの「抽出分(E)」24種(8種×3種=24種)を得た。
("Residue (can residue) (R)" and "Extract of the residue (can residue) (R) with various solvents (E)" obtained by carbonization at low temperature under reduced pressure)
-1-
What are the properties of the "residue (can residue) (R)" when each of the above eight types of "raw tea leaves A, B, blue oranges, blue jiso, bitter melon, Iyokan, lemon, bitter gourd" is carbonized at low temperature and reduced pressure? Was also in the form of dry powder (powder or flakes).
-2-
For the obtained 8 types of "residues (can residue) (R) in the form of dry powder (powder or flakes)", weigh 5.0 g of each, add 50 mL of the following extraction solvent, and then bring to room temperature. Extraction was performed by stirring for 4 hours.
-Extraction solvent 1: Ethanol-Extraction solvent 2: 50% by volume ethanol water (hereinafter abbreviated as "50% ethanol water")
-Extraction solvent 3: Water With this, each of the above eight types of "residues (can residue) (R) in the form of dry powder (powder or flakes)" is extracted with each of the extraction solvents 1, 2 and 3. 24 kinds of "extracted components (E)" (8 kinds x 3 kinds = 24 kinds) were obtained.

−3−
(低温減圧乾留により得られた「留出液(D)」)
なお、上記の8種の植物原料のそれぞれについて低温減圧乾留操作を行ったときに「塔頂より留出する8種の留出液(D)」についても回収して、抗酸化活性などの各種活性に関する上記−2−の「抽出分(E)」との対比に供した。
-3-
("Distillate (D)" obtained by carbonization at low temperature and reduced pressure)
In addition, when each of the above eight kinds of plant raw materials was carbonized at low temperature under reduced pressure, "eight kinds of distillates (D) distilled from the top of the tower" were also recovered, and various antioxidant activities were collected. It was used for comparison with the above-mentioned -2- "extracted component (E)" regarding activity.

(測定項目)
測定項目は次の通りである。
(その1)抗酸化活性
(その2)メイラード反応抑制活性(ペントシジン生成阻害)
(その3)AGE−タンパク質架橋形成物モデル切断活性
(その4)チロシナーゼ阻害活性(美白)
(Measurement item)
The measurement items are as follows.
(Part 1) Antioxidant activity (Part 2) Maillard reaction inhibitory activity (inhibition of pentosidine production)
(Part 3) AGE-protein cross-linking product model cleavage activity (Part 4) Tyrosinase inhibitory activity (whitening)

(その1)抗酸化活性
(1)方法
(1−1)400μM DPPH(1,1−diphenyl−2−picrylhydrazyl)エタノール溶液の調製
DPPH 3.94mgを秤量し、エタノール25mLに攪拌溶解する。
(Part 1) Antioxidant activity (1) Method (1-1) Preparation of 400 μM DPPH (1,1-diphenyl-2-picrylhydrazyl) ethanol solution Weigh 3.94 mg of DPPH and dissolve in 25 mL of ethanol by stirring.

(1−2)検量線の作成
ア:400μM DPPHエタノール溶液をエタノールで3倍に希釈し、その希釈液0.9mLを試験管に分注する。
イ:希釈液の入った試験管にエタノール300,250,200,150,100μLをn=2で添加する。
ウ:0.2mM α−トコフェロールエタノール溶液(8.6mg→エタノール100mL)をイで加えたエタノールと0.2mM α−トコフェロールエタノール溶液の合計が300μLになるよう試験管(n=2)に添加し、攪拌する。このとき、α−トコフェロールの量は0,10,20,30,40nmol/アッセイとなる。
エ:添加20分後に516nmで吸光度を測定する。
オ:横軸にα−トコフェロール量(nmol/アッセイ)、縦軸に吸光度をプロットし、最小二乗法により、検量線を作成する。
(1-2) Preparation of calibration curve a: A 400 μM DPPH ethanol solution is diluted 3-fold with ethanol, and 0.9 mL of the diluted solution is dispensed into a test tube.
B: Add 300, 250, 200, 150, 100 μL of ethanol to the test tube containing the diluent at n = 2.
C: Add 0.2 mM α-tocopherol ethanol solution (8.6 mg → 100 mL of ethanol) to the test tube (n = 2) so that the total of ethanol added in B and 0.2 mM α-tocopherol ethanol solution becomes 300 μL. , Stir. At this time, the amount of α-tocopherol is 0, 10, 20, 30, 40 nmol / assay.
D: 20 minutes after addition, the absorbance is measured at 516 nm.
E: Plot the amount of α-tocopherol (nmol / assay) on the horizontal axis and the absorbance on the vertical axis, and prepare a calibration curve by the method of least squares.

