JP6837223B2 - How to reduce the biological population - Google Patents
How to reduce the biological population Download PDFInfo
- Publication number
- JP6837223B2 JP6837223B2 JP2016054558A JP2016054558A JP6837223B2 JP 6837223 B2 JP6837223 B2 JP 6837223B2 JP 2016054558 A JP2016054558 A JP 2016054558A JP 2016054558 A JP2016054558 A JP 2016054558A JP 6837223 B2 JP6837223 B2 JP 6837223B2
- Authority
- JP
- Japan
- Prior art keywords
- female
- gene
- male
- specific
- individual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108090000623 proteins and genes Proteins 0.000 claims description 332
- 230000001954 sterilising effect Effects 0.000 claims description 221
- 238000004659 sterilization and disinfection Methods 0.000 claims description 216
- 241000251468 Actinopterygii Species 0.000 claims description 75
- 238000000034 method Methods 0.000 claims description 66
- 208000021267 infertility disease Diseases 0.000 claims description 48
- 210000004602 germ cell Anatomy 0.000 claims description 41
- 241000894007 species Species 0.000 claims description 38
- 230000035800 maturation Effects 0.000 claims description 28
- 238000004519 manufacturing process Methods 0.000 claims description 27
- 230000013011 mating Effects 0.000 claims description 25
- 208000026487 Triploidy Diseases 0.000 claims description 13
- 238000012217 deletion Methods 0.000 claims description 13
- 230000037430 deletion Effects 0.000 claims description 13
- 210000004907 gland Anatomy 0.000 claims description 4
- 108700026220 vif Genes Proteins 0.000 claims description 4
- 206010021928 Infertility female Diseases 0.000 claims description 2
- 235000019688 fish Nutrition 0.000 description 72
- 235000013601 eggs Nutrition 0.000 description 49
- 230000000694 effects Effects 0.000 description 42
- 241000721654 Lepomis macrochirus Species 0.000 description 30
- 230000008029 eradication Effects 0.000 description 25
- 208000000509 infertility Diseases 0.000 description 24
- 230000036512 infertility Effects 0.000 description 24
- 231100000535 infertility Toxicity 0.000 description 20
- 238000010362 genome editing Methods 0.000 description 14
- 230000002829 reductive effect Effects 0.000 description 14
- 230000007423 decrease Effects 0.000 description 13
- 238000004088 simulation Methods 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 12
- 230000035772 mutation Effects 0.000 description 12
- 101150105763 FSHR gene Proteins 0.000 description 11
- 230000035558 fertility Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 230000007704 transition Effects 0.000 description 10
- 230000003187 abdominal effect Effects 0.000 description 9
- 238000009395 breeding Methods 0.000 description 9
- 230000001488 breeding effect Effects 0.000 description 9
- 108091033409 CRISPR Proteins 0.000 description 8
- 125000003275 alpha amino acid group Chemical group 0.000 description 8
- 210000000349 chromosome Anatomy 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 230000001629 suppression Effects 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 7
- 241000276569 Oryzias latipes Species 0.000 description 7
- 241000238631 Hexapoda Species 0.000 description 6
- 101710163270 Nuclease Proteins 0.000 description 6
- 229940088597 hormone Drugs 0.000 description 6
- 239000005556 hormone Substances 0.000 description 6
- 230000001850 reproductive effect Effects 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 230000002708 enhancing effect Effects 0.000 description 5
- 210000002380 oogonia Anatomy 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 4
- 210000002593 Y chromosome Anatomy 0.000 description 4
- 210000004392 genitalia Anatomy 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 210000004508 polar body Anatomy 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 238000010354 CRISPR gene editing Methods 0.000 description 3
- 241000219112 Cucumis Species 0.000 description 3
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 3
- 102000015784 Forkhead Box Protein L2 Human genes 0.000 description 3
- 108010010285 Forkhead Box Protein L2 Proteins 0.000 description 3
- 108020005004 Guide RNA Proteins 0.000 description 3
- 108010017070 Zinc Finger Nucleases Proteins 0.000 description 3
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000003322 aneuploid effect Effects 0.000 description 3
- 208000036878 aneuploidy Diseases 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000004720 fertilization Effects 0.000 description 3
- 230000001605 fetal effect Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 210000003765 sex chromosome Anatomy 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 238000002054 transplantation Methods 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 241000239223 Arachnida Species 0.000 description 2
- 241000238421 Arthropoda Species 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- 241000269817 Centrarchidae Species 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 241000238424 Crustacea Species 0.000 description 2
- 241001387341 Latrodectus hasseltii Species 0.000 description 2
- 241000270322 Lepidosauria Species 0.000 description 2
- 102000009151 Luteinizing Hormone Human genes 0.000 description 2
- 108010073521 Luteinizing Hormone Proteins 0.000 description 2
- 241001125889 Micropterus salmoides Species 0.000 description 2
- 208000020584 Polyploidy Diseases 0.000 description 2
- 238000010459 TALEN Methods 0.000 description 2
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 238000009402 cross-breeding Methods 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 229940011871 estrogen Drugs 0.000 description 2
- 239000000262 estrogen Substances 0.000 description 2
- 230000003325 follicular Effects 0.000 description 2
- 238000003205 genotyping method Methods 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000009545 invasion Effects 0.000 description 2
- 229940040129 luteinizing hormone Drugs 0.000 description 2
- 230000021121 meiosis Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 101150084750 1 gene Proteins 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 241001135932 Anolis carolinensis Species 0.000 description 1
- AILDTIZEPVHXBF-UHFFFAOYSA-N Argentine Natural products C1C(C2)C3=CC=CC(=O)N3CC1CN2C(=O)N1CC(C=2N(C(=O)C=CC=2)C2)CC2C1 AILDTIZEPVHXBF-UHFFFAOYSA-N 0.000 description 1
- 239000000592 Artificial Cell Substances 0.000 description 1
- 241000238017 Astacoidea Species 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 241000270636 Chelydridae Species 0.000 description 1
- 241000252230 Ctenopharyngodon idella Species 0.000 description 1
- 241001417984 Cynoglossidae Species 0.000 description 1
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 1
- 241000238557 Decapoda Species 0.000 description 1
- 241000723298 Dicentrarchus labrax Species 0.000 description 1
- 102100035102 E3 ubiquitin-protein ligase MYCBP2 Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 208000007984 Female Infertility Diseases 0.000 description 1
- 102100027627 Follicle-stimulating hormone receptor Human genes 0.000 description 1
- 241000688789 Garrulax canorus Species 0.000 description 1
- 241000227166 Harrimanella hypnoides Species 0.000 description 1
- 241000282375 Herpestidae Species 0.000 description 1
- 101000862396 Homo sapiens Follicle-stimulating hormone receptor Proteins 0.000 description 1
- 241000257303 Hymenoptera Species 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 241000252234 Hypophthalmichthys nobilis Species 0.000 description 1
- 241000252498 Ictalurus punctatus Species 0.000 description 1
- 241001575108 Latipes Species 0.000 description 1
- 241001504497 Leiothrix lutea Species 0.000 description 1
- 241001155442 Lepomis cyanellus Species 0.000 description 1
- 241000408747 Lepomis gibbosus Species 0.000 description 1
- 241001328758 Micropterus dolomieu Species 0.000 description 1
- 241000700115 Myocastoridae Species 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 241001490489 Oryzias curvinotus Species 0.000 description 1
- 244000308495 Potentilla anserina Species 0.000 description 1
- 235000016594 Potentilla anserina Nutrition 0.000 description 1
- 241000282335 Procyon Species 0.000 description 1
- 241000270934 Rana catesbeiana Species 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 241000269423 Rhinella marina Species 0.000 description 1
- 241001275931 Rhodeus ocellatus Species 0.000 description 1
- 241000277331 Salmonidae Species 0.000 description 1
- 241001417494 Sciaenidae Species 0.000 description 1
- 241000592344 Spermatophyta Species 0.000 description 1
- 108091028113 Trans-activating crRNA Proteins 0.000 description 1
- 108010090932 Vitellogenins Proteins 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 101150063416 add gene Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 238000005138 cryopreservation Methods 0.000 description 1
- 230000002559 cytogenic effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 108091008039 hormone receptors Proteins 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 210000000953 male primordial germ cell Anatomy 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004495 negative regulation of meiosis Effects 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 230000034004 oogenesis Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 235000020236 pumpkin seed Nutrition 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 210000005132 reproductive cell Anatomy 0.000 description 1
- 230000037195 reproductive physiology Effects 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/40—Monitoring or fighting invasive species
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Description
本発明は、侵略的外来種等の生物個体群のサイズを縮小し、ひいては根絶する技術に関する。 The present invention relates to a technique for reducing the size of a biological population such as an invasive alien species and thus eradicating it.
琵琶湖等の大型湖沼において、ブルーギル、オオクチバス等の魚食性の侵略的外来魚の大繁殖による固有生態系の破壊、希少種の絶滅危惧、内水面漁業の壊滅的衰退が大きな社会問題となっている。これまでに国、自治体、漁協、市民活動等、様々な組織による莫大な予算と精力的な駆除努力により一定の減少傾向は見られるものの、未だホンモロコ、エビ類等主要漁獲対象魚種においては資源回復の兆候はなく、また絶滅危惧種は依然絶滅の危機に直面している。現在の懸命な駆除努力下においても在来魚の資源量には回復傾向が全くみられず、将来において平衡状態は高位安定となることが懸念される。従来の対処手法は、1)侵入防除、2)調査、捕獲、採取、毒物等による物理的駆除、3)昆虫等限られた種における不妊化個体の大量放出等で、それらが効果的に機能した事例はいくつか知られているが、駆除できていない事例も数多く存在する。現在大きな問題になっている外来魚の問題では、根本的に侵略的外来種の根絶あるいは量的制御を可能とする概念および手法が見当たらないのが現状である。固有生態系を回復させ、内水面漁業を外来魚が侵入する以前の状態に回復させるには新たな抜本的対策が必要である。 In large lakes such as Lake Biwa, the destruction of endemic ecosystems due to the large breeding of piscivorous invasive alien fish such as bluegill and largemouth bass, the endangered rare species, and the catastrophic decline of inland fisheries have become major social problems. Although there has been a certain downward trend due to the huge budget and vigorous extinction efforts of various organizations such as the national government, local governments, fishery cooperatives, and civic activities, resources are still available for major catch target fish species such as honmoroko and shrimp. There are no signs of recovery, and endangered species are still in danger of extinction. Even under the current hard extermination efforts, there is no recovery trend in the stock of native fish, and there is concern that the equilibrium state will be highly stable in the future. Conventional coping methods are 1) invasion control, 2) investigation, capture, collection, physical extermination by poisons, 3) mass release of sterilized individuals in limited species such as insects, and they function effectively. Although some cases have been known, there are many cases that have not been removed. In the problem of alien fish, which is currently a major problem, there is currently no concept or method that enables the eradication or quantitative control of invasive alien species. New drastic measures are needed to restore endemic ecosystems and restore inland fisheries to their pre-invasion state.
非特許文献1には、放射線処理により不妊化した雄の昆虫を放出することにより、特定の害虫を根絶する方法が開示されている。日本においても、沖縄群島のウリミバエに対してこの方法が適用され、根絶に成功している。しかしながら、この方法では、野生個体群の個体数を超えるほどの多数の不妊個体を要するため、大規模な飼育施設を必要とし、高コストである。また、生存サイクルの短い生物(例えば、ウリミバエは1年程度である。)を根絶する場合には、短いサイクルで、大量の不妊個体を放出し続けることにより、全個体群に対する不妊個体の割合を一定以上の水準に維持しなければならない。また、不妊個体の大量放出により、一時的に総個体数が大幅に上昇するため、有害な生物を駆除対象とする場合には、生態系が破壊され、かえって被害が拡大してしまうおそれがある。更に、駆除効果を放出個体のみに依存しているため、不妊個体の放出を止めたり緩めたりすると、残った個体の子孫が直ちに増殖し個体数が瞬く間に回復してしまう、いわゆるリバウンドのリスクを伴う。 Non-Patent Document 1 discloses a method for eradicating a specific pest by releasing a male insect that has been sterilized by radiation treatment. In Japan as well, this method has been applied to the melon flies in the Okinawa archipelago and has been successfully eradicated. However, this method requires a large number of infertile individuals, which exceeds the number of wild populations, and therefore requires a large-scale breeding facility and is expensive. In addition, when eradicating organisms with a short survival cycle (for example, melon flies are about one year), the ratio of infertile individuals to the entire population can be reduced by continuing to release a large number of infertile individuals in a short cycle. It must be maintained above a certain level. In addition, due to the large release of infertile individuals, the total number of individuals will temporarily increase significantly, so if harmful organisms are targeted for extermination, the ecosystem may be destroyed and the damage may increase. .. Furthermore, since the extermination effect depends only on the releasing individual, if the release of the infertile individual is stopped or slowed down, the offspring of the remaining individual will proliferate immediately and the number of individuals will recover in a blink of an eye, so-called rebound risk. Accompanied by.
非特許文献2には、自然界には存在しない性染色体(トロイ染色体)と性の組み合わせ個体を放流し、個体群における性の割合を偏らせることにより、外来魚を根絶させる手法が提案されており、特に2つのY染色体をもつ超雄(YY雄)とその雌への性転換個体(YY雌)の放出(次世代以降でYY雄を量産するため、YY雄放流より効果が高い)が前述の不妊雄を放流する方法よりも効果的とされた。しかし、この方法においても、YY雄放流ではかなりの数の放流個体を必要とし(YY雄では、野生個体群の個体数の20%以上)、大規模な飼育施設を必要として、高コストである。一方比較的放流量が少なくてすむYY雌放流でも野生個体群の個体数の8%以上を必要とすること、また性転換にもコストがかかる。また、これらの方法においても、一時的に総個体数が大幅に上昇したり、YY雌放流の場合は放流個体が卵を産むため、YY雄放流より根絶時間は短い分、その期間中の総個体数は高位で推移する(非特許文献3)など、問題点が多く、有害な生物を駆除対象とする場合には、かえって被害が拡大してしまう可能性がある。また、駆除を放流個体(YY雄放流)あるいは次の2世代のみ(YY雌放流)に依存しているため、放流をやめれば、不妊雄と同様、リバウンドのリスクを伴う。 Non-Patent Document 2 proposes a method for eradicating foreign fish by releasing a combination of sex chromosomes (troy chromosomes) and sexes that do not exist in nature and biasing the proportion of sexes in the population. In particular, the release of a super male (YY male) having two Y chromosomes and a sex-converted individual (YY female) to the female (more effective than the YY male release because YY males are mass-produced in the next generation and later) is mentioned above. It was considered to be more effective than the method of releasing infertile males. However, even with this method, the release of YY males requires a considerable number of released individuals (more than 20% of the population of the wild population for YY males), requires a large breeding facility, and is expensive. .. On the other hand, even the YY female release, which requires a relatively small amount of discharge, requires 8% or more of the population of the wild population, and it is costly to change sex. In addition, even with these methods, the total number of individuals temporarily increases significantly, and in the case of YY female release, the released individual lays eggs, so the eradication time is shorter than YY male release, so the total number during that period There are many problems, such as the number of individuals changing at a high level (Non-Patent Document 3), and when harmful organisms are targeted for extermination, the damage may rather increase. In addition, since the extermination depends on the released individual (YY male release) or only the next two generations (YY female release), if the release is stopped, there is a risk of rebound as in the case of infertile males.
本発明は、低コストで、総個体数の上昇が抑制され、リバウンドのリスクが抑制された、侵略的外来種等の有害な生物個体群を根絶する方法を提供することを目的とする。 An object of the present invention is to provide a method for eradicating harmful biological populations such as invasive alien species at low cost, in which an increase in the total population is suppressed and the risk of rebound is suppressed.
