JP6837764B2 - Electromagnetic resonance rotary electric machine and composite rotary electric machine - Google Patents

Electromagnetic resonance rotary electric machine and composite rotary electric machine Download PDF

Info

Publication number
JP6837764B2
JP6837764B2 JP2016132951A JP2016132951A JP6837764B2 JP 6837764 B2 JP6837764 B2 JP 6837764B2 JP 2016132951 A JP2016132951 A JP 2016132951A JP 2016132951 A JP2016132951 A JP 2016132951A JP 6837764 B2 JP6837764 B2 JP 6837764B2
Authority
JP
Japan
Prior art keywords
rotor
stator
resonance
electric machine
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016132951A
Other languages
Japanese (ja)
Other versions
JP2017038511A (en
Inventor
堺 和人
和人 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo University
Original Assignee
Toyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo University filed Critical Toyo University
Publication of JP2017038511A publication Critical patent/JP2017038511A/en
Application granted granted Critical
Publication of JP6837764B2 publication Critical patent/JP6837764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

本発明は、交通システムにおける電動飛行機、ハイブリッド自動車・電気自動車、鉄道車や、エネルギーシステムにおける火力、水力、風力、海流発電機、さらに社会システム・家電における無人飛行機、エレベータ、エアコン等の家電機器、モータ駆動の産業装置等に利用できる電磁共振回転電機及び複合型回転電機に関連する。 The present invention relates to electric motors, hybrid / electric vehicles, railroad vehicles in transportation systems, thermal power, hydraulic power, wind power, ocean current generators in energy systems, and home appliances such as unmanned airplanes, elevators, and air conditioners in social systems / home appliances. It is related to electromagnetic resonance rotary electric machines and composite rotary electric machines that can be used for motor-driven industrial equipment and the like.

モータや発電機のような回転電機では、UVW3相の交流電流が流れる3相のコイルを固定子に設けて、相毎にコイルを接続して3相巻線を構成している。この3相巻線を持つ回転電機の端子には外部の3相の電力変換装置を接続し、エネルギー変換を行っている(すなわち運転している)。 In a rotating electric machine such as a motor or a generator, a three-phase coil through which a UVW three-phase alternating current flows is provided in a stator, and the coil is connected for each phase to form a three-phase winding. An external three-phase power conversion device is connected to the terminal of the rotary electric machine having the three-phase winding to perform energy conversion (that is, to operate).

ところで、航空機や宇宙機器、さらには太陽光発電で飛行できる電動飛行機や無人飛行機は機器の重量が性能を大きく左右する。そのため、搭載するモータや発電機等の回転電機の軽量化が図られるが、機械構造を根本的に変更しないままの減量には限界がある。回転電機の重量の大部分を占めるのは金属材料であり、かつ体積割合の大部分を占めるのは鉄心である。鉄心が無くなれば金属材量はコイルのみになって、飛躍的に軽量化できる。しかし、鉄心は起磁力で生じる磁束を高めるとともに漏れ磁束を低減して有効磁束を確保する重要な役割を担うものであるため、従来の回転電機には必要不可欠なものである。そのために、従来構造の回転電機ではその軽量化に自ずと限界があった。 By the way, the weight of aircraft and space equipment, as well as electric airplanes and unmanned aerial vehicles that can fly by solar power generation, greatly affects the performance. Therefore, the weight of the rotating electric machine such as the motor and the generator to be mounted can be reduced, but there is a limit to the weight loss without fundamentally changing the mechanical structure. The metal material accounts for the majority of the weight of the rotary electric machine, and the iron core accounts for the majority of the volume ratio. If the iron core is eliminated, the amount of metal material will be only the coil, and the weight can be dramatically reduced. However, since the iron core plays an important role of increasing the magnetic flux generated by the magnetomotive force and reducing the leakage flux to secure the effective magnetic flux, it is indispensable for the conventional rotary electric machine. Therefore, there is a limit to the weight reduction of the rotary electric machine having a conventional structure.

同様に、モバイル機器やロボット、電気自動車、電車等の移動体もそれに搭載している回転電機自身を運ぶため、例えば、ロボットの腕を上下させようとすると肘関節等に組み入れているモータを回転させるだけでなく回転電機を組み込んだ腕そのものを上下に動かすのにもエネルギーを必要とするため、その質量に抗して速い加減速等の応答性を求めるのにも限界がある。 Similarly, moving objects such as mobile devices, robots, electric vehicles, and trains also carry the rotating electric machine mounted on them. Therefore, for example, when trying to raise or lower the arm of a robot, the motor incorporated in the elbow joint or the like rotates. Since energy is required not only to make the arm itself move up and down, but also to move the arm itself incorporating the rotary electric machine up and down, there is a limit to seeking responsiveness such as fast acceleration / deceleration against the mass.

一方、汎用モータや大容量モータには誘導タイプのモータ(誘導機)が最も多く使用されている。しかし、誘導機には原理的な課題がある。誘導機では、エアギャップ長が出力に大きく影響する。出力、効率、力率等の機器の特性を向上させるにはエアギャップ長を狭くすることが望ましいが、量産性や性能のばらつき等の製造性を考慮するとエアギャップ長はある範囲までしか狭くできない。このような二律背反の関係によって誘導機は効率や力率、高出力化において従来技術では性能限界に達していた。 On the other hand, induction type motors (induction machines) are most often used for general-purpose motors and large-capacity motors. However, the induction machine has a problem in principle. In an induction machine, the air gap length has a large effect on the output. It is desirable to narrow the air gap length in order to improve the characteristics of equipment such as output, efficiency, and power factor, but the air gap length can only be narrowed to a certain range in consideration of manufacturability such as mass productivity and variation in performance. .. Due to such an antinomy relationship, the induction machine has reached the performance limit in the conventional technology in terms of efficiency, power factor, and high output.

松木英敏、高橋俊輔著、「ワイヤレス給電技術がわかる本」(2011年)Hidetoshi Matsuki, Shunsuke Takahashi, "A Book on Wireless Power Supply Technology" (2011) 笠松・堺、「3相ワイヤレス電力伝送用コイルの検討」、平成27年電気学会全国大会、4−155(2015)Kasamatsu and Sakai, "Study of Coil for 3-Phase Wireless Power Transmission", 2015 IEEJ National Convention, 4-155 (2015) 菅澤・堺、「電磁共振モータに関する基礎研究」、平成27年度電気学会産業応用部門大会、3−18(2015)Sugazawa and Sakai, "Basic Research on Electromagnetic Resonant Motors", 2015 IEEJ Industrial Application Division Conference, 3-18 (2015) Kurs, A. et al., “Wireless Power Transfer via Strongly Coupled Magnetic Resonances”, Science, vol.317, No.5834, pp.83-86, 2007Kurs, A. et al., “Wireless Power Transfer via Strongly Coupled Magnetic Resonances”, Science, vol.317, No.5834, pp.83-86, 2007

本発明はこのような従来の技術的課題に鑑みてなされたもので、固定子巻線と回転子巻線との間に起こる電磁界共振結合を利用して回転子に回転力を誘起させ、あるいは逆に回転子の回転に対して固定子側に電力を発生させる新規な電磁共振回転電機複合型回転電機及び回転電機駆動装置を提供することを目的とする。
The present invention has been made in view of such conventional technical problems, and induces a rotational force in the rotor by utilizing the electromagnetic resonance coupling that occurs between the stator winding and the rotor winding. Alternatively, on the contrary, it is an object of the present invention to provide a new electromagnetic resonance rotary electric machine, a composite rotary electric machine, and a rotary electric machine drive device that generate electric power on the stator side with respect to the rotation of the rotor.

また、このような回転子を回転させあるいは固定子に電力を発生させることのできる電磁界共振原理を利用する回転電機により、鉄心を無くして超軽量化が図れ、また誘導機のエアギャップを大きくとっても高性能化が図れる電磁共振回転電機複合型回転電機及び回転電機駆動装置を提供することを目的とする。
In addition, a rotating electric machine that uses the electromagnetic resonance principle that can rotate such a rotor or generate electric power in the stator eliminates the iron core and makes it ultra-lightweight, and also increases the air gap of the inducer. It is an object of the present invention to provide an electromagnetic resonance rotary electric machine, a composite rotary electric machine, and a rotary electric machine drive device capable of achieving extremely high performance.

本発明は、コイルとキャパシタを有する固定子と、コイルとキャパシタを有する回転子とから構成される電磁共振回転電機を特徴とする。 The present invention is characterized by an electromagnetic resonance rotary electric machine composed of a stator having a coil and a capacitor and a rotor having a coil and a capacitor.