(1−3)試験液の測定
ア:DPPH希釈液0.9mLを試験管に分注し、それにエタノール250μLを添加する。
イ:試験液50μLを試験管(n=2)に添加し、攪拌する。
ウ:添加20分後に516nmで吸光度を測定する。
エ:得られた吸光度より、検量線を用いてα−トコフェロール相当量を算出する。
(1-3) Measurement of test solution a: 0.9 mL of DPPH diluted solution is dispensed into a test tube, and 250 μL of ethanol is added thereto.
B: Add 50 μL of the test solution to the test tube (n = 2) and stir.
C: 20 minutes after addition, the absorbance is measured at 516 nm.
D: From the obtained absorbance, calculate the equivalent amount of α-tocopherol using a calibration curve.

(その2)メイラード反応抑制活性(ペントシジン生成阻害)
−1−
以下の表に示す組成の反応液を1.5mL容量のプラスチックチューブに調製し、60℃、24時間の条件にてヒートブロック上でインキュベートした。
(Part 2) Maillard reaction inhibitory activity (inhibition of pentosidine production)
-1-
The reaction solution having the composition shown in the table below was prepared in a plastic tube having a capacity of 1.5 mL and incubated on a heat block at 60 ° C. for 24 hours.

(表1)

反応液組成 添加量
50mM リボース 100μL
50mM リジン 100μL
50mM アルギニン 100μL
100mM Na2HPO4(pH7.4) 100μL
試料溶液 or Blank 100μL
(Table 1)

Reaction solution composition Addition amount
50 mM ribose 100 μL
50 mM lysine 100 μL
50 mM arginine 100 μL
100 mM Na2HPO4 (pH 7.4) 100 μL
Sample solution or Blank 100 μL

−2−
反応終了後、反応液100μLに400μLの精製水を加え、その希釈液をHPLC分析することにより得られるペントシジンのピーク面積を測定し、阻害率を求めた。
また、アミノグアニジン塩酸塩の10mM液を陽性コントロールとした。
-2-
After completion of the reaction, 400 μL of purified water was added to 100 μL of the reaction solution, and the peak area of pentosidine obtained by HPLC analysis of the diluted solution was measured to determine the inhibition rate.
In addition, a 10 mM solution of aminoguanidine hydrochloride was used as a positive control.

・HPLC分析条件
カラム: YMC−Pack ODS A−312
150×6mmI.D.
溶出液: 3% CH3CN/0.1% TFA
流量: 1.0mL/min
カラム温度 40℃
検出器: 分光蛍光検出器 EX335nm、EM380nm
注入量: 20μL
保持時間:約12分
-HPLC analysis conditions Column: YMC-Pack ODS A-312
150 x 6 mm I. D.
Eluate: 3% CH3CN / 0.1% TFA
Flow rate: 1.0 mL / min
Column temperature 40 ° C
Detector: Spectral fluorescence detector EX335nm, EM380nm
Injection volume: 20 μL
Holding time: Approximately 12 minutes

・阻害率
下記の式により阻害率を求めた。
阻害率(%)=100−[(試料溶液のペントシジンのピーク面積/ブランクのペントシジンのピーク面積)×100]
-Inhibition rate The inhibition rate was calculated by the following formula.
Inhibition rate (%) = 100-[(peak area of pentosidine in sample solution / peak area of blank pentosidine) x 100]