本発明者らは、鋭意検討の結果、雌を特異的に不妊化させる遺伝子(例えば、雌特異的成熟遺伝子の機能的欠失変異体)を有する雄個体を放出個体として用いることにより、これらの問題を解決し得ることを見出した。即ち、物理的駆除圧等で個体群の増殖が制御されている環境下で、雌特異的不妊化遺伝子を有する雄個体を野生個体群中に一定量以上放出し続けると、交配の結果、雌特異的不妊化遺伝子を有する子孫個体の割合が増える。子孫個体群のうち、雌特異的不妊化遺伝子をホモ型に有する雌は不妊であり、次世代を残すことができない。一方、雌特異的不妊化遺伝子を有する雄子孫個体は、妊性なので、さらに野生個体群中の雌と交配することにより、雌特異的不妊化遺伝子を有する次世代を残し続ける。雌で不妊化遺伝子がホモ化すると、子孫を残せないことによりその不妊化遺伝子は集団中から失われることになるが、雄においては妊性のため遺伝子が子孫に引き継がれ、失われることがない。つまり雌の不妊化を個体の駆除と同義とみなせば、個体の駆除に比して遺伝子のロスは最小限であり、放流による集団への遺伝子の供給がこの遺伝子の逸失分を上回ることにより、集団中の不妊化遺伝子の占有率を上昇させ続けることが可能である。その結果、比較的少数の放出を続けることにより、不妊化遺伝子の占有率は上がり続け、不妊の雌個体の割合が増加する結果、集団の繁殖力が次第に削がれていき、最終的にこの生物個体群が縮小・根絶される。搭載する遺伝子を多重化する(各遺伝子は異なる連鎖群に属する=異なる染色体上に座するものとする)ことにより、出現する不妊化雌の割合を増大させることが可能である。さらにこの雌特異的不妊化遺伝子を搭載する雄個体を超雄(YY雄)化することにより、YY雄放流による駆除効果との相乗効果で根絶力はさらに増強される。また駆除効果は放出個体のみならず、過去の放出によって広まった遺伝子を引き継いだすべての個体が駆除効果を発揮するため、一端不妊化遺伝子占有率が上がって繁殖力を削いでしまえば、たとえ放流を止めても個体数が直ちに回復することはなく、リバウンドのリスクを回避できる。また不妊化遺伝子占有率が十分に上がらない時に予期せぬ自然環境の変化により個体群の大きさが拡大したとしても、一度上がった不妊化遺伝子占有率は個体群の大きさに影響されず変化しないので、不妊化雄やYY個体の放流と異なり、過去の放流がこれによって無駄になることはなく、少量ずつの放流による事業展開に適している。 As a result of diligent studies, the present inventors have obtained these by using a male individual having a gene that specifically sterilizes a female (for example, a functional deletion mutant of a female-specific maturation gene) as a release individual. I found that the problem could be solved. That is, in an environment where the growth of the population is controlled by physical extermination pressure or the like, if a male individual having a female-specific sterilization gene is continuously released into the wild population in a certain amount or more, as a result of mating, the female The proportion of offspring with a specific sterilization gene increases. Of the offspring population, females homozygous for the female-specific sterilization gene are infertile and cannot leave the next generation. On the other hand, since male offspring individuals having a female-specific sterilization gene are fertile, they will continue to leave the next generation having a female-specific sterilization gene by further mating with females in the wild population. When the sterilization gene is homogenized in females, the sterilization gene is lost from the population due to the inability to leave offspring, but in males, the gene is inherited by offspring due to fertility and is not lost. .. In other words, if sterilization of a female is regarded as synonymous with extermination of an individual, the loss of the gene is minimal compared to the extermination of the individual, and the supply of the gene to the population by release exceeds the loss of this gene. It is possible to continue to increase the occupancy of sterilizing genes in the population. As a result, by continuing to release a relatively small number, the occupancy rate of the infertile gene continues to rise, and as a result of the increase in the proportion of infertile female individuals, the fertility of the population is gradually reduced, and finally this The biological population is reduced and eradicated. By multiplexing the genes to be carried (each gene belongs to a different linkage group = sits on a different chromosome), it is possible to increase the proportion of sterilized females that appear. Furthermore, by converting a male individual carrying this female-specific sterilization gene into a super male (YY male), the eradication power is further enhanced by a synergistic effect with the extermination effect of the release of the YY male. In addition, the extermination effect is not limited to the released individuals, but all individuals that have inherited the genes spread by past releases exert the extermination effect, so once the sterilization gene occupancy rate rises and the fertility is reduced, even if it is released. Even if you stop, the population does not recover immediately, and you can avoid the risk of rebound. Even if the size of the population expands due to unexpected changes in the natural environment when the sterilization gene occupancy rate does not rise sufficiently, the sterilization gene occupancy rate once increased is not affected by the size of the population and changes. Since it does not, unlike the release of sterilized males and YY individuals, the past release is not wasted by this, and it is suitable for business development by releasing small amounts.
発明者らは、上記知見に基づき更に検討を加え、本発明を完成するに至った。
即ち、本発明は下記の通りである:
The inventors have further studied based on the above findings and have completed the present invention.
That is, the present invention is as follows:
[1]雌特異的不妊化遺伝子を保持する雄個体を、野生個体群中に放出し、当該雄個体と当該野生個体群中の雌個体とを交配させ、野生個体群中に、雌特異的不妊化遺伝子を保持する子孫個体を生じさせることを含む、当該野生個体群サイズの縮小方法。
[2]雌特異的不妊化遺伝子が、雌特異的成熟遺伝子の機能的欠失変異体である、[1]記載の方法。
[3]放出する雄個体が、2以上の雌特異的不妊化遺伝子を保持する、[1]又は[2]記載の方法。
[4]放出する雄個体が、雌特異的不妊化遺伝子のホモ接合体である、[1]〜[3]のいずれか記載の方法。
[5]放出する雄個体が、超雄である、[1]〜[4]のいずれか記載の方法。
[6]雌特異的不妊化遺伝子を保持する雄個体の放出を複数回繰り返す、[1]〜[5]のいずれか記載の方法。
[7]野生個体群中に、稔性雌個体が存在しなくなるまで、雌特異的不妊化遺伝子を保持する雄個体の放出を繰り返す、[6]記載の方法。
[8]放出する雄個体が、識別可能となるように標識されている、[1]〜[7]のいずれか記載の方法。
[9]野生個体群の一部を捕獲し、捕獲した個体が放出した雄個体である場合には、当該野生個体群中に再放出することを更に含む、[1]〜[8]のいずれか記載の方法。
[10]野生個体群の生物種が魚類である、[1]〜[9]のいずれか記載の方法。
[11]野生個体群が外来種である、[1]〜[10]のいずれか記載の方法。
[12]以下の工程を含む、雌特異的不妊化遺伝子をホモ接合性に保持する子孫個体の製造方法:
(I)雌特異的不妊化遺伝子をホモ接合性に保持する生殖原細胞又は始原生殖細胞を、宿主不妊雌個体の生殖腺へ取り込まれるように当該宿主不妊雌個体内へ移植することにより、当該生殖原細胞又は始原生殖細胞から雌特異的不妊化遺伝子を保持する卵を発生させること、
(II)当該卵と、雌特異的不妊化遺伝子を保持する精子とを交配させることにより、雌特異的不妊化遺伝子をホモ接合性に保持する子孫個体を生じさせること。
[13]雌特異的不妊化遺伝子が、雌特異的成熟遺伝子の機能的欠失変異体である、[12]記載の製造方法。
[14]雌特異的不妊化遺伝子を保持する精子が、雌特異的不妊化遺伝子をホモ接合性に保持する雄個体の精子である、[12]又は[13]記載の製造方法。
[15]雌特異的不妊化遺伝子をホモ接合性に保持する生殖原細胞又は始原生殖細胞が、雌特異的不妊化遺伝子をホモ接合性に保持する超雄個体に由来する生殖原細胞又は始原生殖細胞である、[12]〜[14]のいずれか記載の製造方法。
[16]雌特異的不妊化遺伝子を保持する精子が、雌特異的不妊化遺伝子をホモ接合性に保持する超雄個体の精子である、[15]記載の製造方法。
[17]宿主不妊雌個体が、不妊三倍体、不妊雑種二倍体又は不妊雌異質三倍体である、[12]〜[16]のいずれか記載の製造方法。
[18]宿主不妊雌個体が、全雌生産により生産された個体である、[12]〜[17]のいずれかに記載の製造方法。
[19]子孫個体が雄である、[12]〜[18]のいずれか記載の製造方法。
[20]子孫個体が超雄である、[19]記載の製造方法。
[21][19]又は[20]記載の方法により製造された、雌特異的不妊化遺伝子をホモ接合性に保持する雄個体を放出する、[1]記載の方法。
[1] A male individual carrying a female-specific sterilization gene is released into a wild population, and the male individual is mated with a female individual in the wild population to be female-specific in the wild population. A method for reducing the size of the wild population, which comprises producing offspring individuals carrying the sterilization gene.
[2] The method according to [1], wherein the female-specific sterilization gene is a functionally deleted variant of the female-specific maturation gene.
[3] The method according to [1] or [2], wherein the releasing male individual carries two or more female-specific sterilization genes.
[4] The method according to any one of [1] to [3], wherein the male individual to be released is a homozygote of a female-specific infertility gene.
[5] The method according to any one of [1] to [4], wherein the male individual to be released is a super male.
[6] The method according to any one of [1] to [5], wherein the release of a male individual carrying a female-specific sterilization gene is repeated a plurality of times.
[7] The method according to [6], wherein the release of a male individual carrying a female-specific sterilization gene is repeated until there are no fertile female individuals in the wild population.
[8] The method according to any one of [1] to [7], wherein the male individual to be released is labeled so as to be identifiable.
[9] Any of [1] to [8], which includes capturing a part of the wild population and, if the captured individual is a male individual released, further releasing it into the wild population. Or the method described.
[10] The method according to any one of [1] to [9], wherein the species of the wild population is a fish.
[11] The method according to any one of [1] to [10], wherein the wild population is an alien species.
[12] A method for producing a progeny individual that homozygically retains a female-specific sterilization gene, which comprises the following steps:
(I) Reproductive cells or primordial germ cells that homozygously retain the female-specific infertility gene are transplanted into the host infertile female individual so as to be incorporated into the germ gland of the host infertile female individual. To lay eggs carrying the female-specific sterilization gene from proto-cells or primordial germ cells,
(II) By mating the egg with a sperm carrying the female-specific sterilization gene, a progeny individual carrying the female-specific sterilization gene homozygously is produced.
[13] The production method according to [12], wherein the female-specific sterilization gene is a functionally deleted mutant of the female-specific maturation gene.
[14] The production method according to [12] or [13], wherein the sperm carrying the female-specific sterilization gene is the sperm of a male individual carrying the female-specific sterilization gene homozygously.
[15] Germ cells or primordial germ cells that homozygically retain the female-specific sterilization gene are derived from supermale individuals that homozygously retain the female-specific sterilization gene. The production method according to any one of [12] to [14], which is a cell.
[16] The production method according to [15], wherein the sperm carrying the female-specific sterilization gene is a sperm of a super-male individual carrying the female-specific sterilization gene homozygously.
[17] The production method according to any one of [12] to [16], wherein the host infertile female individual is an infertile triploid, an infertile hybrid diploid, or an infertile female heterotriploid.
[18] The production method according to any one of [12] to [17], wherein the host infertile female individual is an individual produced by total female production.
[19] The production method according to any one of [12] to [18], wherein the offspring are male.
[20] The production method according to [19], wherein the offspring are supermale.
[21] The method according to [1], which releases a male individual homozygously carrying a female-specific sterilization gene produced by the method according to [21] [19] or [20].
本発明においては、雌特異的不妊化遺伝子を有する雄個体を野生個体群中に放出し、野生群中の雌個体と交配することによって、雌特異的不妊化遺伝子を有する子孫個体のうち、雌が不妊となる一方で、雄は妊性を維持するので、雌特異的不妊化遺伝子を有する更なる次世代子孫を生じることとなる。自然交配を通じて、野生個体群中に、雌特異的不妊化遺伝子を浸透させるので、比較的少ない放出個体数によって、外来生物等を根絶することが可能である。その結果、放出個体を生産するコストを抑制することができる。また、放出による総個体数の増加を最小限に抑制することができるので、生態系への影響が少なく、有害生物への適用も可能である。また、環境変動等による急激な繁殖力の増加や、根絶後の再侵入への対応も容易であり、駆除が進み、生息密度が極端に下がり、さらなる個体群の縮小に必要な物理的駆除率を維持できなくなった局面でも駆除効果を維持することができる。更に、雌特異的不妊化遺伝子を有する雄子孫個体は、妊性であり、雌特異的不妊化遺伝子を有する次世代を残し続けるので、過去の放出による効果が持続し、リバウンドのリスクが回避されている。また、異なる連鎖群に属する(=異なる染色体上に座する)雌特異的不妊化遺伝子を多重化搭載することにより、駆除効果を増強することが可能である。更に、雌特異的不妊化遺伝子を有する雄個体を超雄(YY雄)化することにより、超雄放流との併用が可能であり、特に、生息密度が減少し、物理的駆除力が落ちる段階では、放流個体の相対的割合が増すのでYY放流の効果が発揮されやすく、大きな駆除力を発揮し、根絶時間の短縮を実現することができる。 In the present invention, a male individual having a female-specific sterilization gene is released into a wild population, and by mating with a female individual in the wild group, female offspring individuals having a female-specific sterilization gene are produced. While becoming infertile, males remain fertile, resulting in additional next-generation offspring carrying the female-specific sterilization gene. Since the female-specific sterilization gene is infiltrated into the wild population through natural mating, it is possible to eradicate alien species and the like with a relatively small number of released individuals. As a result, the cost of producing the released individual can be suppressed. In addition, since the increase in the total number of individuals due to release can be suppressed to a minimum, the impact on the ecosystem is small and it can be applied to pests. In addition, it is easy to respond to a rapid increase in fertility due to environmental changes and re-invasion after eradication, and the extermination progresses, the population density drops extremely, and the physical extermination rate required for further population reduction. The extermination effect can be maintained even when it becomes impossible to maintain. In addition, male offspring with the female-specific sterilization gene are fertile and will continue to retain the next generation with the female-specific sterilization gene, thus sustaining the effects of past releases and avoiding the risk of rebound. ing. In addition, it is possible to enhance the extermination effect by multiplexing and loading female-specific sterilization genes belonging to different linkage groups (= sitting on different chromosomes). Furthermore, by converting a male individual having a female-specific sterilization gene into a super-male (YY male), it can be used in combination with super-male release, especially at the stage where the population density decreases and the physical extermination power decreases. Then, since the relative ratio of the released individuals increases, the effect of YY release is likely to be exerted, a large extermination power can be exerted, and the eradication time can be shortened.
本発明は、雌特異的不妊化遺伝子を保持する雄個体を、野生個体群中に放出し、当該雄個体と当該野生個体群中の雌個体とを交配させ、野生個体群中に、雌特異的不妊化遺伝子を保持する子孫個体を生じさせることを含む、当該野生個体群サイズの縮小方法及び当該野生個体群の増殖抑制方法を提供する。野生個体群の増殖抑制には、野生個体群サイズの縮小のみならず、野生個体群サイズの増大速度を緩やかにすることも包含される。 The present invention releases a male individual carrying a female-specific sterilization gene into a wild population, mates the male individual with a female individual in the wild population, and causes female-specificity in the wild population. Provided are a method for reducing the size of the wild population and a method for suppressing the growth of the wild population, which comprises producing offspring individuals carrying the target sterilization gene. Suppression of wild population growth includes not only reducing the size of the wild population, but also slowing the rate of increase in the size of the wild population.
