JP6836264B2 - Biological condition estimation device, biological condition estimation method, computer program and recording medium - Google Patents

Biological condition estimation device, biological condition estimation method, computer program and recording medium Download PDF

Info

Publication number
JP6836264B2
JP6836264B2 JP2016239922A JP2016239922A JP6836264B2 JP 6836264 B2 JP6836264 B2 JP 6836264B2 JP 2016239922 A JP2016239922 A JP 2016239922A JP 2016239922 A JP2016239922 A JP 2016239922A JP 6836264 B2 JP6836264 B2 JP 6836264B2
Authority
JP
Japan
Prior art keywords
regression line
tactile sensitivity
biological
slope
estimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016239922A
Other languages
Japanese (ja)
Other versions
JP2018093996A (en
Inventor
藤田 悦則
悦則 藤田
良香 延廣
良香 延廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Kogyo Co Ltd
Original Assignee
Delta Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Kogyo Co Ltd filed Critical Delta Kogyo Co Ltd
Priority to JP2016239922A priority Critical patent/JP6836264B2/en
Publication of JP2018093996A publication Critical patent/JP2018093996A/en
Application granted granted Critical
Publication of JP6836264B2 publication Critical patent/JP6836264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、人の背部から得られる生体信号を用いて、生体の状態を推定する技術に関する。 The present invention relates to a technique for estimating the state of a living body by using a biological signal obtained from the back of a person.

本発明者らは、特許文献1〜2において、人の上体の中で背部の体表面に生じる振動を生体信号測定装置により検出し、人の状態を解析する技術を提案している。人の背部から検出される心臓と大動脈の運動から生じる生体信号は、心臓と大動脈の運動から生じる圧力振動であり、心室の収縮期及び拡張期の情報と、循環の補助ポンプとなる血管壁の弾力情報及び反射波の情報を含んでいる。すなわち、心臓と大動脈の運動から背部表面に生じる1Hz近傍の背部体表脈波(Aortic Pulse Wave(APW))を含む生体信号である。心拍変動に伴う信号波形は交感神経系及び副交感神経系の神経活動情報を含み、大動脈の揺動に伴う信号波形には交感神経活動の情報を含んでいる。 In Patent Documents 1 and 2, the present inventors propose a technique for analyzing a human condition by detecting a vibration generated on the body surface of the back in the upper body of a human by a biological signal measuring device. The biological signals generated from the movement of the heart and aorta detected from the back of a person are pressure vibrations generated from the movement of the heart and aorta, and information on the systole and diastole of the ventricles and the blood vessel wall that serves as an auxiliary pump for circulation. It contains elasticity information and reflected wave information. That is, it is a biological signal including a back body surface pulse wave (Aortic Pulse Wave (APW)) in the vicinity of 1 Hz generated on the back surface from the movement of the heart and the aorta. The signal waveform associated with heart rate variability includes information on the nerve activity of the sympathetic nervous system and the parasympathetic nervous system, and the signal waveform associated with the rocking of the aorta contains information on the sympathetic nerve activity.

本出願人は、特許文献1において、APWの時系列データから周波数の時系列波形を求め、さらに、周波数傾きの時系列波形、周波数変動の時系列波形を求めてこれらを周波数解析する手段を有する装置を開示している。周波数解析の際には、予め定めた機能調整信号、疲労受容信号及び活動調整信号に相当する各周波数のパワースペクトルを求め、各パワースペクトルの時系列変化から人の状態を判定することも開示している。 In Patent Document 1, the applicant has a means for obtaining a frequency time series waveform from APW time series data, further obtaining a time series waveform of frequency gradient and a time series waveform of frequency fluctuation, and performing frequency analysis of these. The device is disclosed. At the time of frequency analysis, it is also disclosed that the power spectrum of each frequency corresponding to the predetermined function adjustment signal, fatigue reception signal and activity adjustment signal is obtained, and the human state is determined from the time series change of each power spectrum. ing.

また、本出願人は、特許文献2において、APWの時系列データを周波数解析し、対数パワースペクトル密度と対数周波数の関係において回帰直線を求め、この回帰直線の形から人の状態を判定する技術を開示している。 Further, in Patent Document 2, the applicant applies frequency analysis of APW time series data, obtains a regression line in relation to logarithmic power spectral density and logarithmic frequency, and determines a person's state from the shape of the regression line. Is disclosed.

特開2011−167362号公報Japanese Unexamined Patent Publication No. 2011-167362 特開2012−179202号公報Japanese Unexamined Patent Publication No. 2012-179202

上記のうち、特許文献2は、APWの時系列データを周波数傾き時系列波形を求めずに人の状態を推定する手法を提案するものであり、APWのうち、人の恒常性を維持するゆらぎが含まれる0.001〜0.04Hzの周波数帯域の信号を解析対象としている。そして、上記のようにパワースペクトル密度の両対数軸表示から得られるゆらぎ波形をさらに複数の周波数帯域で区分し、この区分した周波数帯域のそれぞれについて回帰直線を求め、各区分の回帰直線の傾きに対して一定の基準でポイントを付与し、それらのポイントの合計点や、各区分の回帰直線間での折れ点の数などを考察して判定している。これは、特許文献2の状態の判定が、疲労状態、病気などの不調状態、機能回復過程の状態、アルコール摂取による酩酊状態、並びに、それらの状態の変化の推移など、様々な状態を判定するものであるため、広範囲の周波数帯域内を細かく分析している。 Of the above, Patent Document 2 proposes a method of estimating a person's state from APW time-series data without obtaining a frequency gradient time-series waveform, and among APW, fluctuations that maintain human homeostasis. Signals in the frequency band of 0.001 to 0.04 Hz including the above are analyzed. Then, as described above, the fluctuation waveform obtained from the log-log axis display of the power spectral density is further divided into a plurality of frequency bands, a regression line is obtained for each of the divided frequency bands, and the slope of the regression line of each division is obtained. On the other hand, points are given based on a certain standard, and the judgment is made by considering the total points of those points and the number of break points between the regression lines of each division. This is because the determination of the state of Patent Document 2 determines various states such as fatigue state, illness and other disorders, functional recovery process state, drunkenness state due to alcohol intake, and transition of changes in those states. Because it is a thing, it analyzes a wide range of frequency bands in detail.

従って、特許文献2の技術は、人の状態を種々の面から総合的に判定できる点で優れているが、コンピュータの演算処理装置への負荷やメモリーの使用量が相対的に大きいという課題があった。 Therefore, the technique of Patent Document 2 is excellent in that the state of a person can be comprehensively determined from various aspects, but there is a problem that the load on the arithmetic processing unit of the computer and the amount of memory used are relatively large. there were.

一方、例えば、外的刺激に対して痛みや不快感を伴っていながら治療中に意志を伝えにくい歯科診療などにおいて、患者がそれらの外的刺激に対する反応をどの程度感じているか、すなわち、外的刺激に対する触覚感度がどの程度であるかを客観的に把握することができれば、より患者の負担を軽減し、また、治療もより適切になることが期待される。もちろん外的刺激に対する痛みや不快感の客観的把握は、歯科診療に限らず、他の医療行為においても必要な場合もあり、また、スポーツや健康指導等において必要となる場合もある。 On the other hand, for example, in dental practice where it is difficult to convey the intention during treatment while causing pain and discomfort to external stimuli, how much the patient feels the reaction to those external stimuli, that is, externally. If it is possible to objectively grasp the tactile sensitivity to a stimulus, it is expected that the burden on the patient will be further reduced and the treatment will be more appropriate. Of course, an objective grasp of pain and discomfort due to external stimuli may be necessary not only in dental practice but also in other medical practices, and in sports and health guidance.

本発明は、上記に鑑みなされたものであり、外的刺激に対する触覚感度がどの程度であるかを推定することができ、しかも、コンピュータにかかる負荷を従来と比べて軽減することができる技術を提供することを課題とする。 The present invention has been made in view of the above, and a technique capable of estimating the tactile sensitivity to an external stimulus and reducing the load on the computer as compared with the conventional technique. The challenge is to provide.