(その3)AGE−タンパク質架橋形成物モデル切断活性
−1−
S.Vasanらの方法(Nature,Vol.382,p275−278,1966)に従って、AGE−タンパク質架橋形成物モデルの切断活性を測定した。
すなわち、下記の表2に示す組成の反応液を1.5mL容量のプラスチックチューブに調製し、37℃、4時間振盪した。
−2−
反応終了後、2N HCl 200μmを加えて攪拌し、反応を停止した。
その液を0.2μmのフィルターで濾過し、HPLC分析試料溶液とした。
(Part 3) AGE-Protein cross-linking product model cleavage activity-1-
S. The cleavage activity of the AGE-protein crosslinked product model was measured according to the method of Vasan et al. (Nature, Vol. 382, p275-278, 1966).
That is, the reaction solution having the composition shown in Table 2 below was prepared in a plastic tube having a capacity of 1.5 mL, and shaken at 37 ° C. for 4 hours.
-2-
After completion of the reaction, 200 μm of 2N HCl was added and stirred to stop the reaction.
The solution was filtered through a 0.2 μm filter to obtain an HPLC analysis sample solution.

(表2)

反応液組成 添加量
500mM Na2HPO4(pH7.4) 800μL
100mM 1−フェニル−1,2−プロパンジオン 100μL
試 料 溶 液 100μL
(Table 2)

Reaction solution composition Addition amount
500 mM Na2HPO4 (pH 7.4) 800 μL
100 mM 1-Phenyl-1,2-Propanedione 100 μL
Sample solution 100 μL

−1−
・HPLC分析条件
カラム: YMC−Pack ODS A−312
150×6mmI.D.
溶出液: 40% MeOH/0.1% TFA
流量: 1.0mL/min
カラム温度: 40℃
検出器: UV波長 273nm
注入量: 20μL
保持時間:約12分
−2−
・切断率の求め方
切断率は、全ての1−フェニル−1,2−プロパンジオンが切断された場合は10mMの安息香酸が遊離すると仮定できるので、以下の式に従って算出した。
切断率(%)=(各分析試料から発生する安息香酸のピーク面積/10mM安息香酸のピーク面積)×100
-1-
-HPLC analysis conditions Column: YMC-Pack ODS A-312
150 x 6 mm I. D.
Eluate: 40% MeOH / 0.1% TFA
Flow rate: 1.0 mL / min
Column temperature: 40 ° C
Detector: UV wavelength 273 nm
Injection volume: 20 μL
Retention time: Approximately 12 minutes -2-
-How to determine the cleavage rate The cleavage rate was calculated according to the following formula because it can be assumed that 10 mM benzoic acid is liberated when all 1-phenyl-1,2-propanedione is cleaved.
Cleavage rate (%) = (peak area of benzoic acid generated from each analytical sample / peak area of 10 mM benzoic acid) × 100

(その4)チロシナーゼ阻害活性
−1−
ア.30mM リン酸緩衝液(pH6.8) 1.8mL、
1.66mM L−チロシン溶液 1.0mL、
各試料溶液 0.1mL
を混合し、37℃の恒温槽中で5分間予備加温を行った。
−2−
イ.チロシナーゼ溶液0.1mLを添加後、攪拌し、再度37℃の恒温槽中で10分間加温した。
−3−
ウ.1M アジ化ナトリウム0.1mLを加え、475nmでの吸光度を測定し、チロシナーゼ活性阻害率(%)を算出した。なお、3mM アルブチン溶液を陽性コントロールとした。
(Part 4) Tyrosinase inhibitory activity-1-
A. 30 mM phosphate buffer (pH 6.8) 1.8 mL,
1.66 mM L-tyrosine solution 1.0 mL,
0.1 mL of each sample solution
Was mixed and preheated for 5 minutes in a constant temperature bath at 37 ° C.
-2-
I. After adding 0.1 mL of the tyrosinase solution, the mixture was stirred and heated again in a constant temperature bath at 37 ° C. for 10 minutes.
-3-
C. 0.1 mL of 1M sodium azide was added, and the absorbance at 475 nm was measured to calculate the tyrosinase activity inhibition rate (%). A 3 mM arbutin solution was used as a positive control.

