JP6836893B2 - Porous dried food manufacturing method and porous dried food manufacturing equipment - Google Patents

Porous dried food manufacturing method and porous dried food manufacturing equipment Download PDF

Info

Publication number
JP6836893B2
JP6836893B2 JP2016244717A JP2016244717A JP6836893B2 JP 6836893 B2 JP6836893 B2 JP 6836893B2 JP 2016244717 A JP2016244717 A JP 2016244717A JP 2016244717 A JP2016244717 A JP 2016244717A JP 6836893 B2 JP6836893 B2 JP 6836893B2
Authority
JP
Japan
Prior art keywords
drying
dried
producing
porous
dried food
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016244717A
Other languages
Japanese (ja)
Other versions
JP2018093838A (en
Inventor
和浩 沖園
和浩 沖園
憲志 渡邉
憲志 渡邉
直人 樋高
直人 樋高
Original Assignee
アルバック九州株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルバック九州株式会社 filed Critical アルバック九州株式会社
Priority to JP2016244717A priority Critical patent/JP6836893B2/en
Publication of JP2018093838A publication Critical patent/JP2018093838A/en
Application granted granted Critical
Publication of JP6836893B2 publication Critical patent/JP6836893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Preparation Of Fruits And Vegetables (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Storage Of Fruits Or Vegetables (AREA)

Description

本発明は、乾燥食品、特に多数の微孔が形成された多孔質乾燥食品の製造方法及び多孔質乾燥食品製造装置に関する。 The present invention relates to a method for producing a dried food, particularly a porous dried food in which a large number of micropores are formed, and an apparatus for producing a porous dried food.

野菜、果実、肉類、魚類といった食品を乾燥食品に加工する種々の技術が開発されている。特に近年では、スナック食品としてそのまま食するに適した乾燥食品も普及しており、味や栄養価に加え、食感も重要となっている。食品に多数の微孔が形成された多孔質乾燥食品はサクサクとした食感が得られ、そのまま食するにも適している。 Various techniques have been developed to process foods such as vegetables, fruits, meats and fish into dried foods. In particular, in recent years, dried foods that are suitable for eating as they are as snack foods have become widespread, and in addition to taste and nutritional value, texture is also important. Porous dried foods with many fine pores formed in the foods have a crispy texture and are suitable for eating as they are.

例えば特許文献1には野菜や果実といった食品に酵素処理を施した後、減圧環境化で乾燥させる多孔質乾燥食品の製造方法が開示されている。この製造方法では、酵素処理によって食品を構成する細胞を破壊することにより食品に多数の孔を形成し、食感に優れた多孔質乾燥食品を製造することが可能とされている。 For example, Patent Document 1 discloses a method for producing a porous dried food, which is obtained by subjecting foods such as vegetables and fruits to an enzyme treatment and then drying them in a reduced pressure environment. In this production method, it is possible to produce a porous dried food having an excellent texture by forming a large number of pores in the food by destroying cells constituting the food by enzyme treatment.

特開平8−210号公報JP-A-8-210

上記特許文献1に記載の孔質乾燥食品の製造方法では、上述のように酵素処理が必要であり、酵素は細胞壁のセルロースに作用するとされている。したがって、肉類や魚類といった野菜や果実以外の食品に同様に適用することができない。本発明者らは検討の結果、酵素処理を要さず、種々の食品に適用することが可能な多孔質乾燥食品の製造技術を開発した。 The method for producing a dried pore food described in Patent Document 1 requires enzyme treatment as described above, and it is said that the enzyme acts on cellulose in the cell wall. Therefore, it cannot be similarly applied to foods other than vegetables and fruits such as meat and fish. As a result of studies, the present inventors have developed a technique for producing a porous dried food that does not require enzyme treatment and can be applied to various foods.

以上のような事情に鑑み、本発明の目的は、食感に優れた多孔質乾燥食品の製造方法及び多孔質乾燥食品製造装置を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a method for producing a porous dried food having an excellent texture and an apparatus for producing a porous dried food.

上記目的を達成するため、本発明の一形態に係る多孔質乾燥食品の製造方法は、冷凍工程と、第一加熱乾燥工程と、真空乾燥工程と、第二加熱乾燥工程とを有する。
上記冷凍工程では、食品である対象物を冷凍する。
上記第一加熱乾燥工程では、冷凍された上記対象物を加熱し、上記対象物の表面に乾燥した層が形成されるように乾燥させる。
上記真空乾燥工程では、上記第一加熱乾燥工程で乾燥された上記対象物を減圧環境下で乾燥させる。
上記第二加熱乾燥工程では、真空乾燥工程で乾燥された上記対象物を加熱し、乾燥させる。
In order to achieve the above object, the method for producing a porous dried food according to one embodiment of the present invention includes a freezing step, a first heating and drying step, a vacuum drying step, and a second heating and drying step.
In the above freezing step, the object which is a food is frozen.
In the first heat-drying step, the frozen object is heated and dried so that a dry layer is formed on the surface of the object.
In the vacuum drying step, the object dried in the first heat drying step is dried in a reduced pressure environment.
In the second heat drying step, the object dried in the vacuum drying step is heated and dried.

この製造方法では、冷凍工程において対象物を冷凍することにより、対象物の組織を破壊し、第一加熱乾燥工程によって水分量を調整する。この状態で真空乾燥を行うことにより対象物を膨張(膨化)させ、第二加熱乾燥工程によって残存する水分を除去する。これにより、多数の微孔が形成された、食感に優れる多孔質乾燥食品を製造することができる。 In this production method, the structure of the object is destroyed by freezing the object in the freezing step, and the water content is adjusted by the first heating and drying step. By performing vacuum drying in this state, the object is expanded (swelled), and the remaining water is removed by the second heating and drying step. As a result, it is possible to produce a porous dried food having a large number of fine pores and having an excellent texture.

上記冷凍工程では、上記対象物の温度を最大氷結晶生成温度帯に30分間以上維持してもよい。 In the freezing step, the temperature of the object may be maintained in the maximum ice crystal formation temperature zone for 30 minutes or more.