また本発明は、複数のコイルを接続した巻線とキャパシタとを有する固定子と、複数のコイルを接続した巻線とキャパシタとを有する回転子とから構成され、電磁界共振現象を利用して前記回転子を回転させ又は前記回転子の回転により前記固定子に電力を発生させる電磁気共振回転電機を特徴とする。
Further, the present invention is composed of a stator having a winding and a capacitor connecting a plurality of coils and a rotor having a winding connecting a plurality of coils and a capacitor, and utilizes an electromagnetic resonance phenomenon. It is characterized by an electromagnetic resonance rotary electric machine that rotates the rotor or generates power in the stator by the rotation of the rotor.

また本発明は、固定子は電磁界共振状態となるような巻線のインダクタンス値とキャパシタンス値とし、回転子も電磁界共振状態となるような巻線のインダクタンス値とキャパシタンス値とし、かつ、前記固定子の電磁界共振周波数と前記回転子の電磁界共振周波数とが一致するようにした電磁共振回転電機を特徴とする。
The present invention, the stator and the inductance value and the capacitance value of such winding the electromagnetic field resonant state, the rotor is also the inductance value and the capacitance value of such winding the electromagnetic field resonance, and the wherein the electromagnetic resonance rotary electric machine as an electromagnetic field resonant frequency of the stator and the electromagnetic field resonant frequency of the rotor coincide.

さらに本発明は、複数のコイルを接続した巻線とキャパシタとを有する固定子と、複数のコイルを接続した巻線とキャパシタとを有する回転子とから構成される電磁共振回転電機と鉄心を有する回転電機とを備えた複合型回転電機を特徴とする。
Further, the present invention has an electromagnetic resonance rotating electric machine and an iron core composed of a stator having a winding and a capacitor connecting a plurality of coils and a rotor having a winding and a capacitor connecting a plurality of coils. It features a composite rotary electric machine equipped with a rotary electric machine.

本発明の電磁共振回転電機によれば、例えば音響学における共鳴現象と同様に比較的離れた物体間でも発生し得る電磁界共振現象によって固定子から回転子に電力を電送するので、固定子と回転子との間のエアギャップ長を拡大しても回転力を誘起でき、誘導機として大きなエアギャップ長でも高出力を得ることができる。
According to the electromagnetic resonance rotating electric machine of the present invention, for example, power is transmitted from the stator to the rotor by an electromagnetic resonance phenomenon that can occur between relatively distant objects as in the resonance phenomenon in acoustics. A rotational force can be induced even if the air gap length between the rotor and the rotor is increased, and a high output can be obtained even with a large air gap length as an inducer.

また本発明によれば、電磁共振現象を原理としているため大量の漏れ磁束を低減して高磁気を確保するために従来不可欠であった鉄心を排除でき―この鉄心は従来では回転電機の重量を占める金属材料でかつ体積割合もほぼ占めていた―超軽量の回転電機や高効率の誘導式回転電機及び複合型回転電機が実現できる。 Further, according to the present invention, since the principle is the electromagnetic resonance phenomenon, it is possible to eliminate the iron core which was conventionally indispensable for reducing a large amount of leakage flux and ensuring high magnetism. It was a metal material that occupied almost all of the volume-an ultra-lightweight rotary machine, a highly efficient induction rotary machine, and a composite rotary machine could be realized.

そして、本発明の電磁共振回転電機を太陽光発電で飛行できる電動飛行機や無人飛行機に搭載することによってそれらの機器重量の軽量化が図れ、同様に、モバイル機器やロボット、電気自動車、電車等の移動体でも軽量化によって動作に要するエネルギーを大幅に低減でき、速い応答も可能になる。 By mounting the electromagnetic resonance rotary electric machine of the present invention on an electric airplane or an unmanned airplane capable of flying by solar power generation, the weight of those devices can be reduced. Similarly, for mobile devices, robots, electric vehicles, trains, etc. Even in a moving body, the weight reduction can significantly reduce the energy required for operation and enable a quick response.

本発明の実施の形態の電磁共振回転電機の原理説明図。The principle explanatory drawing of the electromagnetic resonance rotary electric machine of embodiment of this invention. 上記実施の形態の電磁共振回転電機の回路図。The circuit diagram of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機の断面図。Sectional drawing of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機の要部の拡大断面図。The enlarged sectional view of the main part of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機の諸元表。Specification table of the electromagnetic resonance rotary electric machine of the above embodiment. 上記実施の形態の電磁共振回転電機の各動作周波数での固定子インダクタンス値とキャパシタンス値との表。Table of stator inductance value and capacitance value at each operating frequency of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機の各動作周波数での回転子インダクタンス値とキャパシタンス値との表。Table of rotor inductance value and capacitance value at each operating frequency of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機の回転子における電力の周波数応答特性のグラフ。The graph of the frequency response characteristic of the electric power in the rotor of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機の各動作周波数での磁束密度分布図。The magnetic flux density distribution figure at each operating frequency of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機の各動作周波数でのすべりに対するトルク特性のグラフ。The graph of the torque characteristic with respect to the slip at each operating frequency of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機の各動作周波数でのすべりに対する出力特性のグラフ。The graph of the output characteristic with respect to the slip at each operating frequency of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機の各動作周波数でのすべりに対する固定子電流特性のグラフ。The graph of the stator current characteristic with respect to the slip at each operating frequency of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機の各動作周波数でのすべりに対する回転子電流特性のグラフ。The graph of the rotor current characteristic with respect to the slip at each operating frequency of the electromagnetic resonance rotary electric machine of the said embodiment. 本発明の電磁共振回転電機の変形例における回転子の斜視図。The perspective view of the rotor in the modification of the electromagnetic resonance rotary electric machine of this invention. 本発明の第2の実施の形態の電磁共振回転電機の原理説明図。The principle explanatory drawing of the electromagnetic resonance rotary electric machine of the 2nd Embodiment of this invention. 上記実施の形態の電磁共振回転電機の回路図。The circuit diagram of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機の断面図。Sectional drawing of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機の要部の拡大断面図。The enlarged sectional view of the main part of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機の諸元表。Specification table of the electromagnetic resonance rotary electric machine of the above embodiment. 上記実施の形態の電磁共振回転電機のすべりに対するトルク特性のグラフ。The graph of the torque characteristic with respect to the slip of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機のトルク波形(すべり0.3)のグラフ。The graph of the torque waveform (slip 0.3) of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機のすべりに対する出力特性のグラフ。The graph of the output characteristic with respect to the slip of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機のすべり0.2での回転時の磁束密度の分布図。The distribution diagram of the magnetic flux density at the time of rotation at the slip 0.2 of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機のすべりに対する回転子電流特性のグラフ。The graph of the rotor current characteristic with respect to the slip of the electromagnetic resonance rotary electric machine of the said embodiment. 上記実施の形態の電磁共振回転電機の共振周波数に対する有効電力特性のグラフ。The graph of the active power characteristic with respect to the resonance frequency of the electromagnetic resonance rotary electric machine of the said embodiment. 本発明の第3の実施の形態の電磁共振回転電機(1/4)の斜視図。The perspective view of the electromagnetic resonance rotary electric machine (1/4) of the 3rd Embodiment of this invention. 上記実施の形態の電磁共振回転電機の磁束密度の分布図。The distribution diagram of the magnetic flux density of the electromagnetic resonance rotary electric machine of the said embodiment. 本発明の第4の実施の形態の電磁共振回転電機に対する電動機駆動装置のブロック図。The block diagram of the electric motor drive device with respect to the electromagnetic resonance rotary electric machine of 4th Embodiment of this invention.

以下、本発明の実施の形態について図に基づいて詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、電磁共振回転電機の動作原理について説明する。電磁共振回転電機は電磁界共振結合を利用して固定子巻線と回転子巻線との間で電力を電送し、モータ動作では力を発生し、発電機動作では電力を発生させる電磁共振エネルギー変換機器である。電磁共振回転電機は無鉄心で、巻線のみで構成することができる。そのため、超軽量の回転電機が実現でき、モバイル機器から電気飛行機、太陽電池飛行機を実現するためのキー技術になる可能性がある。 First, the operating principle of the electromagnetic resonance rotary electric machine will be described. The electromagnetic resonance rotating electric machine uses electromagnetic resonance coupling to transmit electric power between the stator winding and the rotor winding, and generates electric power in the motor operation and electric power in the generator operation. It is a conversion device. The electromagnetic resonance rotary electric machine has no iron core and can be composed only of windings. Therefore, an ultra-lightweight rotary electric machine can be realized, and it may become a key technology for realizing an electric airplane and a solar cell airplane from a mobile device.

[電磁共振回転電機とは]
電磁共振回転電機は固定子巻線(1次巻線)と回転子巻線(2次巻線)との間で電磁界共振結合の作用で電力を電送してエネルギー変換を行う。図1、図2を用いて、電磁共振回転電機1の原理モデルの構成と動作原理について述べる。3相の固定子コイル11U,11 V,11Wを空間的に60°、120°位相間隔で配置する。前記コイル11U,11V,11Wから成る固定子巻線11の固定子電流によって回転磁界を形成する。回転子20には同様に3相のコイル21U,21V,21Wを配置し、三相短絡状態にする。これらの回転子20のコイル21U,21V,21Wにて回転子巻線21を構成する。また、図3、図4に示すように、通常の固定子鉄心と回転子鉄心はなくして無鉄心とし、実際の構造としては合成樹脂FRPを固定子構造体12、回転子構造体22として各コイル11U,11V,11W;21U,21V,21Wを固定する。但し、低周波数領域でも成立する場合で、応用製品によっては鉄心を設ける可能性もある(複合型回転電機)。
[What is an electromagnetic resonance rotary electric machine ]
The electromagnetic resonance rotary electric machine transmits power between the stator winding (primary winding) and the rotor winding (secondary winding) by the action of electromagnetic resonance coupling to perform energy conversion. The configuration and operating principle of the principle model of the electromagnetic resonance rotary electric machine 1 will be described with reference to FIGS. 1 and 2. Three-phase stator coils 11U, 11V, 11W are spatially arranged at 60 ° and 120 ° phase intervals. A rotating magnetic field is formed by the stator current of the stator winding 11 composed of the coils 11U, 11V, and 11W. Similarly, three-phase coils 21U, 21V, and 21W are arranged on the rotor 20 to bring them into a three-phase short-circuit state. The rotor winding 21 is composed of the coils 21U, 21V, and 21W of the rotor 20. Further, as shown in FIGS. 3 and 4, the normal stator core and the rotor core are eliminated to form a non-iron core, and as an actual structure, synthetic resin FRP is used as the stator structure 12 and the rotor structure 22, respectively. Coil 11U, 11V, 11W; 21U, 21V, 21W are fixed. However, if this is true even in the low frequency range, an iron core may be provided depending on the applied product (composite type rotary electric machine).

さらに図1、図2に示すように、3相の固定子巻線回路と回転子巻線回路とには共振用のキャパシタ13U,13V,13W;23U,23V,23Wを接続してそれぞれにキャパシタンスを持たせている。 Further, as shown in FIGS. 1 and 2, the three-phase stator winding circuit and the rotor winding circuit are connected with resonance capacitors 13U, 13V, 13W; 23U, 23V, 23W, respectively, and have capacitances thereof. Have.

図3、図4を用いて実施の形態の電磁共振回転電機1の機械的な構成を詳しく説明する。電磁共振回転電機1は固定子10と回転子20から構成される。固定子10は、強化繊維樹脂(FRP)を材料とした固定子構造体12にスロット14を設けて、固定子構造体12の各スロット14内にコイル11U,11V,11Wを挿入し、複数のコイル11U,11V,11Wから成る3相の固定子巻線11それぞれにはキャパシタ13U,13V,13Wを接続してキャパシタンスを持たせている。一方、電磁共振回転電機1の回転子20は、強化繊維樹脂(FRP)を材料とした回転子構造体22にスロット24を設けて、回転子構造体22の各スロット24内にコイル21U,21V,21Wを挿入し、複数のコイル21U,21V,21Wから成る3相の回転子巻線21にはキャパシタ23U,23V,23Wを接続して各相にキャパシタンスを持たせている。固定子10の内部に回転子20を配置し、両者間にはエアギャップ30を形成している。 The mechanical configuration of the electromagnetic resonance rotary electric machine 1 of the embodiment will be described in detail with reference to FIGS. 3 and 4. The electromagnetic resonance rotary electric machine 1 is composed of a stator 10 and a rotor 20. The stator 10 is provided with a slot 14 in the stator structure 12 made of a reinforcing fiber resin (FRP), and coils 11U, 11V, 11W are inserted into each slot 14 of the stator structure 12, and a plurality of coils 11U, 11V, 11W are inserted. Capacitors 13U, 13V, 13W are connected to each of the three-phase stator windings 11 composed of coils 11U, 11V, and 11W to have capacitance. On the other hand, the rotor 20 of the electromagnetic resonance rotary electric machine 1 is provided with a slot 24 in the rotor structure 22 made of a reinforcing fiber resin (FRP), and the coils 21U and 21V are provided in each slot 24 of the rotor structure 22. , 21W is inserted, and capacitors 23U, 23V, 23W are connected to the three-phase rotor winding 21 composed of a plurality of coils 21U, 21V, 21W to give capacitance to each phase. A rotor 20 is arranged inside the stator 10, and an air gap 30 is formed between the rotor 20.

固定子10の3相巻線21のインダクタンスLとキャパシタンスCとは、設定した周波数fで共振する値にしている。同様に回転子20の3相巻線21のインダクタンスLとキャパシタンスCとは、設定した周波数fで共振する値にしている。さらに固定子10の共 振周波数fと回転子20の共振周波数fとがほぼ一致するように各巻線11,21とキャ パシタ13,23の特性を設定している。これによって、固定子10と回転子20とが電磁界共振結合状態になり、固定子10側の電気エネルギーが回転子20側のエネルギ ーとして電送される。このような構成にすることによって漏れ磁束の影響はほとんどなく なるので、無鉄心の空心状態でも電磁界結合によって電力を電送できる。
The inductance L and the capacitance C of the three-phase winding 21 of the stator 10 are set to values that resonate at a set frequency f. Similarly, the inductance L and the capacitance C of the three-phase winding 21 of the rotor 20 are set to values that resonate at the set frequency f. Further, the characteristics of the windings 11 and 21 and the capacitors 13 and 23 are set so that the oscillation frequency f of the stator 10 and the resonance frequency f of the rotor 20 substantially match. As a result, the stator 10 and the rotor 20 are brought into an electromagnetic resonance coupling state, and the electrical energy on the stator 10 side is transmitted as energy on the rotor 20 side. With such a configuration, the influence of the leakage flux is almost eliminated, so that power can be transmitted by electromagnetic field coupling even in the air-core state of the ironless core.

上記の構成の電磁共振回転電機の特性解析を行った。空心とするためにステータコアとロータコアの材料設定を空気に設定した。電磁共振回転電機のモデルは図3、図4に示すものである。そのモデルの諸元を図5の表に示している。
The characteristics of the electromagnetic resonance rotary electric machine having the above configuration were analyzed. The material settings for the stator core and rotor core were set to air for air core. The model of the electromagnetic resonance rotary electric machine is shown in FIGS. 3 and 4. The specifications of the model are shown in the table of FIG.

[機器定数の解析と算出]
駆動周波数で回転電機電磁界共振状態にするために、機器定数である3相巻線のインダクタンスLとキャパシタンスCを決める必要がある。そして、電磁界共振結合させるために固定子10と回転子20において同じ周波数fで共振させる必要がある。インダクタンスLは電磁界解析によって求めた。解析で得られたインダクタンスLと駆動周波数fから共振条件によってキャパシタCを算出する。機器定数の算出式は次の式(1)−(5)である。
[Analysis and calculation of equipment constants]
In order for the rotating electric machine to be in the electromagnetic field resonance state at the drive frequency, it is necessary to determine the inductance L and the capacitance C of the three-phase winding, which are equipment constants. Then, in order to perform electromagnetic resonance coupling, it is necessary to resonate the stator 10 and the rotor 20 at the same frequency f. The inductance L was obtained by electromagnetic field analysis. The capacitor C is calculated from the inductance L and the drive frequency f obtained in the analysis according to the resonance conditions. The formulas for calculating the equipment constants are the following formulas (1)-(5).

また、固定子巻線11のインダクタンスLの解析を行う場合は、回転子巻線21は空気に設定変更して行う。回転子巻線21のインダクタンスLの解析では、逆に固定子巻線11を空気に設定する。解析条件としては、3相電源電圧Vは振幅値で3000V、駆動周波数は50Hz,100Hz,150Hz,200Hzで行った。尚、駆動周波数fはkHzオーダでも行ったが、ここでは一例として低周波での特性を述べる。 Further, when analyzing the inductance L of the stator winding 11, the rotor winding 21 is set to air. In the analysis of the inductance L of the rotor winding 21, the stator winding 11 is set to air. As the analysis conditions, the three-phase power supply voltage V was 3000 V in amplitude, and the drive frequencies were 50 Hz, 100 Hz, 150 Hz, and 200 Hz. The drive frequency f was also performed on the order of kHz, but here, the characteristics at a low frequency will be described as an example.

特性解析に用いた原理検証モデルは図5の表に示す諸元である。尚、原理検討モデルの諸元は、汎用の中容量の誘導機の設計値を用いたモータの諸元とした。電磁界解析を行ったときの原理モデルの回路は図1、図2に示したものである。 The principle verification model used for the characteristic analysis is the specifications shown in the table of FIG. The specifications of the principle study model are the specifications of the motor using the design values of the general-purpose medium-capacity induction machine. The circuit of the principle model when the electromagnetic field analysis is performed is shown in FIGS. 1 and 2.

[機器定数解析結果]
機器定数解析を基に算出した値は、固定子10のインダクタンスLとキャパシタンスCを図6の表に示し、回転子20のインダクタンスLとキャパシタンスCを図7の表に示している。
[Device constant analysis result]
The values calculated based on the device constant analysis show the inductance L and the capacitance C of the stator 10 in the table of FIG. 6, and the inductance L and the capacitance C of the rotor 20 in the table of FIG.

[周波数応答特性]
電磁界共振によるモータ特性を把握するために原理モデルの周波数応答解析を行った。回路モデルは図1、図2に示したものであり、機器定数解析により算出した各駆動周波数fを共振周波数となる容量Cのキャパシタ13,23を固定子10の回路と回転子20の回路とのそれぞれに直列に接続した回路構成となる。
[Frequency response characteristics]
The frequency response analysis of the principle model was performed to understand the motor characteristics due to the electromagnetic resonance. The circuit models are shown in FIGS. 1 and 2, and the capacitors 13 and 23 having the capacitance C whose drive frequency f calculated by the device constant analysis is the resonance frequency are the circuit of the stator 10 and the circuit of the rotor 20. The circuit configuration is connected in series to each of the above.

解析条件として、電源電圧は振幅値3000Vとした。図8に回転子20における電力の周波数応答特性を示す。グラフC50,C100,C150,C200は50Hz,100Hz,150Hz,200Hzを共振周波数となるように設定した電気容量Cの値を持つキャパシタを取り付けた時の本発明の回転電機において、駆動周波数に対する電力の周波数応答特性のグラフである。駆動周波数fを共振周波数として設定した50Hz,100Hz,150Hz,200Hz近傍で最大の電力になっていることが確認された。各最大電力は駆動(共振)周波数50Hzで設定したモータでは32.7kW、100Hz設定のモータでは70.3kW、150Hz設定のモータでは75.6kW、200Hz設定のモータでは65.6kWが得られた。また、50Hz設定のモータの電力は他の3つの周波数で共振設定したモータの電力の半分以下になっている。最も多くの電力が得られたのは150Hz設定のモータである。 As an analysis condition, the power supply voltage was set to an amplitude value of 3000 V. FIG. 8 shows the frequency response characteristics of the electric power in the rotor 20. Graphs C50, C100, C150, and C200 show the power with respect to the drive frequency in the rotary electric machine of the present invention when a capacitor having an electric capacity C value set to have a resonance frequency of 50 Hz, 100 Hz, 150 Hz, and 200 Hz is attached. It is a graph of a frequency response characteristic. It was confirmed that the maximum power was obtained in the vicinity of 50 Hz, 100 Hz, 150 Hz, and 200 Hz in which the drive frequency f was set as the resonance frequency. The maximum power was 32.7 kW for the motor set at the drive (resonance) frequency of 50 Hz, 70.3 kW for the motor set at 100 Hz, 75.6 kW for the motor set at 150 Hz, and 65.6 kW for the motor set at 200 Hz. Further, the electric power of the motor set at 50 Hz is less than half the electric power of the motor set to resonate at the other three frequencies. The motor with the 150 Hz setting provided the most power.

周波数応答解析時に得られた50Hz,100Hz,150Hz,200Hzそれぞれでの共振時の磁束の磁束密度分布を調べてみると図9に示すようになった。いずれの周波数においても、ステータとロータ間で磁束が結合していることが確認でき、電磁共振状態になっていることがわかる。 The magnetic flux density distributions of the magnetic fluxes at resonance at 50 Hz, 100 Hz, 150 Hz, and 200 Hz obtained during the frequency response analysis were examined and shown in FIG. At any frequency, it can be confirmed that the magnetic flux is coupled between the stator and the rotor, and it can be seen that the electromagnetic resonance state is reached.

[運転特性]
電磁共振モータの回転時の運転特性は従来と異なる特性を示す。そこで、原理検証モデルの過渡応答解析を行って回転時の運転特性を求めた。解析で得られたすべりsに対するトルク(s−T)特性を図10に示しめしている。この図10の(s−T)特性より、50Hz設定のモータはすべりs=0.6のとき、100Hz,150Hz,200Hz設定のモータそれぞれはすべりs=0.5のときにトルクが最大になっている。
[Driving characteristics]
The operating characteristics of the electromagnetic resonance motor during rotation show different characteristics from the conventional ones. Therefore, the transient response analysis of the principle verification model was performed to obtain the operating characteristics during rotation. The torque (s−T) characteristics with respect to the slip s obtained in the analysis are shown in FIG. From the (s—T) characteristics of FIG. 10, the torque of the motor set at 50 Hz is maximum when the slide s = 0.6, and the torque of the motors set at 100 Hz, 150 Hz, and 200 Hz is maximum when the slide s = 0.5. ing.

図11はすべりsに対する出力特性を示している。50Hz設定のモータはすべりsが0.7のとき、100Hz、150Hz、200Hz設定のモータそれぞれはすべりsが0.6のときに出力が最大になる。最大出力は50Hz設定のモータのみが小さく、他の周波数設定のモータの最大出力はほぼ同出力となっている。 FIG. 11 shows the output characteristics for slip s. The motor set at 50 Hz has the maximum output when the slip s is 0.7, and the motors set at 100 Hz, 150 Hz, and 200 Hz each have the maximum output when the slip s is 0.6. The maximum output is small only for the motor set at 50 Hz, and the maximum output of the motors set at other frequencies is almost the same.

図12はすべりsに対する固定子電流特性を示しており、すべりsが小さくなるにつれて固定子電流は増加している。また図13はすべりsに対する回転子電流特性を示しており、電流はすべりsに対して図11の出力特性と同様な特性変化をしていることがわかる。 FIG. 12 shows the stator current characteristics with respect to the slip s, and the stator current increases as the slip s decreases. Further, FIG. 13 shows the rotor current characteristic with respect to the slide s, and it can be seen that the current has a characteristic change similar to the output characteristic of FIG. 11 with respect to the slide s.

以上の解析結果から、電磁共振結合を利用した新原理の回転電機、つまり電磁共振回転電機では、固定子と回転子との間で電力を電送できることが分かる。 From the above analysis results, it can be seen that a new principle rotating electric machine using electromagnetic resonance coupling, that is, an electromagnetic resonance rotating electric machine, can transmit electric power between the stator and the rotor.

このようにして本実施の形態の電磁共振回転電機1によれば、例えば音響学における共鳴現象と同様に比較的離れた物体間でも発生し得る電磁界共振現象によって固定子10から回転子20に電力を電送することができるので、固定子10と回転子20との間のエアギャップ30のギャップ長を拡大しても回転力を誘起でき、誘導機として大きなエアギャップ長でも高出力を得ることができる。また、電磁界共振現象を原理としているために大量の漏れ磁束を低減して高磁気を確保するために従来不可欠であった鉄心を排除でき―この鉄心は従来では回転電機の大部分の重量を占める金属材料でかつ体積割合もほぼ全部を占めていた―超軽量の回転電機や高効率の誘導式回転電機が実現できる。そして、超軽量、高効率化が図れるので、本実施の形態の電磁共振回転電機1を太陽光発電で飛行できる電動飛行機や無人飛行機に搭載することによってそれらの機器重量の軽量化も図れ、同様にモバイル機器やロボット、電気自動車、電車等の移動体でもその搭載によって機器全体の軽量化が図れて動作に要するエネルギーを大幅に低減でき、速い応答も可能になる。
In this way, according to the electromagnetic resonance rotary electric machine 1 of the present embodiment, the stator 10 is changed to the rotor 20 by an electromagnetic resonance phenomenon that can occur even between relatively distant objects as in the resonance phenomenon in acoustics, for example. Since electric power can be transmitted, a rotational force can be induced even if the gap length of the air gap 30 between the stator 10 and the rotor 20 is expanded, and a high output can be obtained even with a large air gap length as an inducer. Can be done. In addition, because it is based on the electromagnetic field resonance phenomenon, it is possible to eliminate the iron core that was conventionally indispensable for reducing a large amount of leakage flux and ensuring high magnetism-this iron core has conventionally taken most of the weight of a rotating electric machine. It was a metallic material and occupied almost all of the volume-an ultra-lightweight rotary electric machine and a highly efficient induction rotary electric machine can be realized. Since it is possible to achieve ultra-light weight and high efficiency, the weight of these devices can be reduced by mounting the electromagnetic resonance rotary electric machine 1 of the present embodiment on an electric airplane or an unmanned airplane capable of flying by solar power generation. In addition, even in moving objects such as mobile devices, robots, electric vehicles, and trains, the weight of the entire device can be reduced by mounting it, the energy required for operation can be significantly reduced, and quick response is possible.

次に、本発明の電磁共振回転電機の変形例について説明する。 Next, a modification of the electromagnetic resonance rotary electric machine of the present invention will be described.

(1)第1の実施の形態の電磁共振回転電機1において、回転子20はかご型回転子として構成する。そしてかご型回転子20は、その中の導体を強化繊維樹脂でモールドして製造する。キャパシタ23は、かご型回転子20のエンドリング側に接続する。固定子10の構成は第1の実施の形態のものと同様である。 (1) In the electromagnetic resonance rotary electric machine 1 of the first embodiment, the rotor 20 is configured as a cage rotor. The cage rotor 20 is manufactured by molding the conductor in the cage rotor 20 with a reinforcing fiber resin. The capacitor 23 is connected to the end ring side of the cage rotor 20. The structure of the stator 10 is the same as that of the first embodiment.

(2)また、キャパシタ13;23はキャパシタのようなキャパシタンス電気部品以外にも以下の構成に置き換えることができる。図14(図14には回転子20の構造を示しているが、固定子10の構造も同様である。)に示すように、固定子10のFRP構造体12、回転子20のFRP構造体22それぞれを軸方向に分割し、分割体12a,12a;22a,22a間にこれらの分割体12a;22aの切り口の形状とほぼ一致する形状の金属板17;27をサンドイッチ状態で挟み込んで構成する。挟み込む金属板17;27は(3n+1:nは自然数)枚である。そしてUVW各相のコイル11U,11V,11W;21U,21V,21Wの一端をそれぞれ異なったn枚の金属板17;27に接続し、他方、端部の位置にある残りの1枚の金属板27にはUVW全相のコイル11U,11V,11W;21U,21V,21Wの他端を共通に接続することによって導電性の金属板17;27をその間に構造体であり誘電体であるFRP分割体12a;22aが介在するキャパシタ15;25として動作させる。これによって、固定子巻線11、回転子巻線21のインダクタンスLとキャパシタ15,25のキャパシタンスCとで共振状態を作り出す。 (2) Further, the capacitors 13; 23 can be replaced with the following configurations in addition to the capacitance electric components such as the capacitors. As shown in FIG. 14 (FIG. 14 shows the structure of the rotor 20, but the structure of the stator 10 is also the same), the FRP structure 12 of the stator 10 and the FRP structure of the rotor 20 are the same. Each of the 22 is divided in the axial direction, and a metal plate 17; 27 having a shape substantially matching the shape of the cut end of the divided bodies 12a; 22a is sandwiched between the divided bodies 12a, 12a; 22a, 22a. .. The sandwiching metal plates 17; 27 are (3n + 1: n are natural numbers). Then, one end of the coils 11U, 11V, 11W; 21U, 21V, 21W of each UVW phase is connected to n different metal plates 17; 27, and the other one metal plate at the end position is connected. By connecting the other ends of the UVW all-phase coils 11U, 11V, 11W; 21U, 21V, 21W to 27 in common, a conductive metal plate 17; 27 is connected between them, and the FRP division which is a structure and a dielectric is divided. It operates as a capacitor 15; 25 in which the body 12a; 22a is interposed. As a result, a resonance state is created between the inductance L of the stator winding 11 and the rotor winding 21 and the capacitance C of the capacitors 15 and 25.

<第2の実施の形態>
図15〜図18を用いて、第2の実施の形態の電磁共振回転電機101について説明する。図15、図16に示すように、固定子110には3相の固定子コイル111U,111V,111Wを空間的に60°、120°位相間隔で配置する。前記コイル111U,111V,111Wから成る固定子巻線111の固定子電流によって回転磁界を形成する。回転子120には同様に3相のコイル121U,121V,121Wを配置し、3相短絡状態にする。これらの回転子120のコイル121U,121V,121Wにて回転子巻線121を構成する。また、図17、図18に示すように、通常の固定子鉄心と回転子鉄心はなくして無鉄心とし、実際の構造としては合成樹脂FRPを固定子構造体112、回転子構造体122として各コイル111U,111V,111W;121U,121V,121Wを固定する。固定子110の内部に回転子120を配置し、両者間にはエアギャップ130を形成している。
<Second Embodiment>
The electromagnetic resonance rotary electric machine 101 of the second embodiment will be described with reference to FIGS. 15 to 18. As shown in FIGS. 15 and 16, the stator 110 is spatially arranged with three-phase stator coils 111U, 111V, 111W at a phase interval of 60 ° and 120 °. A rotating magnetic field is formed by the stator current of the stator winding 111 composed of the coils 111U, 111V, and 111W. Similarly, the three-phase coils 121U, 121V, and 121W are arranged on the rotor 120 to bring them into a three-phase short-circuit state. The rotor winding 121 is composed of the coils 121U, 121V, 121W of these rotors 120. Further, as shown in FIGS. 17 and 18, the normal stator core and rotor core are eliminated to form a non-iron core, and as an actual structure, synthetic resin FRP is used as the stator structure 112 and the rotor structure 122, respectively. Coil 111U, 111V, 111W; 121U, 121V, 121W are fixed. A rotor 120 is arranged inside the stator 110, and an air gap 130 is formed between the two.

さらに図15、図16に示すように、3相の固定子巻線回路と回転子巻線回路とには共振用のキャパシタ113U,113V,113W;123U,123V,123Wを接続してそれぞれにキャパシタンスを持たせている。 Further, as shown in FIGS. 15 and 16, the three-phase stator winding circuit and the rotor winding circuit are connected with resonance capacitors 113U, 113V, 113W; 123U, 123V, 123W, respectively, and have capacitances thereof. Have.

[運転特性解析結果]
固定子110は駆動周波数を共振周波数fとし、回転子120はすべり周波数を共振周波数fとする容量のキャパシタを、インダクタンスLから求めた。図16に示すように固定子110と回転子120に直列にキャパシタを接続した回路で解析をする。解析条件は、図19の表に示すものであり、電源電流を337.5A(10A/mm)とし、駆動周波数fを1kHzとした。
[Driving characteristic analysis result]
A capacitor having a capacitance in which the drive frequency of the stator 110 is the resonance frequency f and the slip frequency of the rotor 120 is the resonance frequency f is obtained from the inductance L. As shown in FIG. 16, the analysis is performed by a circuit in which a capacitor is connected in series with the stator 110 and the rotor 120. The analysis conditions are as shown in the table of FIG. 19, the power supply current was 337.5 A (10 A / mm 2 ), and the drive frequency f was 1 kHz.

解析によって得られたすべりに対するトルク特性(s−T特性)を図20に示す。すべり(Slip)が0.3のときに最大の2098Nmになる。最大トルクになるすべり0.3のトルク波形を図21に示す。図22はすべりに対する出力特性である。すべりが0.2のときに出力は最大となり、そのときの磁束密度を図23に示す。この状態の時に回転子120の磁束密度が高くなっており、電磁共振結合が作用していることが確認できる。図24はすべりに対する回転子120の電流(A)を示しており、すべりが0.3のときに最大の電流値となっていることがわかる。図25の特性曲線は誘導機と同様な変化になっており、いずれのすべりにおいても電磁共振結合作用が確認できた。 The torque characteristics (s-T characteristics) for slip obtained by the analysis are shown in FIG. When the slip is 0.3, the maximum is 2098 Nm. The torque waveform of slip 0.3 which becomes the maximum torque is shown in FIG. FIG. 22 shows the output characteristics for slippage. The output is maximized when the slip is 0.2, and the magnetic flux density at that time is shown in FIG. In this state, the magnetic flux density of the rotor 120 is high, and it can be confirmed that the electromagnetic resonance coupling is acting. FIG. 24 shows the current (A) of the rotor 120 with respect to the slip, and it can be seen that the maximum current value is obtained when the slip is 0.3. The characteristic curve of FIG. 25 has the same change as that of the induction machine, and the electromagnetic resonance coupling action can be confirmed in any of the slips.

また周波数特性は次のようになった。図16の電磁共振モータ回路に0.2Ωの抵抗を回転子120側に直列に3相分接続し、また回転子120側にはすべり周波数fに対応したキャパシタを使用して周波数応答解析を行った。そのときの抵抗の有効電力を図25に示す。有効電力は周波数が高い共振ほど大きくなっている。 The frequency characteristics are as follows. A 0.2Ω resistor is connected in series to the rotor 120 side for three phases in the electromagnetic resonance motor circuit of FIG. 16, and a capacitor corresponding to the slip frequency f is used on the rotor 120 side for frequency response analysis. It was. The active power of the resistor at that time is shown in FIG. The active power increases as the frequency becomes higher.

このようにして本実施の形態の電磁共振回転電機101によれば、例えば音響学における共鳴現象と同様に比較的離れた物体間でも発生し得る電磁界共振現象によって固定子110から回転子120に電力を電送することができるので、固定子110と回転子120との間のエアギャップ130のギャップ長を拡大しても回転力を誘起でき、誘導機として大きなエアギャップ長でも高出力を得ることができる。また、電磁界共振現象を原理としているために大量の漏れ磁束を低減して高磁気を確保することができる。このために、従来は不可欠であった鉄心を排除でき―この鉄心は従来では回転電機の大部分の重量を占める金属材料でかつ体積割合もほぼ全部を占めていた―超軽量の回転電機や高効率の誘導式回転電機が実現できる。そして、超軽量、高効率化が図れるので、本実施の形態の電磁共振回転電機101を太陽光発電で飛行できる電動飛行機や無人飛行機に搭載することによってそれらの機器重量の軽量化も図れ、同様にモバイル機器やロボット、電気自動車、電車等の移動体でもその搭載によって機器全体の軽量化が図れて動作に要するエネルギーを大幅に低減でき、速い応答も可能になる。
In this way, according to the electromagnetic resonance rotating electric machine 101 of the present embodiment, from the stator 110 to the rotor 120 due to the electromagnetic resonance phenomenon that can occur even between relatively distant objects as in the resonance phenomenon in acoustics, for example. Since electric power can be transmitted, a rotational force can be induced even if the gap length of the air gap 130 between the stator 110 and the rotor 120 is expanded, and a high output can be obtained even with a large air gap length as an inducer. Can be done. Further, since the principle is the electromagnetic field resonance phenomenon, it is possible to reduce a large amount of leakage flux and secure high magnetism. This eliminates the previously indispensable iron core-which was traditionally the metal material that made up most of the weight of the rotating machine and also made up almost the entire volume-ultra-lightweight rotating machine and high. An efficient induction type rotary electric machine can be realized. Since it is possible to achieve ultra-light weight and high efficiency, the weight of these devices can be reduced by mounting the electromagnetic resonance rotary electric machine 101 of the present embodiment on an electric airplane or an unmanned airplane capable of flying by solar power generation. In addition, even in moving objects such as mobile devices, robots, electric vehicles, and trains, the weight of the entire device can be reduced by mounting it, the energy required for operation can be significantly reduced, and quick response is possible.

<第3の実施の形態>
第3の実施の形態の電磁共振回転電機は図26に示すアキシャルギャップ型回転電機201である。図26はモデルの1/4を示している。この実施の形態の回転電機201は、円盤状固定子210にA,B2相巻線211を設けて回転磁界を形成するようにしている。また回転軸方向の対向面に円盤状回転子220を配置し、回転子220にも2相巻線221を設けて2相短絡させている。固定子210は強化繊維樹脂(FRP)の円盤213にFRPのコイルボビン(構造物)を立て、その周りにコイルを巻いて固定子巻線211を構成している。また回転子220についても同様の構造であり、FRPの円盤223にFRPのコイルボビンを立て、その周りにコイルを巻いて回転子巻線221を構成している。これら固定子巻線211と回転子巻線221は簡素な構造の集中巻とし、それぞれ8個のFRPの円柱にコイルを巻きつけた構造である。共振用の外部キャパシタは各固定子巻線と各回転子巻線に接続されて電磁共振状態を作り出す。キャパシタは各円盤内に設けた空洞内に配置して固定する。または、前記コイルを巻く各ボビンの内周に円筒のキャパシタを内蔵して配置する。または、前記各ボビンは誘電体と電極板で構成してボビンそのものをキャパシタとして構成する。
<Third embodiment>
The electromagnetic resonance rotary electric machine of the third embodiment is the axial gap type rotary electric machine 201 shown in FIG. 26. FIG. 26 shows a quarter of the model. In the rotary electric machine 201 of this embodiment, the disk-shaped stator 210 is provided with A and B two-phase windings 211 to form a rotating magnetic field. Further, a disk-shaped rotor 220 is arranged on a facing surface in the rotation axis direction, and a two-phase winding 221 is also provided on the rotor 220 to short-circuit the two phases. The stator 210 forms a stator winding 211 by erecting an FRP coil bobbin (structure) on a reinforcing fiber resin (FRP) disk 213 and winding a coil around the coil bobbin (structure). Further, the rotor 220 has the same structure, and an FRP coil bobbin is erected on an FRP disk 223, and a coil is wound around the coil bobbin to form a rotor winding 221. The stator windings 211 and the rotor windings 221 are centralized windings having a simple structure, and each has a structure in which a coil is wound around eight FRP cylinders. An external capacitor for resonance is connected to each stator winding and each rotor winding to create an electromagnetic resonance state. Capacitors are placed and fixed in cavities provided in each disk. Alternatively, a cylindrical capacitor is built-in and arranged on the inner circumference of each bobbin around which the coil is wound. Alternatively, each bobbin is composed of a dielectric and an electrode plate, and the bobbin itself is formed as a capacitor.

[運転特性解析結果]
・固定子:外径200mm、4極−12コイル‐30ターン数/個
・回転子:外径200mm、12コイル‐30ターン数/個
上記の条件で周波数応答解析及び過渡解析を行い、電磁界の相互作用、2次側(回転子)のエネルギー電送特性を解析した。電源周波数は100Hz〜50kHzとした。
[Driving characteristic analysis result]
-Stator: outer diameter 200 mm, 4-pole-12 coil-30 turns / piece-Rotor: outer diameter 200 mm, 12 coils-30 turns / piece Perform frequency response analysis and transient analysis under the above conditions, and electromagnetic field The energy transmission characteristics of the secondary side (rotor) were analyzed. The power supply frequency was 100 Hz to 50 kHz.

図27に1kHzで負荷状態の機器の磁束密度分布を示している。これにより、固定子210と回転子220の共振結合によって磁束密度が高く分布していることがわかる。 FIG. 27 shows the magnetic flux density distribution of the device under load at 1 kHz. From this, it can be seen that the magnetic flux density is highly distributed due to the resonance coupling between the stator 210 and the rotor 220.

なお、上記のいずれの実施の形態の電磁共振回転電機でも誘導電動機として使用し、その回転駆動にすべり周波数制御を使用し、かつ回転子に流れる電流をすべり周波数になるように制御する電動機駆動装置DRを採用することができる。すなわち、図28に示すように、誘導電動機IMに対して、所定の周波数の三相交流を供給するインバータINVと、このインバータINVの出力電力、周波数をすべり周波数ベクトル制御にて制御するインバータ制御装置CTRと、インバータINVに電源PWの交流電力を直流電力に変換して供給するコンバータCVと、誘導電動機IMの回転速度を検出する速度検出器Rと、インバータINVの出力周波数を検出する電流検出器CWで電動機駆動装置DRを構成する。 It should be noted that the electromagnetic resonance rotary electric machine of any of the above embodiments is used as an induction motor, the slip frequency control is used for the rotation drive thereof, and the electric motor drive device that controls the current flowing through the rotor so as to have the slip frequency. DR can be adopted. That is, as shown in FIG. 28, an inverter INV that supplies a three-phase AC of a predetermined frequency to the induction motor IM, and an inverter control device that controls the output power and frequency of the inverter INV by sliding frequency vector control. The CTR, the converter CV that converts the AC power of the power supply PW into DC power and supplies it to the inverter INV, the speed detector R that detects the rotation speed of the induction motor IM, and the current detector that detects the output frequency of the inverter INV. The electric motor drive device DR is configured by CW.

このように誘導電動機IMをすべり周波数ベクトル制御で駆動し、かつ、すべり周波数が一定になるように回転電機を駆動することにより、回転子の電気回路の共振周波数であるすべり周波数が一定になり、一度、すべり周波数で回転子巻線のインダクタンスLと共振になる特性を持つキャパシタを決めれば、回転子の回転数が変化しても常に同じキャパシタ容量で共振状態になって大きな出力を得ることができるようになる。 By driving the induction motor IM by the sliding frequency vector control and driving the rotating electric machine so that the sliding frequency becomes constant, the sliding frequency which is the resonance frequency of the electric circuit of the rotor becomes constant. Once a capacitor that has the characteristic of resonating with the inductance L of the rotor winding at the slip frequency is determined, even if the rotation speed of the rotor changes, it will always be in a resonance state with the same capacitor capacitance and a large output can be obtained. become able to.

本発明の電磁共振回転電機は、太陽光発電で飛行できる電動飛行機や無人飛行機に搭載することにより大幅に軽量化した電動飛行機や無人飛行機が実現できる。また、モバイル機器やロボット、電気自動車、電車等の移動体に搭載することによりエネルギーを大幅に低減でき、速い応答が可能な移動体が実現できる。 By mounting the electromagnetic resonance rotary electric machine of the present invention on an electric airplane or an unmanned airplane capable of flying by solar power generation, it is possible to realize an electric airplane or an unmanned airplane whose weight is significantly reduced. Further, by mounting it on a moving body such as a mobile device, a robot, an electric vehicle, or a train, energy can be significantly reduced, and a moving body capable of quick response can be realized.

1,101,201 電磁共振回転電機
10,110,210 固定子
11,111,211 固定子巻線
11U,11V,11W 固定子コイル
12 固定子構造体
13U,13V,13W キャパシタ
14 スロット
20,120,220 回転子
21,121,221 回転子巻線
21U,21V,21W 回転子コイル
22 回転子構造体
23U,23V,23W キャパシタ
24 スロット
27 導電板
30 エアギャップ
1,101,201 Electromagnetic resonance rotary electric machine 10,110,210 Stator 11,111,211 Stator winding 11U, 11V, 11W Stator coil 12 Stator structure 13U, 13V, 13W Capitol 14 Slots 20, 120, 220 Rotor 21,121,221 Rotor winding 21U, 21V, 21W Rotor coil 22 Rotor structure 23U, 23V, 23W Stator 24 Slot 27 Conductive plate 30 Air gap

Claims (11)

コイルとキャパシタを有する固定子と、コイルとキャパシタを有する回転子とから構成され、
前記固定子の電磁界共振と前記回転子の電磁界共振とを共振結合させ、
前記固定子の回転磁界を利用して前記回転子に回転力を誘起させ又は前記回転子の回転によって前記固定子側に電力を発生させることを特徴とする電磁共振回転電機。
It is composed of a stator having a coil and a capacitor and a rotor having a coil and a capacitor.
The electromagnetic field resonance of the stator and the electromagnetic field resonance of the rotor are resonantly coupled to each other.
An electromagnetic resonance rotating electric machine characterized in that a rotating force is induced in the rotor by utilizing the rotating magnetic field of the stator or power is generated on the stator side by the rotation of the rotor.
複数のコイルを接続した巻線とキャパシタとを有する固定子と、複数のコイルを接続した巻線とキャパシタとを有する回転子とから構成され、
前記固定子電磁共振状態となるような巻線のインダクタンス値とキャパシタンス値とし、
前記回転子電磁共振状態となるような巻線のインダクタンス値とキャパシタンス値とし
前記固定子を電磁界共振状態にし、前記回転子を電磁界共振状態にし、
前記固定子の電磁界共振と前記回転子の電磁界共振とを共振結合させ、
前記固定子の回転磁界を利用して前記回転子に回転力を誘起させ又は前記回転子の回転によって前記固定子側に電力を発生させることを特徴とする電磁共振回転電機。
It is composed of a stator having a winding and a capacitor connecting a plurality of coils and a rotor having a winding and a capacitor connecting a plurality of coils.
The stator has an inductance value and a capacitance value of the winding so as to be in an electromagnetic field resonance state.
The rotor has an inductance value and a capacitance value of the winding so as to be in an electromagnetic field resonance state.
The stator is brought into an electromagnetic resonance state, the rotor is brought into an electromagnetic resonance state, and the rotor is brought into an electromagnetic resonance state.
The electromagnetic field resonance of the stator and the electromagnetic field resonance of the rotor are resonantly coupled to each other.
An electromagnetic resonance rotating electric machine characterized in that a rotating force is induced in the rotor by utilizing the rotating magnetic field of the stator or power is generated on the stator side by the rotation of the rotor.
複数のコイルを接続した巻線とキャパシタとを有する固定子と、複数のコイルを接続した巻線とキャパシタとを有する回転子とから構成され、
前記固定子が電磁共振状態となるような巻線のインダクタンス値とキャパシタンス値とし、前記回転子が電磁共振状態となるような巻線のインダクタンス値とキャパシタンス値とし、
前記固定子の電磁共振と前記回転子の電磁共振とが一致するようにし
前記固定子を電磁界共振状態にし、前記回転子を電磁界共振状態にし、
前記固定子の電磁界共振と前記回転子の電磁界共振とを共振結合させ、
前記固定子の回転磁界を利用して前記回転子に回転力を誘起させ又は前記回転子の回転によって前記固定子側に電力を発生させることを特徴とする電磁共振回転電機。
It is composed of a stator having a winding and a capacitor connecting a plurality of coils and a rotor having a winding and a capacitor connecting a plurality of coils.
Said stator is the inductance value and the capacitance value of such winding the electromagnetic field resonant state, the rotor is the inductance value and the capacitance value of such winding the electromagnetic field resonant state,
The electromagnetic field resonance of the stator and the electromagnetic field resonance of the rotor so as to coincide,
The stator is brought into an electromagnetic resonance state, the rotor is brought into an electromagnetic resonance state, and the rotor is brought into an electromagnetic resonance state.
The electromagnetic field resonance of the stator and the electromagnetic field resonance of the rotor are resonantly coupled to each other.
An electromagnetic resonance rotating electric machine characterized in that a rotating force is induced in the rotor by utilizing the rotating magnetic field of the stator or power is generated on the stator side by the rotation of the rotor.
前記固定子には駆動周波数を共振周波数とする容量のキャパシタを用い、前記回転子にはすべり周波数を共振周波数とする容量のキャパシタを用いたことを特徴とする請求項2又は3に記載の電磁共振回転電機。 The electromagnetic wave according to claim 2 or 3, wherein a capacitor having a capacitance having a drive frequency as a resonance frequency is used for the stator, and a capacitor having a capacitance having a sliding frequency as a resonance frequency is used for the rotor. Resonant rotary electric machine. 請求項1〜4のいずれかの電磁共振回転電機と鉄心を有する回転電機とを備えた複合型回転電機。 A composite rotary electric machine including the electromagnetic resonance rotary electric machine according to any one of claims 1 to 4 and a rotary electric machine having an iron core. スロットを設けた絶縁誘電体の材料から成る固定子構造体と前記スロット内に挿入した複数のコイルを接続した固定子巻線とキャパシタとを有する固定子と、スロットを設けた絶縁誘電体の材料から成る回転子構造体と前記スロット内に挿入した複数のコイルを接続した回転子巻線とキャパシタとを有する回転子とから構成され、
前記固定子はその巻線のインダクタンス値とキャパシタンス値とを電磁共振状態となる値に設定し、前記回転子はその巻線のインダクタンス値とキャパシタンス値とを電磁共振状態となる値に設定し、かつ、前記固定子の電磁共振と前記回転子の電磁共振を一致させ
前記固定子の電磁界共振と前記回転子の電磁界共振とを共振結合させ、
前記固定子の回転磁界を利用して前記回転子に回転力を誘起させ又は前記回転子の回転によって前記固定子側に電力を発生させることを特徴とする電磁共振回転電機。
A stator structure made of an insulating dielectric material having a slot, a stator having a stator winding and a capacitor connecting a plurality of coils inserted in the slot, and an insulating dielectric material having a slot. It is composed of a rotor structure composed of a rotor structure, a rotor winding connecting a plurality of coils inserted in the slot, and a rotor having a capacitor.
The stator set the inductance value and the capacitance value of the windings is set to a value which is a field resonance, the rotor is a value that causes the inductance value and the capacitance value of the winding and the electromagnetic field resonant state and, and, to match the electromagnetic resonance of the electromagnetic field resonance of the stator rotor,
The electromagnetic field resonance of the stator and the electromagnetic field resonance of the rotor are resonantly coupled to each other.
An electromagnetic resonance rotating electric machine characterized in that a rotating force is induced in the rotor by utilizing the rotating magnetic field of the stator or power is generated on the stator side by the rotation of the rotor.
絶縁誘電体の材料の構造体に導電性板を軸方向に挟み込んで固定子構造部とし、前記固定子構造部にスロットを設け、前記スロット内に挿入した複数のコイルを接続して固定子巻線とし、前記固定子の導電性板と固定子巻線が電気的に接続された構成から成る固定子と、絶縁誘電体の材料の構造体に導電性板を軸方向に挟み込んで回転子構造部とし、前記回転子構造部にスロットを設け、前記スロット内に挿入した複数のコイルを接続して回転子巻線とし、前記回転子の導電性板と回転子巻線が電気的に接続された構成から成る回転子とから構成され、
前記固定子が電磁共振状態となるように前記固定子巻線のインダクタンス値と固定子のキャパシタンス値とを設定し、前記回転子が電磁共振状態となるように前記回転子巻線のインダクタンス値と回転子のキャパシタンス値とを設定し、かつ、前記固定子の電磁共振と前記回転子の電磁共振とを一致させ
前記固定子の電磁界共振と前記回転子の電磁界共振とを共振結合させ、
前記固定子の回転磁界を利用して前記回転子に回転力を誘起させ又は前記回転子の回転によって前記固定子側に電力を発生させることを特徴とする電磁共振回転電機。
A conductive plate is vertically sandwiched in a structure made of an insulating dielectric material to form a rotor structure, a slot is provided in the stator structure, and a plurality of coils inserted in the slots are connected to form a stator winding. A rotor structure in which the conductive plate of the stator and the stator winding are electrically connected to each other as a wire, and the conductive plate is axially sandwiched between a structure made of an insulating dielectric material. A slot is provided in the rotor structure portion, and a plurality of coils inserted in the slot are connected to form a rotor winding, and the conductive plate of the rotor and the rotor winding are electrically connected. It is composed of a rotor and
Said stator is set to the capacitance value of the inductance of the stator winding and the stator such that the electromagnetic field resonant state, the rotor of the rotor winding so that the electromagnetic field resonant state inductance set the capacitance value of the value and the rotor, and is matched with the electromagnetic field resonance of the electromagnetic field resonance of the stator rotor,
The electromagnetic field resonance of the stator and the electromagnetic field resonance of the rotor are resonantly coupled to each other.
An electromagnetic resonance rotating electric machine characterized in that a rotating force is induced in the rotor by utilizing the rotating magnetic field of the stator or power is generated on the stator side by the rotation of the rotor.
絶縁誘電体の材料の構造体に導電性板を軸方向に挟み込んで固定子構造部とし、前記固定子構造部にスロットを設け、前記スロット内に挿入した複数のコイルを接続して固定子巻線とし、前記固定子の導電性板と固定子巻線が電気的に接続され、かつ外部キャパシタンスも固定子巻線に接続された構成から成る固定子と、絶縁誘電体の材料の構造体に導電性板を軸方向に挟み込んで回転子構造部とし、前記回転子構造部にスロットを設け、前記スロット内に挿入した複数のコイルを接続して回転子巻線とし、前記回転子の導電性板と回転子巻線が電気的に接続され、かつ外部キャパシタンスも前記回転子巻線に接続された構成から成る回転子とから構成され、
前記固定子が電磁共振状態となるように前記固定子巻線のインダクタンス値と固定子の合計のキャパシタンス値とを設定し、前記回転子が電磁共振状態となるように前記回転子巻線のインダクタンス値と回転子の合計のキャパシタンス値とを設定し、かつ、前記固定子の電磁共振と前記回転子の電磁共振とを一致させ
前記固定子の電磁界共振と前記回転子の電磁界共振とを共振結合させ、
前記固定子の回転磁界を利用して前記回転子に回転力を誘起させ又は前記回転子の回転によって前記固定子側に電力を発生させることを特徴とする電磁共振回転電機。
A conductive plate is vertically sandwiched in a structure made of an insulating dielectric material to form a stator structure, a slot is provided in the stator structure, and a plurality of coils inserted in the slots are connected to form a stator. A wire is formed, and the conductive plate of the stator and the stator winding are electrically connected, and the external capacitance is also connected to the stator winding. A conductive plate is sandwiched in the axial direction to form a rotor structure, a slot is provided in the rotor structure, and a plurality of coils inserted in the slots are connected to form a rotor winding, and the conductivity of the rotor is increased. The plate and the rotor winding are electrically connected, and the external capacitance is also composed of a rotor having a configuration connected to the rotor winding.
Said stator is set to the capacitance value of the sum of the inductance values of the stator winding and the stator such that the electromagnetic field resonant state, the rotor windings as the rotor is the electromagnetic field resonant state of setting the inductance value and the capacitance value of the sum of the rotor, and is matched with the electromagnetic field resonance of the electromagnetic field resonance of the stator rotor,
The electromagnetic field resonance of the stator and the electromagnetic field resonance of the rotor are resonantly coupled to each other.
An electromagnetic resonance rotating electric machine characterized in that a rotating force is induced in the rotor by utilizing the rotating magnetic field of the stator or power is generated on the stator side by the rotation of the rotor.
前記絶縁誘電体の材料の固定子構造体、回転子構造体それぞれに複数の金属板を軸方向に複数枚挟み込み、前記金属板のうち両端位置の金属板それぞれを端子として前記コイルに接続したことを特徴とする請求項7又は8に記載の電磁共振回転電機。 A plurality of metal plates are sandwiched in each of the stator structure and the rotor structure of the insulating dielectric material in the axial direction, and the metal plates at both ends of the metal plates are connected to the coil as terminals. The electromagnetic resonance rotary electric machine according to claim 7 or 8. 前記固定子には駆動周波数を共振周波数とする容量のキャパシタを用い、前記回転子にはすべり周波数を共振周波数とする容量のキャパシタを用いたことを特徴とする請求項6〜9のいずれかに記載の電磁共振回転電機。 According to any one of claims 6 to 9, a capacitor having a capacitance having a drive frequency as a resonance frequency is used for the stator, and a capacitor having a capacitance having a sliding frequency as a resonance frequency is used for the rotor. The electromagnetic resonance rotary electric machine described. 請求項1〜4、6〜9のいずれかに記載の電磁共振回転電機を誘導モータとして回転駆動する回転電機駆動装置であって、
前記誘導モータをすべり周波数ベクトル制御にて駆動し、
前記回転子に流れる電流をすべり周波数になるように制御するすべり周波数制御装置を備えたことを特徴とする回転電機駆動装置。
A rotary electric machine drive device that rotationally drives the electromagnetic resonance rotary electric machine according to any one of claims 1 to 4 and 6 to 9 as an induction motor.
The induction motor is driven by slip frequency vector control.
A rotary electric machine drive device including a slip frequency control device that controls the current flowing through the rotor so as to have a slip frequency.
JP2016132951A 2015-08-10 2016-07-05 Electromagnetic resonance rotary electric machine and composite rotary electric machine Active JP6837764B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015158186 2015-08-10
JP2015158186 2015-08-10

Publications (2)

Publication Number Publication Date
JP2017038511A JP2017038511A (en) 2017-02-16
JP6837764B2 true JP6837764B2 (en) 2021-03-03

Family

ID=58048149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016132951A Active JP6837764B2 (en) 2015-08-10 2016-07-05 Electromagnetic resonance rotary electric machine and composite rotary electric machine

Country Status (1)

Country Link
JP (1) JP6837764B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019030057A (en) * 2017-07-26 2019-02-21 スズキ株式会社 Rotary electric machine

Also Published As

Publication number Publication date
JP2017038511A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
Rasmussen et al. Experimental evaluation of a motor-integrated permanent-magnet gear
Chen et al. Axial-flux PM wind generator with a soft magnetic composite core
Fei et al. Design and analysis of high-speed coreless axial flux permanent magnet generator with circular magnets and coils
JP3232972U (en) Electrical machinery
JP2007538490A (en) Induction machine rotor with improved frequency response
CN103166402A (en) Magnetism insulating reluctance and short circuit cage integrated rotor brushless electro-magnetic synchronous motor
Raminosoa et al. Contactless rotor excitation for traction motors
Wang et al. Design of multi-layer PCB coreless axial permanent magnet synchronous motor
Ebot et al. A general framework for the analysis and design of a wireless resonant motor
Takishima et al. Starting characteristics of axial and radial type ultra-lightweight motors based on magnetic resonance coupling
Sakai et al. Basic characteristics of an ultra-lightweight magnetic resonance coupling motor with various numbers of poles
Wrobel et al. Design study of a three-phase brushless exciter for aircraft starter/generator
Banchhor et al. Design, modeling, and analysis of dual rotor axial flux induction motor
Maier et al. Contactless energy transfer for inductive electrically excited synchronous machines
Pechlivanidou et al. Litz wire strand shape impact analysis on AC losses of high-speed permanent magnet synchronous motors
Sakai et al. Principles and characteristics of an ultralightweight electromagnetic resonance coupling machine with a cage rotor
Takishima et al. Design method for ultralightweight motor using magnetic resonance coupling and its characteristics
Takishima et al. Analytical and experimental investigation of the frequency characteristics of an ultra-lightweight motor based on magnetic-resonance coupling
Takishima et al. Equivalent circuit analysis of an ultra-lightweight motor designed with magnetic resonance coupling
JP6837764B2 (en) Electromagnetic resonance rotary electric machine and composite rotary electric machine
Omar et al. New topology of single-phase segmented rotor field excitation flux switching machine for high density air-condition
Liu et al. High frequency exciter of electrically excited synchronous motors for vehicle applications
Jin et al. Air-cored resonant induction machines: Comparison of capacitor tuning criteria and experimental validation
Abdi et al. Investigation of magnetic wedge effects in large-scale BDFMs
Zhong et al. Design and analysis of rotary transformer for brushless doubly fed induction generators

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200917

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210210

R150 Certificate of patent or registration of utility model

Ref document number: 6837764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250