(各測定項目と結果について)

上記の測定項目についての結果を下記の表3〜5に示す。
表3:抗酸化活性
表4:メイラード反応抑制活性(ペントシジン生成阻害)
表5:AGE−タンパク質架橋形成物モデル切断活性
表6:チロシナーゼ阻害活性
(About each measurement item and result)

The results for the above measurement items are shown in Tables 3 to 5 below.
Table 3: Antioxidant activity Table 4: Maillard reaction inhibitory activity (inhibition of pentosidine production)
Table 5: AGE-protein cross-linking product model cleavage activity Table 6: Tyrosinase inhibitory activity

(表3)

(1)抗酸化活性

抗酸化活性(n mole α−トコフェロール相当量/アッセイ)
植物名 乾留残渣(缶残)の溶媒による抽出分(E) 留出液(D)
エタノール 50%エタノール水 水
青ミカン 20 133 121 0
青ジソ 37 41 6 0
ツバキ 1028 1856 42 0
イヨカン 8 106 94 0
レモン 34 230 194 0
ゴーヤ 6 53 77 2
生茶葉A 1210 3990 1290 0
生茶葉B 3180 5930 2190 1

(注)抽出分E:低温減圧乾留残渣(缶残)の溶媒による抽出分
(注)留出液D:低温減圧乾留時における塔頂からの留出液のこと
(注)生茶葉Aは「やぶきた」の葉部、生茶葉Bは「べにふうき」の葉部
(Table 3)

(1) Antioxidant activity

Antioxidant activity (n mole α-tocopherol equivalent / assay)
Plant name Extraction of dry distillation residue (can residue) with solvent (E) Distillate (D)
Ethanol 50% ethanol water water
Blue mandarin orange 20 133 121 0
Blue Jiso 37 41 60
Camellia 1028 1856 42 0
Iyokan 8 106 9400
Lemon 34 230 1940
Bitter gourd 6 53 77 2
Raw tea leaves A 1210 3990 1290 0
Raw tea leaves B 3180 5930 2190 1

(Note) Extract E: Extraction of low-temperature vacuum carbonization residue (can residue) with solvent (Note) Distillate D: Distillate from the top of the tower during low-temperature carbonization (Note) Raw tea leaf A is " The leaf part of "Yabukita" and the raw tea leaf B are the leaf part of "Benifuuki".

−1−
上記の表3に関連して付言するに、生茶葉Bの乾留残渣(缶残)の50%エタノール水による抽出分(E)の抗酸化活性は「5930 n mole α−トコフェロール相当量/アッセイ」である。
この数値は、本出願の明細書の段落0012〜0015の個所で述べた特許文献2における「高温減圧条件下に乾留して得られたヨモギの抗酸化能(1003 n mole α−トコフェロール相当量/アッセイ)や茶の抗酸化能(301 n mole α−トコフェロール相当量/アッセイ)」と対比すると、驚異的とも言える極めて強い抗酸化活性である。
この特許文献2の出願人は本願と同じであり、発明者も一部共通しているが、本願により、特許文献2の出願のチャンピオン・データを自らが一挙に塗り替えたのである。
−2−
さらに付言するに、上記の表3において用いている生茶葉B乾燥粉末は、低温減圧乾留時の缶残(乾燥状態にある粉末またはフレーク状の残渣)であって、低温減圧乾留時に塔頂側から留出する留出物ではない。そのような缶残を用いているにもかかわらず、上記の表3のように、その缶残の50%エタノール水抽出液の抗酸化活性は「5930 n mole α−トコフェロール相当量/アッセイ」であったのである。
-1-
In addition to the above Table 3, the antioxidant activity of the extract (E) of the dry distillation residue (can residue) of raw tea leaf B with 50% ethanol water is "5930 n mole α-tocopherol equivalent / assay". Is.
This value is the antioxidant capacity of yomogi obtained by drying under high temperature and reduced pressure conditions (1003 n mole α-tocopherol equivalent amount /) in Patent Document 2 described in paragraphs 0012 to 0015 of the specification of the present application. Compared with "assay) and the antioxidant capacity of tea (301 n mole α-tocopherol equivalent / assay)", it is an extremely strong antioxidant activity that can be said to be amazing.
The applicant of Patent Document 2 is the same as that of the present application, and some of the inventors are also common. However, according to the present application, the champion data of the application of Patent Document 2 is rewritten at once.
-2-
In addition, the raw tea leaf B dry powder used in Table 3 above is a can residue (powder in a dry state or flake-like residue) during carbonization at low temperature and reduced pressure, and is on the top side of the column during carbonization at low temperature. It is not a distillate that dives from. Despite the use of such a can residue, as shown in Table 3 above, the antioxidant activity of the 50% ethanol water extract of the can residue is "5930 n mole α-tocopherol equivalent / assay". There was.