本発明の方法を適用可能な個体の生物種は、有性生殖をする生物であれば特に限定されず、例えば有性生殖をする植物、動物等が包含される。有性生殖をする植物としては、コケ植物、シダ植物、種子植物等が挙げられるが、これらに限定されない。有性生殖をする動物としては、魚類、節足動物(昆虫類、甲殻類、クモ類等)、両生類、爬虫類、鳥類、哺乳類(ヒトを除く)等を挙げることができるが、これらに限定されない。対象とする有性生殖する野生個体群の生物種は、好ましくは、動物であり、より好ましくは、魚類である。 The species of an individual to which the method of the present invention can be applied is not particularly limited as long as it is an organism that reproduces sexually, and includes, for example, plants and animals that reproduce sexually. Examples of sexually reproducing plants include, but are not limited to, moss plants, fern plants, and seed plants. Examples of sexually reproducing animals include, but are not limited to, fish, arthropods (insects, crustaceans, arachnids, etc.), amphibians, reptiles, birds, mammals (excluding humans), and the like. .. The species of the sexually reproducing wild population of interest is preferably animals, more preferably fish.
尚、雌雄同体の植物では、雌特異的不妊化遺伝子は雌性生殖器特異的不稔化遺伝子として定義され、雌特異的不妊化遺伝子を保持する雄個体に代えて、雌性生殖器特異的不稔化遺伝子を保持する個体が放出され、雌性生殖器特異的不稔化遺伝子を保持した花粉が拡散し、野生個体群中の別の個体に受粉し、野生個体群中に雌性生殖器特異的不稔化遺伝子を保持する子孫個体が生じる。このような態様も、本発明の範囲内である。 In male and female homologous plants, the female-specific sterilization gene is defined as a female genital-specific sterility gene, and instead of a male individual carrying the female-specific sterilization gene, a female genital-specific sterility gene is used. Retaining individuals are released, pollen carrying the female genital sterility gene spreads, pollutes another individual in the wild population, and carries the female genital sterility gene in the wild population. Progeny individuals are born. Such an aspect is also within the scope of the present invention.
一態様において、本発明の方法を適用可能な野生個体群は外来種である。外来種とは、もともとその地域にいなかったが、人間の活動によって他の地域から入ってきた生物をいう。当該外来種は、好ましくは、侵略的外来種である。侵略的外来種とは、地域の自然環境に大きな影響を与え、生物多様性を脅かすおそれのある外来種をいう。侵略的外来種の魚類としては、日本におけるブルーギル、オオクチバス、コクチバス、カダヤシ、ソウギョ、タイリクバラタナゴ、チャネルキャットフィッシュ、ケツギョ等;五大湖のハクレン等のコイ科魚類;オーストラリアのコイ;ヨーロッパ、韓国におけるブルーギル等を挙げることができるが、これらに限定されない。侵略的外来種の節足動物としては、日本におけるウリミバエ、アルゼンチンアリ、カンシャコバネオナガカメムシ等の昆虫、セアカゴケグモ等のクモ類、アメリカザリガニ等の甲殻類等を挙げることができるが、これらに限定されない。侵略的外来種の哺乳類としては、日本におけるアライグマ、ヌートリア、ノネコ、マングース等を挙げることができるが、これらに限定されない。侵略的外来種の鳥類としては、日本におけるガビチョウ、ソウシチョウ等を挙げることができるが、これらに限定されない。侵略的外来種の爬虫類としては、日本におけるカミツキガメ、グリーンアノール等を挙げることができるが、これらに限定されない。侵略的外来種の両生類としては、ウシガエル、オオヒキガエル等を挙げることができるが、これらに限定されない。 In one aspect, the wild population to which the methods of the invention are applicable is an alien species. An alien species is an organism that was not originally in the area but came in from another area through human activity. The alien species is preferably an invasive alien species. Invasive alien species are alien species that have a significant impact on the natural environment of the region and may threaten biodiversity. Invasive alien species include bluegill, largemouth bass, smallmouth bass, kadayashi, grass carp, rosy bitterling, channel catfish, cyprinid, etc. in Japan; cyprinid fish such as silver carp in the five major lakes; bluegill in Europe and South Korea, etc. However, it is not limited to these. Examples of invasive alien arthropods include, but are not limited to, melon flies, Argentine ants, insects such as the redback spider, arachnids such as the redback spider, and crustaceans such as the crayfish. .. Examples of invasive alien mammals include, but are not limited to, raccoons, nutrias, feral cats, and mongooses in Japan. Examples of invasive alien species of birds include, but are not limited to, Chinese hwamei and red-billed leiothrix in Japan. Examples of invasive alien reptiles include, but are not limited to, snapping turtles and green anoles in Japan. Examples of invasive alien amphibians include, but are not limited to, bullfrogs, cane toads, and the like.
本発明の方法は、系内への個体の流入や、系外への個体の流出が制限された、閉鎖系(例えば、池、湖、沼、離島等)内に生息する野生個体群に適用するのが効果的であるが、開放系に生息する野生個体群へも適用可能である。 The method of the present invention is applied to a wild population inhabiting a closed system (for example, a pond, a lake, a swamp, a remote island, etc.) in which the inflow of individuals into the system and the outflow of individuals to the outside of the system are restricted. It is effective, but it can also be applied to wild populations that live in open systems.
本発明において、雌特異的不妊化遺伝子とは、当該遺伝子をホモ接合性又はヘテロ接合性で保持した場合、雌個体のみを特異的に不妊化あるいは繁殖力を減少させ、且つ雄個体の妊性を損なわない遺伝子を意味する。雌特異的不妊化遺伝子としては、雌特異的成熟遺伝子の機能的欠失変異体を挙げることができる。本目的に沿う雌特異的成熟遺伝子としては、卵の支持細胞などの体細胞側で発現し、卵の成熟誘導等の雌の生殖生理に寄与し、卵原細胞や卵細胞など生殖細胞側で発現しない遺伝子が好ましい。候補遺伝子としては、例えば、濾胞刺激ホルモン(FSH)のβサブユニット遺伝子、黄体形成ホルモン(LH)のβサブユニット遺伝子、濾胞刺激ホルモンレセプター(FSH-R)遺伝子、FoxL2遺伝子、卵黄タンパク前駆体ビテロジェニン遺伝子(Vg)、卵膜を構成するタンパク質として知られる、卵膜前駆タンパク質コリオジェニン遺伝子(Chg)やZPタンパク質遺伝子等を挙げることができるが、これらに限定されない。 In the present invention, the female-specific sterilization gene means that when the gene is homozygous or heterozygous, only the female individual is specifically sterilized or the fertility is reduced, and the fertility of the male individual is reduced. Means a gene that does not impair. Examples of the female-specific sterilization gene include functionally deleted mutants of the female-specific maturation gene. As a female-specific maturation gene that meets this purpose, it is expressed on the somatic cell side such as egg support cells, contributes to female reproductive physiology such as induction of egg maturation, and is expressed on the germ cell side such as egg progenitor cells and egg cells. Genes that do not are preferred. Candidate genes include, for example, β-subunit gene of follicular stimulating hormone (FSH), β-subunit gene of luteinizing hormone (LH), follicular stimulating hormone receptor (FSH-R) gene, FoxL2 gene, and egg yolk protein precursor vitellogenin. Examples include, but are not limited to, a gene (Vg), an egg membrane precursor protein choriogenin gene (Chg) and a ZP protein gene known as proteins constituting the egg membrane.
雌特異的成熟遺伝子の機能的欠失変異体とは、雌特異的成熟遺伝子が本来有する正常な機能が十分に発揮できない変異体をいい、例えば、雌特異的成熟遺伝子を全く発現しない変異体、または雌特異的成熟遺伝子が本来有する正常な機能が発揮できない程度にその発現量が低下した変異体、あるいは雌特異的成熟遺伝子産物の機能が完全に喪失した変異体、または雌特異的成熟遺伝子が本来有する正常な機能が発揮できない程度に雌特異的成熟遺伝子産物の機能が低下した変異体が挙げられる。本発明においては、好ましくは、雌特異的成熟遺伝子が全く発現しない変異体、又は雌特異的不妊化遺伝子産物の機能が完全に喪失した変異体が用いられる。通常、雌特異的成熟遺伝子の機能的欠失変異体の雌ヘテロ接合体は、正常な対立遺伝子の機能により稔性を維持するが、雌特異的成熟遺伝子の機能的欠失変異体の雌ホモ接合体は不稔化される。 A functional deletion mutant of a female-specific maturation gene is a mutant in which the normal function inherent in the female-specific maturation gene cannot be fully exerted, for example, a mutant that does not express the female-specific maturation gene at all. Alternatively, a mutant whose expression level is reduced to the extent that the normal function inherent in the female-specific maturation gene cannot be exerted, or a mutant in which the function of the female-specific maturation gene product is completely lost, or a female-specific maturation gene Examples thereof include mutants in which the function of the female-specific mature gene product is reduced to the extent that the original normal function cannot be exhibited. In the present invention, a mutant in which the female-specific maturation gene is not expressed at all, or a mutant in which the function of the female-specific sterilization gene product is completely lost is preferably used. Normally, female heterozygotes of functionally deleted mutants of the female-specific mature gene maintain fertility by normal allele function, but female homozygotes of the functionally deleted mutant of the female-specific mature gene. The conjugate is sterile.
雌特異的不妊化遺伝子を保持する個体は、例えば、ゲノム編集技術を用いて作成することが可能である。例えば、目的とする生物種の受精卵に、標的遺伝子(例、雌特異的成熟遺伝子)のゲノム配列を特異的に切断するように設計された人工ヌクレアーゼであるZinc Finger Nucleases(ZFNs)やTranscription Activator-Like Effector Nucleases(TALENs)を注入するか、受精卵に、標的遺伝子(例、雌特異的成熟遺伝子)のゲノム配列に相補的な合成RNA及びCas-9ヌクレアーゼを注入することにより(CRISPR/Casシステム)、当該受精卵における標的遺伝子(例、雌特異的成熟遺伝子)のゲノムを特異的に破壊し、標的遺伝子(例、雌特異的成熟遺伝子)の機能的欠失変異体をゲノム上にコードする受精卵を得る。得られた受精卵を孵化させることにより、標的遺伝子(例、雌特異的成熟遺伝子)の機能的欠失変異体をゲノム上にコードする個体を得ることが出来る。得られた受精卵が、標的遺伝子(例、雌特異的成熟遺伝子)の機能的欠失変異体のヘテロ接合体の場合には、ヘテロ接合体同士を交配することにより、ホモ接合性の個体を得ることが出来る。作出した機能的欠失変異をもった個体は、雌でホモ接合体でない限り後代を得ることができ、後代においてヘテロ接合性の雌とヘテロまたはホモ接合性の雄との交配により、ホモ接合性の雄個体を得ることができる。このゲノム編集技術を用いることによって、戻し交配操作を要することなく、標的遺伝子を破壊、もしくは導入したホモ接合体の個体を直接得ることも可能である。また、ゲノム編集技術は、魚類、哺乳類、昆虫、植物を含む、幅広い生物種に適用可能である(Joung and Sander, Nat Rev Mol Cell Biol, 2012; Barrangou, Nat Biotechnol, 2012)。重要なことには、このようなゲノム編集技術によって得られた遺伝子の欠失変異は、遺伝子組み換えには当たらず、環境中への放出が許容される。技術的には、レポーター遺伝子をノックインすることによっても同様の遺伝子の機能的欠失変異体をえられるが、この場合はゲノム編集による欠失変異と異なり、外来遺伝子がゲノム中に挿入された遺伝子組み換え体にあたるため、一般的には、環境中への放出が規制されている。実際に、ゲノム編集技術を用いて、FSHRを欠損させたメダカを作成したことが報告されている(Endocrinology 155: 3136-3145, 2014)。 Individuals carrying the female-specific sterilization gene can be created, for example, using genome editing techniques. For example, Zinc Finger Nucleases (ZFNs) and Transcription Activator, which are artificial nucleases designed to specifically cleave the genomic sequence of a target gene (eg, female-specific mature gene) in a fertilized egg of the target species. -By injecting Like Effector Nucleases (TALENs) or injecting fertilized eggs with synthetic RNA and Cas-9 nuclease complementary to the genomic sequence of the target gene (eg, female-specific mature gene) (CRISPR / Cas) System), specifically disrupts the genome of the target gene (eg, female-specific maturation gene) in the fertilized egg, and encodes a functionally deleted variant of the target gene (eg, female-specific maturation gene) on the genome. Get a fertilized egg. By hatching the obtained fertilized egg, an individual encoding a functionally deleted mutant of a target gene (eg, female-specific maturation gene) on the genome can be obtained. When the obtained fertilized egg is a heterozygote of a functionally deleted mutant of a target gene (eg, female-specific mature gene), a homozygous individual is obtained by mating the heterozygotes with each other. You can get it. Individuals with the functional deletion mutations created can be progeny unless they are homozygous in females, and homozygous by mating heterozygous females with heterozygous or homozygous males in the progeny. Male individuals can be obtained. By using this genome editing technology, it is also possible to directly obtain a homozygous individual in which the target gene is disrupted or introduced without requiring backcrossing operation. In addition, genome editing technology can be applied to a wide range of species including fish, mammals, insects, and plants (Joung and Sander, Nat Rev Mol Cell Biol, 2012; Barrangou, Nat Biotechnol, 2012). Importantly, deletion mutations in genes obtained by such genome editing techniques do not correspond to gene recombination and are allowed to be released into the environment. Technically, a functional deletion mutant of a similar gene can be obtained by knocking in the reporter gene, but in this case, unlike the deletion mutation by genome editing, a gene in which a foreign gene is inserted into the genome is obtained. Since it is a mutant, its release into the environment is generally regulated. In fact, it has been reported that genome editing technology was used to create medaka deficient in FSHR (Endocrinology 155: 3136-3145, 2014).
