JP6834640B2 - Oil channel structure of electric motor - Google Patents

Oil channel structure of electric motor Download PDF

Info

Publication number
JP6834640B2
JP6834640B2 JP2017053131A JP2017053131A JP6834640B2 JP 6834640 B2 JP6834640 B2 JP 6834640B2 JP 2017053131 A JP2017053131 A JP 2017053131A JP 2017053131 A JP2017053131 A JP 2017053131A JP 6834640 B2 JP6834640 B2 JP 6834640B2
Authority
JP
Japan
Prior art keywords
lubricating oil
opening
shaft
rotor
atmospheric pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017053131A
Other languages
Japanese (ja)
Other versions
JP2018157697A (en
Inventor
太郎 茂木
太郎 茂木
小川 裕之
裕之 小川
佐野 敏成
敏成 佐野
勇也 樋川
勇也 樋川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017053131A priority Critical patent/JP6834640B2/en
Publication of JP2018157697A publication Critical patent/JP2018157697A/en
Application granted granted Critical
Publication of JP6834640B2 publication Critical patent/JP6834640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電動機の冷却などのための潤滑油(オイル)を流す油路の構造に関し、特にロータの回転中心軸線に沿って挿入してある回転軸の中を通して潤滑油を供給するように構成されている油路の構造に関するものである。 The present invention relates to the structure of an oil passage through which lubricating oil (oil) for cooling an electric motor or the like flows, and is configured to supply lubricating oil particularly through a rotating shaft inserted along the rotation center axis of the rotor. It relates to the structure of the oil channel that is being used.

例えば車両の駆動力源として用いられている電動機などの大型の電動機は、供給される電力が大きいことにより温度が高くなり易い。また、その電動機は単独でケーシング内に収容されずに、軸受や歯車機構などの周辺部材と共にケーシング内に収容されることがある。この種の電動機では、冷却と併せて周辺部材の潤滑などのために潤滑油が供給される。特許文献1には電動機に対して潤滑油を供給する構成の一例が記載されている。 For example, a large electric motor such as an electric motor used as a driving force source for a vehicle tends to have a high temperature due to a large amount of electric power supplied. Further, the electric motor may not be housed in the casing by itself, but may be housed in the casing together with peripheral members such as bearings and gear mechanisms. In this type of electric motor, lubricating oil is supplied not only for cooling but also for lubrication of peripheral members. Patent Document 1 describes an example of a configuration for supplying lubricating oil to an electric motor.

特許文献1に記載された構成では、ロータ軸は中空軸として構成され、ケーシングの内部の所定箇所に左右一対の軸受によって支持されている。そのロータ軸の内部に所定の回転軸が挿入されており、その回転軸はロータ軸に対して相対的に回転できるように軸受によって支持されている。回転軸には、その中心軸線に沿って、潤滑油の供給路が形成されており、またロータの軸線方向でのほぼ中央部に相当する位置には、供給路から回転軸の外周面に到る小径の分岐孔が形成されている。ロータ軸の内周部のうち、軸線方向において、分岐孔の開口端に対向する位置を含む所定の範囲の部分は、回転軸の外周面との間に所定の隙間が形成されるように大径に形成されている。その大径の部分からロータに到るように油孔(仮に冷却油路とする)が形成されている。さらに、ロータ軸のうち軸線方向でロータを外れた位置には、前記大径の部分からロータ軸の外周面に到る排出孔が形成されている。そして、前記大径の部分の内部で、冷却油路と排出油路との間の部分に堰が設けられ、供給路および分岐孔を経て前記大径の部分の内部に流れ込んだ潤滑油の量が過剰の場合、余剰の潤滑油を堰を越えて排出路孔側に流し、余剰の潤滑油を排出孔から外部に排出するように構成されている。 In the configuration described in Patent Document 1, the rotor shaft is configured as a hollow shaft, and is supported by a pair of left and right bearings at predetermined positions inside the casing. A predetermined rotating shaft is inserted inside the rotor shaft, and the rotating shaft is supported by a bearing so that it can rotate relative to the rotor shaft. A lubricating oil supply path is formed on the rotating shaft along its central axis, and a position corresponding to approximately the center of the rotor in the axial direction reaches the outer peripheral surface of the rotating shaft from the supply path. A small-diameter branch hole is formed. Of the inner peripheral portion of the rotor shaft, a portion of a predetermined range including a position facing the opening end of the branch hole in the axial direction is large so that a predetermined gap is formed between the inner peripheral portion of the rotor shaft and the outer peripheral surface of the rotating shaft. It is formed in the diameter. An oil hole (temporarily used as a cooling oil passage) is formed so as to reach the rotor from the large diameter portion. Further, a discharge hole is formed in the rotor shaft at a position off the rotor in the axial direction from the large-diameter portion to the outer peripheral surface of the rotor shaft. Then, inside the large-diameter portion, a weir is provided in the portion between the cooling oil passage and the discharge oil passage, and the amount of lubricating oil that has flowed into the inside of the large-diameter portion through the supply passage and the branch hole. When is excessive, excess lubricating oil is allowed to flow over the weir to the discharge path hole side, and the excess lubricating oil is discharged to the outside from the discharge hole.