(表4)

(2)メイラード反応抑制活性(ペントシジン生成阻害)

阻 害 率(%)
植物名 乾燥粉末(缶残)の抽出液 留出液(D)
エタノール 50%エタノール水 水
青ミカン 24 64 92 91
青ジソ 12 89 89 85
ツバキ 97 99 93 67
イヨカン 7 83 93 86
レモン 32 49 83 92
ゴーヤ 0 0 51 93
生茶葉A 97 100 99 93
生茶葉B 99 100 99 60

(注)陽性コントロールの10mMアミノグアニジン塩酸塩の阻害率は、青ミカン、青
ジソ、ツバキ、イヨカン、生茶葉Aのアッセイのときは41%、ゴーヤのアッセイのと
きは52%、生茶葉Bのアッセイのときは45%であった。
(注)生茶葉Aは「やぶきた」の葉部、生茶葉Bは「べにふうき」の葉部
(Table 4)

(2) Maillard reaction inhibitory activity (inhibition of pentosidine production)

Blocking rate (%)
Plant name Extract distillate of dry powder (remaining can) (D)
Ethanol 50% ethanol water water
Blue oranges 24 64 92 91
Blue Jiso 12 89 89 85
Camellia 97 99 93 67
Iyokan 7 83 93 86
Lemon 32 49 83 92
Bitter gourd 0 0 51 93
Raw tea leaves A 97 100 99 93
Raw tea leaves B 99 100 99 60

(Note) The inhibition rate of 10 mM aminoguanidine hydrochloride in the positive control was 41% in the assay of blue mandarin orange, blue jiso, bitter melon, Iyokan, and raw tea leaf A, 52% in the assay of bitter gourd, and raw tea leaf B. It was 45% at the time of the assay.
(Note) Raw tea leaf A is the leaf part of "Yabukita", and raw tea leaf B is the leaf part of "Benifuuki".

(表5)

(3)AGE−タンパク質架橋形成物モデル切断活性

切 断 率(%)
植物名 乾燥粉末(缶残)の抽出液 留出液(D)
エタノール 50%エタノール水 水
青ミカン 3 4 4 7
青ジソ 3 4 4 2
ツバキ 7 8 6 2
イヨカン 4 5 5 2
レモン 7 11 10 6
ゴーヤ 8 9 9 8
生茶葉A 10 32 15 2
生茶葉B 16 24 12 2

(注)陽性コントロールの10mM−PTBの切断率は、次の如くであった。
青ミカン、青ジソ、ツバキ、イヨカンのアッセイのとき:40%
レモンのアッセイのとき: 43%
ゴーヤのアッセイのとき: 46%
生茶葉Aのアッセイのとき:39%
生茶葉Bのアッセイのとき:44%
(注)生茶葉Aは「やぶきた」の葉部、生茶葉Bは「べにふうき」の葉部

(Table 5)

(3) AGE-Protein cross-linking product model cleavage activity

Cutoff rate (%)
Plant name Extract distillate of dry powder (remaining can) (D)
Ethanol 50% ethanol water water
Blue oranges 3 4 4 7
Blue Jiso 3 4 4 2
Camellia 7 8 6 2
Iyokan 4 5 5 2
Lemon 7 11 10 6
Bitter gourd 8 9 9 8
Raw tea leaves A 10 32 15 2
Raw tea leaves B 16 24 12 2

(Note) The cleavage rate of 10 mM-PTB of the positive control was as follows.
When assaying blue oranges, blue jiso, camellia, and Iyokan: 40%
During the lemon assay: 43%
During bitter gourd assay: 46%
When assaying raw tea leaf A: 39%
When assaying raw tea leaf B: 44%
(Note) Raw tea leaf A is the leaf part of "Yabukita", and raw tea leaf B is the leaf part of "Benifuuki".