上記課題を解決するため、本発明の生体状態推定装置は、人の背部に当接される生体信号測定装置から得られる生体信号を用いて、生体状態を推定する生体状態推定装置であって、前記生体信号の時系列データを周波数解析し、0.01〜0.2Hzの対数パワースペクトル密度と対数周波数との関係を示すゆらぎ波形を出力する周波数解析手段と、前記ゆらぎ波形について回帰直線を求めると共に、前記回帰直線の傾きを求める回帰直線解析手段と、前記回帰直線の傾きにより、外的刺激に対する触覚感度を前記生体状態として推定する触覚感度推定手段とを有することを特徴とする。 In order to solve the above problems, the biological state estimation device of the present invention is a biological state estimation device that estimates a biological state by using a biological signal obtained from a biological signal measuring device that is in contact with the back of a person. The time series data of the biological signal is frequency-analyzed, and a frequency analysis means that outputs a fluctuation waveform showing the relationship between the logarithmic power spectrum density of 0.01 to 0.2 Hz and the logarithmic frequency and a regression line are obtained for the fluctuation waveform. At the same time, it is characterized by having a regression line analysis means for obtaining the inclination of the regression line and a tactile sensitivity estimating means for estimating the tactile sensitivity to an external stimulus as the biological state based on the inclination of the regression line.

予め測定した前記回帰直線の傾きと前記触覚感度との相関データを記憶する相関データ記憶部を備えており、前記触覚感度推定手段が、前記相関データ記憶部にアクセスして、前記回帰直線解析手段により得られた解析対象の前記回帰直線の傾きを照合し、前記触覚感度を推定する構成とすることが好ましい。
前記触覚感度推定手段は、前記外的刺激が付与される前の通常状態の前記回帰直線の傾きを基準データとして基準データ記憶部に記憶させておき、前記回帰直線解析手段により得られた解析対象の前記回帰直線の傾きを前記基準データと比較して、前記触覚感度を推定する構成とすることも好ましい。
前記生体信号測定装置が、診療用椅子の背もたれに設けられており、前記周波数解析手段が、前記診療用椅子に着座している患者の背部から得られる生体信号について周波数解析し、前記触覚感度推定手段により推定された前記患者の触覚感度を出力する表示モニタをさらに備える構成とすることが好ましい。
A correlation data storage unit for storing correlation data between the inclination of the regression line measured in advance and the tactile sensitivity is provided, and the tactile sensitivity estimation means accesses the correlation data storage unit to access the correlation data storage unit to analyze the regression line. It is preferable that the tactile sensitivity is estimated by collating the slope of the regression line of the analysis target obtained in the above.
The tactile sensitivity estimating means stores the slope of the regression line in the normal state before the external stimulus is applied as reference data in the reference data storage unit, and the analysis target obtained by the regression line analysis means. It is also preferable to have a configuration in which the tactile sensitivity is estimated by comparing the slope of the regression line with the reference data.
The biological signal measuring device is provided on the backrest of the medical chair, and the frequency analysis means frequency-analyzes the biological signal obtained from the back of the patient sitting in the medical chair and estimates the tactile sensitivity. It is preferable to further include a display monitor that outputs the tactile sensitivity of the patient estimated by the means.

本発明の生体状態推定方法は、人の背部に当接される生体信号測定装置から得られる生体信号を用いて、生体状態を推定する生体状態推定方法であって、前記生体信号の時系列データを周波数解析し、0.01〜0.2Hzの対数パワースペクトル密度と対数周波数との関係を示すゆらぎ波形を出力し、前記ゆらぎ波形について回帰直線を求めると共に、前記回帰直線の傾きを求め、前記回帰直線の傾きにより、外的刺激に対する触覚感度を前記生体状態として推定することを特徴とする。 The biological state estimation method of the present invention is a biological state estimation method for estimating a biological state using a biological signal obtained from a biological signal measuring device abutting on the back of a person, and is time-series data of the biological signal. Is frequency-analyzed, a fluctuation waveform showing the relationship between the logarithmic power spectral density of 0.01 to 0.2 Hz and the logarithmic frequency is output, a regression line is obtained for the fluctuation waveform, and the slope of the regression line is obtained. It is characterized in that the tactile sensitivity to an external stimulus is estimated as the biological state by the slope of the regression line.

予め測定した前記回帰直線の傾きと前記触覚感度との相関データを記憶する相関データ記憶部にアクセスし、解析対象の前記回帰直線の傾きを前記相関データに照合し、前記触覚感度を推定することが好ましい。
前記外的刺激が付与される前の通常状態の前記回帰直線の傾きを基準データとして基準データ記憶部に記憶させておき、解析対象の前記回帰直線の傾きを前記基準データと比較して、前記触覚感度を推定することも好ましい。
Accessing the correlation data storage unit that stores the correlation data between the slope of the regression line measured in advance and the tactile sensitivity, collating the slope of the regression line to be analyzed with the correlation data, and estimating the tactile sensitivity. Is preferable.
The slope of the regression line in the normal state before the external stimulus is applied is stored in the reference data storage unit as reference data, and the slope of the regression line to be analyzed is compared with the reference data. It is also preferable to estimate the tactile sensitivity.

本発明のコンピュータプログラムは、生体状態推定装置としてのコンピュータに、人の背部に当接される生体信号測定装置から得られる生体信号を分析させ、生体状態を推定する手順を実行させるコンピュータプログラムであって、前記生体信号の時系列データを周波数解析し、0.01〜0.2Hzの対数パワースペクトル密度と対数周波数との関係を示すゆらぎ波形を出力する手順と、前記ゆらぎ波形について回帰直線を求めると共に、前記回帰直線の傾きを求める手順と、前記回帰直線の傾きにより、外的刺激に対する触覚感度を前記生体状態として推定する手順とを実行させる。 The computer program of the present invention is a computer program that causes a computer as a biological state estimation device to analyze a biological signal obtained from a biological signal measuring device that is in contact with the back of a person and execute a procedure for estimating a biological state. Then, the time series data of the biometric signal is frequency-analyzed, a procedure for outputting a fluctuation waveform showing the relationship between the logarithmic power spectrum density of 0.01 to 0.2 Hz and the logarithmic frequency, and a regression line for the fluctuation waveform are obtained. At the same time, a procedure for obtaining the inclination of the regression line and a procedure for estimating the tactile sensitivity to an external stimulus as the biological state based on the inclination of the regression line are executed.

前記触覚感度を推定する手順では、予め測定した前記回帰直線の傾きと前記触覚感度との相関データを記憶する相関データ記憶部にアクセスし、解析対象の前記回帰直線の傾きを前記相関データに照合して前記触覚感度を推定することが好ましい。
前記触覚感度を推定する手順では、前記外的刺激が付与される前の通常状態の前記回帰直線の傾きを基準データとして基準データ記憶部に記憶させておき、解析対象の前記回帰直線の傾きを前記基準データと比較して、前記触覚感度を推定することも好ましい。
また、本発明は、生体状態推定装置としてのコンピュータに、人の背部に当接される生体信号測定装置から得られる生体信号を分析させ、生体状態を推定する手順を実行させる請求項8〜10のいずれか1に記載のコンピュータプログラムが記録されたコンピュータ読み取り可能な記録媒体を提供する。
In the procedure for estimating the tactile sensitivity, the correlation data storage unit that stores the correlation data between the inclination of the regression line measured in advance and the tactile sensitivity is accessed, and the inclination of the regression line to be analyzed is collated with the correlation data. It is preferable to estimate the tactile sensitivity.
In the procedure for estimating the tactile sensitivity, the slope of the regression line in the normal state before the external stimulus is applied is stored in the reference data storage unit as reference data, and the slope of the regression line to be analyzed is stored. It is also preferable to estimate the tactile sensitivity in comparison with the reference data.
The present invention also claims 8 to 10 for causing a computer as a biological state estimation device to analyze a biological signal obtained from a biological signal measuring device abutting on the back of a person and execute a procedure for estimating a biological state. Provided is a computer-readable recording medium on which the computer program according to any one of 1 is recorded.