本発明においては、好ましくは、異なる染色体上に座した2種以上の雌特異的不妊化遺伝子を保持する雄個体が用いられる。また同一の染色体上に座している場合でも、遺伝子地図上の位置が遠く、容易に組み換えが起こるほどの距離を有していれば、多重化の意味はある。複数の雌特異的不妊化遺伝子を多重搭載することの意義は、野生個体群中に放出した際に、1つの雌特異的不妊化遺伝子のみを保持する雄個体を用いた場合よりも、駆除効果が増大する点にある。ヘテロ接合性の雌とホモ接合性の雄とを交配する場合、雌特異的不妊化遺伝子が1遺伝子のみでは子孫雌の50%しか不妊化できないが、2遺伝子なら75%、3遺伝子なら87.5%、4遺伝子なら93.75%を不妊化できる。2種以上の雌特異的不妊化遺伝子を保持する雄個体は、それぞれの雌特異的不妊化遺伝子を保持する個体を交配することによって作出することもできるが、例えば、上記ゲノム編集技術において、受精卵に2種以上の標的遺伝子(例、雌特異的成熟遺伝子)のゲノム配列をそれぞれ特異的に切断するように設計されたZFNsやTALENsを導入するか、受精卵に、2種以上の標的遺伝子(例、雌特異的成熟遺伝子)のゲノム配列にそれぞれ相補的な合成RNAs及びCas-9ヌクレアーゼを導入することにより、直接作成することも可能である。或いは、ゲノム編集技術によって、まず1種類の雌特異的不妊化遺伝子を保持する個体を得て、その個体から1種類の雌特異的不妊化遺伝子を保持する受精卵を作成し、この受精卵に、更にゲノム編集技術を適用し、別の標的遺伝子(例、雌特異的成熟遺伝子)のゲノムを特異的に破壊することによっても、2種以上の雌特異的不妊化遺伝子を保持する雄個体を得ることが出来る。導入する雌特異的不妊化遺伝子の数は、根絶を目的に不妊化力を高める観点からは多ければ多いほどよい。例えば、2種以上、3種以上、4種以上の雌特異的不妊化遺伝子を保持する雄個体を用いる。生息密度が極端に低下したときの物理的駆除圧が低下したときにもさらに個体数を減少させ続ける目的で不妊化力を高めるためには、YYとの併用をしない場合を仮定すると、繁殖力の旺盛な対象種に対しては1〜2種の雌特異的不妊化遺伝子の搭載では不妊化力が低く、なるべく多く搭載する必要があり、好ましくは4種以上が想定される。導入する、雌特異的不妊化遺伝子の数の上限値は、理論的には、特に制限されず、根絶を目的に不妊化力を高める観点からは多ければ多いほどよいが、実質染色体の種類の数、さらには候補遺伝子の数に影響される。通常は、10種以下、5種以下程度である。 In the present invention, a male individual carrying two or more female-specific sterilization genes located on different chromosomes is preferably used. Even if they are located on the same chromosome, if they are located far on the genetic map and have a distance that allows easy recombination, multiplexing is meaningful. The significance of multiple loading of multiple female-specific sterilization genes is that when released into a wild population, the extermination effect is greater than when a male individual carrying only one female-specific sterilization gene is used. Is increasing. When mating a heterozygous female with a homozygous male, only one female-specific sterilization gene can sterilize only 50% of offspring females, but two genes 75% and three genes 87.5%. , 4 genes can sterilize 93.75%. Male individuals carrying two or more female-specific sterilization genes can also be produced by mating individuals carrying their respective female-specific sterilization genes. For example, in the above genome editing technique, fertilization is performed. Introduce ZFNs or TALENs designed to specifically cleave the genomic sequences of two or more target genes (eg, female-specific mature genes) into eggs, or introduce two or more target genes into fertilized eggs. It can also be produced directly by introducing synthetic RNAs and Cas-9 nucleases that are complementary to the genome sequence of (eg, female-specific mature gene), respectively. Alternatively, by genome editing technology, an individual carrying one type of female-specific sterilization gene is first obtained, and a fertilized egg carrying one type of female-specific sterilization gene is created from the individual, and the fertilized egg is used. In addition, by applying genome editing technology and specifically disrupting the genome of another target gene (eg, female-specific maturation gene), a male individual carrying two or more female-specific sterilization genes can be obtained. You can get it. The larger the number of female-specific infertility genes to be introduced, the better from the viewpoint of enhancing the infertility for the purpose of eradication. For example, male individuals carrying two or more, three or more, and four or more female-specific sterilization genes are used. In order to increase sterilization power for the purpose of continuing to reduce the number of individuals even when the physical extermination pressure when the population density drops extremely decreases, fertility is assumed when not used in combination with YY. Infertility is low when one or two female-specific sterilization genes are loaded for a vigorous target species, and it is necessary to load as many as possible, preferably four or more species are assumed. Theoretically, the upper limit of the number of female-specific sterilization genes to be introduced is not particularly limited, and the larger the number is, the better from the viewpoint of enhancing sterilization power for the purpose of eradication, but the type of parenchymal chromosome It is affected by the number and even the number of candidate genes. Usually, there are 10 or less species and 5 or less species.
放出する雄個体に搭載する雌特異的不妊化遺伝子の数は、野生個体群中の雌個体との交配の結果、当該野生個体群サイズの縮小を可能にする限り特に限定されないが、増殖力の旺盛な侵略性の強い魚類の場合、雌特異的不妊化遺伝子1個のみの搭載では、ある程度の野生個体群サイズの増殖スピードの低減は見込めても、根絶までは難しい。なぜなら、ヘテロ接合性雌とホモ接合性雄との最高のペアリングを想定した場合においても、1遺伝子では雌の産む子孫の雌の50%しか不妊化することができない。ブルーギルの場合、物理的親魚駆除率が50%の場合でも増殖抑制は難しいことが実験的に確かめられており、1年で産卵して死亡する1年魚ではなく、生き残った親魚が翌年以降も産卵する魚種の場合を想定すると、親魚の不妊化率50%は親魚の駆除率50%に満たないため、個体数が減って併用している物理的駆除圧が減少していくと、これとの合計の駆除圧が低下し、個体の増殖を制御できなくなって平衡状態へと移行することが予想されるからである。2種の雌特異的不妊化遺伝子を使用した場合は、ヘテロ接合性雌とホモ接合性雄とのペアリングを想定した場合、雌の産む子孫のメスの75%を不妊化することができるが、親魚の駆除率に換算すると60%程度が予想され、個体群サイズの縮小ができるかできないかのレベルとなる。しかし、個体数が極端に減少した最終局面においては物理駆除圧は全く望めず、かかっていた密度効果の解除により増殖力が増す可能性を考えると、実際には低位で平衡状態になり、根絶できない可能性がある。よって対象種の繁殖率にもよるが、魚類一般を対象として個体群サイズを縮小する場合には、超雄個体への搭載により雌を減らす手法と併用しない限りは、少なくとも3種以上の雌特異的不妊化遺伝子の搭載が好ましく、より好ましくは4種以上の雌特異的不妊化遺伝子を搭載させる。 The number of female-specific sterilization genes carried in the released male individual is not particularly limited as long as it allows the reduction of the size of the wild population as a result of mating with the female individual in the wild population, but the proliferative power In the case of vigorous and highly invasive fish, loading only one female-specific sterilization gene is expected to reduce the growth speed of the wild population to some extent, but it is difficult to eradicate it. This is because even assuming the best pairing of heterozygous females and homozygous males, one gene can sterilize only 50% of female offspring. In the case of bluegill, it has been experimentally confirmed that it is difficult to suppress growth even when the physical parent fish extermination rate is 50%. Assuming the case of spawning fish species, the sterilization rate of the parent fish is less than 50%, so if the number of individuals decreases and the physical extermination pressure used in combination decreases, this This is because it is expected that the total extermination pressure of the ayu will decrease, and the growth of the individual will become uncontrollable and the state will shift to the equilibrium state. When two female-specific sterilization genes are used, 75% of female offspring of females can be sterilized, assuming pairing of heterozygous females and homozygous males. When converted to the extermination rate of parent fish, it is expected to be about 60%, which is the level at which the population size can be reduced or not. However, in the final phase when the population has decreased extremely, physical extermination pressure cannot be expected at all, and considering the possibility that the proliferative power will increase due to the cancellation of the density effect that was applied, it will actually be in equilibrium at a low level and eradicated. It may not be possible. Therefore, although it depends on the reproductive rate of the target species, when reducing the population size for fish in general, at least 3 or more females are peculiar unless used in combination with a method of reducing females by mounting on super-male individuals. It is preferable to carry the target sterilization gene, and more preferably, four or more female-specific sterilization genes are loaded.
本発明の方法において、野生個体群中に放出される雄個体は、雌特異的不妊化遺伝子のホモ接合体であっても、ヘテロ接合体であってもよいが、好ましくは、ホモ接合体である。ヘテロ接合体放出の場合、放出を続けても最高で雌特異的不妊化遺伝子占有率は50%であり、これ以上には上がらないため、ホモ化して不妊になる雌の出現率は低く、高い効果は望めない。しかし遺伝子の種類によっては不妊化には及ばないものの、ヘテロ接合で繁殖力に負の影響が出る可能性も考えられ、その場合はヘテロ接合体でも効果が望める。一方、ホモ接合体放流を考えた場合、放流を続けると最高で不妊化遺伝子占有率は100%に向かって漸近するため、ホモ化して不妊になる雌の出現率が高く、高い効果が望める。雄個体が、2種以上の雌特異的不妊化遺伝子を保持する場合、好ましくは、少なくとも1つの雌特異的不妊化遺伝子についてホモ接合体であり、より好ましくは、全ての雌特異的不妊化遺伝子についてホモ接合体である。 In the method of the present invention, the male individual released into the wild population may be homozygous or heterozygous for the female-specific sterilization gene, but is preferably homozygous. is there. In the case of heterozygous release, the female-specific sterilization gene occupancy rate is 50% at the highest even if the release is continued, and since it does not increase any more, the appearance rate of females that homogenize and become infertile is low and high. No effect can be expected. However, depending on the type of gene, although it does not reach infertility, heterozygotes may have a negative effect on fertility, and in that case, heterozygotes can also be expected to be effective. On the other hand, when considering the release of homozygotes, if the release is continued, the sterilization gene occupancy rate will gradually approach 100%, so the appearance rate of females who become homozygous and infertile is high, and a high effect can be expected. When a male individual carries two or more female-specific sterilization genes, it is preferably homozygous for at least one female-specific sterilization gene, and more preferably all female-specific sterilization genes. Is homozygous for.
好ましい態様において、本発明の方法において、野生個体群中に放出する雄個体は、超雄である。超雄とは、性染色体として2つのY染色体のみを有する雄個体(即ち、YY雄)を意味する。雌特異的不妊化遺伝子を保持する通常の雄個体(即ちXY雄)を用いた場合よりも、雌特異的不妊化遺伝子を保持する超雄個体を用いた場合の方が、個体群における雄の割合が増加する効果が加わることにより、駆除効果の増強が期待できる。例えば、魚類の場合、超雄YY個体は、雌性ホルモン(エストロゲン)を雄の幼生(XY)に投与し、雌化させたXY個体を得て、このXY雌に産卵させることにより、Y卵を得て、これと、通常雄の作るY精子との受精により作出することができる。また、通常雄の始原生殖細胞や精原細胞を3倍体化等により不妊化した雌稚魚に移植する仮腹技術を用いてY卵を得て、これと、通常雄の作るY精子との受精により作出することもができる。また、YY雄が作出さられば、この精原細胞を借り腹親に移植することで、全Y卵をつくることができ、これとYY雄の作る全Y精子との交配で、全YY雄生産をすることができる。雌特異的不妊化遺伝子を保持するYY雄は、上述のゲノム編集により作成した雌特異的不妊化遺伝子を保持する個体に、これらの超雄YY個体作成方法を適用することにより作出することができる。産出した雌特異的不妊化遺伝子を保持するYY雄は、遺伝子検査と後代検定で選別することが出来る。 In a preferred embodiment, the male individual released into the wild population in the methods of the invention is a supermale. A super male means a male individual (ie, a YY male) having only two Y chromosomes as sex chromosomes. The use of super-male individuals carrying the female-specific sterilization gene is more common than the use of normal male individuals carrying the female-specific sterilization gene (ie, XY males). By adding the effect of increasing the ratio, it can be expected that the extermination effect will be enhanced. For example, in the case of fish, a super-male YY individual administers a female hormone (estrogen) to a male larva (XY) to obtain a femaleized XY individual, and lays eggs on this XY female to produce a Y egg. It can be produced by fertilization of this with Y sperm, which is usually produced by males. In addition, Y eggs are obtained by using a fetal belly technique in which normal male primordial germ cells and spermatogonia are transplanted into infertile female fry by triploidization, etc., and this and Y sperm normally produced by males are combined. It can also be produced by fertilization. In addition, if YY males are produced, all Y eggs can be produced by borrowing these spermatogonia and transplanting them to the abdominal parent, and by mating this with all Y sperms produced by YY males, all YY males can be produced. Can be produced. YY males carrying the female-specific sterilization gene can be created by applying these super-male YY individual creation methods to individuals carrying the female-specific sterilization gene created by the above-mentioned genome editing. .. YY males carrying the female-specific sterilization gene produced can be screened by genetic testing and progeny testing.
放出用の雌特異的不妊化遺伝子をホモ接合性に保持する雄個体(好ましくは、超雄個体)は、動物であれば、技術的には交配によって得た個体を選別することで得ることはできるが、大量放出が必要である動物種、たとえば魚類であれば、それは手間やコストなどから実用性が低い。実用化の観点からは、選別作業を省くため、雌特異的不妊化遺伝子をホモ接合性に保持する雄個体(好ましくは、超雄個体)のみを生産する(即ち、全ホモ雄生産もしくは全ホモ超雄生産)必要があるが、これは借腹技術を用いることにより達成することができる。一方繁殖力がそれほど高くない哺乳類等であれば、交配後の出生個体の選別によるか、人工受精卵の着床前遺伝子診断で雌特異的不妊化遺伝子をホモ接合性に保持する雄個体(好ましくは、超雄個体)の選別が可能であり、いまだ技術開発されていない仮腹技術の必要性は高くない。また、植物であればカルス培養を用いて大量に増殖させることが出来る。魚類等を想定した借腹技術においては、宿主不妊雌個体として、移入する生殖細胞と同種の魚類の不妊三倍体雌や、近縁種の異種交雑による不妊雑種二倍体雌又は不妊異質三倍体雌を利用する。不妊異質三倍体に関しては、同種のゲノム2つに異種ゲノム1つから構成されるAAB型の異質三倍体でも、すべて異なる3種のゲノムから構成されるABC型の完全異質三倍体(三基異質三倍体)でもよい。
移入する生殖細胞と同種の魚類の不妊三倍体は、受精卵に高圧処理や温度処理等の物理的刺激を与えて、第二成熟分裂で第二極体として捨て去られる1組の染色体を細胞内にとどめる方法(第二極体放出阻止)により作成することが出来るが、同種の染色体の減数分裂が強行され異数性の卵を産む可能性を回避することや、移植する生殖細胞側のホルモンとレセプター間の協調性の不具合が起こるのを防ぐため等から完全異質三倍体(三基異質三倍体)がより望ましい。不妊全雌雑種二倍体は、ホルモン関係の異常ではなく、単純に減数分裂阻害が原因で不妊となる生存性雑種の組み合わせを用いて、通常の異種交配で作出できる。なお、雌雄の区別ができない稚魚のうちに借り腹操作をしなければならないことから本操作の効率を考えると、不妊三倍体、不妊雑種2倍体、不妊異質三倍体などこれらの借腹親候補は、すべて雌であることがのぞましい。そのためには、雌の稚魚に雄性ホルモンあるいは雌性ホルモン合成阻害剤や抗エストロゲン作用剤を経口投与することにより、Y染色体を持たないが精子を形成する能力がある機能的性転換雄=偽雄(XX雄)を作出し、この精子を使うことが望ましい。またこれらの雑種や3倍体を利用する方法の他、ゲノム編集技術で、生殖細胞側でのみ発現する生殖関連遺伝子を欠損させた二倍体雌を借腹親に用いることもできる。これらの借腹親の作出技術に関しては、例えば以下の文献を参照のこと。
・Dawley RM, Graham JH, Schultz RJ. 1985. Triploid progeny of pumpkinseed × green sunfish hybrids. J Hered 76:251-257.
・Dawley, R. M. 1987. Hybridization and polyploidy in a community of three sunfish species (Pices: Centrarchidae). Copeia: 326-335.
・Production of Amphidiploid Medaka Oryzias 2 latipes sinensis - 2 curvinotus by Gynogenesis with Retention of the Second Polar Body J. Kurita et al. 1993 Nippon Suisan Gakkaishi, 59(2) 323
・メダカ完全異質三倍体の作成 栗田潤 他 1992、日本水産学会誌 58巻12号2311 〜 2314
・Cytogenetic Studies on Diploid and Triploid Oogenesis in Interspecific Hybrid Fish Between Oryzias latipes and O. curvinotus J.Kurita et al. 1995 The Journal of Experimental Zoology, 273, 234-241
・Andrew R. Westmaas, Polyploidy Induction in Bluegill Sunfish (Lepomis Macrochirus) Using Cold and Pressure Shocks. Michigan State University. Department of Fisheries and Wildlife, 1992
Male individuals (preferably super-male individuals) that homozygically retain the female-specific sterilization gene for release can be technically obtained by selecting individuals obtained by mating if they are animals. However, if it is an animal species that requires mass release, such as fish, it is not practical due to labor and cost. From the viewpoint of practical use, in order to omit the sorting work, only male individuals (preferably super-male individuals) that homozygously retain the female-specific sterilization gene are produced (that is, all-homo male production or all-homo). Super-male production) is required, which can be achieved by using abdominal borrowing techniques. On the other hand, in the case of mammals whose fertility is not so high, male individuals (preferably) that retain the female-specific sterilization gene in a homozygous manner by selection of birth individuals after mating or by pre-implantation genetic diagnosis of artificially fertilized eggs. It is possible to select super-male individuals), and there is not a high need for a fetal belly technique that has not yet been developed. Moreover, if it is a plant, it can be grown in large quantities by using callus culture. In the abdominal borrowing technique assuming fish, etc., as a host infertile female individual, an infertile triploid female of a fish of the same species as the transferred germ cell, an infertile hybrid diploid female or an infertile heterogeneous triad due to cross-breeding of a closely related species. Use diploid females. Regarding infertile allotriploids, even if it is an AAB type allotriploid composed of two homologous genomes and one heterologous genome, an ABC type completely allotriploid composed of all three different genomes ( It may be triploid).