対象物の温度を最大氷結晶生成温度帯(−1〜−5℃)に30分間以上維持する冷凍方法は緩慢冷凍と呼ばれ、同温度帯を30分未満で通過する急速冷凍とは区別される。対象物を緩慢冷凍によって冷凍することにより、対象物に含まれる氷結晶のサイズが大きくなり、対象物を構成する細胞が破壊される。これにより、対象物の食感を向上させることが可能である。 A freezing method that maintains the temperature of an object in the maximum ice crystal formation temperature range (-1 to -5 ° C) for 30 minutes or more is called slow freezing, and is distinguished from quick freezing that passes through the same temperature range in less than 30 minutes. To. By freezing the object by slow freezing, the size of the ice crystals contained in the object is increased, and the cells constituting the object are destroyed. Thereby, it is possible to improve the texture of the object.

上記第一乾燥工程では、上記対象物に含まれる水分が含水率45wt%以上65wt%以下になるように上記対象物を乾燥させてもよい。含水率は、対象物の全体重量に対する水分重量の割合をいい、ここでは百分率で表す。 In the first drying step, the object may be dried so that the water content of the object is 45 wt% or more and 65 wt% or less. Moisture content refers to the ratio of the weight of water to the total weight of the object, and is expressed as a percentage here.

第一工程による水分の除去が不足し、65wt%を超える水分が対象物に含まれていると、真空乾燥工程における対象物の膨張が過膨張となり、対象物が破壊される。また、この工程による水分の除去が多すぎ、対象物の含水率が45wt%未満になると、膨張幅が小さく、又は膨張が生じない。このため、第一加熱乾燥工程における含水率は45wt%以上65wt%以下が好適である。 If the removal of water by the first step is insufficient and the target contains more than 65 wt% of water, the target expands in the vacuum drying step and the target is destroyed. Further, if the water content of the object is less than 45 wt% due to excessive removal of water by this step, the expansion width is small or expansion does not occur. Therefore, the water content in the first heating and drying step is preferably 45 wt% or more and 65 wt% or less.

上記第一加熱乾燥工程では、上記対象物の温度が50℃以上60℃以下となるように上記対象物を加熱してもよい。 In the first heating and drying step, the object may be heated so that the temperature of the object is 50 ° C. or higher and 60 ° C. or lower.

対象物の温度が60℃を超えると水分の除去が進行しすぎ、50℃未満であると乾燥時間が長くなるため、第一加熱乾燥工程における対象物の温度は50℃以上60℃以下が好適である。 If the temperature of the object exceeds 60 ° C, the removal of water proceeds too much, and if it is less than 50 ° C, the drying time becomes long. Therefore, the temperature of the object in the first heating and drying step is preferably 50 ° C or more and 60 ° C or less. Is.

上記第一加熱乾燥工程では、大気圧環境下で上記対象物に温風をあてて上記対象物を加熱してもよい。 In the first heating and drying step, the object may be heated by applying warm air to the object in an atmospheric pressure environment.

上記第一加熱乾燥工程では、大気圧環境下又は減圧環境下でヒーターを用いて上記対象物を加熱してもよい。 In the first heating and drying step, the object may be heated by using a heater in an atmospheric pressure environment or a reduced pressure environment.

上記第二加熱乾燥工程では、上記対象物に含まれる水分が含水率20wt%以下になるように上記対象物を乾燥させてもよい。 In the second heat-drying step, the object may be dried so that the water content of the object is 20 wt% or less.

含水率が20wt%を超える水分が対象物に含まれていると、サクサクとした食感が得られず、また乾燥による食品の保存性が損なわれるため、第二加熱乾燥工程における含水率は20wt%以下、特に、15wt%以下が好適である。 If the object contains water with a moisture content of more than 20 wt%, a crispy texture cannot be obtained and the storage stability of the food due to drying is impaired. Therefore, the moisture content in the second heating and drying step is 20 wt. % Or less, particularly 15 wt% or less is preferable.

上記第二加熱乾燥工程では、上記対象物を減圧環境下で加熱して乾燥させてもよい。 In the second heat-drying step, the object may be heated and dried in a reduced pressure environment.

上記第二加熱乾燥工程では、上記対象物を10kpa以下の減圧環境下で乾燥させてもよい。 In the second heat-drying step, the object may be dried in a reduced pressure environment of 10 kpa or less.

上記多孔質乾燥食品の製造方法は、上記対象物を冷凍する工程の前に、上記対象物を2mm以上10mm以下の厚さにスライスするスライス工程をさらに有してもよい。 The method for producing a porous dried food may further include a slicing step of slicing the object to a thickness of 2 mm or more and 10 mm or less before the step of freezing the object.

対象物の厚さが2mm未満の場合、対象物に含まれる水分が少なく、真空乾燥工程における膨化が進行しない。また、対象物の厚さが10mmを超える場合、乾燥工程において水分の除去に多くの熱エネルギーと時間を要する。したがって、対象物の厚さは2mm以上10mm以下が好適である。 When the thickness of the object is less than 2 mm, the water content of the object is small and the swelling in the vacuum drying step does not proceed. Further, when the thickness of the object exceeds 10 mm, a large amount of heat energy and time are required to remove water in the drying step. Therefore, the thickness of the object is preferably 2 mm or more and 10 mm or less.

上記目的を達成するため、本発明の一形態に係る多孔質乾燥食品製造装置は、乾燥室と、真空ポンプと、熱風発生機と、制御部とを具備する。
上記乾燥室は、食品である対象物を収容可能である。
上記真空ポンプは、上記乾燥室に接続され、上記乾燥室を真空排気する。
上記熱風発生機は、上記乾燥室に接続され、上記乾燥室に熱風を供給する。
上記制御部は、上記熱風発生機を制御し、冷凍された上記対象物を加熱し、上記対象物の表面に乾燥した層が形成されるように乾燥させ、上記真空ポンプを制御し、乾燥室内を真空排気することによって上記対象物を減圧環境下で乾燥させる。
In order to achieve the above object, the porous dried food manufacturing apparatus according to one embodiment of the present invention includes a drying chamber, a vacuum pump, a hot air generator, and a control unit.
The drying chamber can accommodate an object that is food.
The vacuum pump is connected to the drying chamber and evacuates the drying chamber.
The hot air generator is connected to the drying chamber and supplies hot air to the drying chamber.
The control unit controls the hot air generator, heats the frozen object, dries it so that a dry layer is formed on the surface of the object, controls the vacuum pump, and controls the vacuum pump in the drying chamber. Is vacuum exhausted to dry the object in a reduced pressure environment.