(表6)

(4)チロシナーゼ阻害活性

阻 害 率(%)
植物名 乾燥粉末(缶残)の抽出液 留出液(D)
エタノール 50%エタノール水 水
青ミカン 3 3 0 2
青ジソ 0 1 0 0
ツバキ 0 0 0 2
イヨカン 0 0 0 0
レモン 0 0 0 0
ゴーヤ 0 1 3 0
生茶葉A 0 14 4 0
生茶葉B 3 18 0 0

(注)乾燥粉末抽出液については、10倍希釈液を用いて試験を行った。
(注)生茶葉Aは「やぶきた」の葉部、生茶葉Bは「べにふうき」の葉部
(注)陽性コントロールの3mM アルブチンの阻害率は、次の如くであった。
青ミカン、青ジソ、ツバキ、イヨカンのアッセイのとき:
・エタノール抽出液は20%
・50%エタノール水抽出液は17%
・水抽出液および留出液は18%
レモン、生茶葉Aのアッセイのとき:
・エタノール抽出液は18%
・50%エタノール水抽出液は19%
・水抽出液および留出液は20%
ゴーヤのアッセイのとき:
・エタノール抽出液は23%
・50%エタノール水抽出液は20%
・水抽出液および留出液は19%
生茶葉Bのアッセイのとき:
・エタノール抽出液および50%エタノール水抽出液は23%
・水抽出液および留出液は17%
(Table 6)

(4) Tyrosinase inhibitory activity

Blocking rate (%)
Plant name Extract distillate of dry powder (remaining can) (D)
Ethanol 50% ethanol water water
Blue mandarin orange 3 3 0 2
Blue Jiso 0 1 0 0
Camellia 0 0 0 2
Iyokan 0 0 0 0
Lemon 0 0 0 0
Bitter gourd 0 1 3 0
Raw tea leaves A 0 14 4 0
Raw tea leaves B 3 18 0 0

(Note) The dry powder extract was tested using a 10-fold diluted solution.
(Note) Raw tea leaf A was the leaf part of "Yabukita", and raw tea leaf B was the leaf part of "Benifuuki". (Note) The inhibition rate of 3 mM arbutin in the positive control was as follows.
When assaying blue oranges, blue jiso, camellia, and Iyokan:
・ Ethanol extract is 20%
・ 50% ethanol water extract is 17%
・ 18% of water extract and distillate
Lemon, raw tea leaf A assay:
・ Ethanol extract is 18%
・ 50% ethanol water extract is 19%
・ 20% of water extract and distillate
During bitter gourd assay:
・ Ethanol extract is 23%
・ 50% ethanol water extract is 20%
・ 19% of water extract and distillate
When assaying raw tea leaf B:
-Ethanol extract and 50% ethanol water extract are 23%
・ 17% of water extract and distillate

ツバキ科植物の葉部の低温減圧乾留残渣(R)からの溶媒による抽出分(E)を有効成分とする本発明の機能剤は、ずば抜けた抗酸化機能を有する上、メイラード反応抑制活性(ペントシジン生成阻害活性)、AGE−タンパク質架橋形成物モデル切断活性、チロシナーゼ阻害活性の点でも好ましい機能を有するので、食品、化粧品、医薬部外品などへの添加剤として有用である。
The functional agent of the present invention containing the solvent-based extract (E) from the low-temperature vacuum-dried residue (R) of the leaves of Theaceae plants as an active ingredient has an outstanding antioxidant function and a Maillard reaction inhibitory activity (pentosidine). It is useful as an additive to foods, cosmetics, quasi-drugs, etc. because it has preferable functions in terms of production inhibitory activity), AGE-protein cross-linking product model cleavage activity, and tyrosinase inhibitory activity.