本発明は、人の背部に当接される生体信号測定装置から得られる生体信号(APW)を周波数解析し、0.01〜0.2Hzの対数パワースペクトル密度と対数周波数との関係を示すゆらぎ波形を出力し、このゆらぎ波形について回帰直線を求め、回帰直線の傾きにより、外的刺激に対する触覚感度を推定する構成である。0.01〜0.2Hzの周波数帯域は、外的刺激に対して痛みや不快を感じて亢進する交感神経系の状態を反映しており、その周波数帯域に絞ることで、人が外的刺激に対して感じている触覚感度を知ることができる。従って、歯科診療等において、患者が治療行為に対してどの程度の痛みや不快感を感じているかを治療中に把握することができ、より適切な治療行為を期待できる。また、本発明は、このように解析対象の周波数帯域を触覚感度の推定に必要なものに限定しているため、コンピュータの演算処理装置への負荷が小さくメモリーの使用量も少なくて済む。また、ゆらぎ波形の判定にあたり、ゆらぎ波形に引かれる回帰直線を一つにし、その傾きを用いて判定するだけであるため、この点でも、従来の生体状態推定装置と比較して、コンピュータの負荷の軽減に大いに寄与でき、推定結果の出力も速くなる。 The present invention frequency-analyzes a biological signal (APW) obtained from a biological signal measuring device abutting on the back of a person, and shows a fluctuation showing the relationship between the logarithmic power spectral density of 0.01 to 0.2 Hz and the logarithmic frequency. The waveform is output, a regression line is obtained for this fluctuation waveform, and the tactile sensitivity to an external stimulus is estimated from the slope of the regression line. The frequency band of 0.01 to 0.2 Hz reflects the state of the sympathetic nervous system, which is enhanced by feeling pain and discomfort in response to external stimuli, and by narrowing down to that frequency band, a person can externally stimulate. You can know the tactile sensitivity you are feeling. Therefore, in dental treatment and the like, it is possible to grasp how much pain and discomfort the patient feels with respect to the treatment action during the treatment, and a more appropriate treatment action can be expected. Further, since the present invention limits the frequency band to be analyzed to those necessary for estimating the tactile sensitivity, the load on the arithmetic processing unit of the computer is small and the amount of memory used can be small. In addition, when determining the fluctuation waveform, the regression line drawn by the fluctuation waveform is unified and the judgment is made using the slope of the regression line. Therefore, in this respect as well, the load on the computer is higher than that of the conventional biological state estimation device. Can greatly contribute to the reduction of the above, and the output of the estimation result will be faster.

図1(a)は、本発明の一の実施形態において用いた背部体表脈波を測定する生体信号測定装置の一例を示した分解図であり、図1(b)は、その要部断面図である。FIG. 1 (a) is an exploded view showing an example of a biological signal measuring device for measuring a back body surface pulse wave used in one embodiment of the present invention, and FIG. 1 (b) is a cross section of a main part thereof. It is a figure. 図2は、本発明の一の実施形態に係る生体状態推定装置の構成を模式的に示した図である。FIG. 2 is a diagram schematically showing a configuration of a biological state estimation device according to an embodiment of the present invention. 図3は、実験例における治療強度と体動との関係を示した図である。FIG. 3 is a diagram showing the relationship between treatment intensity and body movement in the experimental example. 図4は、実験例における治療強度と交感神経活動との関係を示した図である。FIG. 4 is a diagram showing the relationship between the treatment intensity and the sympathetic nerve activity in the experimental example. 図5は、実験例における治療強度と心拍変動スペクトル(ゆらぎ波形)の回帰直線の傾きとの関係を示した図である。FIG. 5 is a diagram showing the relationship between the treatment intensity and the slope of the regression line of the heart rate variability spectrum (fluctuation waveform) in the experimental example. 図6(a)は、実験例における被験者Aのゆらぎ波形と回帰直線の傾きを示した図であり、図6(b)は、実験例における被験者Bのゆらぎ波形と回帰直線の傾きを示した図である。FIG. 6A is a diagram showing the fluctuation waveform of subject A and the slope of the regression line in the experimental example, and FIG. 6B is a diagram showing the fluctuation waveform of subject B and the slope of the regression line in the experimental example. It is a figure. 図7(a)〜(e)は、解析対象とする周波数帯域を異ならせて求めた全被験者の心拍変動波形の周波数スペクトル(ゆらぎ波形)の回帰直線の傾きの関係を示した図である。7 (a) to 7 (e) are diagrams showing the relationship of the slopes of the regression lines of the frequency spectra (fluctuation waveforms) of the heart rate variability waveforms of all the subjects obtained by different frequency bands to be analyzed.

以下、図面に示した本発明の実施形態に基づき、本発明をさらに詳細に説明する。本発明において採取する生体信号は、背部から採取される生体信号である。この生体信号は、人の上体背部から検出されるため、心臓と大動脈の運動から生じる音・振動情報であり、心室の収縮期及び拡張期の情報と、血液循環の補助ポンプとなる血管壁の弾性情報及び血圧による弾性情報並びに反射波の情報、すなわち、背部体表脈波(APW)や疑似心音情報を含んでいる。そして、外的刺激に対する触覚感度の変化、すなわち、痛みや不快感を感じると亢進する交感神経系の神経活動情報を含んでいる。 Hereinafter, the present invention will be described in more detail based on the embodiments of the present invention shown in the drawings. The biological signal collected in the present invention is a biological signal collected from the back. Since this biological signal is detected from the back of the upper body of a person, it is sound / vibration information generated from the movement of the heart and aorta, and information on the systole and diastole of the ventricle and the blood vessel wall that serves as an auxiliary pump for blood circulation. It includes elastic information of blood pressure, elastic information of blood pressure, and information of reflected waves, that is, back body surface pulse wave (APW) and pseudo heart sound information. It also contains information on the neural activity of the sympathetic nervous system, which is enhanced when a change in tactile sensitivity to an external stimulus, that is, pain or discomfort is felt.

生体信号を採取するための生体信号測定装置は、例えば、圧力センサを用いることも可能であるが、好ましくは、(株)デルタツーリング製の居眠り運転警告装置(スリープバスター(登録商標))で使用されている生体信号測定装置1を用いる。図1は生体信号測定装置1の概略構成を示したものである。この生体信号測定装置1は、椅子の背もたれに組み込んで使用することができ、手指を拘束することなく生体信号を採取できる。 As the biological signal measuring device for collecting biological signals, for example, a pressure sensor can be used, but it is preferably used in a sleep driving warning device (Sleep Buster (registered trademark)) manufactured by Delta Touring Co., Ltd. The biological signal measuring device 1 used is used. FIG. 1 shows a schematic configuration of the biological signal measuring device 1. This biological signal measuring device 1 can be used by being incorporated in the backrest of a chair, and can collect biological signals without restraining fingers.

生体信号測定装置1を簡単に説明すると、図1(a),(b)に示したように、上層側から順に、第一層11、第二層12及び第三層13が積層された三層構造からなり、三次元立体編物等からなる第一層11を生体信号の検出対象である人体側に位置させて用いられる。従って、人体の体幹背部からの生体信号、特に、心室、心房、大血管の振動に伴って発生する生体音(体幹直接音ないしは生体音響信号)を含む心臓・血管系の音・振動情報(背部体表脈波(APWを含む))は、生体信号入力系である第一層11にまず伝播される。第二層12は、第一層11から伝播される生体信号、特に心臓・血管系の音・振動を共鳴現象又はうなり現象によって強調させる共鳴層として機能し、ビーズ発泡体等からなる筐体121、固有振動子の機能を果たす三次元立体編物122、膜振動を生じるフィルム123を有して構成される。第二層12内において、マイクロフォンセンサ14が配設され、音・振動情報を検出する。第三層13は、第二層12を介して第一層11の反対側に積層され、外部からの音・振動入力を低減する。 Briefly explaining the biological signal measuring device 1, as shown in FIGS. 1A and 1B, the first layer 11, the second layer 12, and the third layer 13 are laminated in this order from the upper layer side. The first layer 11 having a layered structure and made of a three-dimensional three-dimensional knitted fabric or the like is used by being positioned on the human body side, which is a target for detecting a biological signal. Therefore, the sound / vibration information of the heart / vascular system including the biological signal from the back of the trunk of the human body, particularly the biological sound (direct trunk sound or bioacoustic signal) generated by the vibration of the ventricles, atrium, and large blood vessels. (Back body surface pulse wave (including APW)) is first propagated to the first layer 11 which is a biological signal input system. The second layer 12 functions as a resonance layer that emphasizes biological signals propagated from the first layer 11, particularly sounds and vibrations of the heart and vascular system by a resonance phenomenon or a beat phenomenon, and is a housing 121 made of bead foam or the like. , A three-dimensional three-dimensional knitted fabric 122 that functions as a natural oscillator, and a film 123 that causes membrane vibration. A microphone sensor 14 is arranged in the second layer 12 to detect sound / vibration information. The third layer 13 is laminated on the opposite side of the first layer 11 via the second layer 12, and reduces sound / vibration input from the outside.

次に、本実施形態の生体状態推定装置100の構成について図2に基づいて説明する。生体状態推定装置100は、周波数解析手段200、回帰直線解析手段300及び触覚感度推定手段400を有して構成されている。生体状態推定装置100は、コンピュータ(マイクロコンピュータ等も含む)から構成され、コンピュータを、周波数解析手段200、回帰直線解析手段300及び触覚感度推定手段400等として機能させる手順を実行させるコンピュータプログラムが記憶部に記憶されている。また、生体状態推定装置100は、周波数解析手段200、回帰直線解析手段300及び触覚感度推定手段400等を、コンピュータプログラムにより所定の手順で動作する電子回路である周波数解析回路、回帰直線解析回路及び触覚感度推定回路等として構成することもできる。なお、以下の説明において、周波数解析手段200、回帰直線解析手段300及び触覚感度推定手段400以外で「手段」が付されて表現された構成も、電子回路部品として構成することが可能であることはもちろんである。 Next, the configuration of the biological state estimation device 100 of the present embodiment will be described with reference to FIG. The biological state estimation device 100 includes a frequency analysis means 200, a regression line analysis means 300, and a tactile sensitivity estimation means 400. The biological state estimation device 100 is composed of a computer (including a microcomputer and the like), and stores a computer program that executes a procedure for causing the computer to function as a frequency analysis means 200, a regression linear analysis means 300, a tactile sensitivity estimation means 400, and the like. It is remembered in the department. Further, the biological state estimation device 100 includes a frequency analysis circuit, a regression line analysis circuit, and a regression line analysis circuit, which are electronic circuits in which the frequency analysis means 200, the regression line analysis means 300, the tactile sensitivity estimation means 400, and the like are operated by a computer program in a predetermined procedure. It can also be configured as a tactile sensitivity estimation circuit or the like. In the following description, a configuration represented by adding "means" other than the frequency analysis means 200, the regression line analysis means 300, and the tactile sensitivity estimation means 400 can also be configured as an electronic circuit component. Of course.

また、コンピュータプログラムは、記録媒体に記憶させてもよい。この記録媒体を用いれば、例えば上記コンピュータに上記プログラムをインストールすることができる。ここで、上記プログラムを記憶した記録媒体は、非一過性の記録媒体であっても良い。非一過性の記録媒体は特に限定されないが、例えば フレキシブルディスク、ハードディスク、CD−ROM、MO(光磁気ディスク)、DVD−ROM、メモリカードなどの記録媒体が挙げられる。また、通信回線を通じて上記プログラムを上記コンピュータに伝送してインストールすることも可能である。 Further, the computer program may be stored in a recording medium. By using this recording medium, for example, the program can be installed on the computer. Here, the recording medium in which the above program is stored may be a non-transient recording medium. Non-transient recording media are not particularly limited, and examples thereof include recording media such as flexible disks, hard disks, CD-ROMs, MOs (magneto-optical disks), DVD-ROMs, and memory cards. It is also possible to transmit the program to the computer through a communication line and install it.

周波数解析手段200は、生体信号測定装置1のセンサ14から得られる背部音・振動情報をフィルタリング処理した1Hz近傍の背部体表脈波(APW)の時系列波形を周波数解析し、0.01〜0.2Hzの対数パワースペクトル密度と対数周波数との関係を示すゆらぎ波形を出力する。背部体表脈波(APW)は、中枢系である心臓の制御の様子を主として含む生体信号、すなわち、動脈の交感神経支配の様子、並びに、交感神経系と副交感神経系の出現情報を含む生体信号である。外的刺激に対する痛みや不快を感じると、交感神経活動の亢進が引き起こされることから、APWを用いることが好ましく、そのうち、0.01〜0.2Hzの周波数帯域を解析対象として、両対数軸表示することが好ましい。この周波数帯域は、後述の実験例のように、歯科の治療強度(通常、治療強度が高くなるほど、痛みや不快を強く感じ、触覚感度が上がる)との相関性が高く、外的刺激に対する触覚感度の推定に適している。一般に、これら痛みの感覚と関連する交感神経系及び副交感神経系の出現度合いは、0.01〜0.04Hzの範囲に含まれているといわれている。0.04Hz以上では、ノイズが多くなるからであるが、0.04Hz付近でもある程度のノイズが含まれる。従って、ばらつきを排除するためには、0.01〜0.03Hzの範囲に区切って解析することが望ましい。
その一方、歯科治療中に判定する場合などでは、短時間で、例えば5分程度かそれ以下で推定結果を出力することが望まれる。また、歯科治療中のように、睡眠時ではなく覚醒時における測定では、相対的に高い周波数帯にも自律神経系の情報が含まれている。この意味では、0.03Hzや0.04Hzを上限とするのではなく、0.01〜0.2Hzの範囲の周波数帯をゆらぎ波形を求めるための解析対象とすることが好ましい。また、生体状態のトレンドの大域的把握には、生体信号のデータを数秒間ずつ区切ってその区間の傾きを求め、その傾きをスライド計算によって順次求めて時系列のデータを構成するいわゆる傾き時系列波形を求める手法が適しているが、0.01〜0.2Hzの範囲の5分間のデータから求めたゆらぎ波形の傾きは、傾き時系列波形の約30分間の傾きに相当する。この点でも、本実施形態のように、APWの0.01〜0.2Hzの周波数帯域を解析対象とすることが、短時間でより正確な判定を行うために好ましい。
The frequency analysis means 200 frequency-analyzes the time-series waveform of the back body surface pulse wave (APW) in the vicinity of 1 Hz obtained by filtering the back sound / vibration information obtained from the sensor 14 of the biological signal measuring device 1, and 0.01 to 0.01 to A fluctuation waveform showing the relationship between the logarithmic power spectral density of 0.2 Hz and the logarithmic frequency is output. The dorsal body surface pulse wave (APW) is a biological signal that mainly includes the control of the heart, which is the central system, that is, the sympathetic innervation of arteries, and the appearance information of the sympathetic nervous system and the parasympathetic nervous system. It is a signal. It is preferable to use APW because sympathetic nerve activity is enhanced when pain or discomfort due to an external stimulus is felt. Among them, the frequency band of 0.01 to 0.2 Hz is set as an analysis target, and a log-log axis display is performed. It is preferable to do so. As in the experimental example described later, this frequency band has a high correlation with the dental treatment intensity (usually, the higher the treatment intensity, the stronger the pain and discomfort, and the higher the tactile sensitivity), and the tactile sensation to external stimuli. Suitable for estimating sensitivity. Generally, it is said that the degree of appearance of the sympathetic nervous system and the parasympathetic nervous system associated with these pain sensations is included in the range of 0.01 to 0.04 Hz. This is because noise increases at 0.04 Hz or higher, but some noise is included even at around 0.04 Hz. Therefore, in order to eliminate variations, it is desirable to divide the analysis into a range of 0.01 to 0.03 Hz.
On the other hand, when making a judgment during dental treatment, it is desirable to output the estimation result in a short time, for example, about 5 minutes or less. In addition, when measured during awakening rather than during sleep, as in dental treatment, information on the autonomic nervous system is also included in relatively high frequency bands. In this sense, it is preferable to use a frequency band in the range of 0.01 to 0.2 Hz as an analysis target for obtaining a fluctuation waveform, instead of using 0.03 Hz or 0.04 Hz as the upper limit. In addition, in order to grasp the trend of the biological state globally, the slope of the section is obtained by dividing the data of the biological signal for several seconds, and the slope is sequentially obtained by slide calculation to form the so-called slope time series. The method of obtaining the waveform is suitable, but the slope of the fluctuation waveform obtained from the data for 5 minutes in the range of 0.01 to 0.2 Hz corresponds to the slope of the slope time series waveform for about 30 minutes. In this respect as well, it is preferable to analyze the frequency band of 0.01 to 0.2 Hz of APW as in the present embodiment in order to make a more accurate determination in a short time.

回帰直線解析手段300は、周波数解析手段200により得られたゆらぎ波形について最小二乗法により回帰直線を求め、次に、この回帰直線の傾きを求める。 The regression line analysis means 300 obtains a regression line by the least squares method for the fluctuation waveform obtained by the frequency analysis means 200, and then obtains the slope of the regression line.

触覚感度推定手段400は、回帰直線解析手段300により求めた回帰直線の傾きにより、外的刺激に対する触覚感度を推定する。例えば、回帰直線の傾きが−1、すなわち1/fゆらぎの傾きとの比較で触覚感度を推定することが好ましい。具体的には、回帰直線の傾きが−1より小さい(絶対値で1より大きい)場合には、外的刺激に対する痛み等を強く感じしている、すなわち触覚感度が高い状態と推定し、回帰直線の傾きが−1より大きい(絶対値で1より小さい)場合には、外的刺激に対する痛み等をあまり感じておらず、すなわち触覚感度が低い状態と推定する。 The tactile sensitivity estimation means 400 estimates the tactile sensitivity to an external stimulus from the slope of the regression line obtained by the regression line analysis means 300. For example, it is preferable to estimate the tactile sensitivity by comparing the slope of the regression line with the slope of -1, that is, the slope of the 1 / f fluctuation. Specifically, when the slope of the regression line is less than -1 (absolute value is greater than 1), it is presumed that the patient strongly feels pain due to an external stimulus, that is, the tactile sensitivity is high, and the regression is performed. When the slope of the straight line is greater than -1 (absolute value is less than 1), it is presumed that the patient does not feel much pain due to external stimuli, that is, the tactile sensitivity is low.

回帰直線の傾きと触覚感度との相関については、例えば、予めそれらの関係に関するデータを複数集め、それをコンピュータの記憶部に形成した相関データ記憶部510に記憶させておく。例えば、上記のように、回帰直線の傾きが−1より大きい場合には、「触覚感度:高」、回帰直線の傾きが−1より小さい場合には、「触覚感度:低」といったように表形式によりデータベース化しておく。もちろん、データベースの構築方法は任意であり、回帰直線の傾き及び触覚感度をより細分化して対応させることもできる。そして、解析対象の回帰直線の傾きから状態を推定する際には、触覚感度推定手段400が、上記の相関データ記憶部510にアクセスして、当該回帰直線の傾きを対応する触覚感度を検出する。なお、相関データ記憶部510に予め記憶させる相関データは、異なる人の多数のデータであってもよいし、判定対象となっている人の個人データを複数蓄積したものであってもよい。 Regarding the correlation between the slope of the regression line and the tactile sensitivity, for example, a plurality of data relating to these relationships are collected in advance and stored in the correlation data storage unit 510 formed in the storage unit of the computer. For example, as described above, when the slope of the regression line is greater than -1, "tactile sensitivity: high", and when the slope of the regression line is less than -1, "tactile sensitivity: low". Create a database according to the format. Of course, the method of constructing the database is arbitrary, and the slope of the regression line and the tactile sensitivity can be further subdivided and corresponded. Then, when estimating the state from the slope of the regression line to be analyzed, the tactile sensitivity estimation means 400 accesses the correlation data storage unit 510 and detects the tactile sensitivity corresponding to the slope of the regression line. .. The correlation data stored in advance in the correlation data storage unit 510 may be a large number of data of different people, or may be a collection of a plurality of personal data of people to be determined.

また、外的刺激が付与される前の通常状態の回帰直線の傾きを基準データとして基準データ記憶部520に記憶させておき、この基準データとの比較で触覚感度を推定する構成とすることもできる。例えば、歯科治療中の触覚感度を推定する場合、歯科治療を開始する前の通常状態の回帰直線の傾きを求め、それを基準データとして記憶させる。例えば、傾き−0.8を記憶させる。そして、その患者の触覚感度を推定する場合には、−0.8を基準として傾きの大小を判定し、触覚感度を推定する。このように、触覚感度を知りたい状況、例えば、歯科治療などの行為が存在する場合に、その直前の状態を基準とすることで、当該患者の痛みや不快のレベルをより正確に知ることができる。 Further, the slope of the regression line in the normal state before the external stimulus is applied is stored in the reference data storage unit 520 as the reference data, and the tactile sensitivity is estimated by comparison with the reference data. it can. For example, when estimating the tactile sensitivity during dental treatment, the slope of the regression line in the normal state before the start of dental treatment is obtained and stored as reference data. For example, the slope -0.8 is stored. Then, when estimating the tactile sensitivity of the patient, the magnitude of the inclination is determined with reference to −0.8, and the tactile sensitivity is estimated. In this way, when there is a situation where you want to know the tactile sensitivity, for example, an action such as dental treatment, you can know the level of pain or discomfort of the patient more accurately by using the state immediately before that as a reference. it can.

本実施形態によれば、歯科治療用の椅子、その他、耳鼻科などで用いられる椅子等の診療用椅子の背もたれに生体信号測定装置1を取り付けることで、人が外的刺激に対して痛みや不快を感じているレベルに概略的に対応した指標(触覚感度)を知ることができる。特に、治療中に痛みを感じる頻度が比較的多い、歯科治療用の椅子に適しており、患者へのより適切な治療に貢献できる。 According to the present embodiment, by attaching the biological signal measuring device 1 to the backrest of a chair for dental treatment or a chair for medical treatment such as a chair used in otolaryngology, a person may suffer pain due to an external stimulus. It is possible to know the index (tactile sensitivity) that roughly corresponds to the level of discomfort. In particular, it is suitable for a chair for dental treatment, in which pain is relatively frequently felt during treatment, and can contribute to more appropriate treatment for patients.

なお、生体状態推定装置100は、診療用椅子に付設されたテーブル等、医師の目が届く範囲に設置される表示モニタ110を備える構成とすることが好ましい。この場合、触覚感度推定手段400の推定結果は、表示モニタ110に表示させるためのコンピュータプログラムが起動し、当該表示モニタ110に触覚感度推定手段400の推定結果を出力させる。例えば、横軸に治療時間が示され、縦軸に触覚感度が「高、低」あるいは「1、2、3・・・」等の段階で表示され、医師は、その表示モニタ110を見て、患者が手を挙げるなどしてアピールすることなく、患者の感じている痛みや不快のレベルを容易に推察することができる。 It is preferable that the biological state estimation device 100 is provided with a display monitor 110 installed within a range that a doctor can see, such as a table attached to a medical chair. In this case, the computer program for displaying the estimation result of the tactile sensitivity estimation means 400 on the display monitor 110 is activated, and the display monitor 110 is made to output the estimation result of the tactile sensitivity estimation means 400. For example, the horizontal axis shows the treatment time, and the vertical axis shows the tactile sensitivity at the stage of "high, low" or "1, 2, 3 ...", and the doctor looks at the display monitor 110. , The level of pain and discomfort felt by the patient can be easily inferred without appealing by raising the hand of the patient.

また、本実施形態によれば、解析対象の周波数帯域を上記のように0.01〜0.2Hzと、触覚感度の推定に必要なものに限定している。そのため、コンピュータの演算処理装置への負荷が小さくメモリーの使用量も少なくて済む。また、回帰直線解析手段300によってゆらぎ波形に引かれる回帰直線が1本で、その傾きを判定するだけであるため、より広い周波数帯域を解析対象とする場合と比較して、コンピュータの負荷の軽減、演算処理速度の向上に寄与できる。 Further, according to the present embodiment, the frequency band to be analyzed is limited to 0.01 to 0.2 Hz as described above, which is necessary for estimating the tactile sensitivity. Therefore, the load on the arithmetic processing unit of the computer is small and the amount of memory used can be small. Further, since only one regression line is drawn by the regression line analysis means 300 on the fluctuation waveform and only the slope thereof is determined, the load on the computer is reduced as compared with the case where a wider frequency band is analyzed. , Can contribute to the improvement of calculation processing speed.

(実験例)
歯科診療において、痛みや不快を感じさせるレベルが低いと考えられる処置行為、高いと考えられる処置行為を治療強度として区分し、治療強度と生体状態推定装置100により求められる解析結果との比較を行った。
(Experimental example)
In dental practice, treatment actions that are considered to have a low level of pain or discomfort and treatment actions that are considered to be high are classified as treatment intensity, and the treatment intensity is compared with the analysis results obtained by the biological condition estimation device 100. It was.

(1)測定方法
歯科医院に来院した患者を対象とし、歯科診療中のAPWの測定を行った。被験者は17名(男性14名、女性3名、平均年齢59歳±15.5歳)であった。被験者本人には医師から本実験の目的及び内容の説明を行い、同意を得た上で測定を行った。APWは、歯科診療用の椅子の背もたれに上記実施形態の生体信号測定装置1((株)デルタツーリング製の居眠り運転警告装置(スリープバスター(登録商標))を設置し、測定を行った。測定時間は診療開始から診療終了までである。
(1) Measurement method APW was measured during dental treatment for patients who visited the dental clinic. There were 17 subjects (14 males, 3 females, average age 59 ± 15.5 years). The purpose and content of this experiment were explained to the subject by a doctor, and the measurement was performed after obtaining consent. APW installed the biological signal measuring device 1 (sleep driving warning device (Sleep Buster (registered trademark)) manufactured by Delta Touring Co., Ltd.) on the backrest of the chair for dental treatment and performed the measurement. The time is from the start of medical treatment to the end of medical treatment.

(2)解析方法
診療時における体動出現率、自律神経活動の出現度合い、心拍変動波形の周波数スペクトルをAPWから算出し、医師の考える治療強度との比較検討を行う。なお、治療強度は診療を行う医師が処置内容ごとに患者への負担を10段階で経験的に数値化したものである。
(2) Analysis method The appearance rate of body movement, the degree of appearance of autonomic nerve activity, and the frequency spectrum of the heart rate variability waveform at the time of medical treatment are calculated from APW and compared with the treatment intensity considered by the doctor. The treatment intensity is empirically quantified by the doctor who performs the medical treatment on a scale of 10 for each treatment content.

(3)結果と考察
図3は治療強度と体動出現率の関係を示す。治療強度が高い場合やスケーリング・歯面清掃を行う場合、体動出現率が高くなる傾向があった。歯科診療に対して不安が高い群と低い群の体動を比較すると、不安の高い群の方が手足における体動が多くなる。つまり、治療強度が高い場合、緊張、不安、恐怖といった精神的ストレスが高まり、体動が多くなる傾向があると考えられる。一方、治療強度が低いスケーリング・歯面清掃は、歯石除去やブラッシングといった高周波振動を伴う機械による処置の影響で体動が多くなったと考えられる。
(3) Results and discussion Fig. 3 shows the relationship between treatment intensity and body movement appearance rate. When the treatment intensity was high or when scaling / tooth surface cleaning was performed, the appearance rate of body movement tended to be high. Comparing the body movements of the group with high anxiety and the group with low anxiety about dental treatment, the group with high anxiety has more body movements in the limbs. In other words, when the treatment intensity is high, mental stress such as tension, anxiety, and fear increases, and it is considered that physical activity tends to increase. On the other hand, it is considered that scaling and tooth surface cleaning, which have low treatment intensity, increased body movement due to the influence of mechanical treatment with high-frequency vibration such as tartar removal and brushing.

図4に治療強度と診療時における交感神経の亢進割合の関係を示す。治療強度が高いと交感神経活動亢進率が高くなる傾向がみられる。治療強度が高い抜歯、切開、支台歯形成は身体的負担が大きいため、浸潤麻酔が用いられる。浸潤麻酔は歯科処置の中で最も疼痛や精神的ストレスを与えるため、治療強度が高いと交感神経系の活動が亢進すると考えられる。従って、疼痛やストレスのレベル(触覚感度)が高くなると、交感神経系の活動が亢進することが言える。 FIG. 4 shows the relationship between the treatment intensity and the sympathetic nerve enhancement rate at the time of medical treatment. The higher the treatment intensity, the higher the sympathetic hyperactivity rate tends to be. Infiltration anesthesia is used because tooth extraction, incision, and abutment tooth formation, which have high treatment intensity, place a heavy physical burden. Since infiltration anesthesia causes the most pain and psychological stress in dental procedures, it is considered that the activity of the sympathetic nervous system is enhanced when the treatment intensity is high. Therefore, it can be said that the activity of the sympathetic nervous system is enhanced when the level of pain or stress (tactile sensitivity) is increased.

歯面清掃は患者をリラックスさせる効果がある。スケーリングは急性ストレスを与え、交感神経活動の亢進を引き起こすが、同時に体のバランスを保たせようと副交感神経活動を活性化させる。したがって、スケーリング・歯面清掃の交感神経活動の亢進率は1〜33%の広範囲に分布したものと考えられる。根管治療は比較的侵襲が少ないため、交感神経活動の亢進率が低くなったと考えられる。一方、補綴処置は治療強度は低いが、歯の切削や充填処置により不快を感じやすく、交感神経活動が亢進したものと推察される。これも痛みに近似した感覚として把握できる。 Cleaning the tooth surface has the effect of relaxing the patient. Scaling exerts acute stress and causes an increase in sympathetic nerve activity, but at the same time activates parasympathetic nerve activity in an attempt to maintain the balance of the body. Therefore, it is considered that the rate of increase in sympathetic nerve activity of scaling and tooth surface cleaning was widely distributed in 1 to 33%. Since root canal treatment is relatively minimally invasive, it is considered that the rate of increase in sympathetic nerve activity was low. On the other hand, although the prosthetic treatment has a low therapeutic intensity, it is presumed that the sympathetic nerve activity was enhanced because the tooth cutting and filling treatment tended to cause discomfort. This can also be grasped as a sensation similar to pain.

図5は、治療強度と体表脈波から算出した心拍変動波形の周波数スペクトルの傾き(ゆらぎ波形の傾き)の関係を自律神経系の状態別に区分けしたものである。図6は、スケーリング、歯磨き指導(治療強度1)を受けた被験者A(52歳男性)と抜歯(治療強度5)を受けた被験者B(59歳男性)の心拍変動波形の周波数スペクトルを示す。図中の太線はスペクトル(ゆらぎ波形)の回帰直線を示す。スペクトルの回帰直線の傾きは治療強度が高いと−1より小さくなり(絶対値が大きくなり)、治療強度が低いと−1より大きくなる(絶対値が小さくなる)傾向があった。すなわち、治療強度と回帰直線の傾きは1/fを境にして高い相関性が認められた(相関係数R=−0.59)。このことから、治療強度の低い痛みを感じるレベルが低い場合と、治療強度の高い痛みを感じるレベルの高い場合とを、この傾きによって判別できることがわかる。 FIG. 5 shows the relationship between the treatment intensity and the slope of the frequency spectrum of the heart rate variability waveform calculated from the body surface pulse wave (slope of the fluctuation waveform) classified by the state of the autonomic nervous system. FIG. 6 shows the frequency spectra of heart rate variability waveforms of subject A (52-year-old man) who received scaling and tooth brushing instruction (treatment intensity 1) and subject B (59-year-old man) who received tooth extraction (treatment intensity 5). The thick line in the figure shows the regression line of the spectrum (fluctuation waveform). The slope of the regression line of the spectrum tended to be smaller than -1 (larger absolute value) when the treatment intensity was high, and larger than -1 (smaller absolute value) when the treatment intensity was low. That is, a high correlation was observed between the treatment intensity and the slope of the regression line with 1 / f as the boundary (correlation coefficient R = −0.59). From this, it can be seen that the case where the level of pain with low treatment intensity is low and the case where the level of pain with high treatment intensity is high can be discriminated by this inclination.

なお、副交感優位状態とは診療時間の4割以上を副交感神経系の活性状態が占めている場合を示し、交感・副交感賦活状態は交感神経系の亢進と共に、副交感神経系も活性化している状態を示す。この区分けの中で、副交感優位状態のスペクトル(ゆらぎ波形)の回帰直線の傾きの平均値は−0.066±0.2となり、交感・副交感賦活状態では−0.88±0.26となった。t検定の結果、p=0.05と有意差は認められなかったものの、交感・副交感賦活状態の方がスペクトルの傾きは負の方向に大きくなる傾向がみられた。これは、副交感神経活動の抑制と共に心拍変動の1/fゆらぎの勾配は深くなるという知見と一致している。以上の結果から、心拍変動のゆらぎ特性を用いて、治療強度と自律神経活動状態との関係、すなわち、外部刺激に対する痛みや不快のレベルである触覚感度を推定できる可能性が示唆された。 The parasympathetic dominant state means that the active state of the parasympathetic nervous system occupies 40% or more of the consultation time, and the sympathetic / parasympathetic activated state is a state in which the parasympathetic nervous system is activated as well as the sympathetic nervous system is enhanced. Is shown. In this division, the average value of the slope of the regression line of the spectrum (fluctuation waveform) in the parasympathetic dominant state is -0.066 ± 0.2, and in the sympathetic / parasympathetic activated state is -0.88 ± 0.26. It was. As a result of the t-test, no significant difference was observed at p = 0.05, but the slope of the spectrum tended to be larger in the negative direction in the sympathetic / parasympathetic activated state. This is consistent with the finding that the gradient of 1 / f fluctuation of heart rate variability becomes deeper with the suppression of parasympathetic nerve activity. From the above results, it was suggested that the relationship between treatment intensity and autonomic nervous activity state, that is, the tactile sensitivity, which is the level of pain and discomfort to external stimuli, could be estimated by using the fluctuation characteristics of heart rate variability.

図7(a)〜(e)は、周波数解析手段200において解析対象とする周波数帯域を異ならせて、治療強度と体表脈波から算出した心拍変動波形の周波数スペクトルの傾き(ゆらぎ波形の傾き)の関係を自律神経系の状態別に区分けして示したものである。この結果から、解析対象の周波数帯域を0.01〜0.2Hz(図7(b))に設定することが、最も相関性が高いことがわかる。 7 (a) to 7 (e) show the inclination of the frequency spectrum of the heart rate variability waveform calculated from the treatment intensity and the body surface pulse wave (inclination of the fluctuation waveform) by differentiating the frequency band to be analyzed by the frequency analysis means 200. ) Is shown by classifying the state of the autonomic nervous system. From this result, it can be seen that setting the frequency band to be analyzed to 0.01 to 0.2 Hz (FIG. 7 (b)) has the highest correlation.

1 生体信号測定装置
11 コアパッド
12 スペーサパッド
13 センサ
100 生体状態推定装置
200 周波数解析手段
300 回帰直線解析手段
400 触覚感度推定手段
510 相関データ記憶部
520 基準データ記憶部
1 Biological signal measuring device 11 Core pad 12 Spacer pad 13 Sensor 100 Biological state estimation device 200 Frequency analysis means 300 Regression linear analysis means 400 Tactile sensitivity estimation means 510 Correlation data storage unit 520 Reference data storage unit

Claims (11)

人の背部に当接される生体信号測定装置から得られる心臓・血管系の音・振動情報からなる生体信号を用いて、生体状態を推定する生体状態推定装置であって、
前記生体信号の時系列データを周波数解析し、0.01〜0.2Hzの対数パワースペクトル密度と対数周波数との関係を示すゆらぎ波形を出力する周波数解析手段と、
前記ゆらぎ波形について回帰直線を求めると共に、前記回帰直線の傾きを求める回帰直線解析手段と、
前記回帰直線の傾きにより、外的刺激に対する触覚感度を前記生体状態として推定する触覚感度推定手段と
を有することを特徴とする生体状態推定装置。
It is a biological state estimation device that estimates a biological state using a biological signal consisting of sound and vibration information of the heart and blood vessels obtained from a biological signal measuring device that comes into contact with the back of a person.
A frequency analysis means that frequency-analyzes the time-series data of the biological signal and outputs a fluctuation waveform showing the relationship between the logarithmic power spectral density of 0.01 to 0.2 Hz and the logarithmic frequency.
A regression line analysis means for obtaining a regression line for the fluctuation waveform and a slope of the regression line,
A biological state estimation device comprising a tactile sensitivity estimating means for estimating the tactile sensitivity to an external stimulus as the biological state based on the inclination of the regression line.
予め測定した前記回帰直線の傾きと前記触覚感度との相関データを記憶する相関データ記憶部を備えており、
前記触覚感度推定手段が、前記相関データ記憶部にアクセスして、前記回帰直線解析手段により得られた解析対象の前記回帰直線の傾きを照合し、前記触覚感度を推定する請求項1記載の生体状態推定装置。
It is provided with a correlation data storage unit that stores correlation data between the slope of the regression line measured in advance and the tactile sensitivity.
The living body according to claim 1, wherein the tactile sensitivity estimating means accesses the correlation data storage unit, collates the inclination of the regression line of the analysis target obtained by the regression line analysis means, and estimates the tactile sensitivity. State estimator.
前記触覚感度推定手段は、前記外的刺激が付与される前の通常状態の前記回帰直線の傾きを基準データとして基準データ記憶部に記憶させておき、前記回帰直線解析手段により得られた解析対象の前記回帰直線の傾きを前記基準データと比較して、前記触覚感度を推定する請求項1記載の生体状態推定装置。 The tactile sensitivity estimating means stores the slope of the regression line in the normal state before the external stimulus is applied as reference data in the reference data storage unit, and the analysis target obtained by the regression line analysis means. The biological state estimation device according to claim 1, wherein the tactile sensitivity is estimated by comparing the inclination of the regression line with the reference data. 前記生体信号測定装置が、診療用椅子の背もたれに設けられており、
前記周波数解析手段が、前記診療用椅子に着座している患者の背部から得られる前記生体信号について周波数解析し、
前記触覚感度推定手段により推定された前記患者の触覚感度を出力する表示モニタをさらに備える請求項1〜3のいずれか1に記載の生体状態推定装置。
The biological signal measuring device is provided on the backrest of a medical chair.
It said frequency analyzing means, and a frequency analysis on the biological signal obtained from the back of a patient seated in the medical chair,
The biological state estimation device according to any one of claims 1 to 3, further comprising a display monitor that outputs the tactile sensitivity of the patient estimated by the tactile sensitivity estimating means.
人の背部に当接される生体信号測定装置から得られる心臓・血管系の音・振動情報からなる生体信号を用いて、生体状態を推定する生体状態推定方法であって、
前記生体信号の時系列データを周波数解析し、0.01〜0.2Hzの対数パワースペクトル密度と対数周波数との関係を示すゆらぎ波形を出力し、
前記ゆらぎ波形について回帰直線を求めると共に、前記回帰直線の傾きを求め、
前記回帰直線の傾きにより、外的刺激に対する触覚感度を前記生体状態として推定する
ことを特徴とする生体状態推定方法。
It is a biological state estimation method that estimates a biological state using a biological signal consisting of sound and vibration information of the heart and blood vessels obtained from a biological signal measuring device that comes into contact with the back of a person.
The time series data of the biological signal is frequency-analyzed, and a fluctuation waveform showing the relationship between the logarithmic power spectral density of 0.01 to 0.2 Hz and the logarithmic frequency is output.
Find the regression line for the fluctuation waveform and find the slope of the regression line.
A biological state estimation method characterized in that the tactile sensitivity to an external stimulus is estimated as the biological state based on the slope of the regression line.
予め測定した前記回帰直線の傾きと前記触覚感度との相関データを記憶する相関データ記憶部にアクセスし、解析対象の前記回帰直線の傾きを前記相関データに照合し、前記触覚感度を推定する請求項5記載の生体状態推定方法。 A request for estimating the tactile sensitivity by accessing a correlation data storage unit that stores correlation data between the inclination of the regression line measured in advance and the tactile sensitivity, collating the inclination of the regression line to be analyzed with the correlation data. Item 5. The method for estimating a biological state according to Item 5. 前記外的刺激が付与される前の通常状態の前記回帰直線の傾きを基準データとして基準データ記憶部に記憶させておき、解析対象の前記回帰直線の傾きを前記基準データと比較して、前記触覚感度を推定する請求項5記載の生体状態推定方法。 The slope of the regression line in the normal state before the external stimulus is applied is stored in the reference data storage unit as reference data, and the slope of the regression line to be analyzed is compared with the reference data. The biological state estimation method according to claim 5, wherein the tactile sensitivity is estimated. 生体状態推定装置としてのコンピュータに、人の背部に当接される生体信号測定装置から得られる心臓・血管系の音・振動情報からなる生体信号を分析させ、生体状態を推定する手順を実行させるコンピュータプログラムであって、
前記生体信号の時系列データを周波数解析し、0.01〜0.2Hzの対数パワースペクトル密度と対数周波数との関係を示すゆらぎ波形を出力する手順と、
前記ゆらぎ波形について回帰直線を求めると共に、前記回帰直線の傾きを求める手順と、
前記回帰直線の傾きにより、外的刺激に対する触覚感度を前記生体状態として推定する手順と
を実行させるコンピュータプログラム。
Have a computer as a biological state estimation device analyze a biological signal consisting of sound and vibration information of the heart and vascular system obtained from a biological signal measuring device that is in contact with the back of a person, and execute a procedure for estimating the biological state. It ’s a computer program
A procedure for frequency-analyzing the time-series data of the biological signal and outputting a fluctuation waveform showing the relationship between the logarithmic power spectral density of 0.01 to 0.2 Hz and the logarithmic frequency.
The procedure for obtaining the regression line for the fluctuation waveform and the slope of the regression line, and
A computer program that executes a procedure of estimating the tactile sensitivity to an external stimulus as the biological state based on the slope of the regression line.
前記触覚感度を推定する手順では、予め測定した前記回帰直線の傾きと前記触覚感度との相関データを記憶する相関データ記憶部にアクセスし、解析対象の前記回帰直線の傾きを前記相関データに照合して前記触覚感度を推定する請求項8記載のコンピュータプログラム。 In the procedure for estimating the tactile sensitivity, the correlation data storage unit that stores the correlation data between the inclination of the regression line measured in advance and the tactile sensitivity is accessed, and the inclination of the regression line to be analyzed is collated with the correlation data. The computer program according to claim 8, wherein the tactile sensitivity is estimated. 前記触覚感度を推定する手順では、前記外的刺激が付与される前の通常状態の前記回帰直線の傾きを基準データとして基準データ記憶部に記憶させておき、解析対象の前記回帰直線の傾きを前記基準データと比較して、前記触覚感度を推定する請求項8記載のコンピュータプログラム。 In the procedure for estimating the tactile sensitivity, the slope of the regression line in the normal state before the external stimulus is applied is stored in the reference data storage unit as reference data, and the slope of the regression line to be analyzed is stored. The computer program according to claim 8, wherein the tactile sensitivity is estimated by comparing with the reference data. 生体状態推定装置としてのコンピュータに、人の背部に当接される生体信号測定装置から得られる心臓・血管系の音・振動情報からなる生体信号を分析させ、生体状態を推定する手順を実行させる請求項8〜10のいずれか1に記載のコンピュータプログラムが記録されたコンピュータ読み取り可能な記録媒体。 Have a computer as a biological state estimation device analyze a biological signal consisting of sound and vibration information of the heart and vascular system obtained from a biological signal measuring device that is in contact with the back of a person, and execute a procedure for estimating the biological state. A computer-readable recording medium on which the computer program according to any one of claims 8 to 10 is recorded.
JP2016239922A 2016-12-09 2016-12-09 Biological condition estimation device, biological condition estimation method, computer program and recording medium Active JP6836264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016239922A JP6836264B2 (en) 2016-12-09 2016-12-09 Biological condition estimation device, biological condition estimation method, computer program and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016239922A JP6836264B2 (en) 2016-12-09 2016-12-09 Biological condition estimation device, biological condition estimation method, computer program and recording medium

Publications (2)

Publication Number Publication Date
JP2018093996A JP2018093996A (en) 2018-06-21
JP6836264B2 true JP6836264B2 (en) 2021-02-24

Family

ID=62632486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016239922A Active JP6836264B2 (en) 2016-12-09 2016-12-09 Biological condition estimation device, biological condition estimation method, computer program and recording medium

Country Status (1)

Country Link
JP (1) JP6836264B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687135B2 (en) * 1995-05-29 2005-08-24 松下電器産業株式会社 Sound vibration evaluation device
JP3982750B2 (en) * 2002-04-26 2007-09-26 株式会社吉田製作所 Dental care equipment
JP4238321B2 (en) * 2004-02-05 2009-03-18 独立行政法人産業技術総合研究所 Mental stress assessment device
JP5751475B2 (en) * 2011-02-28 2015-07-22 株式会社デルタツーリング Biological state estimation device and computer program
JP5892678B2 (en) * 2011-05-14 2016-03-23 株式会社デルタツーリング Biological state estimation device and computer program
JP5977938B2 (en) * 2011-11-25 2016-08-24 株式会社デルタツーリング Biological state estimation device and computer program
JP2014171660A (en) * 2013-03-08 2014-09-22 Seiko Epson Corp Atrial fibrillation analyzation equipment, atrial fibrillation analysis system, atrial fibrillation analysis method and program

Also Published As

Publication number Publication date
JP2018093996A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
Kreibig et al. Cardiovascular, electrodermal, and respiratory response patterns to fear‐and sadness‐inducing films
JP4410234B2 (en) Method and apparatus for promoting physiological coherence and autonomic balance
KR101656611B1 (en) Method for obtaining oxygen desaturation index using unconstrained measurement of bio-signals
JP5209545B2 (en) Biopsy device, program, and recording medium
JP5408751B2 (en) Autonomic nerve function measuring device
CN108697390A (en) Sleep state measurement device and method, phase coherence computing device, live body vibration signal measurement device, pressure state measurement device and sleep state measurement device and heartbeat waveform extracting method
Melillo et al. Wearable technology and ECG processing for fall risk assessment, prevention and detection
JP6097495B2 (en) Biological condition analyzer and computer program
JP2013111103A (en) Biological status estimation device and computer program
JP6876331B2 (en) Biological condition estimator, computer program and recording medium
Handouzi et al. Objective model assessment for short-term anxiety recognition from blood volume pulse signal
Zhang et al. Touch sense: Touch screen based mental stress sense
JP6813897B2 (en) Biological condition estimation device, biological condition estimation method, computer program and recording medium
JP6666705B2 (en) Biological condition estimation device, biological condition estimation method, and computer program
Soni et al. A review on physiological signals: Heart rate variability and skin conductance
Dimitriev et al. Influence of examination stress and psychoemotional characteristics on the blood pressure and heart rate regulation in female students
JP6209395B2 (en) Biological state estimation device and computer program
JP6836264B2 (en) Biological condition estimation device, biological condition estimation method, computer program and recording medium
Naraei et al. Toward learning intracranial hypertension through physiological features: A statistical and machine learning approach
KR20210057070A (en) Non-invasive vein waveform analysis for subject evaluation
WO2019211335A1 (en) Apparatus for determining a stress and/or pain level
Woodward et al. Estimating heart rate and RSA from the mattress‐recorded kinetocardiogram
JP2016112144A (en) Living body state analysis device and computer program
JP7390716B2 (en) Sympathetic nerve activity estimation device, sympathetic nerve activity estimation method and program
WO2023080098A1 (en) Head biological signal detection device and biological state estimation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210122

R150 Certificate of patent or registration of utility model

Ref document number: 6836264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250