The infertile triploids of fish of the same species as the transferred germ cells give a set of chromosomes that are discarded as the second polar body in the second mature division by giving physical stimuli such as high-pressure treatment and temperature treatment to the fertilized egg. It can be created by keeping it inside the cell (blocking the release of the second polar body), but avoiding the possibility of meiosis of the same type of chromosome and laying aneuploid eggs, or the side of the germ cell to be transplanted. A completely aneuploid triploid (triangular aneuploid triploid) is more desirable in order to prevent a malfunction of coordination between the hormone and the receptor in the above. Infertile all-female hybrid diploids can be produced by normal cross-breeding using a combination of viable hybrids that are simply infertile due to inhibition of meiosis rather than hormonal abnormalities. In addition, considering the efficiency of this operation, since it is necessary to perform the abdominal borrowing operation among the fry that cannot distinguish between male and female, these borrowing such as infertile triploids, infertile hybrid diploids, and infertile heterotriploids It is desirable that all parent candidates are female. For that purpose, by orally administering a male hormone or a female hormone synthesis inhibitor or an anti-estrogen agent to a female fry, a functionally converted male = pseudomale who does not have a Y chromosome but has the ability to form sperm ( It is desirable to produce (XX male) and use this sperm. In addition to the method using these hybrids and triploids, diploid females lacking a reproductive-related gene expressed only on the germ cell side can be used as a borrowing parent by genome editing technology. For the techniques for creating these borrowers, see, for example, the following documents.
・ Dawley RM, Graham JH, Schultz RJ. 1985. Triploid progeny of pumpkinseed × green sunfish hybrids. J Hered 76: 251-257.
Dawley, RM 1987. Hybridization and polyploidy in a community of three sunfish species (Pices: Centrarchidae). Copeia: 326-335.
・ Production of Amphidiploid Medaka Oryzias 2 latipes sinensis --2 curvinotus by Gynogenesis with Retention of the Second Polar Body J. Kurita et al. 1993 Nippon Suisan Gakkaishi, 59 (2) 323
・ Creation of completely heterologous triploid of medaka Jun Kurita et al. 1992, Journal of Japanese Society of Fisheries Science, Vol. 58, No. 12, 2311 ~ 2314
・ Cytogenetic Studies on Diploid and Triploid Oogenesis in Interspecific Hybrid Fish Between Oryzias latipes and O. curvinotus J. Kurita et al. 1995 The Journal of Experimental Zoology, 273, 234-241
-Andrew R. Westmaas, Polyploidy Induction in Bluegill Sunfish (Lepomis Macrochirus) Using Cold and Pressure Shocks. Michigan State University. Department of Fisheries and Wildlife, 1992
例えば、雌特異的不妊化遺伝子をホモ接合性に保持する雄個体を増殖させる場合、雌特異的不妊化遺伝子を保持する生殖原細胞又は始原生殖細胞(好ましくは、雌特異的不妊化遺伝子をホモ接合性に保持する生殖原細胞又は始原生殖細胞)を、上述の宿主不妊雌個体へ移植する。生殖原細胞としては、精原細胞、卵原細胞等を挙げることが出来る。雌特異的不妊化遺伝子を保持する生殖原細胞又は始原生殖細胞(好ましくは、雌特異的不妊化遺伝子のホモ接合体)は、好ましくは、雌特異的不妊化遺伝子を保持する雄個体(好ましくは、雌特異的不妊化遺伝子をホモ接合性に保持する雄個体)に由来する生殖原細胞又は始原生殖細胞である。雌特異的不妊化遺伝子を保持する雄個体に由来する精原細胞は、当業者に周知の方法により当該雄個体から精原細胞を単離することにより、得ることが出来る。雌特異的不妊化遺伝子を保持する雄個体に由来する卵原細胞は、雌性ホルモン(エストロゲン)を当該雄個体の幼生に投与し、雌化させた個体を得て、この雌化個体から当業者に周知の方法により卵原細胞を単離すること、あるいは雌特異的不妊化遺伝子を保持する雄個体の精原細胞を宿主不妊雌個体に移植してつくられる卵原細胞を単離することにより、得ることが出来る。雌特異的不妊化遺伝子を保持する雄個体に由来する始原生殖細胞は、当該雄個体の初期発生胚から始原生殖細胞を単離することにより、得ることができる。移植した生殖原細胞又は始原生殖細胞は宿主生殖腺に取り込まれ、減数分裂し、雌特異的不妊化遺伝子を保持する卵(X又はY)へと発生する。この卵と、雌特異的不妊化遺伝子を保持する精子(X又はY)とを交配することにより、雌特異的不妊化遺伝子をホモ接合性に保持する子孫個体が生じる。必要に応じて雄個体を選別することにより、雌特異的不妊化遺伝子をホモ接合性に保持する雄個体(XY又はYY)を得ることが出来る。放出個体を選別するのは非効率的であるので、効率よく全雄(XY)個体を生産するには、雌特異的不妊化遺伝子をホモ接合性に保持する雌の卵原細胞を仮腹親に移植し、生じる全X卵を、雌特異的不妊化遺伝子をホモ接合性に保持する超雄YY雄の全Y精子と受精すればよい。 For example, when a male individual carrying a female-specific sterilization gene is propagated, germ cells or primordial germ cells carrying the female-specific sterilization gene (preferably homozygous for the female-specific sterilization gene) are propagated. Germ cells or primordial germ cells that retain zygotivity) are transplanted into the above-mentioned host infertile female individuals. Examples of germogenic cells include spermatogonia, oogonia and the like. Germ cells or primordial germ cells carrying the female-specific sterilization gene (preferably homozygotes of the female-specific sterilization gene) are preferably male individuals carrying the female-specific sterilization gene (preferably). , A male individual that homozygically retains a female-specific sterilization gene) is a germ cell or a primordial germ cell. Spermatogonia derived from a male individual carrying the female-specific sterilization gene can be obtained by isolating the spermatogonia from the male individual by a method well known to those skilled in the art. Oogonium derived from a male individual carrying a female-specific sterilization gene is obtained by administering a female hormone (estrogen) to the larvae of the male individual to obtain a femaleized individual, and a person skilled in the art from this female individual. By isolating oogonia by a method well known to the above, or by isolating oogonia produced by transplanting spermatogonia of a male individual carrying a female-specific sterilization gene into a host infertile female individual. , Can be obtained. Primordial germ cells derived from a male individual carrying the female-specific sterilization gene can be obtained by isolating the primordial germ cells from the early embryonic embryos of the male individual. The transplanted germ cells or primordial germ cells are taken up by the host germ gland, meiotic, and develop into eggs (X or Y) carrying the female-specific sterilization gene. By mating this egg with a sperm (X or Y) carrying the female-specific sterilization gene, a progeny individual carrying the female-specific sterilization gene homozygously is produced. By selecting male individuals as needed, male individuals (XY or YY) that homozygically retain the female-specific sterilization gene can be obtained. Since it is inefficient to select the released individuals, in order to efficiently produce all male (XY) individuals, female egg protozoa that retain the female-specific sterilization gene in a homozygous manner are used as fetal parents. The resulting whole X egg may be fertilized with all Y sperm of a super male YY male that retains the female-specific sterilization gene in a homozygous manner.
雌特異的不妊化遺伝子をホモ接合性に保持する超雄個体を増殖させる場合、雌特異的不妊化遺伝子を保持する超雄個体(好ましくは、雌特異的不妊化遺伝子をホモ接合性に保持する超雄個体)に由来する生殖原細胞又は始原生殖細胞(YY)を、上述の宿主不妊雌個体へ移植する。移植した生殖原細胞又は始原生殖細胞は宿主生殖腺に取り込まれ、減数分裂し、雌特異的不妊化遺伝子を保持する卵(Y)のみが生じる(即ち、全Y卵)。この卵と、性染色体がYである、雌特異的不妊化遺伝子を保持する精子とを交配することにより、雌特異的不妊化遺伝子をホモ接合性に保持する子孫超雄個体(YY)のみが生じる。当該精子は、好ましくは、雌特異的不妊化遺伝子をホモ接合性に保持する超雄個体の精子である。 When a super-male individual carrying the female-specific sterilization gene is homozygously propagated, the super-male individual carrying the female-specific sterilization gene (preferably, the female-specific sterilization gene is homozygously retained) is retained. Germ cells or primordial germ cells (YY) derived from (super-male individuals) are transplanted into the above-mentioned host infertile female individuals. The transplanted germ cells or primordial germ cells are taken up by the host germ gland and undergo meiosis, resulting in only eggs (Y) carrying the female-specific sterilization gene (ie, total Y eggs). By mating this egg with a sperm carrying a female-specific sterilization gene whose sex chromosome is Y, only progeny supermale individuals (YY) who carry the female-specific sterilization gene in a homozygous manner Occurs. The sperm is preferably a supermale individual sperm that homozygically retains the female-specific sterilization gene.
或いは、全Y卵に高圧処理や温度処理等の物理的刺激を与えて第二極体放出阻止型、或いは第一分裂阻止型の雌個体を発生させることによっても、雌特異的不妊化遺伝子を保持する子孫超雄個体(YY)(雌特異的不妊化遺伝子のホモ接合性超雄個体)を得ることができる。 Alternatively, the female-specific sterilization gene can be obtained by giving a physical stimulus such as high-pressure treatment or temperature treatment to all Y eggs to generate a female individual of the second polar body release-inhibiting type or the first division-inhibiting type. It is possible to obtain a female progeny supermale individual (YY) (a homozygous supermale individual having a female-specific sterilization gene).
上に記した雌特異的不妊化遺伝子をホモ接合性に保持する全雄(XY)あるいは雌特異的不妊化遺伝子をホモ接合性に保持する全超雄(YY)増産には雄親として超雄(YY)が必要であるが、YY雄自体の生残性に問題があり、使用できない可能性も考えられる。その場合放流には全XY雄生産が必要となるが、YY雄を用いずに全XY雄を生産するには以下の方法が可能である。 All males (XY) that homozygously retain the female-specific sterilization gene described above or all supermales (YY) that homozygously retain the female-specific sterilization gene. (YY) is required, but there is a problem with the survivability of the YY male itself, and it is possible that it cannot be used. In that case, production of all XY males is required for release, but the following method is possible to produce all XY males without using YY males.
生残性に問題がある場合でもYY胚は孵化ステージ程度には発生することが予想される。そこで、性転換した偽雌XYの卵、あるいは雄の精原細胞移植をおこなった借り腹雌の産む卵(X卵とY卵の混合)と通常XY雄の精子(X精子とY精子の混合)との交配で得られた受精卵の孵化稚魚もしくは胚(YY個体が含まれると考えられる)から始原生殖細胞を借り腹親に移植する。移植された生殖原細胞がYY細胞であれば、この借り腹親は全Y卵を産むので、これと偽雄(XX雄)のつくる全X精子との交配で、全雄(XY雄)生産が可能となる。借り腹親の持つ生殖細胞がYYであるか否かは後代検定で確認可能である。 Even if there is a problem with survival, YY embryos are expected to develop at the hatching stage. Therefore, pseudo-female XY eggs that have undergone sex conversion, or eggs laid by borrowed females that have undergone male sperm cell transplantation (mixture of X-egg and Y-egg) and normal XY male sperm (mixture of X-sperm and Y-sperm) ), The primordial germ cells are borrowed from the hatched fry or embryo of the fertilized egg (which is thought to include YY individuals) and transplanted to the abdominal parent. If the transplanted protozoan cells are YY cells, this borrowing parent lays all Y eggs, so by mating this with all X sperms produced by pseudo males (XX males), all males (XY males) are produced. Is possible. Whether or not the germ cells possessed by the borrowing parent are YY can be confirmed by a progeny test.
なお、雌特異的不妊化遺伝子をホモ接合性に保持する雄の放流は、雌特異的不妊化遺伝子をホモ接合性に保持するXX雌との混合で行っても、雌個体が不妊のため、繁殖による個体数の増加の懸念はないので、大きな問題はないとも考えられる。その場合、雌特異的不妊化遺伝子をホモ接合性に保持する雌の卵原細胞を移植した借り腹雌親と、雌特異的不妊化遺伝子をホモ接合性に保持する通常XY雄との交配を行い、生じる雌特異的不妊化遺伝子をホモ接合性に保持するXX雌(不妊)と雌特異的不妊化遺伝子をホモ接合性に保持するXY雄を選別せずに放流してよい。あるいは、雌特異的不妊化遺伝子をホモ接合性に保持するXY雄の精原細胞を移植した借り腹雌親と、雌特異的不妊化遺伝子をホモ接合性に保持する通常XY雄との交配を行い、生じた子供から、生き残った雌特異的不妊化遺伝子をホモ接合性に保持するXX雌(不妊)と雌特異的不妊化遺伝子をホモ接合性に保持するXY雄を選別せずに放流してもよい。同時に生じるYY個体は生存性がない場合は放流前に死滅するか、生残性が悪い場合は放流後に死滅する。 It should be noted that the release of males that retain the female-specific infertility gene in a homozygous manner is carried out by mixing with XX females that retain the female-specific infertility gene in a homozygous manner, because the female individual is infertile. Since there is no concern about an increase in the number of individuals due to breeding, it is considered that there is no major problem. In that case, mating between a borrowed female parent transplanted with female oval cells that homozygously retain the female-specific sterilization gene and a normal XY male that homozygously retains the female-specific sterilization gene. XX females (infertility) that homozygically retain the resulting female-specific infertility gene and XY males that homozygically retain the female-specific infertility gene may be released without selection. Alternatively, mating a borrowed female parent transplanted with XY male spermocytes that homozygously retains the female-specific sterilization gene with a normal XY male that homozygously retains the female-specific sterilization gene. Then, from the resulting child, XX females (infertility) that homozygically retain the surviving female-specific sterilization gene and XY males that homozygically retain the female-specific sterilization gene are released without selection. You may. YY individuals that occur at the same time die before release if they are not viable, or die after release if they are poorly survived.
本発明は、上述のような雌特異的不妊化遺伝子をホモ接合性に保持する子孫個体(好ましくは雄個体、より好ましくは超雄個体)の製造方法をも提供する。本発明の製造方法において移植に使用する生殖原細胞(例、精原細胞、卵原細胞)及び始原生殖細胞は、雌雄個体から採取後、移植時までに適切な凍結保存液中で凍結保存させておいてもよい。 The present invention also provides a method for producing a progeny individual (preferably a male individual, more preferably a super-male individual) that homozygically retains the female-specific sterilization gene as described above. The germ cells (eg, spermatogonia, oogonia) and primordial germ cells used for transplantation in the production method of the present invention are collected from male and female individuals and then cryopreserved in an appropriate cryopreservation solution by the time of transplantation. You may keep it.