この構成によれば、上述した多孔質乾燥食品の製造方法を実現することが可能である。 According to this configuration, it is possible to realize the above-mentioned method for producing a porous dried food.

以上のように本発明によれば、食感に優れた多孔質乾燥食品の製造方法及び多孔質乾燥食品製造装置を提供することが可能である。 As described above, according to the present invention, it is possible to provide a method for producing a porous dried food having an excellent texture and an apparatus for producing a porous dried food.

本発明の実施形態に係る多孔質乾燥食品製造装置の模式図である。It is a schematic diagram of the porous dried food production apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る多孔質乾燥食品製造方法の製造プロセスを示すフローチャートである。It is a flowchart which shows the manufacturing process of the porous dried food manufacturing method which concerns on embodiment of this invention. 本発明の実施形態に係る多孔質乾燥食品製造方法で用いる緩慢冷凍を説明するためのグラフである。It is a graph for demonstrating the slow freezing used in the porous dry food production method which concerns on embodiment of this invention.

[多孔質乾燥食品製造装置について]
本発明の実施形態に係る多孔質乾燥食品製造装置について説明する。本実施形態に係る多孔質乾燥食品製造装置は、食品を多孔質乾燥食品に加工する装置である。加工対象の食品(対象物)は特に限定されず、果実、野菜、根菜、魚類、肉類等のあらゆる食品であり、未調理でも調理済みであってもよい。
[About porous dried food manufacturing equipment]
The porous dried food production apparatus according to the embodiment of the present invention will be described. The porous dried food manufacturing apparatus according to the present embodiment is an apparatus for processing a food into a porous dried food. The food (object) to be processed is not particularly limited, and is any food such as fruits, vegetables, root vegetables, fish, meat, etc., and may be uncooked or cooked.

図1は、本実施形態に係る多孔質乾燥食品製造装置100の構成を示す模式図である。同図に示すように多孔質乾燥食品製造装置100は、乾燥室101、真空ポンプ102、熱風発生機103、乾燥棚104及び制御部105を備える。乾燥室101と真空ポンプ102及び熱風発生機103はそれぞれ配管によって接続され、配管には真空バルブVが設けられている。 FIG. 1 is a schematic view showing the configuration of the porous dried food manufacturing apparatus 100 according to the present embodiment. As shown in the figure, the porous dried food manufacturing apparatus 100 includes a drying chamber 101, a vacuum pump 102, a hot air generator 103, a drying shelf 104, and a control unit 105. The drying chamber 101, the vacuum pump 102, and the hot air generator 103 are each connected by a pipe, and the pipe is provided with a vacuum valve V.

乾燥室101は、真空環境の維持が可能な真空チャンバである。真空ポンプ102は乾燥室101に接続され、乾燥室101内を真空排気可能に構成されている。 The drying chamber 101 is a vacuum chamber capable of maintaining a vacuum environment. The vacuum pump 102 is connected to the drying chamber 101 so that the inside of the drying chamber 101 can be evacuated.

熱風発生機103は乾燥室101に接続され、乾燥室101内に熱風を供給する。乾燥棚104は乾燥室101内に設けられ、対象物が載置される。制御部105は、真空ポンプ102、熱風発生機103及び真空バルブV等に接続され、これらを制御する。 The hot air generator 103 is connected to the drying chamber 101 and supplies hot air into the drying chamber 101. The drying shelf 104 is provided in the drying chamber 101 on which the object is placed. The control unit 105 is connected to the vacuum pump 102, the hot air generator 103, the vacuum valve V, and the like, and controls them.

多孔質乾燥食品製造装置100は以上のような構成を有する。多孔質乾燥食品製造装置100の構成はここに示すものに限られず、後述する多孔質乾燥食品の製造方法を実現できるものであればよい。 The porous dried food production apparatus 100 has the above configuration. The configuration of the porous dried food production apparatus 100 is not limited to that shown here, and any device may be used as long as it can realize the method for producing a porous dried food described later.

[多孔質乾燥食品の製造方法について]
本発明の実施形態に係る多孔質乾燥食品の製造方法ついて説明する。
[About the manufacturing method of porous dried foods]
A method for producing a porous dried food according to an embodiment of the present invention will be described.

図2は、本実施形態に係る多孔質乾燥食品製造方法の工程フローを示すフローチャートである。 FIG. 2 is a flowchart showing a process flow of the method for producing a porous dried food according to the present embodiment.

最初に、対象物を所定の厚さにスライスする(スライス工程:St101)。この厚さは例えば2mm以上10mm以下であり、3mm以上8mm以下がより好適であり、特に7mmがより好適である。対象物の厚さが2mm未満の場合、対象物に含まれる水分が少なく、後述する膨化が進行しにくい。また、対象物の厚さが10mmを超える場合、後述する各乾燥工程において水分の除去に比較的多くの熱エネルギーと時間を要する。したがって、対象物の厚さは2mm以上10mm以下が好適であり、3mm以上8mm以下がより好適である。なお、対象物の厚さが薄い場合には、この工程は省略することができる。 First, the object is sliced to a predetermined thickness (slicing step: St101). This thickness is, for example, 2 mm or more and 10 mm or less, more preferably 3 mm or more and 8 mm or less, and particularly preferably 7 mm. When the thickness of the object is less than 2 mm, the water content of the object is small and the swelling described later is unlikely to proceed. Further, when the thickness of the object exceeds 10 mm, it takes a relatively large amount of heat energy and time to remove water in each drying step described later. Therefore, the thickness of the object is preferably 2 mm or more and 10 mm or less, and more preferably 3 mm or more and 8 mm or less. If the thickness of the object is thin, this step can be omitted.

続いて、対象物を緩慢冷凍によって冷凍する(緩慢冷凍工程:St102)。図3は、緩慢冷凍と急速冷凍の差異を示すグラフである。同図に示すように緩慢冷凍は、対象物の温度を次第に低下させる冷凍方法であり、対象物の温度が−1℃〜−5℃の最大氷結晶生成温度帯(図中D)を30分以上かけて通過するものである。急速冷凍は同図に示すように、最大氷結晶生成温度帯を30分未満で通過する冷凍方法である。 Subsequently, the object is frozen by slow freezing (slow freezing step: St102). FIG. 3 is a graph showing the difference between slow freezing and quick freezing. As shown in the figure, slow freezing is a freezing method in which the temperature of the object is gradually lowered, and the temperature of the object is in the maximum ice crystal formation temperature range (D in the figure) of -1 ° C to -5 ° C for 30 minutes. It passes over the above. As shown in the figure, quick freezing is a freezing method in which the maximum ice crystal formation temperature zone is passed in less than 30 minutes.

最大氷結晶生成温度帯は氷結晶の体積が成長する温度帯であり、緩慢冷凍では同温度帯の通過時間が長いため、氷結晶の体積が大きくなる。一方で急速冷凍では同温度帯の通過時間が短いため、氷結晶の体積は緩慢冷凍に比べて小さくなる。 The maximum ice crystal formation temperature zone is a temperature zone in which the volume of ice crystals grows, and in slow freezing, the passage time of the same temperature zone is long, so that the volume of ice crystals becomes large. On the other hand, in quick freezing, the transit time in the same temperature range is short, so the volume of ice crystals is smaller than in slow freezing.

本実施形態では、対象物を緩慢冷凍によって冷凍することにより、氷結晶の体積を大きくし、対象物を構成する細胞を破壊する。これによって対象物を軟化させる。緩慢冷凍の冷凍時間は6時間以上が好適である。 In the present embodiment, the object is frozen by slow freezing to increase the volume of ice crystals and destroy the cells constituting the object. This softens the object. The freezing time of slow freezing is preferably 6 hours or more.

続いて、緩慢冷凍された対象物を加熱し、乾燥させる(第一加熱乾燥工程:St103)。これにより、対象物を解凍した後、水分を除去する。第一加熱乾燥工程では、対象物に含まれる水分が含水率45wt%以上65wt%以下になるように対象物を乾燥させる。 Subsequently, the slowly frozen object is heated and dried (first heat-drying step: St103). As a result, after thawing the object, water is removed. In the first heat-drying step, the object is dried so that the moisture content of the object is 45 wt% or more and 65 wt% or less.

この工程は、緩慢冷凍された対象物を乾燥棚104に載置し、大気圧下で熱風発生機103から乾燥室101内に熱風を供給することによって行うことができる。この際、対象物が50℃以上60℃以下の温度となるように加熱することが好適である。対象物の温度が60℃を超えると水分の除去が進行しすぎ、50℃未満であると乾燥時間が長くなるためである。なお、熱風に代えて赤外線ランプ等のヒーターで対象物を加熱してもよい。 This step can be performed by placing the slowly frozen object on the drying shelf 104 and supplying hot air from the hot air generator 103 into the drying chamber 101 under atmospheric pressure. At this time, it is preferable to heat the object so that the temperature of the object is 50 ° C. or higher and 60 ° C. or lower. This is because if the temperature of the object exceeds 60 ° C, the removal of water proceeds too much, and if it is less than 50 ° C, the drying time becomes long. Instead of hot air, the object may be heated by a heater such as an infrared lamp.

また、この加熱乾燥は、乾燥室101内を20kPa以上50kPa以下に減圧し、図示しないヒーターによって対象物を加熱し、対象物が45℃以上60℃以下の温度となるようにして行ってもよい。対象物の種類や厚さによって、加熱温度や加熱時間を調整し、含水率を45wt%以上65wt%以下にすることができる。 Further, this heating and drying may be performed by reducing the pressure in the drying chamber 101 to 20 kPa or more and 50 kPa or less, heating the object with a heater (not shown), and setting the temperature of the object to 45 ° C or more and 60 ° C or less. .. The heating temperature and heating time can be adjusted according to the type and thickness of the object, and the water content can be 45 wt% or more and 65 wt% or less.

この加熱乾燥工程では、対象物表面から水分が蒸発すると、対象物内部から表面に水分が移動する。乾燥が進行すると、内部の水分が減少し、内部から表面への水分の移動速度が低下するため、対象物の表面に乾燥した層が形成される。この状態では対象物内部に若干の水分が含まれているが、本加熱乾燥工程はこの時点で終了させる。 In this heating and drying step, when the moisture evaporates from the surface of the object, the moisture moves from the inside of the object to the surface. As the drying progresses, the moisture inside decreases and the rate of movement of moisture from the inside to the surface decreases, so that a dry layer is formed on the surface of the object. In this state, some water is contained inside the object, but this heating and drying step is completed at this point.

続いて、対象物を真空乾燥により乾燥させる(真空乾燥工程:St104)。この工程は乾燥室101内を10kPa以下に減圧することによって行うことができる。乾燥室101内を急激に真空排気することによって対象物に含まれる水分が蒸気圧に達し、気化する。この際、対象物の体積が増加し、対象物が膨張(膨化)する。 Subsequently, the object is dried by vacuum drying (vacuum drying step: St104). This step can be performed by reducing the pressure in the drying chamber 101 to 10 kPa or less. By rapidly evacuating the inside of the drying chamber 101, the moisture contained in the object reaches the vapor pressure and vaporizes. At this time, the volume of the object increases, and the object expands (expands).

続いて、対象物を加熱し、乾燥させる(第二加熱乾燥工程:St105)。これにより、対象物の含水率が20wt%以下、好ましくは、15wt%以下になるまで乾燥させる。 Subsequently, the object is heated and dried (second heating and drying step: St105). As a result, the object is dried until the moisture content is 20 wt% or less, preferably 15 wt% or less.

この工程では、乾燥室101内を真空ポンプ102によって真空排気することによって乾燥を行うことができる。また、乾燥室101内をヒーター等によって加熱して乾燥させてもよい。対象物の種類や厚さによって、加熱温度や加熱時間を調整し、含水率を15wt%以下にすることができる。 In this step, drying can be performed by evacuating the inside of the drying chamber 101 with a vacuum pump 102. Further, the inside of the drying chamber 101 may be heated by a heater or the like to dry it. The heating temperature and heating time can be adjusted according to the type and thickness of the object, and the water content can be reduced to 15 wt% or less.

以上の工程によって、対象物の食品は多孔質乾燥食品となる。緩慢冷凍工程(St102)によって対象物を軟化させ、第一加熱乾燥工程(St103)によって水分量を調整した上で真空乾燥工程(St104)によって対象物を膨張させ、さらに、第二加熱乾燥工程(St105)によって水分を除去することにより、対象物を多孔質とすることができる。これにより、サクサクとした食感の多孔質乾燥食品を製造することができる。 By the above steps, the food of the object becomes a porous dried food. The object is softened by the slow freezing step (St102), the water content is adjusted by the first heating and drying step (St103), the object is expanded by the vacuum drying step (St104), and further, the second heating and drying step (St103). By removing the water with St105), the object can be made porous. This makes it possible to produce a porous dried food having a crispy texture.

上記製造方法は、ユーザが実施してもよく、制御部105が真空ポンプ102、熱風発生機103及び真空バルブV等を制御することによって実施してもよい。制御部105は、例えば対象物の重量変化に基づいて、上述の各工程を進行させるものとすることができる。 The above manufacturing method may be carried out by the user, or may be carried out by the control unit 105 controlling the vacuum pump 102, the hot air generator 103, the vacuum valve V, and the like. The control unit 105 can proceed with each of the above steps based on, for example, a change in the weight of the object.

[含水率について]
上述のように第一加熱乾燥工程では、含水率が45wt%以上65wt%以下の範囲となるように対象物を乾燥させる。
[About water content]
As described above, in the first heating and drying step, the object is dried so that the moisture content is in the range of 45 wt% or more and 65 wt% or less.

この工程による水分の除去が不足し、65wt%を超える水分が対象物に含まれていると、真空乾燥工程(St104)における対象物の膨張が過膨張となり、対象物が破壊される。また、この工程による水分の除去が多すぎ、対象物の含水率が45wt%未満になると、膨張幅が小さく、又は膨化が生じない。このため、第一加熱乾燥工程における含水率は、45wt%以上65wt%以下が好適である。 If the removal of water by this step is insufficient and the object contains more than 65 wt% of water, the object expands in the vacuum drying step (St104) and the object is destroyed. Further, if the water content of the object is less than 45 wt% due to excessive removal of water by this step, the expansion width is small or expansion does not occur. Therefore, the water content in the first heating and drying step is preferably 45 wt% or more and 65 wt% or less.

また、上述のように第二加熱乾燥工程では、含水率が15wt%以下になるまで乾燥させる。この工程による水分の除去が不足し、含水率が20wt%を超える水分が対象物に含まれていると、サクサクとした(クリスピーな)食感が得られず、また乾燥による食品の保存性が損なわれる。このため、第二加熱乾燥工程における含水率は、15wt%以下が好適である。 Further, as described above, in the second heat drying step, the product is dried until the moisture content becomes 15 wt% or less. If the removal of water by this step is insufficient and the object contains water with a moisture content of more than 20 wt%, a crispy texture cannot be obtained and the food can be preserved by drying. It is impaired. Therefore, the water content in the second heating and drying step is preferably 15 wt% or less.

なお、対象物に含まれる水分の測定は赤外線水分計を用いる乾燥減量法によって行うことができる。赤外線水分計は例えばFD−610(ケツト科学研究所製)を利用することができる。 The moisture content of the object can be measured by a dry weight loss method using an infrared moisture meter. As the infrared moisture meter, for example, FD-610 (manufactured by Kett Science Institute Headquarters) can be used.

以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made.

本発明の実施例及び比較例について説明する。 Examples and comparative examples of the present invention will be described.

[実施例1]
生のバナナの皮を剥き、7mmの厚さにスライスし6時間以上冷凍(緩慢冷凍)した。バナナを凍結状態のまま、乾燥室に移し室内を温風で加熱乾燥(第一加熱乾燥)させた。
[Example 1]
Raw bananas were peeled, sliced to a thickness of 7 mm, and frozen for 6 hours or more (slow freezing). The banana was moved to a drying chamber in a frozen state, and the chamber was heated and dried with warm air (first heating and drying).

乾燥(第一加熱乾燥)させたバナナは厚さ4mm程度に収縮し、表面は乾き、内部には水分が残っている状態(含水率50〜60wt%)となった。この状態で乾燥室内を大気圧から5kPa以下に減圧した。これによりバナナ内部の水分が気化し、バナナは厚さ4mmから10mmまで膨張した(膨張率((乾燥後の厚さ/乾燥前の厚さ)×100)150%)。 The dried (first heat-dried) banana shrank to a thickness of about 4 mm, the surface was dried, and water remained inside (moisture content: 50 to 60 wt%). In this state, the pressure in the drying chamber was reduced from atmospheric pressure to 5 kPa or less. As a result, the moisture inside the banana was vaporized, and the banana expanded from 4 mm to 10 mm in thickness (expansion rate ((thickness after drying / thickness before drying) × 100) 150%).

膨張した状態のまま乾燥(第二加熱乾燥)させ、含水率10wt%前後の多孔質乾燥バナナを得た。この多孔質乾燥バナナの内部をマイクロスコープ(VHX5000:キーエンス社製)で観察すると、径0.5mm前後の多数の空隙が確認された。喫食したところ、サクサクとした食感であった。 It was dried in the expanded state (second heat drying) to obtain a porous dried banana having a moisture content of about 10 wt%. When the inside of the porous dried banana was observed with a microscope (VHX5000: manufactured by KEYENCE CORPORATION), a large number of voids having a diameter of about 0.5 mm were confirmed. When I ate it, it had a crispy texture.

[実施例2]
生のバナナの皮を剥き、7mmの厚さにスライスし6時間以上冷凍(緩慢冷凍)した。バナナを凍結状態のまま、乾燥室に移し室内の圧力を減圧調整(50kPa〜20kPa)しながら赤外線ヒーターで加熱乾燥(第一加熱乾燥)させた。
[Example 2]
Raw bananas were peeled, sliced to a thickness of 7 mm, and frozen for 6 hours or more (slow freezing). The banana was moved to a drying chamber in a frozen state and heated and dried (first heat drying) with an infrared heater while adjusting the pressure in the chamber under reduced pressure (50 kPa to 20 kPa).

乾燥(第一乾燥)させたバナナは厚さ4mm程度に収縮し、表面は乾き、内部には水分が残っている状態(含水率50〜60wt%)となった。この状態で乾燥室内を5kPa以下に減圧した。これによりバナナ内部の水分が気化し、バナナは厚さ4mmから10mmまで膨張した(膨張率150%)。 The dried (first dried) banana shrank to a thickness of about 4 mm, the surface was dried, and water remained inside (moisture content: 50 to 60 wt%). In this state, the pressure in the drying chamber was reduced to 5 kPa or less. As a result, the water inside the banana was vaporized, and the banana expanded from 4 mm to 10 mm in thickness (expansion rate: 150%).

膨張した状態のまま乾燥(第二加熱乾燥)させ、含水率10wt%前後の多孔質乾燥バナナを得た。この多孔質乾燥バナナの内部をマイクロスコープ(VHX5000:キーエンス社製)で観察すると、径0.5mm前後の多数の空隙が確認された。喫食したところ、サクサクとした食感であった。 It was dried in the expanded state (second heat drying) to obtain a porous dried banana having a moisture content of about 10 wt%. When the inside of the porous dried banana was observed with a microscope (VHX5000: manufactured by KEYENCE CORPORATION), a large number of voids having a diameter of about 0.5 mm were confirmed. When I ate it, it had a crispy texture.

[実施例3]
生のバナナの皮を剥き、10mmの厚さにスライスした。以下、上記実施例1と同様に製造した。第二加熱乾燥工程の後、得られた多孔質乾燥バナナの含水率は実施例1に比較して5%程度高く、実施例1に比較してサクサクとした食感がやや劣っていた。乾燥をさらに2時間行うことにより実施例1と同様の食感が得られた。
[Example 3]
Raw bananas were peeled and sliced to a thickness of 10 mm. Hereinafter, it was produced in the same manner as in Example 1 above. After the second heat-drying step, the water content of the obtained porous dried banana was about 5% higher than that of Example 1, and the crispy texture was slightly inferior to that of Example 1. By further drying for 2 hours, the same texture as in Example 1 was obtained.

[実施例4]
生のバナナの皮を剥き、2mmの厚さにスライスした。以下、上記実施例1と同様に製造した。第一加熱乾燥工程の時点でバナナ内部の水分が少なくなり、真空乾燥工程による膨張の程度は実施例1よりも小さかった。第二加熱乾燥工程の後、得られた多孔質乾燥バナナは実施例1に比較してサクサクとした食感がやや劣っていた。
[Example 4]
Raw bananas were peeled and sliced to a thickness of 2 mm. Hereinafter, it was produced in the same manner as in Example 1 above. At the time of the first heating and drying step, the water content inside the banana was reduced, and the degree of expansion due to the vacuum drying step was smaller than that of Example 1. After the second heat-drying step, the obtained porous dried banana had a slightly inferior crispy texture as compared with Example 1.

[実施例5]
生のバナナの皮を剥き、7mmの厚さにスライスした。実施例1と同様に緩慢冷凍した後、実施例1より長時間の条件で第一加熱乾燥を行い、バナナの含水率を40wt%とした。以後は実施例1と同様の条件で真空乾燥及び第二加熱乾燥を行った。得られた多孔質乾燥バナナは、実施例1と比較して表面に厚く、硬い乾燥層が形成されており、膨化による膨張率は70%程度であった。実施例1に比べて内部組織はやや緻密であり、サクサクとした食感もやや劣っていた。
[Example 5]
Raw bananas were peeled and sliced to a thickness of 7 mm. After slow freezing in the same manner as in Example 1, the first heat drying was carried out under the condition for a longer time than in Example 1 to set the moisture content of the banana to 40 wt%. After that, vacuum drying and second heat drying were performed under the same conditions as in Example 1. The obtained porous dried banana had a thick and hard dry layer formed on the surface as compared with Example 1, and the expansion rate due to swelling was about 70%. The internal structure was slightly finer and the crispy texture was slightly inferior to that of Example 1.

[実施例6]
生のバナナの皮を剥き、7mmの厚さにスライスした。実施例1と同様に緩慢冷凍した後、実施例1より短時間の条件で第一加熱乾燥を行い、バナナの含水率を66wt%とした。以後は実施例1と同様の条件で真空乾燥及び第二加熱乾燥を行った。得られた多孔質乾燥バナナは、実施例1と比較して表面の状態は同様であったが、含水率が実施例1と比較してやや高かった。膨化による膨張率は150%程度であり、所々に破裂が生じていた。喫食したところ、実施例1と比較してサクサクとした食感がやや劣っていた。
[Example 6]
Raw bananas were peeled and sliced to a thickness of 7 mm. After slow freezing in the same manner as in Example 1, the first heat drying was carried out under the condition of a shorter time than in Example 1 to set the moisture content of the banana to 66 wt%. After that, vacuum drying and second heat drying were performed under the same conditions as in Example 1. The surface condition of the obtained porous dried banana was similar to that of Example 1, but the water content was slightly higher than that of Example 1. The expansion rate due to swelling was about 150%, and rupture occurred in some places. When it was eaten, the crispy texture was slightly inferior to that of Example 1.

[比較例1]
生のバナナの皮を剥き、7mmの厚さにスライスした。緩慢冷凍を実施せず、以後は実施例1と同様の条件で第一加熱乾燥、真空乾燥及び第二加熱乾燥を行った。緩慢冷凍を行っていないためバナナが軟化せず、その影響から真空乾燥による膨張率は50%程度であった。食感も実施例1と比較して硬く、多孔質乾燥バナナは得られなかった。
[Comparative Example 1]
Raw bananas were peeled and sliced to a thickness of 7 mm. Slow freezing was not carried out, and thereafter, first heat drying, vacuum drying and second heat drying were carried out under the same conditions as in Example 1. The banana did not soften because it was not slowly frozen, and the expansion rate due to vacuum drying was about 50% due to the effect. The texture was also harder than that of Example 1, and a porous dried banana could not be obtained.

[比較例2]
生のバナナの皮を剥き、7mmの厚さにスライスした。実施例1と同様に緩慢冷凍した後、第一加熱乾燥を行わず、バナナの含水率を75wt%、表面に乾燥層が形成しない条件で実施例1と同様の真空乾燥を行ったところ、表面から発泡して破壊されたため、多孔質乾燥バナナは得られなかった。
[Comparative Example 2]
Raw bananas were peeled and sliced to a thickness of 7 mm. After slow freezing in the same manner as in Example 1, the surface was vacuum-dried in the same manner as in Example 1 under the condition that the moisture content of the banana was 75 wt% and no dry layer was formed on the surface without first heating and drying. Porous dried bananas could not be obtained because they were foamed and destroyed.

表1に、実施例1〜6及び比較例1,2に係る多孔質乾燥食品製造方法の製造条件及び評価結果を示す。 Table 1 shows the production conditions and evaluation results of the porous dried food production methods according to Examples 1 to 6 and Comparative Examples 1 and 2.

Figure 0006836893
Figure 0006836893

以上のように、実施例1〜6によれば食感に優れた多孔質乾燥バナナを製造することが可能であった。また、スライスによる食品の厚みは3mm以上8mm以下が好適であり、第一加熱乾燥工程による含水率は45wt%から65wt%が好適であることが確認された。 As described above, according to Examples 1 to 6, it was possible to produce a porous dried banana having an excellent texture. Further, it was confirmed that the thickness of the food by slicing is preferably 3 mm or more and 8 mm or less, and the water content in the first heat-drying step is preferably 45 wt% to 65 wt%.

なお、本発明の適用によって、バナナの他、以下の各食品で多孔質乾燥食品が得られた。
果実類:イチゴ、柑橘類(レモン、ポンカン、タンカン、キンカン)、リンゴ、パインアップル、キウイフルーツ、ブドウ、アボカド、マンゴー、スイカ、メロン
野菜類:葉茎菜類(ホウレンソウ、コマツナ、キャベツ)、根菜類(ニンジン、カブ、ダイコン、ゴボウ)、土物類(サツマイモ、ジャカイモ、タマネギ)、果菜類(トマト、カボチャ、ゴーヤ、オクラ)、香辛つま物類(トウガラシ)
豆類:納豆
魚類:エバ雑魚(回遊魚)
By applying the present invention, in addition to bananas, porous dried foods were obtained from the following foods.
Fruits: Strawberries, citrus fruits (lemon, ponkan, tankan, kinkan), apples, pine apples, kiwi fruits, grapes, avocados, mangoes, watermelons, melons Vegetables: Leafy vegetables (horensou, komatsuna, turnips), root vegetables (Carrots, turnips, radishes, gobos), earthenware (sweet potatoes, potatoes, onions), fruit vegetables (tomatoes, pumpkins, bitter melons, okura), spicy sardines (togarashi)
Beans: Natto Fish: Eva miscellaneous fish (migratory fish)

100…多孔質乾燥食品製造装置
101…乾燥室
102…真空ポンプ
103…熱風発生機
104…乾燥棚
105…制御部
100 ... Porous dry food manufacturing equipment 101 ... Drying room 102 ... Vacuum pump 103 ... Hot air generator 104 ... Drying shelf 105 ... Control unit

Claims (10)

食品である対象物を冷凍する冷凍工程と、
冷凍された前記対象物を加熱し、前記対象物の表面に乾燥した層が形成されるように乾燥させる第一加熱乾燥工程と、
前記第一加熱乾燥工程で乾燥された前記対象物を減圧環境下で乾燥させる真空乾燥工程と、
前記真空乾燥工程で乾燥された前記対象物を加熱し、乾燥させる第二加熱乾燥工程と
を有し、
前記第一乾燥工程では20kPa以上50kPa以下に減圧される
多孔質乾燥食品の製造方法。
The freezing process that freezes the object that is food,
A first heat-drying step of heating the frozen object and drying it so that a dry layer is formed on the surface of the object.
A vacuum drying step of drying the object dried in the first heat drying step in a reduced pressure environment, and a vacuum drying step.
Wherein heating the object to be dried in a vacuum drying process, possess a second heat drying step of drying,
A method for producing a porous dried food in which the pressure is reduced to 20 kPa or more and 50 kPa or less in the first drying step.
請求項1に記載の多孔質乾燥食品の製造方法であって、
前記冷凍工程では、前記対象物の温度を最大氷結晶生成温度帯に30分間以上維持する
多孔質乾燥食品の製造方法。
The method for producing a porous dried food according to claim 1.
A method for producing a porous dried food in which the temperature of the object is maintained in the maximum ice crystal formation temperature zone for 30 minutes or more in the freezing step.
請求項1又は2に記載の多孔質乾燥食品の製造方法であって、
前記第一加熱乾燥工程では、前記対象物に含まれる水分が含水率45wt%以上65wt%以下になるように前記対象物を乾燥させる
多孔質乾燥食品の製造方法。
The method for producing a porous dried food according to claim 1 or 2.
In the first heat-drying step, a method for producing a porous dried food, in which the object is dried so that the water content of the object is 45 wt% or more and 65 wt% or less.
請求項1から3のうちいずれか一つに記載の多孔質乾燥食品の製造方法であって、
前記第一加熱乾燥工程では、前記対象物の温度が50℃以上60℃以下となるように前記対象物を加熱する
多孔質乾燥食品の製造方法。
The method for producing a porous dried food according to any one of claims 1 to 3.
In the first heat-drying step, a method for producing a porous dried food, in which the object is heated so that the temperature of the object is 50 ° C. or higher and 60 ° C. or lower.
請求項1から4のうちいずれか一つに記載の多孔質乾燥食品の製造方法であって、
前記第一加熱乾燥工程では、ヒーターを用いて前記対象物を加熱する
多孔質乾燥食品の製造方法。
The method for producing a porous dried food according to any one of claims 1 to 4.
Wherein in the first heat drying step, the method of producing a porous dry food for heating the object using the heat Ta.
請求項1からのうちいずれか一つに記載の多孔質乾燥食品の製造方法であって、
前記第二加熱乾燥工程では、前記対象物に含まれる水分が含水率20wt%以下になるように前記対象物を乾燥させる
多孔質乾燥食品の製造方法。
The method for producing a porous dried food according to any one of claims 1 to 5.
In the second heat-drying step, a method for producing a porous dried food, in which the object is dried so that the water content of the object is 20 wt% or less.
請求項1からのうちいずれか一つに記載の多孔質乾燥食品の製造方法であって、
前記第二加熱乾燥工程では、前記対象物を減圧環境下で加熱して乾燥させる
多孔質乾燥食品の製造方法。
The method for producing a porous dried food according to any one of claims 1 to 6.
In the second heat-drying step, a method for producing a porous dried food, in which the object is heated and dried in a reduced pressure environment.
請求項に記載の多孔質乾燥食品の製造方法であって、
前記第二加熱乾燥工程では、前記対象物を10kpa以下の減圧環境下で乾燥させる
多孔質乾燥食品の製造方法。
The method for producing a porous dried food according to claim 7.
In the second heat-drying step, a method for producing a porous dried food, in which the object is dried in a reduced pressure environment of 10 kpa or less.
請求項1からのうちいずれか一つに記載の多孔質乾燥食品の製造方法であって、
前記対象物を冷凍する工程の前に、前記対象物を2mm以上10mm以下の厚さにスライスするスライス工程
をさらに有する多孔質乾燥食品の製造方法。
The method for producing a porous dried food according to any one of claims 1 to 8.
A method for producing a porous dried food, further comprising a slicing step of slicing the object to a thickness of 2 mm or more and 10 mm or less before the step of freezing the object.
食品である対象物を収容可能な乾燥室と、
前記乾燥室に接続され、前記乾燥室を真空排気する真空ポンプと、
前記乾燥室に設けられ、前記対象物を加熱するヒーターと、
前記ヒーター及び前記真空ポンプを制御し、冷凍された前記対象物を20kPa以上50kPa以下の減圧環境下で加熱して前記対象物の表面に乾燥した層が形成されるように乾燥させ、乾燥された前記対象物を減圧環境下で乾燥させ、乾燥された前記対象物をさらに加熱乾燥させる制御部と
を具備する多孔質乾燥食品製造装置。
A drying room that can accommodate food objects and
A vacuum pump connected to the drying chamber and evacuating the drying chamber,
A heater provided in the drying chamber to heat the object,
The heater and controls the vacuum pump, dried as a layer and dried surface before Symbol object of frozen the object is heated at 50kPa under less pressure environment than 20kPa is formed, it is dried A porous dried food production apparatus including a control unit for drying the object in a reduced pressure environment and further heating and drying the dried object.
JP2016244717A 2016-12-16 2016-12-16 Porous dried food manufacturing method and porous dried food manufacturing equipment Active JP6836893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016244717A JP6836893B2 (en) 2016-12-16 2016-12-16 Porous dried food manufacturing method and porous dried food manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016244717A JP6836893B2 (en) 2016-12-16 2016-12-16 Porous dried food manufacturing method and porous dried food manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2018093838A JP2018093838A (en) 2018-06-21
JP6836893B2 true JP6836893B2 (en) 2021-03-03

Family

ID=62631242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016244717A Active JP6836893B2 (en) 2016-12-16 2016-12-16 Porous dried food manufacturing method and porous dried food manufacturing equipment

Country Status (1)

Country Link
JP (1) JP6836893B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7055914B1 (en) 2021-03-16 2022-04-18 キユーピー株式会社 Manufacturing method of packaged food

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594981B2 (en) * 1981-08-31 1984-02-02 ハウス食品工業株式会社 Vacuum swelling drying method for food
JPS59232077A (en) * 1983-06-16 1984-12-26 Nobuhiro Shiyudo Preraration of dried food
JPS6115670A (en) * 1984-06-29 1986-01-23 Yakult Honsha Co Ltd Processed food of wakame's stems and its production
JPS61152258A (en) * 1984-12-26 1986-07-10 Nagatanien Honpo:Kk Preparation of dehydrated potato
JPH06101999B2 (en) * 1985-12-16 1994-12-14 株式会社芝浦製作所 Vacuum expansion and drying device
JPH0817654B2 (en) * 1987-03-24 1996-02-28 ハウス食品株式会社 Method of manufacturing fruit chips
JPH0795917B2 (en) * 1987-03-24 1995-10-18 ハウス食品株式会社 Method of manufacturing fruit chips
US4948609A (en) * 1988-02-12 1990-08-14 Nabisco Brands, Inc. Fruit and vegetable dried food product
JP3904965B2 (en) * 2002-04-18 2007-04-11 松下冷機株式会社 refrigerator
JP2006121972A (en) * 2004-10-28 2006-05-18 Yasujima:Kk Bean-curd refuse stirring and drying apparatus and drying method
JP4520431B2 (en) * 2005-09-06 2010-08-04 株式会社永谷園 Method for producing freeze-dried block-shaped miso
JP4947630B2 (en) * 2006-07-06 2012-06-06 広島県 Method for producing cooked food
JP5618789B2 (en) * 2010-11-30 2014-11-05 株式会社アーステクニカ Vacuum dryer and operation control method
US20130171325A1 (en) * 2011-12-28 2013-07-04 Chiquita Brands International Inc. Vacuum dried fruit product
EP2783577A1 (en) * 2013-03-26 2014-10-01 University College Cork An edible snack food product having a low water content and a high solids content, and a method for the production thereof
JP2016029950A (en) * 2014-07-29 2016-03-07 こだま食品株式会社 Vegetable chip, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2018093838A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
US5962057A (en) Process for drying mango and pineapples
EP0284042B1 (en) Method for producing fruit chips
WO2008029783A1 (en) Method of producing soft vegetable material
JP5389756B2 (en) Dried vegetables and method for producing the same
US4002772A (en) Method of increasing the permeability of cellular materials
JP6836893B2 (en) Porous dried food manufacturing method and porous dried food manufacturing equipment
US4859481A (en) Method for producing fruit chips
CN102771734B (en) Production method for vacuum bulked fruit and vegetable grains or slices
JP2020505933A (en) How to dry vegetables
JP2010273577A (en) Method of manufacturing compound food
Ophithakorn et al. Influence of temperature on microstructure and oil content in vacuum frying of fish tofu
JPS594981B2 (en) Vacuum swelling drying method for food
JPH0795917B2 (en) Method of manufacturing fruit chips
US3295995A (en) Process of dehydrating vegetables
JP2516036B2 (en) Manufacturing method of dried carrot chips
US2729566A (en) Process for preparing dehydrated potatoes
JP2016029950A (en) Vegetable chip, and manufacturing method therefor
JPH0324180B2 (en)
JP2019126328A (en) Manufacturing method of dry fruits
JP2759396B2 (en) Method for producing fruit or vegetable snacks
WO2021124676A1 (en) Freeze-dried foodstuff manufacturing method
JPH0811035B2 (en) Vacuum expansion and drying method for vegetables
US3219462A (en) Process for vacuum dehydrofreezing of foodstuffs
US11547131B2 (en) Method of making dried food products
JPH0213346A (en) Production of dry thick vegetable with restoration property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R150 Certificate of patent or registration of utility model

Ref document number: 6836893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250