Claims (6)

減圧機構を備えた乾留装置を用いて含水状態にある植物原料を低温かつ減圧条件下に乾留したときに留出する成分を「低温減圧乾留留出液(D)」としかつその低温減圧乾留操作後にその乾留装置内に残る乾燥状態の粉末ないしフレーク状の缶残を「低温減圧乾留残渣(R)」と称するとき、
前記の植物原料が茶又はツバキの葉部であること、および、
その茶の葉部の低温減圧乾留残渣(R)を水、エタノール若しくは水とエタノールとの混合物により抽出したときの抽出分(E)又はツバキの葉部の低温減圧乾留残渣(R)をエタノール若しくは水とエタノールとの混合物により抽出したときの抽出分(E)を有効成分とするものであること、
を特徴とする抗酸化剤。
The component that is distilled when a water-containing plant material is carbonized under low-temperature and low-pressure conditions using a carbonization device equipped with a decompression mechanism is defined as "low-temperature low-pressure dry distillation liquid (D)" and its low-temperature low-pressure dry distillation operation. When the dry powder or flake-like can residue that remains in the carbonization device later is referred to as "low temperature vacuum carbonization residue (R)",
The plant material is tea or camellia leaves, and
The low-temperature vacuum carbonization residue (R) of the tea leaves is extracted with water, ethanol, or a mixture of water and ethanol (E), or the low-temperature vacuum carbonization residue (R) of the camellia leaves is ethanol or The active ingredient is the extract (E) when extracted with a mixture of water and ethanol.
An antioxidant characterized by.
減圧機構を備えた乾留装置を用いて含水状態にある植物原料を低温かつ減圧条件下に乾留したときに留出する成分を「低温減圧乾留留出液(D)」としかつその低温減圧乾留操作後にその乾留装置内に残る乾燥状態の粉末ないしフレーク状の缶残を「低温減圧乾留残渣(R)」と称するとき、
前記の植物原料が茶又はツバキの葉部であること、および、
その茶又はツバキの葉部の低温減圧乾留残渣(R)を水、エタノール又は水とエタノールとの混合物により抽出したときの抽出分(E)を有効成分とするものであること、
を特徴とするメイラード反応抑制剤。
The component that is distilled when a water-containing plant material is carbonized under low-temperature and low-pressure conditions using a carbonization device equipped with a decompression mechanism is defined as "low-temperature low-pressure dry distillation liquid (D)" and its low-temperature low-pressure dry distillation operation. When the dry powder or flake-like can residue that remains in the carbonization device later is referred to as "low temperature vacuum carbonization residue (R)",
The plant material is tea or camellia leaves, and
The active ingredient is the extract (E) obtained by extracting the low-temperature vacuum-dried residue (R) of the tea or camellia leaves with water, ethanol, or a mixture of water and ethanol.
A Maillard reaction inhibitor characterized by.
減圧機構を備えた乾留装置を用いて含水状態にある植物原料を低温かつ減圧条件下に乾留したときに留出する成分を「低温減圧乾留留出液(D)」としかつその低温減圧乾留操作後にその乾留装置内に残る乾燥状態の粉末ないしフレーク状の缶残を「低温減圧乾留残渣(R)」と称するとき、
前記の植物原料が茶の葉部であること、および、
その茶の葉部の低温減圧乾留残渣(R)をエタノールが50体積%である水とエタノールとの混合物により抽出したときの抽出分(E)を有効成分とするものであること、
を特徴とするチロシナーゼ阻害剤。
The component that is distilled when a water-containing plant material is carbonized under low-temperature and low-pressure conditions using a carbonization device equipped with a decompression mechanism is defined as "low-temperature low-pressure dry distillation liquid (D)" and its low-temperature low-pressure dry distillation operation. When the dry powder or flake-like can residue that remains in the carbonization device later is referred to as "low temperature vacuum carbonization residue (R)",
The plant material is tea leaves, and
The active ingredient is the extract (E) obtained by extracting the low-temperature carbonization residue (R) of the tea leaves with a mixture of water and ethanol containing 50% by volume of ethanol.
A tyrosinase inhibitor characterized by.
前記の低温減圧乾留操作が、水分率が90重量%以下の含水状態にある茶又はツバキの葉部を、60〜20℃の低温条件下にかつゲージ圧で−88kPa以下の減圧条件下に行う乾留操作であることを特徴とする請求項に記載の抗酸化剤The low-temperature carbonization operation is performed on the leaves of tea or camellia having a moisture content of 90% by weight or less under low-temperature conditions of 60 to 20 ° C. and under reduced pressure conditions of −88 kPa or less at a gauge pressure. The antioxidant according to claim 1 , which is a dry distillation operation. 前記の低温減圧乾留操作が、水分率が90重量%以下の含水状態にある茶又はツバキの葉部を、60〜20℃の低温条件下にかつゲージ圧で−88kPa以下の減圧条件下に行う乾留操作であることを特徴とする請求項2に記載のメイラード反応抑制剤。The low-temperature carbonization operation is performed on the leaves of tea or camellia having a moisture content of 90% by weight or less under low-temperature conditions of 60 to 20 ° C. and under reduced pressure conditions of −88 kPa or less at a gauge pressure. The Maillard reaction inhibitor according to claim 2, which is a dry distillation operation. 前記の低温減圧乾留操作が、水分率が90重量%以下の含水状態にある茶又はツバキの葉部を、60〜20℃の低温条件下にかつゲージ圧で−88kPa以下の減圧条件下に行う乾留操作であることを特徴とする請求項3に記載のチロシナーゼ阻害剤。The low-temperature carbonization operation is performed on the leaves of tea or camellia having a moisture content of 90% by weight or less under low-temperature conditions of 60 to 20 ° C. and under reduced pressure conditions of −88 kPa or less at a gauge pressure. The tyrosinase inhibitor according to claim 3, wherein the dry distillation operation is performed.
JP2015250759A 2015-01-09 2015-12-23 Functional agent Active JP6838858B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015002998 2015-01-09
JP2015002998 2015-01-09