この借腹技術は、雌特異的不妊化遺伝子として、雌特異的成熟遺伝子の機能的欠失変異体を用いる場合に、特に有効である。移入する、精原細胞が雌特異的成熟遺伝子の機能的欠失変異体をホモ接合性で保持することにより、機能的な雌特異的成熟遺伝子を発現できず、自身は成熟卵を作ることができないが、借り腹技術によりこの生殖細胞を移植すれば、卵の支持細胞は宿主側から提供され、機能的な雌特異的成熟遺伝子を発現するので、雌特異的成熟遺伝子の機能的欠失変異をホモ接合性で保持する卵を成熟させることが可能だからである。 This abdominal borrowing technique is particularly effective when using a functionally deleted mutant of a female-specific maturation gene as a female-specific sterilization gene. Introducing germ cells can homozygously retain functionally deleted mutants of the female-specific maturation gene, thus failing to express the functional female-specific maturation gene and producing mature eggs themselves. Although it is not possible, if this germ cell is transplanted by the abdominal technique, the support cell of the egg is provided from the host side and expresses a functional female-specific maturation gene, so that a functional deletion mutation of the female-specific maturation gene is performed. This is because it is possible to mature an egg that retains homozygousness.
雌特異的不妊化遺伝子を保持する個体間の自然交配のみでは、雌特異的不妊化遺伝子(雌特異的成熟遺伝子の機能的欠失変異体)をホモ接合性で保持する雌が不妊となってしまうため、通常の交配で雌特異的不妊化遺伝子をホモ接合性で保持する雄個体を大量に調達することが困難である。雌特異的成熟遺伝子の機能的欠失変異のヘテロ接合体雌個体と、雌特異的成熟遺伝子の機能的欠失変異を保持する雄個体とを交配し、得られた子孫個体の中から、雌特異的成熟遺伝子の機能的欠失変異をホモ接合性で保持する雄個体を選別することにより、一定数を確保することはできるが、選別のためのゲノタイピングを要し、放出に供すことのできないヘテロ個体を大量に飼育する必要があるので、無駄が多く、高コストである。特に、湖等の広大な自然生態系内の特定の生物種等を駆除しようとする場合には、大量の雌特異的不妊化遺伝子をホモ接合性に保持する雄個体を調達する必要があるため、コストは膨大であり、非現実的である。これに対して、上述の借腹技術を用いると、ゲノム編集技術により雌特異的不妊化遺伝子をホモ接合性に保持する雄個体を少数得ることが出来れば、これをベースに、雌特異的不妊化遺伝子をホモ接合性に保持する雄個体を、ゲノタイピングを要することなく、大量に、且つ低コストで得ることが可能であり、広大な自然生態系内の外来種等を駆除するのに必要な数の雌特異的不妊化遺伝子をホモ接合性に保持する雄個体の調達を実現可能にする。特に、本発明の製造方法において、生殖原細胞又は始原生殖細胞、及び精子を供給する雄個体として雌特異的不妊化遺伝子をホモ接合性に保持する超雄個体を用いると、放出に有用な雌特異的不妊化遺伝子をホモ接合性に保持する超雄個体のみが生じるので、ゲノタイプを要せず、放出に供することのできない個体の維持に必要なコストを削減することができ、得られた雌特異的不妊化遺伝子をホモ接合性に保持する超雄個体を、更なる子孫個体の製造に転用することが出来る。借腹技術の詳細については、例えば以下の文献を参照のこと。
・T. Okutsu, S. Shikina, M. Kanno, Y. Takeuchi, G. Yoshizaki. 2007. Production of trout offspring from triploid salmon parents. Science 317, 1517.
Only by natural mating between individuals carrying the female-specific sterilization gene, females homozygously carrying the female-specific sterilization gene (functional deletion mutant of the female-specific maturation gene) become infertile. Therefore, it is difficult to procure a large number of male individuals that homozygically carry the female-specific sterilization gene by normal mating. A heterozygous female individual with a functional deletion mutation of a female-specific maturation gene and a male individual carrying a functional deletion mutation with a female-specific maturation gene were crossed, and among the progeny individuals obtained, females were selected. A certain number can be secured by selecting male individuals that retain the functional deletion mutation of the specific mature gene in a homozygous manner, but it requires genotyping for selection and is subject to release. Since it is necessary to breed a large number of heterozygous individuals that cannot be produced, it is wasteful and expensive. In particular, when trying to exterminate specific species in a vast natural ecosystem such as a lake, it is necessary to procure male individuals that homozygically retain a large amount of female-specific sterilization genes. , The cost is enormous and unrealistic. On the other hand, if the above-mentioned abdominal borrowing technique can be used to obtain a small number of male individuals that homozygically retain the female-specific sterilization gene by genome editing technology, female-specific sterilization will be based on this. It is possible to obtain male individuals that homozygically retain the chemical gene in large quantities and at low cost without requiring genotyping, and it is necessary to exterminate alien species in a vast natural ecosystem. It makes it feasible to procure male individuals that homozygically retain a large number of female-specific sterilization genes. In particular, in the production method of the present invention, when a super-male individual having a female-specific sterilization gene homozygously retained as a male individual to supply germ cells or primordial germ cells and sperm is used, a female useful for release is used. Since only supermale individuals that homozygously retain the specific sterilization gene are produced, genotypes are not required and the cost required to maintain individuals that cannot be released can be reduced, resulting in females. A super-male individual that retains a specific sterilization gene in a homozygous manner can be diverted to the production of further offspring individuals. For details on the abdominal borrowing technique, refer to the following documents, for example.
・ T. Okutsu, S. Shikina, M. Kanno, Y. Takeuchi, G. Yoshizaki. 2007. Production of trout offspring from triploid salmon parents. Science 317, 1517.
上述のようにして得られた雌特異的不妊化遺伝子を保持する雄個体を、野生個体群中に放出する。放出された雌特異的不妊化遺伝子を保持する雄個体は、野生個体群中の雌個体と自然交配し、野生個体群中に雌特異的不妊化遺伝子を保持する子孫個体(ヘテロ接合体)が生じる。更に、放出された雌特異的不妊化遺伝子を保持する雄個体がこのヘテロ接合体と交配し、或いは、ヘテロ接合体同士が交配することにより、雌特異的不妊化遺伝子をホモ接合性で保持する子孫個体が生じる。子孫個体群のうち、雌特異的不妊化遺伝子をホモ接合性に保持する雌は不妊であり、次世代を残すことができないので、これを産卵メス個体の駆除とみなすことができる。雌の駆除と引き換えに不妊化遺伝子も子孫に伝達されることなく集団中から失われる。一方、雌特異的不妊化遺伝子を保持する雄は、妊性なので、さらに野生個体群中の雌との交配により、雌特異的不妊化遺伝子を次世代に伝達するベクターとなることにより、雌特異的不妊化遺伝子は失わることなく集団中に存続し続ける。雌雄ともに同数駆除しても、雌だけ半分駆除しても駆除効果は変わらないと考えられるので、個体の駆除に比べて雌特異的不妊化遺伝子のロスは最小限に抑えられ、雌の不妊化に伴う遺伝子の損失は最低限の雄の放流によって十分に賄えきれる。つまり、雌特異的不妊化遺伝子をホモ型に保持する雄を放流を続ける限り、雌特異的不妊化遺伝子が野生個体群中に浸透していき、不妊化遺伝子の占有率は上がり続けることにより、産卵可能な雌の割合が減少していき、子孫個体を残すことが出来なくなる結果、野生個体群のサイズが縮小し、最終的には、野生個体群から稔性雌個体が排除され、当該野生個体群が根絶する。 Male individuals carrying the female-specific sterilization gene obtained as described above are released into the wild population. Male individuals carrying the released female-specific sterilization gene are naturally mated with female individuals in the wild population, and progeny individuals (heterozygotes) carrying the female-specific sterilization gene in the wild population Occurs. Furthermore, a male individual carrying the released female-specific infertility gene is homozygously retained in the female-specific infertility gene by mating with this heterozygotes or by mating between heterozygotes. Progeny individuals are born. Of the offspring population, females that homozygically retain the female-specific sterilization gene are infertile and cannot leave the next generation, so this can be regarded as extermination of spawning female individuals. In exchange for female extermination, the sterilization gene is also lost from the population without being transmitted to offspring. On the other hand, since males carrying the female-specific sterilization gene are fertile, they become female-specific by mating with females in the wild population to become a vector that transmits the female-specific sterilization gene to the next generation. The target sterilization gene continues to survive in the population without loss. It is considered that the extermination effect does not change even if the same number of males and females are exterminated or only half of the females are exterminated. The associated gene loss can be fully covered by the minimum release of males. In other words, as long as the males that carry the female-specific sterilization gene in the homozygous form continue to be released, the female-specific sterilization gene will permeate into the wild population, and the occupancy rate of the sterilization gene will continue to increase. As the proportion of females that can lay eggs decreases and it becomes impossible to leave offspring, the size of the wild population shrinks, and finally, fertile female individuals are excluded from the wild population, and the wild The population is eradicated.
雌特異的不妊化遺伝子を保持する雄個体の放出個体数は、野生個体群中の雌個体との交配の結果、当該野生個体群細胞の縮小を可能にする限り特に限定されない。1回の放出あたり、放出開始前の野生個体群の個体数は、例えば、1%以上、好ましくは、5%以上である。放出する個体数が少なすぎると雌の不妊化に伴う遺伝子のロス分を賄えきれなくなり、これ以上減らせない平衡状態に移行する。もしくは駆除効果が弱く、野生個体群中に稔性雌個体が存在しなくなるまでに要する期間が長くなる。駆除効果を増強する観点からは、放出する雌特異的不妊化遺伝子を保持する雄個体の数は多ければ多い程よく、その個体数の上限値はないが、放出する個体数が多すぎると、放出個体に起因する生態的被害や(魚類の場合)漁業被害が生じる。そのため、放出する雌特異的不妊化遺伝子を保持する雄個体の個体数は、野生個体群の個体数の例えば、20%以下、好ましくは、10%以下である。即ち、放出する雌特異的不妊化遺伝子を保持する雄個体の個体数は、好ましくは、野生個体群の個体数の1〜20%、より好ましくは5〜10%、更に好ましくは、6〜9%である。なお、放出は繁殖1年後の加入群へ行うことを仮定して算出しているので、コスト等の理由から1年に満たないで放出する場合は残りの間の死亡率を適切に勘案してに放出量を算出する。 The number of released male individuals carrying the female-specific sterilization gene is not particularly limited as long as it allows the reduction of the wild population cells as a result of mating with female individuals in the wild population. The population of the wild population before the start of release per release is, for example, 1% or more, preferably 5% or more. If the number of individuals released is too small, the gene loss associated with female infertility cannot be covered, and the equilibrium state cannot be reduced any further. Alternatively, the extermination effect is weak, and the period required for the fertile female to disappear from the wild population becomes long. From the viewpoint of enhancing the extermination effect, the larger the number of male individuals carrying the female-specific sterilization gene to be released, the better, and there is no upper limit for the number of individuals, but if the number of released individuals is too large, it will be released. Ecological damage and (in the case of fish) fishery damage caused by individuals occur. Therefore, the number of male individuals carrying the female-specific sterilization gene to be released is, for example, 20% or less, preferably 10% or less of the number of individuals in the wild population. That is, the number of male individuals carrying the female-specific sterilization gene to be released is preferably 1 to 20%, more preferably 5 to 10%, and even more preferably 6 to 9% of the number of individuals in the wild population. %. In addition, since the release is calculated on the assumption that it will be released to the joining group one year after breeding, if it is released in less than one year due to cost etc., the mortality rate during the rest is appropriately taken into consideration. The amount of release is calculated.
雌特異的不妊化遺伝子を保持する雄個体の放出は、年間1回のみであってもよいが、駆除効果を増強する観点から、生態系に悪影響がない限りは複数回繰り返しても良い。放出の間隔は、対象生物種の産卵周期の例えば、1/3〜3倍、好ましくは、1/2〜2倍、より好ましくは、産卵周期と同一である。例えば、1年に1回産卵する生物種(例、魚類)を対象とする場合、例えば、2か月〜3年に1回、好ましくは、6ヶ月〜2年に1回、より好ましくは1年に1回、雌特異的不妊化遺伝子を保持する雄個体を放出する。各放出回において放出する雌特異的不妊化遺伝子を保持する雄個体の個体数の範囲は、上述の量を放流回数で除した値を基準とするが、生態系に悪影響がない限りはそれを超えてもよい。 The release of the male individual carrying the female-specific sterilization gene may be released only once a year, but may be repeated multiple times as long as the ecosystem is not adversely affected from the viewpoint of enhancing the extermination effect. The interval of release is, for example, 1/3 to 3 times, preferably 1/2 to 2 times, more preferably the same as the spawning cycle of the target species. For example, when targeting a species that lays eggs once a year (eg, fish), for example, once every two months to three years, preferably once every six months to two years, more preferably 1 Once a year, male individuals carrying the female-specific sterilization gene are released. The range of the number of male individuals carrying the female-specific sterilization gene released at each release is based on the above amount divided by the number of releases, but this should be used as long as there is no adverse effect on the ecosystem. It may be exceeded.
駆除効果を増強する観点からは、生態系に悪影響がない限りは放出回数が多いほど好ましい。理論的には、放出回数の上限値はないが、例えば、野生個体群中の稔性雌個体数が、放出開始前と比較して減少したことが確認されるまで、雌特異的不妊化遺伝子を保持する雄個体の放出を繰り返す。減少位で放出を止めることは、標的とする野生個体群数の回復につながるため、避けるべきである。好ましくは、野生個体群中の稔性雌個体数が、確認されなくなるまで、あるいはモニタリングによって集団中の雌特異的不妊化遺伝子の占有率が100%に達したことが確認されるまで、あるいは繁殖期に稚魚の発生が確認されなくなるまで、雌特異的不妊化遺伝子を保持する雄個体の放出を繰り返す。稔性雌個体の存在が確認されなくなった後は、雌特異的不妊化遺伝子を保持する雄個体の放出を停止してもよいし、少数の稔性雌個体が残存するリスクを低減するためや、他からの自然あるいは人為的移入個体の繁殖による増殖を抑制する目的で、一定の回数あるいは他所からの移入のリスクが完全になくなるまで継続して、雌特異的不妊化遺伝子を保持する雄個体の放出を継続してもよい。 From the viewpoint of enhancing the extermination effect, it is preferable that the number of releases is large as long as the ecosystem is not adversely affected. Theoretically, there is no upper limit on the number of releases, but for example, female-specific sterilization genes until it is confirmed that the number of fertile females in the wild population has decreased compared to before the start of release. Repeated release of male individuals that retain. Stopping release at the reduced position should be avoided as it will lead to recovery of the target wild population. Preferably, until the fertile female population in the wild population is no longer confirmed, or until monitoring confirms that the occupancy of the female-specific sterilization gene in the population has reached 100%, or reproduction. The release of male individuals carrying the female-specific sterilization gene is repeated until the development of fry is no longer confirmed during the period. After the presence of fertile females is no longer confirmed, the release of males carrying the female-specific sterilization gene may be stopped, or to reduce the risk of remaining a small number of fertile females. , Male individuals carrying the female-specific sterilization gene for the purpose of suppressing the breeding growth of naturally or artificially transferred individuals from other places, for a certain number of times or until the risk of transfer from other places is completely eliminated. May continue to be released.