特開2014−60857号公報Japanese Unexamined Patent Publication No. 2014-60857

特許文献1に記載された構成では、ロータ軸の内周側に供給された潤滑油の量が過剰である場合、余剰の潤滑油が排出孔からロータ軸の外周側に排出されるので、ロータの周辺部材である軸受や歯車などに潤滑油が過剰に供給されたり、そのために潤滑油の粘性による抵抗が増大したり、ひいては動力損失が増大したりする不都合を回避もしくは抑制することができる。一方、電動機がモータとして動作し、あるいは発電機として動作すれば、ロータ軸がロータと共に回転し、ロータ軸の内周側に設けられている前記大径の部分の潤滑油に遠心力が作用するので、ロータ軸が回転している場合には、前記大径の部分の潤滑油が半径方向で外側に積極的に排出させられる。そのため、前記大径の部分に前記供給路から潤滑油が吸引され、その吸引量はロータ軸の回転数が増大するほど多くなる。前記供給路は、ロータに対する潤滑油の供給だけでなく、ロータと共にケーシングの内部に設けられている軸受や歯車などに対する潤滑油を供給する油路であるから、前記大径の部分を介してロータならびにその外部に向けて多量の潤滑油が流れると、軸受や歯車などの他の部材に対する潤滑油が不足してしまう可能性がある。 In the configuration described in Patent Document 1, when the amount of lubricating oil supplied to the inner peripheral side of the rotor shaft is excessive, the excess lubricating oil is discharged from the discharge hole to the outer peripheral side of the rotor shaft, so that the rotor It is possible to avoid or suppress the inconvenience that the lubricating oil is excessively supplied to the bearings and gears which are peripheral members of the above, the resistance due to the viscosity of the lubricating oil increases, and the power loss increases. On the other hand, if the electric motor operates as a motor or a generator, the rotor shaft rotates together with the rotor, and centrifugal force acts on the lubricating oil of the large-diameter portion provided on the inner peripheral side of the rotor shaft. Therefore, when the rotor shaft is rotating, the lubricating oil in the large-diameter portion is positively discharged outward in the radial direction. Therefore, the lubricating oil is sucked into the large-diameter portion from the supply path, and the suction amount increases as the rotation speed of the rotor shaft increases. Since the supply path is an oil path that supplies not only the lubricating oil to the rotor but also the lubricating oil to the bearings and gears provided inside the casing together with the rotor, the rotor is passed through the large-diameter portion. In addition, if a large amount of lubricating oil flows toward the outside thereof, there is a possibility that the lubricating oil for other members such as bearings and gears will be insufficient.

本発明は上記の技術的課題に着目してなされたものであり、ロータおよびその周辺部材に対する潤滑油の供給を過不足なく行うことのできる電動機の油路構造を提供することを目的とするものである。 The present invention has been made by paying attention to the above technical problems, and an object of the present invention is to provide an oil passage structure for an electric motor capable of supplying lubricating oil to a rotor and its peripheral members in just proportion. Is.

上記の目的を達成するために、本発明は、回転軸の外周側に前記回転軸と同一の軸線上にロータ軸が回転可能に配置され、前記回転軸の内部に前記回転軸の軸線方向に沿って潤滑油の供給路が形成されるとともに、前記供給路から前記回転軸の外周面に開口する分岐孔が前記回転軸に形成され、前記分岐孔から前記回転軸の外周側に流出した前記潤滑油を前記ロータ軸の外周側に前記ロータ軸と一体に設けられているロータコアに供給する冷却油路が前記ロータ軸の内周面に開口しかつ前記ロータ軸の半径方向に向けて形成されている電動機の油路構造において、前記ロータ軸の内周面と前記回転軸の外周面との間の所定の範囲に空所が設けられ、前記冷却油路は、前記空所に開口する第1開口部を有し、前記空所を大気圧の所定箇所に連通させる大気圧導入部が設けられ、前記大気圧導入部は、前記空所に開口する第2開口部を有し、前記第1開口部と前記第2開口部との間の前記内周面に段差が設けられ、前記第2開口部の前記軸線からの半径位置が第1開口部の前記軸線からの半径位置より内周側に設定されていることを特徴とするものである。
In order to achieve the above object, in the present invention, the rotor shaft is rotatably arranged on the same axis as the rotation shaft on the outer peripheral side of the rotation shaft, and inside the rotation shaft in the axial direction of the rotation shaft. A supply path for lubricating oil is formed along the same, and a branch hole that opens from the supply path to the outer peripheral surface of the rotary shaft is formed on the rotary shaft, and the branch hole flows out from the branch hole to the outer peripheral side of the rotary shaft. A cooling oil passage for supplying lubricating oil to the rotor core provided integrally with the rotor shaft on the outer peripheral side of the rotor shaft opens on the inner peripheral surface of the rotor shaft and is formed in the radial direction of the rotor shaft. in the oil passage structure of the electric motor is, space is provided in a range where constant between the outer peripheral surface of the rotary shaft and the inner peripheral surface of the rotor shaft, the cooling oil passage is open to said cavity has a first opening, atmospheric pressure introducing portion provided for communicating the front Symbol cavity at a predetermined position of the atmospheric pressure, the atmospheric pressure introducing portion has a second opening you open to said cavity A step is provided on the inner peripheral surface between the first opening and the second opening, and the radial position of the second opening from the axis is the radial position of the first opening from the axis. It is characterized in that it is set on the inner peripheral side.

本発明においては、回転軸に設けられている供給路とロータコアに潤滑油を供給する冷却油路とが空所を介して連通している。ロータ軸が回転した場合、空所の内部の潤滑油が遠心力によってロータコア側に送られ、したがって空所の潤滑油には遠心力による吸引力が作用する。その空所には、大気圧導入部が開口しているが、冷却油路は大気圧導入部の開口部よりも外周側で空所に対して開口しているから、空所の潤滑油は冷却油路が開口している箇所に向けて誘導され、大気圧導入部から大気圧の箇所に排出される潤滑油の量はわずかもしくは皆無であり、また大気圧導入部が潤滑油によって閉塞することが回避もしくは抑制される。そして、空所は大気圧導入部を介して大気圧の箇所に連通していて空所が大気圧より低い負圧になることがなく、その結果、供給油路から潤滑油が空所に積極的に吸引されたり、供給油路を空所以外の箇所に向けて流れる潤滑油の量が減少したりすることが回避もしくは抑制される。結局、本発明によれば、ロータコアに対する潤滑油の供給およびロータ以外の箇所に対する潤滑油の供給が、ロータコアやロータ軸が回転することによる遠心油圧の影響を特には受けずに行われ、ロータおよびロータ以外の箇所のそれぞれに対して潤滑油を過不足なく供給することができる。 In the present invention, the supply path provided on the rotating shaft and the cooling oil path for supplying the lubricating oil to the rotor core are communicated with each other through a vacant space. When the rotor shaft rotates, the lubricating oil inside the vacant space is sent to the rotor core side by centrifugal force, and therefore the suction force due to the centrifugal force acts on the lubricating oil in the vacant space. Atmospheric pressure introduction is open in the vacant space, but since the cooling oil passage is open to the vacant space on the outer peripheral side of the opening of the atmospheric pressure introduction part, the lubricating oil in the vacant space is The amount of lubricating oil that is guided toward the opening of the cooling oil passage and discharged from the atmospheric pressure introduction part to the atmospheric pressure part is small or zero, and the atmospheric pressure introduction part is blocked by the lubricating oil. Is avoided or suppressed. Then, the vacant space communicates with the atmospheric pressure part through the atmospheric pressure introduction part, and the vacant space does not have a negative pressure lower than the atmospheric pressure, and as a result, the lubricating oil positively enters the vacant space from the supply oil passage. It is possible to avoid or suppress the suction of the lubricating oil and the decrease in the amount of lubricating oil flowing from the supply oil passage to a place other than the empty space. After all, according to the present invention, the supply of the lubricating oil to the rotor core and the supply of the lubricating oil to the parts other than the rotor are performed without being particularly affected by the centrifugal oil pressure due to the rotation of the rotor core and the rotor shaft. Lubricating oil can be supplied in just proportion to each of the parts other than the rotor.

本発明の一実施形態を模式的に示す断面図である。It is sectional drawing which shows one Embodiment of this invention typically. その一部を取り出して記載してある部分図である。It is a partial view which takes out a part of it and describes it. 各分岐孔を流れる潤滑油の量を計測した結果を示すグラフである。It is a graph which shows the result of having measured the amount of lubricating oil flowing through each branch hole. 本発明の他の実施形態を模式的に示す断面図である。It is sectional drawing which shows the other embodiment of this invention schematically.

本発明の実施形態を図1に模式的に示してある。ここに示す例は、例えば車両の駆動力源として機能する電動機(モータ・ジェネレータ)1に潤滑油を供給するように構成した例であり、中空軸であるロータ軸2の外周側にロータコア3が一体に設けられている。そのロータ軸2は、軸受4によって回転可能に支持されている。また、ロータ軸2の内部には、回転軸5が挿入され、回転軸5とロータ軸2とは同一の軸線C上に配置されかつ相対的に回転できるように構成されている。 Embodiments of the present invention are schematically shown in FIG. The example shown here is an example in which lubricating oil is supplied to an electric motor (motor generator) 1 that functions as a driving force source for a vehicle, and a rotor core 3 is provided on the outer peripheral side of a rotor shaft 2 that is a hollow shaft. It is provided integrally. The rotor shaft 2 is rotatably supported by a bearing 4. Further, a rotating shaft 5 is inserted inside the rotor shaft 2, and the rotating shaft 5 and the rotor shaft 2 are arranged on the same axis C and are configured to be relatively rotatable.

回転軸5の中心を通る軸線Cに沿って、潤滑油を供給するための供給油路6が形成されている。この供給油路6は図示しないオイルポンプに連通され、オイルポンプが吐出した潤滑油を流通させて、前記ロータコア3に潤滑油を供給し、また前記軸受4あるいは他の軸受7などのロータコア3以外の他の部材に潤滑油を供給するように構成されている。潤滑油をこのように供給するために、前記供給油路6から回転軸5の外周面に到る複数の分岐孔8a,8b,8cが回転軸5にその半径方向に向けて形成されている。 A supply oil passage 6 for supplying lubricating oil is formed along the axis C passing through the center of the rotating shaft 5. The supply oil passage 6 is communicated with an oil pump (not shown), and the lubricating oil discharged by the oil pump is circulated to supply the lubricating oil to the rotor core 3, and other than the rotor core 3 such as the bearing 4 or another bearing 7. It is configured to supply lubricating oil to other members. In order to supply the lubricating oil in this way, a plurality of branch holes 8a, 8b, 8c extending from the supply oil passage 6 to the outer peripheral surface of the rotary shaft 5 are formed in the rotary shaft 5 in the radial direction thereof. ..

図1に示す例においては、ロータ軸2の内周面と回転軸5の外周面との間に空所9が形成されている。この空所9は、ロータ軸2の内径を回転軸5の外径より大きくすることにより両者の間に生じる空間部分であり、ロータ軸2の軸線方向での両端部でロータ軸2と回転軸5との間にシール材(もしくは軸受)10を介在させることにより、軸線方向には封止されている。前記分岐孔8a,8b,8cのうち、軸線方向で両側の分岐孔8a,8cは、空所9を外れた箇所すなわちロータ軸2を軸線方向に外れた箇所に設けられており、これに対して軸線方向で中央部の分岐孔8bは、空所9の内部に開口するように形成されている。さらに、空所9の内径は、軸線方向での中央部が両端部側より大きくなっている。以下、空所9のうち内径の大きい箇所を大径部9Aとし、軸線方向での両端部側の内径が大径部9Aと比較して小さい箇所を小径部9Bとする。なお、これら大径部9Aと小径部9Bとの境界の部分は、内径が次第に変化するテーパー形状(傾斜面)とされている。 In the example shown in FIG. 1, a space 9 is formed between the inner peripheral surface of the rotor shaft 2 and the outer peripheral surface of the rotating shaft 5. This vacant space 9 is a space portion created between the two by making the inner diameter of the rotor shaft 2 larger than the outer diameter of the rotating shaft 5, and the rotor shaft 2 and the rotating shaft are formed at both ends of the rotor shaft 2 in the axial direction. By interposing a sealing material (or bearing) 10 between it and 5, it is sealed in the axial direction. Of the branch holes 8a, 8b, 8c, the branch holes 8a, 8c on both sides in the axial direction are provided at a location outside the vacant space 9, that is, a location outside the rotor shaft 2 in the axial direction. The branch hole 8b at the center in the axial direction is formed so as to open inside the vacant space 9. Further, the inner diameter of the vacant space 9 is larger at the central portion in the axial direction than at both end portions. Hereinafter, a portion of the vacant space 9 having a large inner diameter is referred to as a large diameter portion 9A, and a portion having an inner diameter on both ends in the axial direction smaller than that of the large diameter portion 9A is referred to as a small diameter portion 9B. The boundary between the large diameter portion 9A and the small diameter portion 9B has a tapered shape (inclined surface) in which the inner diameter gradually changes.

空所9内の潤滑油をロータコア3に冷却のために供給する冷却油路11が設けられている。図1に示す例では、冷却油路11は、ロータ軸2およびロータコア3の軸線方向でのほぼ中央部に半径方向に貫通して形成されている。したがって、冷却油路11の空所9側の開口部11Aは、大径部9A内に位置している。言い換えれば、冷却油路11の開口部11Aを含む所定の範囲が大径部9Aもしくは空所9とされている。 A cooling oil passage 11 for supplying the lubricating oil in the vacant space 9 to the rotor core 3 for cooling is provided. In the example shown in FIG. 1, the cooling oil passage 11 is formed so as to penetrate substantially the central portion of the rotor shaft 2 and the rotor core 3 in the axial direction in the radial direction. Therefore, the opening 11A on the vacant space 9 side of the cooling oil passage 11 is located in the large diameter portion 9A. In other words, the predetermined range including the opening 11A of the cooling oil passage 11 is the large diameter portion 9A or the vacant space 9.

さらに、ロータ軸2には、空所9を大気圧の箇所に連通させる本発明の実施形態における大気圧導入部に相当する大気圧導入孔12が形成されている。大気圧の箇所は、例えばロータ軸2の外周側の箇所のうちロータコア3を軸線方向に外れた箇所であり、あるいは電動機1を収容しているケーシング(図示せず)の内部の空間部分である。したがって、図1に示す例における大気圧導入孔12は、ロータ軸2の一方の端部側に半径方向に貫通して形成されている。その空所9側の開口部12Aは、一方の小径部9B内に位置している。 Further, the rotor shaft 2 is formed with an atmospheric pressure introduction hole 12 corresponding to the atmospheric pressure introduction portion in the embodiment of the present invention in which the vacant space 9 communicates with the atmospheric pressure portion. The atmospheric pressure portion is, for example, a portion on the outer peripheral side of the rotor shaft 2 that is off the rotor core 3 in the axial direction, or a space portion inside a casing (not shown) that houses the electric motor 1. .. Therefore, the atmospheric pressure introduction hole 12 in the example shown in FIG. 1 is formed so as to penetrate one end side of the rotor shaft 2 in the radial direction. The opening 12A on the vacant space 9 side is located in one of the small diameter portions 9B.

ここで、これらの開口部11A,12Aの相対的な位置について説明すると、図2に一部を取り出して示すように、冷却油路11の開口部11Aは大径部9Aに開口しており、これに対して大気圧導入孔12の開口部12Aは小径部9Bに開口しているから、前者の開口部11Aの前記軸線Cからの半径位置(距離)R11が、後者の開口部12Aの前記軸線Cからの半径位置(距離)R12より大きくなっている。言い換えれば、大径部9Aと小径部9Bとの間の段差部Tを挟んで、冷却油路11の開口部11Aが内径の大きい側に位置し、大気圧導入孔12の開口部12Aが内径の小さい側に位置している。 Here, the relative positions of these openings 11A and 12A will be described. As shown in FIG. 2, the opening 11A of the cooling oil passage 11 is open to the large diameter portion 9A. On the other hand, since the opening 12A of the atmospheric pressure introduction hole 12 is open to the small diameter portion 9B, the radial position (distance) R 11 of the former opening 11A from the axis C is the latter opening 12A. It is larger than the radial position (distance) R 12 from the axis C. In other words, the opening 11A of the cooling oil passage 11 is located on the side having the larger inner diameter and the opening 12A of the atmospheric pressure introduction hole 12 has the inner diameter with the step portion T between the large diameter portion 9A and the small diameter portion 9B sandwiched. It is located on the small side of.

上述した油路構造では、潤滑油は図示しないオイルポンプで加圧されて供給油路6に送られ、その内部を流れて例えば前述した分岐孔8a,8b,8cからロータコア3や軸受4などに向けて流出する。分岐孔8bから空所9に流出した潤滑油は、回転軸5やロータ軸2が回転している場合、それらの軸5,2と連れ回って遠心力を受け、半径方向で外側に押しやられる。すなわち、遠心油圧を受ける。遠心油圧を受けた潤滑油は、ロータ軸2の内周面(空所9の半径方向で外側の面)に押し付けられる。その場合、空所9の内径は大径部9Aで大きくなっているから、小径部9Bの潤滑油は遠心油圧によって大径部9A側に向けて流れる。 In the oil passage structure described above, the lubricating oil is pressurized by an oil pump (not shown) and sent to the supply oil passage 6, and flows inside the oil passage structure, for example, from the branch holes 8a, 8b, 8c described above to the rotor core 3 and the bearing 4. It flows out toward. When the rotating shaft 5 and the rotor shaft 2 are rotating, the lubricating oil that has flowed out from the branch hole 8b to the vacant space 9 receives centrifugal force along with the shafts 5 and 2 and is pushed outward in the radial direction. .. That is, it receives centrifugal pressure. The lubricating oil that has received the centrifugal hydraulic pressure is pressed against the inner peripheral surface of the rotor shaft 2 (the outer surface in the radial direction of the void 9). In that case, since the inner diameter of the vacant space 9 is larger in the large diameter portion 9A, the lubricating oil in the small diameter portion 9B flows toward the large diameter portion 9A side by centrifugal oil pressure.

このようにして大径部9A側に集まった潤滑油は、冷却油路11を通ってロータコア3の外周側に流れ、その過程でロータコア3の熱を奪い、ロータコア3が潤滑油によって冷却される。また、小径部9Bの潤滑油は、上述したように、大径部9A側に流れるので、大気圧導入孔12から外部に排出される潤滑油の量は少なく、あるいは皆無に近い。また、大気圧導入孔12の開口部12Aが潤滑油によって閉塞することが回避もしくは抑制される。むしろ、大径部9Aから冷却油路11を通ってロータコア3の外周側に向けて潤滑油が積極的に流出するので、潤滑油のこのような流出に伴う吸引作用によって、大気圧導入孔12からは外部の大気が吸引される。そのため、空所9の内部の圧力はほぼ大気圧に維持される。したがって、空所9から遠心油圧によって潤滑油が積極的に流出するとしても、分岐孔8bを介して供給油路6の潤滑油を空所9に吸引する作用は生じず、あるいはそのような作用は極めてわずかになる。そのため、供給油路6から他の分岐孔8a,8cなどを介してロータコア3以外の箇所もしくは部材に供給される潤滑油の量が減少もしくは不足する事態が回避もしくは抑制される。 The lubricating oil collected on the large diameter portion 9A side flows to the outer peripheral side of the rotor core 3 through the cooling oil passage 11, and in the process, the heat of the rotor core 3 is taken away, and the rotor core 3 is cooled by the lubricating oil. .. Further, since the lubricating oil of the small diameter portion 9B flows to the large diameter portion 9A side as described above, the amount of the lubricating oil discharged to the outside from the atmospheric pressure introduction hole 12 is small or almost none. Further, it is avoided or suppressed that the opening 12A of the atmospheric pressure introduction hole 12 is blocked by the lubricating oil. Rather, since the lubricating oil actively flows out from the large diameter portion 9A through the cooling oil passage 11 toward the outer peripheral side of the rotor core 3, the atmospheric pressure introduction hole 12 due to the suction action accompanying such outflow of the lubricating oil. The outside air is sucked from. Therefore, the pressure inside the vacant space 9 is maintained at substantially atmospheric pressure. Therefore, even if the lubricating oil is positively discharged from the vacant space 9 by centrifugal oil pressure, the action of sucking the lubricating oil of the supply oil passage 6 into the vacant space 9 through the branch hole 8b does not occur, or such an action does not occur. Will be extremely small. Therefore, it is possible to avoid or suppress a situation in which the amount of lubricating oil supplied from the supply oil passage 6 to a location or member other than the rotor core 3 via other branch holes 8a, 8c and the like is reduced or insufficient.

ここで、上記の大気圧導入孔12の有無による各分岐孔8a,8b,8cを通る潤滑油の量の変化を示す。図3は大気圧導入孔12を設けた場合の各分岐孔8a,8b,8cの潤滑油の流量(図3の(a))と、大気圧導入孔12を設けていない場合の各分岐孔8a,8b,8cの潤滑油の流量(図3の(b))とを測定した結果を示している。大気圧導入孔12を設けた場合、図3の(a)に示すように、空所9に開口している分岐孔8bを流れる潤滑油の量が最も多く、潤滑油の流れ方向で上流側の分岐孔8aを流れる潤滑油の量が最も少なく、下流側の分岐孔8cを流れる潤滑油の量が中程度の量となっている。これに対して、大気圧導入孔12を設けていない場合には、図3の(b)に示すように、空所9に開口している分岐孔8bを流れる潤滑油の量が、大気圧導入孔12を設けている場合に比較して大幅に増大し、これに対して、上流側および下流側の分岐孔8a,8cを流れる潤滑油の量が減少している。これらの測定結果から知られるように、空所9の圧力を大気圧もしくはそれに近い圧力に維持することにより、空所9による潤滑油の吸引が防止もしくは抑制され、その結果、直接、大気圧の箇所もしくは当該箇所に連通している箇所に開口している分岐孔8a,8cに配分される潤滑油の量の減少を回避もしくは抑制でき、ロータコア3およびそれ以外の箇所に対する潤滑油の供給を過不足なく行うことができる。 Here, the change in the amount of lubricating oil passing through the branch holes 8a, 8b, 8c depending on the presence or absence of the atmospheric pressure introduction hole 12 is shown. FIG. 3 shows the flow rates of the lubricating oils of the branch holes 8a, 8b, and 8c when the atmospheric pressure introduction holes 12 are provided ((a) in FIG. 3) and the branch holes when the atmospheric pressure introduction holes 12 are not provided. The results of measuring the flow rates of the lubricating oils of 8a, 8b, and 8c ((b) in FIG. 3) are shown. When the atmospheric pressure introduction hole 12 is provided, as shown in FIG. 3A, the amount of lubricating oil flowing through the branch hole 8b opened in the vacant space 9 is the largest, and the amount of lubricating oil flows on the upstream side in the flow direction of the lubricating oil. The amount of lubricating oil flowing through the branch hole 8a is the smallest, and the amount of lubricating oil flowing through the branch hole 8c on the downstream side is medium. On the other hand, when the atmospheric pressure introduction hole 12 is not provided, as shown in FIG. 3B, the amount of lubricating oil flowing through the branch hole 8b opened in the vacant space 9 is the atmospheric pressure. This is significantly increased as compared with the case where the introduction hole 12 is provided, whereas the amount of lubricating oil flowing through the branch holes 8a and 8c on the upstream side and the downstream side is reduced. As is known from these measurement results, by maintaining the pressure of the vacant space 9 at or near the atmospheric pressure, the suction of the lubricating oil by the vacant space 9 is prevented or suppressed, and as a result, the pressure of the atmospheric pressure is directly increased. It is possible to avoid or suppress a decrease in the amount of lubricating oil distributed to the branch holes 8a and 8c that are open at the location or the location communicating with the location, and the supply of lubricating oil to the rotor core 3 and other locations is excessive. It can be done without any shortage.

なお、本発明における大気圧導入部は、図1に示すようにロータ軸2に半径方向に貫通させて形成した大気圧導入孔12でなくてもよく、要は、冷却油路の空所に対する開口部よりも半径方向で内側で空所に開口している連通部であればよい。例えば図4に示すように、ロータ軸2の軸線方向での一方の端部側にはシール材10を設けずに、当該端部側の内周面と回転軸5の外周面との間に隙間13をあけ、この隙間の部分を大気圧導入部としてもよい。 The atmospheric pressure introduction portion in the present invention does not have to be the atmospheric pressure introduction hole 12 formed by penetrating the rotor shaft 2 in the radial direction as shown in FIG. 1, and the point is that the atmospheric pressure introduction portion is for a vacant space in the cooling oil passage. Any communication portion may be used as long as it is a communication portion that opens in an empty space inside the opening in the radial direction. For example, as shown in FIG. 4, a sealing material 10 is not provided on one end side of the rotor shaft 2 in the axial direction, and between the inner peripheral surface of the end side and the outer peripheral surface of the rotating shaft 5. A gap 13 may be opened, and the portion of the gap may be used as the atmospheric pressure introduction portion.

1…電動機、 2…ロータ軸、 3…ロータコア、 4…軸受、 5…回転軸、 6…供給油路、 7…軸受、 8a,8b,8c…分岐孔、 9…空所、 9A…大径部、 9B…小径部、 10…シール材(もしくは軸受)、 11…冷却油路、 11A…開口部、 12…大気圧導入孔、 12A…開口部、 13…隙間、 C…軸線、 R11…半径位置、 R12…半径位置、 T…段差部。 1 ... Electric motor, 2 ... Rotor shaft, 3 ... Rotor core, 4 ... Bearing, 5 ... Rotating shaft, 6 ... Supply oil passage, 7 ... Bearing, 8a, 8b, 8c ... Branch hole, 9 ... Vacancy, 9A ... Large diameter Part, 9B ... Small diameter part, 10 ... Sealing material (or bearing), 11 ... Cooling oil passage, 11A ... Opening, 12 ... Atmospheric pressure introduction hole, 12A ... Opening, 13 ... Gap, C ... Axis line, R 11 ... Radial position, R 12 ... Radial position, T ... Step.

Claims (1)

回転軸の外周側に前記回転軸と同一の軸線上にロータ軸が回転可能に配置され、前記回転軸の内部に前記回転軸の軸線方向に沿って潤滑油の供給路が形成されるとともに、前記供給路から前記回転軸の外周面に開口する分岐孔が前記回転軸に形成され、前記分岐孔から前記回転軸の外周側に流出した前記潤滑油を前記ロータ軸の外周側に前記ロータ軸と一体に設けられているロータコアに供給する冷却油路が前記ロータ軸の内周面に開口しかつ前記ロータ軸の半径方向に向けて形成されている電動機の油路構造において、
前記ロータ軸の内周面と前記回転軸の外周面との間の所定の範囲に空所が設けられ、
前記冷却油路は、前記空所に開口する第1開口部を有し、
前記空所を大気圧の所定箇所に連通させる大気圧導入部が設けられ、
前記大気圧導入部は、前記空所に開口する第2開口部を有し、
前記第1開口部と前記第2開口部との間の前記内周面に段差が設けられ、
記第2開口部の前記軸線からの半径位置が第1開口部の前記軸線からの半径位置より内周側に設定されている
ことを特徴とする電動機の油路構造。
A rotor shaft is rotatably arranged on the outer peripheral side of the rotating shaft on the same axis as the rotating shaft, and a lubricating oil supply path is formed inside the rotating shaft along the axial direction of the rotating shaft. A branch hole is formed in the rotary shaft from the supply path to the outer peripheral surface of the rotary shaft, and the lubricating oil flowing out from the branch hole to the outer peripheral side of the rotary shaft is applied to the outer peripheral side of the rotor shaft. In the oil passage structure of the electric motor, in which the cooling oil passage provided integrally with the rotor core is opened on the inner peripheral surface of the rotor shaft and is formed in the radial direction of the rotor shaft.
Cavity is provided in a range where constant between the inner peripheral surface and the outer peripheral surface of the rotary shaft of the rotor shaft,
The cooling oil passage has a first opening that opens into the vacant space.
An atmospheric pressure introduction section is provided to communicate the vacant space with a predetermined location of the atmospheric pressure.
Wherein the atmospheric pressure introducing portion has a second opening you open to said cavity,
A step is provided on the inner peripheral surface between the first opening and the second opening.
An oil passage structure of the motor, characterized in that the radial position is set on the inner circumferential side of the radial position from the axis of the first opening from the axis of the front Stories second opening.
JP2017053131A 2017-03-17 2017-03-17 Oil channel structure of electric motor Active JP6834640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017053131A JP6834640B2 (en) 2017-03-17 2017-03-17 Oil channel structure of electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017053131A JP6834640B2 (en) 2017-03-17 2017-03-17 Oil channel structure of electric motor

Publications (2)

Publication Number Publication Date
JP2018157697A JP2018157697A (en) 2018-10-04
JP6834640B2 true JP6834640B2 (en) 2021-02-24

Family

ID=63716945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017053131A Active JP6834640B2 (en) 2017-03-17 2017-03-17 Oil channel structure of electric motor

Country Status (1)

Country Link
JP (1) JP6834640B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300101A (en) * 2005-04-15 2006-11-02 Toyota Motor Corp Lubricating device of rotary electric machine
JP2010239734A (en) * 2009-03-31 2010-10-21 Aisin Aw Co Ltd Rotary electric machine
JP5714545B2 (en) * 2012-09-18 2015-05-07 トヨタ自動車株式会社 Motor cooling device
DE102015203974A1 (en) * 2015-03-05 2016-09-08 Deere & Company Arrangement for liquid cooling of an electric motor-generator unit
CN108336865B (en) * 2018-03-30 2024-03-05 北京理工大学 Liquid cooling driving motor

Also Published As

Publication number Publication date
JP2018157697A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2014125856A1 (en) Cooling device for motor drive unit
JP5534616B2 (en) Device for sealing a lubricated bearing assembly using liquid lubricant
BR112017010458B1 (en) MECHANICAL ASSEMBLY, TRANSMITTER MEMBER, AND TURBINE ENGINE
US10655727B2 (en) Lubricating device for a transmission, and transmission comprising said lubricating device
JP2017075627A (en) Spline joint
JP2015116900A (en) Wheel drive device
CN205503814U (en) Hydrodynamic retarder
JP2013234757A (en) Sealing arrangement for flow machine
JP6834640B2 (en) Oil channel structure of electric motor
US11527939B2 (en) Cooling arrangement for an electric machine, and electric machine
JP2009118666A (en) Fluid supply apparatus for vehicle
JP2018193858A5 (en)
US10876620B2 (en) Vacuum driven hydraulic balance system
JP4716945B2 (en) Electric motor
WO2016088166A1 (en) Journal bearing
JP6795434B2 (en) Lubrication structure of power transmission device
JP7093219B2 (en) Rotating machine and bearing structure
JP6911724B2 (en) Rotating machine
JP6908429B2 (en) Web cooling roll
US20230400092A1 (en) Axle drive for a motor vehicle
JP4527622B2 (en) Rolling bearing lubrication system
WO2021140710A1 (en) Cooling structure for dynamo-electric machine
JP2016023796A (en) Transmission lubrication device
JP6794768B2 (en) In-wheel motor oil leak monitoring structure
WO2017195622A1 (en) Dust blocking device for sealed kneader

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200807

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R151 Written notification of patent or utility model registration

Ref document number: 6834640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151