Publications (2)

Publication Number Publication Date
JP2016130234A JP2016130234A (en) 2016-07-21
JP6838858B2 true JP6838858B2 (en) 2021-03-03

Family

ID=56414793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015250759A Active JP6838858B2 (en) 2015-01-09 2015-12-23 Functional agent

Country Status (1)

Country Link
JP (1) JP6838858B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151563A (en) * 2018-02-28 2019-09-12 白井松新薬株式会社 Antiallergic agent

Also Published As

Publication number Publication date
JP2016130234A (en) 2016-07-21

Similar Documents

Publication Publication Date Title
Michielin et al. Radical-scavenging activity of extracts from Cordia verbenacea DC obtained by different methods
Papetti et al. Isolation of an in vitro and ex vivo antiradical melanoidin from roasted barley
KR101571323B1 (en) Cosmetic compositions comprising extract of herbs
JP6347611B2 (en) Functional agent having Maillard reaction inhibitory function or antioxidant function
KR101603733B1 (en) Method for extracting maysin and bioactive compounds with high yield from corn silk
Karabegović et al. Ultrasound-assisted extraction of total phenols and flavonoids from dry tobacco (Nicotiana tabacum) leaves
JP6838858B2 (en) Functional agent
CN104762135A (en) Method of extracting essential oil from artemisia sieversiana or artemisia vestita
JP2007284373A (en) Anthocyanidin and method for extracting the same
JPH08157816A (en) Natural antioxidant and its production
KR20160036202A (en) UV Protecting Cosmetic Composition Comprising Corn Cob Extract As Active Ingredient
JP6258687B2 (en) Maillard reaction inhibitor
KR100526434B1 (en) Extracting method of fucoxanthin using Brown Algae
JP2001106636A (en) Production of plant extract
JP6468745B2 (en) Functional agent having Maillard reaction inhibitory function or antioxidant function
JP2015218120A (en) Tyrosinase inhibitor and manufacturing method thereof
CN109096076B (en) Chalcone compound and preparation method thereof
KR20210026726A (en) Method for extraction of resveratrol and separation of recrystallized cargo from grapevine vines using subcritical water
KR20220067054A (en) Composition of Anti-Wrinkle Cosmetics Using Molecular Association Supercritical Centella Asiatica Extract
EP3437648A1 (en) Method for producing nepodin-rich extract of rumex plant and nepodin-rich extract of rumex plant
CN102718650B (en) 2-(2- hydroxyl-5-(methoxycarbonyl) phenoxyl) benzoic acid as well as preparation method and application thereof
KR20130129001A (en) An antioxidant composition comprising tangerine peel extracts obtained by subcritical water extraction and preparation method thereof
JPH09216836A (en) Antioxidative composition
JPH06217747A (en) Antibacterial agent
JP6106506B2 (en) Production method of asunalo extract

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190624

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210212

R150 Certificate of patent or registration of utility model

Ref document number: 6838858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250