一態様において、本発明の方法において、雌特異的不妊化遺伝子を保持する雄個体の放出と、野生個体群の物理的駆除(野生個体群の捕獲及び系外への排除)とを組み合わせてもよい。または、増殖中の個体群の制御においては組み合わせることが必要である。この際、捕獲した個体が、放出した雌特異的不妊化遺伝子を保持する雄個体である場合には、当該野生個体群中に再度放出することにより、駆除効果の更なる増強が期待できる。このような再放出を容易にするため、少なくとも放出する雌特異的不妊化遺伝子を保持する雄個体は、識別可能となるように標識することが好ましい。放出する雄個体の標識としては、鰭カット、イラストマー標識等を挙げることが出来るが、これらに限定されない。野生個体群の物理的駆除は、できるだけ長い期間続ける方が、高い駆除効果が期待できるので、好ましい。例えば、モニタリングによって集団中の雌特異的不妊化遺伝子の占有率がある程度の割合になるまで、例えば、50%以上、好ましくは70%以上、より好ましくは80%以上、更に好ましくは90%以上、最も好ましくはモニタリングによって野生個体群が確認できなくなるまで(占有率100%)となるまで、野生個体群の物理的駆除を続ける。特に、雌特異的不妊化遺伝子を保持する個体として、超雄個体を使用しない場合(例えば、XY雄、XY雌、YY雌)には、雌特異的不妊化遺伝子の占有率が100%となる前に、物理的駆除を止めてしまうと、集団の個体数が回復してしまうおそれがあるため、モニタリングによって野生個体群が確認できなくなるまで(占有率100%)野生個体群の物理的駆除を続けることが望ましい。これに対して、雌特異的不妊化遺伝子を保持する超雄個体を用いた場合には、雌特異的不妊化遺伝子の占有率が100%に到達していなくても、集団中の雌特異的不妊化遺伝子の占有率がある程度の割合(例えば、50%以上、好ましくは70%以上、より好ましくは80%以上、更に好ましくは90%以上)になった段階で、物理的駆除を止めても、集団の個体数は減少し続け、根絶を達成可能であり得る。 In one aspect, in the method of the invention, the release of a male individual carrying a female-specific sterilization gene may be combined with the physical extermination of the wild population (capture of the wild population and exclusion of the system). Good. Alternatively, it is necessary to combine them in the control of the growing population. At this time, if the captured individual is a male individual carrying the released female-specific sterilization gene, further enhancement of the extermination effect can be expected by releasing it again into the wild population. In order to facilitate such re-release, it is preferable that at least the male individual carrying the female-specific sterilization gene to be released is labeled so that it can be identified. Examples of the label of the male individual to be released include, but are not limited to, a fin cut, an illustrator label, and the like. It is preferable to continue the physical extermination of the wild population for as long as possible because a high extermination effect can be expected. For example, until the occupancy of the female-specific sterilization gene in the population reaches a certain percentage by monitoring, for example, 50% or more, preferably 70% or more, more preferably 80% or more, still more preferably 90% or more. Most preferably, physical extermination of the wild population is continued until the wild population cannot be confirmed by monitoring (occupancy rate 100%). In particular, when a super-male individual is not used as an individual carrying the female-specific sterilization gene (for example, XY male, XY female, YY female), the occupancy rate of the female-specific sterilization gene is 100%. If the physical extermination is stopped before, the population of the population may recover, so until the wild population cannot be confirmed by monitoring (occupancy rate 100%), the physical extermination of the wild population should be carried out. It is desirable to continue. On the other hand, when a super-male individual carrying a female-specific sterilization gene is used, even if the occupancy rate of the female-specific sterilization gene does not reach 100%, it is female-specific in the population. Even if the physical extermination is stopped when the sterilization gene occupancy rate reaches a certain ratio (for example, 50% or more, preferably 70% or more, more preferably 80% or more, still more preferably 90% or more). , Population populations continue to decline and eradication may be achievable.
以下の実施例により本発明をより具体的に説明するが、実施例は本発明の単なる例示を示すものにすぎず、本発明の範囲を何ら限定するものではない。 The present invention will be described in more detail with reference to the following examples, but the examples are merely examples of the present invention and do not limit the scope of the present invention in any way.
[試験例1]
<ブルーギルを念頭に想定した架空魚種での簡易シミュレーション>
シミュレーションの条件は、以下の通りである。
・初期個体数は、0+魚は10000尾、1+魚は0+魚の50%(5000尾)、2+魚は1+魚の50%(2500尾)、3+魚は2+魚の50%(1250尾)、4+魚以上は3+魚の50%(625尾)、と想定、次の年級へ移行する際の死亡率は50%とした。なお年級の基点は繁殖期直前のため、1+魚が2才魚となる。本モデルでは2+魚=(3歳魚)。
・リッカー型、ベバートン・ホルト型等、密度効果は一切考慮しない。想定した最大値で常に繁殖するものと仮定した。
・増殖防止に必要な親魚駆除率をフィールド試験の文献などから60%と見積もり、その駆除圧で個体群が平衡状態になるよう増殖率を設定した。具体的には繁殖に関与する年級群雌の約16.1倍が翌年の0+魚の雄雌各資源に移行し、資源全体の年間増殖率は駆除を行わらなければ143.6%に収束する。
・60%を初期親魚駆除率として親魚の物理駆除を開始する。そこから密度に応じ駆除圧が下がるモデルを使用した。
・親魚駆除率は、0.6の(初期個体数/その年の個体数)乗で設定した。
・閉鎖系であり、系外からの野生ブルーギルの移入はない。
・当初資源量の6%の個体を毎年繁殖1年後の加入群に対して放流する。
・雌特異的不妊化遺伝子は、ヘテロ接合体では雌を不妊化しないが、ホモ接合体では雌を不妊化する。
・遺伝子の親魚間で存在比率の差異と各年級群での産卵数の違いは無視し、親魚全体の遺伝子の比率と親魚全体で平均して産卵するとして、次世代の遺伝子の比率を算出している。
・雌雄比は1:1とする。
繁殖可能なXX雌個体がいなくなる時間を根絶時間とした。図1〜5において、縦軸は%、横軸は放流開始からの年数をそれぞれ示す。
[Test Example 1]
<Simple simulation with fictitious fish species with bluegill in mind>
The conditions of the simulation are as follows.
・ The initial number of individuals is 0 + 10000 fish, 1 + fish 0 + 50% of fish (5000 fish), 2 + fish 1 + 50% of fish (2500 fish), 3 + fish 2 + 50% of fish (1250 fish), 4 + fish. The above is assumed to be 3 + 50% of fish (625 fish), and the mortality rate when moving to the next grade is 50%. Since the base point of the year is just before the breeding season, 1+ fish will be 2 years old. In this model, 2+ fish = (3 year old fish).
・ The density effect is not considered at all, such as the licker type and Beberton Holt type. It was assumed that it would always breed at the assumed maximum value.
-The parent fish extermination rate required to prevent proliferation was estimated to be 60% from the literature of field tests, and the proliferation rate was set so that the population would be in an equilibrium state at the extermination pressure. Specifically, about 16.1 times the females of the age group involved in breeding shift to 0 + male and female resources of the fish in the following year, and the annual growth rate of the entire resource converges to 143.6% unless extermination is performed.
・ Start physical extermination of parent fish with 60% as the initial parent fish extermination rate. From there, we used a model in which the extermination pressure decreases according to the density.
-The parent fish extermination rate was set to the power of 0.6 (initial population / number of individuals in the year).
・ It is a closed system, and there is no import of wild bluegill from outside the system.
-Release 6% of the initial stock to the recruiting group one year after breeding every year.
-Female-specific sterilization genes do not sterilize females in heterozygotes, but sterilize females in homozygotes.
・ Ignore the difference in the abundance ratio between the parent fish of the gene and the difference in the number of eggs laid in each age group, and calculate the ratio of the next generation gene assuming that the ratio of the gene of the whole parent fish and the average of all the parent fish lay eggs. ing.
・ The male-female ratio is 1: 1.
The time when there were no reproductive XX females was defined as the eradication time. In Figures 1 to 5, the vertical axis shows% and the horizontal axis shows the number of years since the start of discharge.
(1)当初資源量の6%のYY雄個体を毎年放流した場合、100年経っても根絶できなかった(図1)。
(2)雌特異的不妊化遺伝子1つをホモ接合性に搭載した雄個体を用いた場合、不妊化率は最高の状況でも50%で、増殖防止に必要な親魚の駆除率60%(不妊化率相当で72%程度)に到底満たないため、親魚の駆除率が下がるにしたがい資源量は平衡状態になり根絶には至らなかった。駆除効果はYY雄個体を用いた場合より劣っていた(図2)。
(3)雌特異的不妊化遺伝子2つをホモ接合性に搭載した雄個体を用いた場合、根絶可能(繁殖可能な雌個体根絶まで約75年)であり、その駆除効果はYY雄個体を用いた場合より優れていた(図3)。
(4)雌特異的不妊化遺伝子2つをホモ接合性に搭載したYY雄個体を用いた場合、双方の効果によりさらに強い駆除力が得られた。シミュレーションでは、放流開始から約50年で繁殖可能な雌個体が根絶した(図4)。
(5)雌特異的不妊化遺伝子2つのホモ接合体であるYY雄個体を放流し、更に、放流魚を標識し、駆除対象から外すことにより、さらに強い駆除効果が得られた。放流魚の駆除率をそれ以外の半分と想定したとき、放流開始から約30年で繁殖可能な雌個体が根絶し、資源量を23.5%にまで減少させることができた(図5)。
(1) When 6% of the initial resource amount of YY male individuals was released every year, it could not be eradicated even after 100 years (Fig. 1).
(2) When a male individual carrying one female-specific infertility gene homozygously is used, the infertility rate is 50% even in the highest situation, and the sterilization rate of the parent fish required for growth prevention is 60% (infertility). As the extermination rate of parent fish decreased, the amount of resources became equilibrium and eradication was not achieved. The extermination effect was inferior to that when YY male individuals were used (Fig. 2).
(3) When a male individual carrying two female-specific sterilization genes homozygously is used, it can be eradicated (about 75 years until the eradication of a reproductive female individual), and its extermination effect is that of a YY male individual. It was better than when used (Fig. 3).
(4) When a YY male individual carrying two female-specific sterilization genes homozygously was used, a stronger extermination power was obtained due to the effects of both. In the simulation, reproductive female individuals were eradicated about 50 years after the start of release (Fig. 4).
(5) Female-specific sterilization genes A stronger extermination effect was obtained by releasing YY male individuals, which are homozygotes of two genes, and further labeling the released fish and excluding them from the extermination target. Assuming that the extermination rate of released fish was half that of the other, the reproductive female individuals were eradicated in about 30 years from the start of release, and the abundance could be reduced to 23.5% (Fig. 5).
本シミュレーションでは、最終段階でも放流魚自身に起因する一定の個体数が保たれているので、物理駆除圧は0になっていない。放流魚がいることで逆に駆除圧を保てている面はある一方で、実際を想定すると、駆除しているのはほとんど放流魚ということになり、コスト的には無駄が多い面がある。最終的にはコストがかさむ物理駆除を放棄したいところであり、そのためには物理駆除が0でもひきつづき個体数を減らしていくために、放流魚においては高い不妊化率を達成できる4遺伝子以上の多重搭載や、YY個体への多重搭載、さらにはその組み合わせが望ましい。 In this simulation, the physical extermination pressure is not 0 because a certain number of individuals caused by the released fish itself is maintained even in the final stage. On the contrary, the presence of released fish keeps the extermination pressure, but assuming the actual situation, most of the released fish are exterminated, which is wasteful in terms of cost. .. Ultimately, we would like to abandon the costly physical extermination, and for that purpose, in order to continue to reduce the number of individuals even if the physical extermination is 0, multiple loading of 4 genes or more that can achieve a high sterilization rate in released fish , Multiple loading on YY individuals, and combinations thereof are desirable.
[試験例2]
放出する雄個体が保持する不妊遺伝子の数と、産卵雌子孫の雌の不妊化率との関係を調べた。各雌特異的不妊化遺伝子は異なる連鎖群と仮定した。
[Test Example 2]
The relationship between the number of infertility genes carried by the released males and the infertility rate of females of spawning female offspring was investigated. Each female-specific sterilization gene was assumed to be a different linkage group.
不妊化率は、1遺伝子の場合50%、2遺伝子の場合75%、3遺伝子の場合87.5%、4遺伝子の場合93.75%と算出された。従って2以上の雌特異的不妊化遺伝子を用いることにより、雌子孫を効率的に不妊化し得ると考えられた。 The infertility rate was calculated to be 50% for 1 gene, 75% for 2 genes, 87.5% for 3 genes, and 93.75% for 4 genes. Therefore, it was considered that female offspring could be efficiently sterilized by using two or more female-specific sterilization genes.
[試験例3]
雌特異的不妊化遺伝子により、個体群を根絶するのに必要な不妊化遺伝子の数を検討した。具体的には、親魚駆除率(%)を36〜100%の範囲で段階的に設定し、その親魚駆除率を本シミュレーション上で達成するために必要な不妊化遺伝子の数を検討した。
[Test Example 3]
The number of sterilization genes required to eradicate the population was examined by female-specific sterilization genes. Specifically, the parent fish extermination rate (%) was set stepwise in the range of 36 to 100%, and the number of sterilizing genes required to achieve the parent fish extermination rate on this simulation was examined.
不妊化率が親魚駆除率より高いのは、雌個体が数年間、再生産を行うためである。すなわち、毎年継続的な60%の親魚駆除を行うということは、親魚の1年目に60%駆除され、生き残った個体が2年目に再度60%駆除され、3年目以降も同様に駆除され続けるということを意味しているからである。仮に1年で産卵して死んでしまう年魚なら、親魚駆除率と不妊化率は一致する。個体数の増加を抑制するのに必要な親魚駆除率を60%と想定すると、本モデルにおいては、個体群増殖抑制には、2以上の雌特異的不妊化遺伝子を必要とすることを示している。一方根絶には親魚の駆除率にして80から90%程度の継続した駆除が必要と考えられていることから、3個から5個の雌特異的不妊化遺伝子を保持した魚を継続的に放流すれば、親魚の密度が低下して物理駆除圧がまったく担保できなくなっても、根絶可能と考えられた。なお放流魚をYY雄にすれば、必要とされる搭載遺伝子数は少なくて済む可能性があり、少なくしなければ、根絶時間を早められると考えられる。 The sterilization rate is higher than the parent fish extermination rate because females reproduce for several years. In other words, continuous 60% extermination of parent fish every year means that 60% of the parent fish will be exterminated in the first year, 60% of the surviving individuals will be exterminated again in the second year, and the same will be exterminated after the third year. This is because it means that it will continue to be done. If it is an annual fish that lays eggs and dies in one year, the parent fish extermination rate and the sterilization rate are the same. Assuming that the parent fish extermination rate required to suppress the increase in population is 60%, this model shows that two or more female-specific sterilization genes are required to suppress population growth. There is. On the other hand, since it is thought that eradication requires continuous extermination of the parent fish at a rate of about 80 to 90%, fish carrying 3 to 5 female-specific sterilization genes are continuously released. Then, even if the density of the parent fish decreases and the physical extermination pressure cannot be guaranteed at all, it is considered possible to eradicate it. If the released fish is YY male, the number of loaded genes required may be small, and if it is not reduced, the eradication time may be shortened.
[試験例4]
<ブルーギルのfoxl2、fshr塩基配列決定、及びfoxl2への変異の導入>
ブルーギルの全ゲノム配列を決定し、雌成熟関連遺伝子 foxl2、及びfshrの塩基配列を探索した。foxl2の推定ゲノム構造を図6及び7に示す。また、foxl2の推定cDNA配列を配列番号1に、推定アミノ酸配列を配列番号2に、それぞれ示す。ブルーギルfoxl2のORFは、918塩基からなり(終始コドン含む)、イントロンを含まないと推定された。ブルーギルfoxl2ゲノムのヌクレオチド配列は、ヨーロピアンシーバスのfoxl2と高い相同性を有していた。
[Test Example 4]
<Bluegill foxl2 , fshr sequencing, and introduction of mutations into foxl2>
The entire genome sequence of bluegill was determined, and the nucleotide sequences of the female maturation-related genes foxl2 and fshr were searched. The estimated genomic structure of foxl2 is shown in Figures 6 and 7. The estimated cDNA sequence of foxl2 is shown in SEQ ID NO: 1, and the estimated amino acid sequence is shown in SEQ ID NO: 2. The ORF of bluegill foxl2 consisted of 918 bases (including stop codons) and was estimated to be intron-free. The nucleotide sequence of the bluegill foxl2 genome was highly homologous to European sea bass foxl2.
ブルーギルfshrのゲノム配列は、以下のように決定した。即ち、メダカfshr(NM_001201514)のcDNA配列をブルーギルゲノム配列に対してblast解析に付したところ、一部がsca.212(5Mb)にヒットした。ヒット周辺領域で遺伝子予測(FGENESH:tonguefishモデル)したところ、677アミノ酸(又は707アミノ酸)の蛋白質をコードする推定遺伝子領域が同定された。この677アミノ酸長のアミノ酸配列を、NCBI blastp解析に付したところ、このアミノ酸配列は、魚類fshrのアミノ酸配列と高い相同性を有することが判明した。特にニベ類fshrのアミノ酸配列に対する相同性は90%以上であった。従って、得られた推定遺伝子領域にブルーギルfshrが含まれると考えられた。メダカとブルーギルとの間で、fshr遺伝子構造はよく似ていた。また、メダカとブルーギルとの間で、fshr遺伝子周辺の遺伝子の位置及び向きが保存されていた。 The genome sequence of bluegill fshr was determined as follows. That is, when the cDNA sequence of medaka fshr (NM_001201514) was subjected to blast analysis against the bluegill genome sequence, a part of it hit sca.212 (5Mb). Gene prediction (FGENESH: tonguefish model) in the region around the hit identified a putative gene region encoding a protein of 677 amino acids (or 707 amino acids). When the amino acid sequence having a length of 677 amino acids was submitted to NCBI blastp analysis, it was found that this amino acid sequence had high homology with the amino acid sequence of fish fshr. In particular, the homology of the croaker fshr to the amino acid sequence was 90% or more. Therefore, it was considered that the obtained putative gene region contained bluegill fshr. The fshr gene structure was very similar between medaka and bluegill. In addition, the position and orientation of genes around the fshr gene were conserved between medaka and bluegill.
獲得したブルーギルfoxl2及びfshrゲノム配列に基づき、CRISPR/Cas9システムで遺伝子を切断・破壊するための特異的なガイドRNA(crRNA)を設計した。foxl2については3か所、fshrについては2か所に、crRNAを設計した。foxl2に対するcrRNAを図8に示す。 Based on the acquired bluegill foxl2 and fshr genomic sequences, we designed a specific guide RNA (crRNA) for cleaving and disrupting genes with the CRISPR / Cas9 system. We designed crRNAs in 3 places for foxl2 and 2 places for fshr. The crRNA for foxl2 is shown in Figure 8.
foxl2に対するcrRNAであるfoxl2_g1(配列番号3)(ファスマック)を、Cas9(人工ヌクレアーゼ)のmRNA(addgene(pCS2+hSpCas9)のCas9 RNA又はサーモフィッシャー GeneArt(登録商標)CRISPR nuclease mRNA)とガイドRNAとなるtracrRNA(ファスマック)と共に、ブルーギル受精卵へ顕微注入すると、foxl2ゲノム中に変異が導入された子孫個体が多数得られた。変異導入により生じた停止コドンにより、FOXL2タンパク質のアミノ酸配列の大部分が欠損していることから、得られた変異個体においてはFOXL2タンパク質の機能が重度に阻害されていると想定された(図9及び10)。 foxl2_g1 (SEQ ID NO: 3) (Fasmac), which is a crRNA against foxl2, is combined with Cas9 (artificial nuclease) mRNA (addgene (pCS2 + hSpCas9) Cas9 RNA or Thermofisher GeneArt® CRISPR nuclease mRNA) and guide RNA. Microinjection into bluegill fertilized eggs together with tracrRNA (Fasmac) resulted in a large number of progeny individuals with mutations introduced into the foxl2 genome. Since most of the amino acid sequence of the FOXL2 protein is deleted by the stop codon generated by the mutation introduction, it was assumed that the function of the FOXL2 protein was severely inhibited in the obtained mutant individual (Fig. 9). And 10).
[試験例5]
<根絶シミュレーション(3雌特異的不妊化遺伝子使用まで)>
(目的及び方法)
雌特異的不妊化遺伝子を有する個体を少量ずつ放流し続け、徐々に集団内の雌特異的不妊化遺伝子の占有率を上げ、繁殖力を低下させる「遺伝子制圧法」の効果を、Ferson らにより報告された米国Hyco 湖におけるブルーギル個体群モデル(リッカー型:R型)及びその改変モデル(ベバートン・ホルト型:B-H型)を用いたシミュレーションにより検証した。放流雄に搭載する雌特異的不妊化遺伝子数を1、2および3にした場合であって、それぞれの雌特異的不妊化遺伝子をXY雄にホモ型、YY雄にホモ型、およびYY雌にヘテロ型で搭載した場合について、検証した。
[Test Example 5]
<Eradication simulation (up to the use of 3 female-specific sterilization genes)>
(Purpose and method)
According to Ferson et al., The effect of "gene suppression method" that keeps releasing individuals with female-specific sterilization genes little by little, gradually increases the occupancy rate of female-specific sterilization genes in the population, and lowers fertility. It was verified by simulation using the reported bluegill population model (Ricker type: R type) and its modified model (Beverton Holt type: BH type) in Lake Hyco in the United States. When the number of female-specific sterilization genes carried on the released males is set to 1, 2 and 3, each female-specific sterilization gene is homozygous for XY males, homozygous for YY males, and YY females. It was verified when it was mounted in a heterozygous manner.
(結果)
(1)遺伝子制圧シナリオI:XY雄に雌特異的不妊化遺伝子をホモ型で搭載した場合
1〜3個の雌特異的不妊化遺伝子をホモ型でXY雄に搭載した場合は、物理的駆除併用下で、個体群を根絶可能であった。根絶に要する時間は、2遺伝子、3遺伝子と搭載遺伝子を多重化していくにつれ短くなった。しかしながら、物理的駆除を根絶直前で完全に放棄した場合は、個体数は回復し、放流だけ続けても個体群を根絶させることは出来なかった(図11および12 3個の雌特異的不妊化遺伝子を搭載した場合のみ示す)。
(result)
(1) Gene suppression scenario I: When a female-specific sterilization gene is homozygously loaded on an XY male
When 1 to 3 female-specific sterilization genes were homozygous for XY males, the population could be eradicated in combination with physical extermination. The time required for eradication became shorter as the loading genes were multiplexed with 2 and 3 genes. However, if physical extermination was completely abandoned shortly before eradication, the population recovered and the population could not be eradicated by continued release (Figs. 11 and 123 female-specific sterilization). Shown only when the gene is loaded).
(2)遺伝子制圧シナリオII:YY雌に雌特異的不妊化遺伝子をヘテロ型で搭載した場合
YY雌による効果と、雌特異的不妊化遺伝子の相乗効果により、駆除力が高まった。しかしながら、卵を産む雌を放流することにより、総個体数の減少が遅く、ほぼ雌を根絶した時点でも両モデルとも20%程度の総個体数が維持された。雌の根絶は早いが、生態系回復のために速やかに総個体数を減少させるという目的にはそぐわない。また、雌の根絶直前に放流をやめると個体数が急速に回復した(図13および14 3個の雌特異的不妊化遺伝子を搭載した場合のみ示す)。
(2) Gene suppression scenario II: When a female-specific sterilization gene is loaded into a YY female in a heterozygous manner
The extermination power was enhanced by the synergistic effect of the YY female and the female-specific sterilization gene. However, by releasing the females that lay eggs, the decrease in the total population was slow, and the total population of about 20% was maintained in both models even when the females were almost eradicated. Females are eradicated quickly, but they do not meet the goal of rapidly reducing total populations to restore the ecosystem. In addition, the population recovered rapidly when the release was stopped immediately before the eradication of females (Fig. 13 and 14 shown only when carrying three female-specific sterilization genes).
(3)遺伝子制圧シナリオIII:YY雄に雌特異的不妊化遺伝子をホモ型で搭載した場合
YY雄単独の場合でも子孫は全て雄となり、雌が生じないため、放流魚が一定割合以上に達すると、根絶直前に物理的駆除を放棄しても、放流のみで個体群を根絶できた(図15および16)。また、YY雄へ雌特異的不妊化遺伝子を搭載して放流した場合、双方の相乗効果により駆除力が高まり、更に不妊化遺伝子の数を1〜3に増加することで、より根絶時間は早まった(図17-20)。
(3) Gene suppression scenario III: When a female-specific sterilization gene is homozygously loaded on a YY male
Even in the case of YY male alone, all offspring are male and females are not produced, so when the number of released fish reaches a certain percentage or more, even if physical extermination is abandoned immediately before eradication, the population could be eradicated only by release ( Figures 15 and 16). In addition, when a female-specific sterilization gene is loaded and released into a YY male, the extermination power is enhanced by the synergistic effect of both, and the number of sterilization genes is increased to 1 to 3, so that the eradication time is shortened. (Fig. 17-20).
(結論)
YY雄に雌特異的不妊化遺伝子を搭載すれば、根絶直前(物理的駆除は困難な段階)に駆除を中止しても、放流のみで個体群を根絶させることが出来る。その際、雌特異的不妊化遺伝子を3重搭載すると、駆除率は、YY雄の2倍、YY雌と同程度の高い駆除効果を有する。従って、YY雄に雌特異的不妊化遺伝子を多重搭載するのが効果的であることが示された。
(Conclusion)
If a female-specific sterilization gene is carried in a YY male, the population can be eradicated only by release even if the extermination is stopped immediately before the eradication (a stage where physical extermination is difficult). At that time, when the female-specific sterilization gene is triple-loaded, the extermination rate is twice that of the YY male, and the extermination effect is as high as that of the YY female. Therefore, it was shown that it is effective to multiplex the female-specific sterilization gene in YY males.
[試験例6]
<根絶シミュレーション(駆除率固定)>
物理的駆除だけで当所個体数が30%で平衡になると仮定した駆除率(51.4%)条件下での、高生残ベバートン・ホルト型モデルにおいて、放流量を変化させた場合の根絶に要する年数を計算した。
[Test Example 6]
<Eradication simulation (fixed extermination rate)>
The number of years required for eradication when the discharge is changed in the high-survival Beberton-Holt model under the condition of the extermination rate (51.4%) assuming that the population of our plant is in equilibrium at 30% only by physical extermination. Calculated.
* 実際にはスニーカーがいるため、この条件で根絶を達成できる可能性は低い。
** スニーカーにより卵の2割が受精すると仮定した場合。
※ 雌の根絶は、YY雌、並びにYY雌と遺伝子制圧の組み合わせは、YY雄と遺伝子制圧の組み合わせよりも早いが、総個体数がなかなか減らないという問題がある。総個体数の面では、YY雄と遺伝子制圧の組み合わせが優れている。
* Since there are actually sneakers, it is unlikely that eradication can be achieved under these conditions.
** Assuming that 20% of eggs are fertilized with sneakers.
* Eradication of females is faster in the combination of YY females and YY females and gene suppression than in the combination of YY males and gene suppression, but there is a problem that the total number of individuals does not decrease easily. In terms of total population, the combination of YY males and gene suppression is excellent.
本発明の方法により、低コストで、環境への影響をできる限り抑制しながら、外来生物等を根絶することが可能である。 According to the method of the present invention, it is possible to eradicate alien species and the like at low cost while suppressing the impact on the environment as much as possible.
Claims (16)
(I)雌特異的成熟遺伝子の機能的欠失変異体である雌特異的不妊化遺伝子をホモ接合性に保持する生殖原細胞又は始原生殖細胞を、宿主不妊雌個体の生殖腺へ取り込まれるように当該宿主不妊雌個体内へ移植することにより、当該生殖原細胞又は始原生殖細胞から雌特異的不妊化遺伝子を保持する卵を発生させること、
(II)当該卵と、雌特異的不妊化遺伝子を保持する精子とを交配させることにより、雌特異的不妊化遺伝子をホモ接合性に保持する子孫個体を生じさせること、であって
個体の生物種が魚類であり、子孫個体が雄である方法。 Method for producing offspring individuals homozygously retaining the female-specific sterilization gene, including the following steps:
(I) To incorporate germ cells or primordial germ cells that homozygously retain the female-specific sterilization gene, which is a functional deletion variant of the female-specific maturation gene, into the germ gland of the host infertile female individual. By transplanting into the host infertile female individual, the germ cell or the primordial germ cell can generate an egg carrying the female-specific sterilization gene.
(II) and the egg, by mating the sperm for holding the female-specific sterilizing gene, a female-specific sterilizing gene A to cause offspring individuals held in homozygous,
A method in which the species of an individual is a fish and the offspring are male .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015053498 | 2015-03-17 | ||
JP2015053498 | 2015-03-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016171797A JP2016171797A (en) | 2016-09-29 |
JP6837223B2 true JP6837223B2 (en) | 2021-03-03 |
Family
ID=57007764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016054558A Active JP6837223B2 (en) | 2015-03-17 | 2016-03-17 | How to reduce the biological population |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6837223B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013013405A (en) * | 2011-06-09 | 2013-01-24 | Ritsumeikan | Gnathopogon cell strain, production method and use of the same |
KR20150100651A (en) * | 2012-10-30 | 2015-09-02 | 리컴비네틱스 인코포레이티드 | Control of sexual maturation in animals |
-
2016
- 2016-03-17 JP JP2016054558A patent/JP6837223B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016171797A (en) | 2016-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Benfey | Effectiveness of triploidy as a management tool for reproductive containment of farmed fish: Atlantic salmon (Salmo salar) as a case study | |
Devlin et al. | Containment of genetically altered fish with emphasis on salmonids | |
Dunham et al. | Review of the status of aquaculture genetics | |
Penman et al. | Genetics for the management and improvement of cultured tilapias | |
Zhang et al. | Induced gynogenesis in grass carp (Ctenopharyngodon idellus) using irradiated sperm of allotetraploid hybrids | |
Kobayashi et al. | Production of cloned amago salmon Oncorhynchus rhodurus | |
Arai et al. | Chromosome manipulation techniques and applications to aquaculture | |
Robbins et al. | Dispersal, reproductive strategies, and the maintenance of genetic variability in mosquitofish (Gambusia affinis) | |
Mayer | The role of reproductive sciences in the preservation and breeding of commercial and threatened teleost fishes | |
Morgan et al. | Effective UV dose and pressure shock for induction of meiotic gynogenesis in southern flounder (Paralichthys lethostigma) using black sea bass (Centropristis striata) sperm | |
Mayer et al. | Conservation of teleost fishes: application of reproductive technologies | |
Kato | Breeding studies on red sea bream Pagrus major: mass selection to genome editing | |
Pandian et al. | Androgenesis and conservation of fishes | |
Bryan | Biological sciences: further studies on consecutive matings in the Anopheles gambiae complex | |
Ribolli et al. | Genetic evidence supports polygamous mating system in a wild population of Prochilodus lineatus (Characiformes: Prochilodontidae), a Neotropical shoal spawner fish | |
Makhrov et al. | Genetic methods for the control of alien species | |
Na-Nakorn et al. | Allotriploidy increases sterility in the hybrid between Clarias macrocephalus and Clarias gariepinus | |
Ghigliotti et al. | Induction of meiotic gynogenesis in Atlantic cod (Gadus morhua L.) through pressure shock | |
Gall et al. | Genetics in Aquaculture: Proceedings of the Fourth International Symposium on Genetics in Aquaculture | |
JP5522395B2 (en) | How to raise fish | |
JP6837223B2 (en) | How to reduce the biological population | |
JP3635187B2 (en) | Method of breeding flounder using completely homozygote, method of raising flounder and flounder | |
Yu et al. | Fertility investigation in F1 hybrid and karyotype analysis of backcross progeny from Misgurnus anguillicaudatus and Paramisgurnus dabryanus | |
Fujimoto et al. | Reproductive capacity of neo-tetraploid loaches produced using diploid spermatozoa from a natural tetraploid male | |
Coogan | Genetic Technologies for Growth Enhancement in Catfish |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20160415 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200414 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200611 |
|
RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20200722 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200812 |
|
RD15 | Notification of revocation of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7435 Effective date: 20200813 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210126 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6837223 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |