JP6833221B1 - Derivation method for harmful elements in soil - Google Patents

Derivation method for harmful elements in soil Download PDF

Info

Publication number
JP6833221B1
JP6833221B1 JP2019178143A JP2019178143A JP6833221B1 JP 6833221 B1 JP6833221 B1 JP 6833221B1 JP 2019178143 A JP2019178143 A JP 2019178143A JP 2019178143 A JP2019178143 A JP 2019178143A JP 6833221 B1 JP6833221 B1 JP 6833221B1
Authority
JP
Japan
Prior art keywords
soil
harmful
origin
derived
harmful elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019178143A
Other languages
Japanese (ja)
Other versions
JP2021056051A (en
Inventor
雅人 上島
雅人 上島
宏史 肴倉
宏史 肴倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Environmental Studies
Original Assignee
National Institute for Environmental Studies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Environmental Studies filed Critical National Institute for Environmental Studies
Priority to JP2019178143A priority Critical patent/JP6833221B1/en
Application granted granted Critical
Publication of JP6833221B1 publication Critical patent/JP6833221B1/en
Publication of JP2021056051A publication Critical patent/JP2021056051A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

【課題】本発明は、土壌中の重金属などの有害元素が、自然由来か人為由来を含むかを判別する、土壌中有害元素由来判別法に関する。また、その由来判定に基づき、有害元素を含む土壌が自然由来汚染土か、人為由来汚染土かを区別する方法を提供する。【解決手段】上記課題を解決するため、土壌に含まれる有害元素が、自然由来か人為由来か判別する、土壌中有害元素由来判別法であって、同一の前記土壌における、酸化相中の第一元素と第二元素の濃度比/還元相中の第一元素と第二元素の濃度比で求められるEF値を前記土壌に含まれる有害元素の由来判別の指標として利用することを特徴とする土壌中有害元素由来判別法の構成とした。【選択図】図1PROBLEM TO BE SOLVED: To determine whether a harmful element such as a heavy metal in soil is naturally derived or anthropogenic, and relates to a method for determining harmful element origin in soil. Further, a method for distinguishing whether the soil containing a harmful element is a naturally-derived contaminated soil or an artificially-derived contaminated soil based on the origin determination is provided. SOLUTION: In order to solve the above problems, a method for determining whether a harmful element contained in a soil is naturally derived or anthropogenic is a method for determining the origin of a harmful element in soil, and the first in the oxidation phase in the same soil. It is characterized in that the EF value obtained by the concentration ratio of one element and the second element / the concentration ratio of the first element and the second element in the reducing phase is used as an index for determining the origin of harmful elements contained in the soil. The method for determining the origin of harmful elements in soil was used. [Selection diagram] Fig. 1

Description

本発明は、土壌中の重金属などの有害元素が、自然由来か人為由来を含むかを判別する、土壌中有害元素由来判別法に関する。また、その由来判定に基づき、有害元素を含む土壌が自然由来汚染土か、人為由来汚染土かを区別する方法に関する。 The present invention relates to a method for determining the origin of harmful elements in soil, which determines whether harmful elements such as heavy metals in soil are naturally or artificially derived. Further, the present invention relates to a method for distinguishing between naturally-derived contaminated soil and artificially-derived contaminated soil based on the determination of its origin.

自然地層には、重金属などの有害元素が多かれ少なかれ必ず含まれる。トンネル掘削や、地下開発の大規模工事等に伴って、自然由来の有害元素を含有した土壌(自然由来汚染土)が大量に発生する。 Natural formations always contain more or less harmful elements such as heavy metals. A large amount of soil containing harmful elements of natural origin (contaminated soil of natural origin) is generated due to tunnel excavation and large-scale construction of underground development.

自然由来汚染土の大量発生問題に対応することを目的として、日本国においては、平成29年5月に土壌汚染対策法(土対法)が改正され、自然由来汚染土の有効活用を推進することが制度化された(平成31年4月1日施行)。それによって、自然由来汚染土と、人為由来の有害元素を含有した土壌(人為由来汚染土)を区別して取り扱うことが今まで以上に重要になってくる。 In Japan, the Soil Contamination Countermeasures Law (Soil Contamination Law) was revised in May 2017 with the aim of responding to the problem of mass outbreak of naturally-derived contaminated soil, and promotes the effective use of naturally-derived contaminated soil. Was institutionalized (enforced on April 1, 2019). As a result, it is more important than ever to distinguish between naturally-derived contaminated soil and soil containing anthropogenic harmful elements (artificially-derived contaminated soil).

土壌中の有害元素が、自然由来か人為由来かの判別があいまいなため、自然由来汚染土も人為由来汚染土と同様に、汚染土壌浄化施設での処理や管理型処分場への搬出という過剰な処理が行われている。また、人為由来汚染土を自然由来汚染土と誤って判定し利用されてしまう危険性もある。このように誤った土壌の区別がなされることによって、汚染土壌によるリスクの適切な回避や、適切な自然由来汚染土の利用や処理が行われない可能性が残されることは大きな問題である。 Since it is unclear whether the harmful elements in the soil are of natural origin or artificial origin, the excess of naturally-derived contaminated soil is treated at the contaminated soil purification facility and carried out to the controlled disposal site in the same way as the artificially-derived contaminated soil. Processing is being carried out. In addition, there is a risk that artificially-derived contaminated soil will be mistakenly judged as naturally-derived contaminated soil and used. It is a big problem that such incorrect soil distinction leaves the possibility that the risk of contaminated soil is not properly avoided and that the proper use and treatment of naturally occurring contaminated soil is not performed.

他方、非特許文献1に示すように「土壌中重金属の自然または人為由来の判別に関する基礎的検討」が成されている。しかしながら、非特許文献1の報告では、各元素の(1N HCl抽出による量)/(加熱・加圧 濃硝酸分解による量)の値をプロットし、折れ線グラフの形を得て、その形から逸脱した元素が人為由来ではないかと疑われる程度の示唆であり、どのくらい逸脱すると人為由来なのかは曖昧である。 On the other hand, as shown in Non-Patent Document 1, "basic study on discrimination of natural or artificial origin of heavy metals in soil" has been made. However, in the report of Non-Patent Document 1, the value of (amount by 1N HCl extraction) / (amount by heating / pressurized concentrated nitric acid decomposition) of each element is plotted to obtain the shape of a line graph and deviate from that shape. It is a suggestion to the extent that it is suspected that the element is artificially derived, and it is ambiguous how much it deviates from artificial origin.

実際、非特許文献1の最終頁「まとめ」の欄には、「・Ni,Cu,ZnおよびAsでは判別能力の多少の向上が見込まれたが,CdとPbについては,濃硝酸・加圧加熱分解法を用いても判別のための能力向上は期待できなかった. 今後,さらに検討を進め,CdとPbについて,より確度の高い判別方法を開発したい.」との記載があり、確立していないことが明示されている。他も研究も含め、いままでのところ、土壌中の有害元素の由来判別のための定まった方法は知られていない。 In fact, in the column of "Summary" on the last page of Non-Patent Document 1, "・ Ni, Cu, Zn and As are expected to improve the discrimination ability to some extent, but for Cd and Pb, concentrated nitric acid and pressurization are expected. Even if the thermal decomposition method was used, it was not possible to expect an improvement in the ability for discrimination. In the future, we would like to further study and develop a more accurate discrimination method for Cd and Pb. ” It is clearly stated that it is not. So far, including other studies, no fixed method for determining the origin of harmful elements in soil is known.

自然由来汚染土と人為由来汚染土を区別できれば、自然由来の重金属などの有害元素が含まれる工事残土の有効活用が可能となり、自然由来汚染土の処理施設への搬入、処理によるコストを大幅に削減することができるようになる。 If it is possible to distinguish between naturally-derived contaminated soil and artificially-derived contaminated soil, it will be possible to effectively utilize construction surplus soil that contains harmful elements such as naturally-derived heavy metals, and the cost of bringing in and treating naturally-derived contaminated soil to treatment facilities will increase significantly. It will be possible to reduce it.

新家淳治,片山貴幸,巽正志,秋永克三(2012)「土壌中重金属の自然または人為由来の判別に関する基礎的検討」,三重保環研年報第14号(通巻第57号),61−66頁Junji Shinie, Takayuki Katayama, Masashi Tatsumi, Katsumi Akinaga (2012) "Basic Study on Discrimination of Natural or Artificial Derivation of Heavy Metals in Soil", Mie Hokanken Annual Report No. 14 (Vol. 57), 61-66 page

本発明は、土壌中の重金属などの有害元素が、自然由来か人為由来を含むかを判別する、土壌中有害元素由来判別法に関する。また、その由来判定に基づき、有害元素を含む土壌が自然由来汚染土か、人為由来汚染土かを区別する方法を提供することを目的とするものである。 The present invention relates to a method for determining the origin of harmful elements in soil, which determines whether harmful elements such as heavy metals in soil are naturally or artificially derived. Another object of the present invention is to provide a method for distinguishing whether the soil containing harmful elements is naturally-derived contaminated soil or artificially-derived contaminated soil based on the origin determination.

上記課題を解決するために、本発明は、

土壌に含まれる有害元素が、自然由来か人為由来か判別する、土壌中有害元素由来判別法であって、
前記土壌を、
還元液に反応させたうえで濾過した第一濾液を採取し、
濾過残渣を酸化したうえで、再び還元液に反応させたうえで濾過した第二濾液を採取し、
前記第一濾液中の第一元素と第二元素の濃度比A’を求め、
前記第二濾液中の第一元素と第二元素の濃度比B’を求め
A’/B’で求められるEF値を前記土壌に含まれる有害元素の由来判別の指標として利用することを特徴とする土壌中有害元素由来判別法。

前記第一元素が有害元素で、前記第二元素が基準元素であることを特徴とする()に記載の土壌中有害元素由来判別法。

前記土壌が、工事残土であることを特徴とする(1)又は(2)に記載の土壌中有害元素由来判別法。

前記土壌が、農業用土であることを特徴とする(1)又は(2)に記載の土壌中有害元素由来判別法。

土壌に含まれる有害元素が、自然由来か判定する自然由来有害元素判別法であって、
前記土壌を、
還元液に反応させたうえで濾過した第一濾液を採取し、
濾過残渣を酸化したうえで、再び還元液に反応させたうえで濾過した第二濾液を採取し、
前記第一濾液中の第一元素と第二元素の濃度比A’を求め、
前記第二濾液中の第一元素と第二元素の濃度比B’を求め、
A’/B’で求められるEF値を前記土壌に含まれる有害元素の由来判別の指標とし、
前記第一元素及び前記第二元素によって定まる値以下を自然由来有害元素と判定することを特徴とする自然由来有害元素判別法。

)に記載の自然由来有害元素判別法によって、自然由来有害元素を含むと判定された土壌は、自然由来汚染土とすることを特徴とする自然由来汚染土の区別方法。

土壌に含まれる有害元素が、人為由来か判定する人為由来有害元素判別法であって、
前記土壌を、
還元液に反応させたうえで濾過した第一濾液を採取し、
濾過残渣を酸化したうえで、再び還元液に反応させたうえで濾過した第二濾液を採取し、
前記第一濾液中の第一元素と第二元素の濃度比A’を求め、
前記第二濾液中の第一元素と第二元素の濃度比B’を求め、
A’/B’で求められるEF値を前記土壌に含まれる有害元素の由来判別の指標とし、
前記第一元素及び前記第二元素によって定まる値以上を人為由来有害元素と判定することを特徴とする人為由来有害元素判別法。

)に記載の人為由来有害元素判別法によって、人為由来有害元素を含むと判定された土壌は、人為由来汚染土とすることを特徴とする人為由来汚染土の区別方法。
の構成とした。
In order to solve the above problems, the present invention
( 1 )
It is a method for determining the origin of harmful elements in soil, which determines whether the harmful elements contained in the soil are of natural or artificial origin.
The soil
After reacting with the reducing solution, the filtered first filtrate was collected and collected.
After oxidizing the filtration residue, it was reacted with the reducing solution again, and then the filtered second filtrate was collected.
The concentration ratio A'of the first element and the second element in the first filtrate was determined.
The concentration ratio B'of the first element and the second element in the second filtrate was determined .
A method for determining the origin of harmful elements in soil, which comprises using the EF value determined by A'/ B'as an index for determining the origin of harmful elements contained in the soil.
( 2 )
The method for determining the origin of a harmful element in soil according to (1 ), wherein the first element is a harmful element and the second element is a reference element.
( 3 )
The method for determining the origin of harmful elements in soil according to (1) or (2) , wherein the soil is construction surplus soil.
( 4 )
The method for determining the origin of harmful elements in soil according to (1) or (2) , wherein the soil is agricultural soil.
( 5 )
This is a method for determining whether the harmful elements contained in the soil are of natural origin.
The soil
After reacting with the reducing solution, the filtered first filtrate was collected and collected.
After oxidizing the filtration residue, it was reacted with the reducing solution again, and then the filtered second filtrate was collected.
The concentration ratio A'of the first element and the second element in the first filtrate was determined.
The concentration ratio B'of the first element and the second element in the second filtrate was determined.
The EF value obtained by A'/ B'is used as an index for determining the origin of harmful elements contained in the soil.
A method for discriminating naturally-derived harmful elements, which comprises determining a value equal to or less than the value determined by the first element and the second element as a naturally-derived harmful element.
( 6 )
A method for distinguishing naturally-derived contaminated soil, wherein the soil determined to contain naturally-derived harmful elements by the naturally-derived harmful element discrimination method described in (5) is regarded as naturally-derived contaminated soil.
( 7 )
It is an artificially-derived harmful element discrimination method that determines whether the harmful elements contained in the soil are artificially-derived.
The soil
After reacting with the reducing solution, the filtered first filtrate was collected and collected.
After oxidizing the filtration residue, it was reacted with the reducing solution again, and then the filtered second filtrate was collected.
The concentration ratio A'of the first element and the second element in the first filtrate was determined.
The concentration ratio B'of the first element and the second element in the second filtrate was determined.
The EF value obtained by A'/ B'is used as an index for determining the origin of harmful elements contained in the soil.
A method for discriminating anthropogenic harmful elements, which comprises determining a value equal to or greater than the value determined by the first element and the second element as an anthropogenic harmful element.
( 8 )
A method for distinguishing anthropogenic contaminated soil, characterized in that the soil determined to contain anthropogenic harmful elements by the anthropogenic harmful element discrimination method described in (7) is anthropogenic contaminated soil.
It was configured as.

本発明は、上記構成であるので、土壌中の重金属などの有害元素の由来を判別することができる。従って、有害元素を含有した土壌が、自然由来汚染土か人為由来汚染土かも区別することができる。そして、閾値を境に、明瞭に両汚染土を誤判定することなく区別することができる。よって、本発明は、自然由来汚染土の有効活用に直接利用できる。 Since the present invention has the above structure, the origin of harmful elements such as heavy metals in soil can be determined. Therefore, it is possible to distinguish whether the soil containing harmful elements is naturally-derived contaminated soil or artificially-derived contaminated soil. Then, with the threshold value as a boundary, both contaminated soils can be clearly distinguished without being erroneously determined. Therefore, the present invention can be directly used for effective utilization of naturally-derived contaminated soil.

さらに本発明は、その原理が同じであることから、農用地土壌汚染防止法における特定有害元素(カドミウム、銅およびヒ素)の汚染由来の特定(自然由来か、人為由来か)にもそのまま利用できる。 Furthermore, since the principle is the same, the present invention can be used as it is for specifying the pollution origin (natural origin or artificial origin) of specific harmful elements (cadmium, copper and arsenic) in the Agricultural Land Soil Contamination Prevention Law.

本発明である土壌中有害元素由来判別法の原理についての説明図である。(1)は土壌における有害元素の存在状況を示す模式図である。(2)有害元素を含む、土壌中の元素の抽出方法のポイントを説明する図である。(3)EF(Enrichment Factor)値の計算手法と、EF値に基づく有害元素の由来判定手法の概念図である。It is explanatory drawing about the principle of the harmful element origin discrimination method in soil which is this invention. (1) is a schematic diagram showing the existence status of harmful elements in soil. (2) It is a figure explaining the point of the extraction method of the element in the soil including a harmful element. (3) It is a conceptual diagram of the calculation method of the EF (Enrichment Factor) value and the origin determination method of a harmful element based on the EF value. 本発明である土壌(土壌団粒)中有害元素由来判別法の元素抽出、由来判定の概要図である。(1)は自然由来の有害元素のみを含む土壌団粒からの元素抽出概念図及びEF値の比較図である。(2)は人為由来の有害元素も含む土壌団粒からの元素抽出概念図及びEF値の比較図である。(3)は(1)、(2)の図に用いた記号の説明図である。●有害元素(由来判定対象)<M>、〇基準元素<M>などである<EF値計算式における表記>。It is a schematic diagram of the element extraction and the origin determination of the harmful element origin determination method in the soil (soil aggregate) of this invention. (1) is a conceptual diagram of element extraction from soil aggregates containing only naturally occurring harmful elements and a comparative diagram of EF values. (2) is a conceptual diagram of element extraction from soil aggregates including anthropogenic harmful elements and a comparative diagram of EF values. (3) is an explanatory diagram of the symbols used in the figures (1) and (2). ● Hazardous elements (targets for determination of origin) <M>, 〇 Reference elements <M>, etc. <Notation in EF value calculation formula>. 本発明である土壌中有害元素由来判別法の元素抽出方法のフロー、試薬の詳細説明図である。It is a detailed explanatory view of the flow and the reagent of the element extraction method of the harmful element origin discrimination method in soil which is this invention. 本発明である土壌中有害元素由来判別法を適用した判定結果である。第一元素:ヒ素(As)、第二元素:鉛(Pb)としたときの分析結果で、判定指標であるEF値=3であった。This is a determination result obtained by applying the method for determining the origin of harmful elements in soil, which is the present invention. In the analysis result when the first element: arsenic (As) and the second element: lead (Pb), the EF value, which is a judgment index, was 3. 本発明である土壌中有害元素由来判別法を適用した判定結果である。第一元素:ヒ素(As)、第二元素:チタン(Ti)としたときの分析結果で、判定指標であるEF値=2であった。This is a determination result obtained by applying the method for determining the origin of harmful elements in soil, which is the present invention. In the analysis result when the first element: arsenic (As) and the second element: titanium (Ti), the EF value, which is a judgment index, was 2. 本発明である土壌中有害元素由来判別法を適用した判定結果である。第一元素:ヒ素(As)、第二元素:バリウム(Ba)としたときの分析結果で、判定指標であるEF値=1.8であった。This is a determination result obtained by applying the method for determining the origin of harmful elements in soil, which is the present invention. In the analysis result when the first element: arsenic (As) and the second element: barium (Ba), the EF value, which is a judgment index, was 1.8. 本発明である土壌中有害元素由来判別法を適用した判定結果である。第一元素:ヒ素(As)、第二元素:ストロンチウム(Sr)としたときの分析結果で、判定指標であるEF値=4であった。This is a determination result obtained by applying the method for determining the origin of harmful elements in soil, which is the present invention. In the analysis result when the first element: arsenic (As) and the second element: strontium (Sr), the EF value, which is a judgment index, was 4. 本発明が、非海成土壌にも適用できるメカニズムの説明図である。It is explanatory drawing of the mechanism which this invention can apply to the non-marine soil.

図1(1)の1)に示すように、有害元素●(X)は、人為由来でなくとも、土壌表面付近の酸化相(風化相)及び土壌深層部の還元相(未風化相)、いずれにも一定量、同程度存在する。他方、図1(1)の2)に示すように、人為由来汚染土においては、有害元素●(X)の汚染は、酸化相に留まり、還元相における有害元素の存在量は、自然由来汚染土と同程度である。 As shown in 1) of FIG. 1 (1), the harmful element ● (X) is an oxidized phase (weathered phase) near the soil surface and a reduced phase (unweathered phase) in the deep part of the soil, even if they are not artificially derived. There is a certain amount and the same amount in each case. On the other hand, as shown in 2) of FIG. 1 (1), in the artificially-derived contaminated soil, the contamination of the harmful element ● (X) remains in the oxidizing phase, and the abundance of the harmful element in the reducing phase is naturally-derived contamination. It is about the same as soil.

人為由来汚染土の還元相において自然由来汚染土と同程度に有害元素が存在すること、汚染があっても、有害元素は土壌表面への吸着、酸化相までの侵入に留まること、このような有害元素の挙動が、本発明において、有害元素の由来の判定を可能にする根幹である。 Hazardous elements are present in the reducing phase of artificially-derived contaminated soil to the same extent as naturally-derived contaminated soil, and even if there is contamination, the harmful elements stay on the soil surface and invade to the oxidation phase. The behavior of harmful elements is the basis of the present invention to enable determination of the origin of harmful elements.

基準元素〇は、有害元素に関係なく、自然由来汚染土、人為由来汚染土に共通して、同程度存在する。基準元素の選定基準は、「土壌の風化・変質によっても溶解度の変化が起こりにくい元素」、簡単にいうと「酸化しても溶出しない元素」である。
「酸化しても溶出しない元素」でない元素(A)を基準元素とした場合、風化(酸化)すると土壌から溶出するので、酸化相中に残存する元素(A)は少なくなる。土壌中の酸化相中の基準元素(A)が少なくなったものを還元抽出すると、EF値が相対的に高くなる。そうすると、その土壌は人為由来と誤判別されてしまう。
The reference element 〇 is present to the same extent in both naturally-derived contaminated soil and artificially-derived contaminated soil, regardless of harmful elements. The criteria for selecting reference elements are "elements whose solubility is unlikely to change due to weathering or alteration of soil", or simply "elements that do not elute even when oxidized".
When an element (A) that is not an "element that does not elute even if oxidized" is used as a reference element, it is eluted from the soil when it is weathered (oxidized), so that the element (A) remaining in the oxidation phase is reduced. When the reference element (A) in the oxidation phase in the soil is reduced and extracted, the EF value becomes relatively high. Then, the soil will be misidentified as being artificially derived.

図1(2)に示すように、本発明では、同一試料における、酸化相と、還元相から有害元素、基準元素を含む元素を抽出する、「同一試料を対象とした反復還元抽出方法」で、風化相における有害元素を還元相と比較することを特徴としている。そのため、異なる土壌からの抽出、比較を採用した場合におけるサンプル間誤差を考慮する必要がなく、高精度で有害元素の由来を判定することができる。 As shown in FIG. 1 (2), in the present invention, in the "repeated reduction extraction method for the same sample", which extracts elements including harmful elements and reference elements from the oxidation phase and the reduction phase in the same sample. , It is characterized by comparing harmful elements in the weathered phase with the reducing phase. Therefore, it is not necessary to consider the error between samples when extraction and comparison from different soils are adopted, and the origin of harmful elements can be determined with high accuracy.

図1(3)に示すように、有害元素由来判定には、酸化相と還元相から抽出した有害元素の濃度を比較する。具体的には、本件出願で新たに提案するEF(Enrichment Factor)値を用いる。 As shown in FIG. 1 (3), the concentrations of harmful elements extracted from the oxidizing phase and the reducing phase are compared in order to determine the origin of harmful elements. Specifically, the EF (Enrichment Factor) value newly proposed in this application is used.

EF値は、図1の(3)の式1の通り、土壌の還元相中の有害元素の濃度に対する、土壌の酸化相中の有害元素の濃度の比率である。

EF=土壌の酸化相中の有害元素の濃度/土壌の還元相中の有害元素の濃度・・・・式1

濃度は、重量比、モル比、いずれを採用しても、同じ結果となる。
The EF value is the ratio of the concentration of harmful elements in the oxidizing phase of soil to the concentration of harmful elements in the reducing phase of soil, as shown in Equation 1 of FIG. 1 (3).

EF = Concentration of harmful elements in the oxidation phase of soil / Concentration of harmful elements in the reduction phase of soil ... Equation 1

The same result can be obtained regardless of whether the concentration is a weight ratio or a molar ratio.

具体的には、例えば、実測で求めることができない式1の変形である以下の式2で測定することができる。

EF=(土壌の酸化相中の有害元素の濃度/土壌の酸化相中の基準元素の濃度)
/(土壌の還元相中の有害元素の濃度/土壌の還元相中の基準元素の濃度)・・式2
(ただし土壌中の基準元素の濃度は、酸化相中でも還元相中でも一様であることが条件)
Specifically, for example, it can be measured by the following formula 2 which is a modification of the formula 1 which cannot be obtained by actual measurement.

EF = (concentration of harmful elements in soil oxidation phase / concentration of reference element in soil oxidation phase)
/ (Concentration of harmful elements in the reducing phase of soil / Concentration of reference element in the reducing phase of soil) ... Equation 2
(However, the concentration of the reference element in the soil must be uniform in both the oxidizing phase and the reducing phase)

より、具体的には、
EF
={土壌中の酸化相中の第一元素と第二元素の濃度比(第一元素濃度/第二元素濃度)}
/{土壌中の還元相中の第一元素と第二元素の濃度比(第一元素濃度/第二元素濃度)}
・・・式3
によって、求めることができる。なお、土壌中における濃度の単位は、元素mg/全土壌kgである。
More specifically
EF
= {Concentration ratio of first element and second element in the oxidation phase in soil (first element concentration / second element concentration)}
/ {Concentration ratio of first element and second element in the reducing phase in soil (first element concentration / second element concentration)}
... Equation 3
Can be obtained by. The unit of concentration in soil is element mg / total soil kg.

実際の測定では、式4によって求めることができる。
EF={土壌の酸化相から抽出された濾液中の有害元素の濃度(mg/L)
/土壌の酸化相から抽出された濾液中の基準元素の濃度(mg/L)}
/{土壌の還元相から抽出された濾液中の有害元素の濃度(mg/L)
/土壌の酸化相から抽出された濾液中の基準元素の濃度(mg/L)}
・・・式4
(ただし土壌中の基準元素の濃度は、酸化相中でも還元相中でも一様であることが条件)
In the actual measurement, it can be obtained by Equation 4.
EF = {Concentration of harmful elements in filtrate extracted from soil oxidation phase (mg / L)
/ Concentration of reference element in filtrate extracted from soil oxidation phase (mg / L)}
/ {Concentration of harmful elements in the filtrate extracted from the reducing phase of soil (mg / L)
/ Concentration of reference element in filtrate extracted from soil oxidation phase (mg / L)}
... Equation 4
(However, the concentration of the reference element in the soil must be uniform in both the oxidizing phase and the reducing phase)

そして、式2において、
(土壌の酸化相中の有害元素の濃度/土壌の酸化相中の基準元素の濃度)=A
(土壌の還元相中の有害元素の濃度/土壌の還元相中の基準元素の濃度)=B
とすると、
すなわち、EF値を求めるいずれの式でも、Aは分子で、Bは分母であり、
EF=A/Bとなり、
A≒B すなわち EF≒1であれば、抽出された有害元素は自然由来のみで、それを含む土壌は、自然由来汚染土と判定できる。
他方、式1において、 A>>B すなわち EF>>1であれば(1よりだいぶ大きければ)、抽出された有害元素は人為由来を含むもので、それを含む土壌は、人為由来汚染土と判定できる。
Then, in Equation 2,
(Concentration of harmful elements in soil oxidation phase / concentration of reference element in soil oxidation phase) = A
(Concentration of harmful elements in the reducing phase of soil / Concentration of reference element in the reducing phase of soil) = B
Then
That is, in any of the formulas for obtaining the EF value, A is the numerator and B is the denominator.
EF = A / B,
If A≈B, that is, EF≈1, the extracted harmful elements are only naturally derived, and the soil containing them can be determined to be naturally contaminated soil.
On the other hand, in Equation 1, if A >> B, that is, EF >> 1 (much larger than 1), the extracted harmful element contains anthropogenic soil, and the soil containing it is anthropogenic contaminated soil. Can be judged.

図2に示すように、土壌中の有害元素の由来判別は、本発明で提唱する「反復還元抽出法」によって実現する。ここでは、沖積層や海成堆積物、特に沿岸部の堆積層、酸化の進行していない陸成堆積物由来の土壌粒子を対象としている。 As shown in FIG. 2, the origin determination of harmful elements in soil is realized by the "repeated reduction extraction method" proposed in the present invention. Here, we are targeting alluvial and marine sediments, especially coastal sediments and soil particles derived from unoxidized terrestrial sediments.

図2(1)に示すように、自然由来の有害元素のみを含む土壌団粒においては、いずれの箇所(風化相、未風化相)でも、有害元素●及び基準元素〇の存在比率はそれぞれ一定である。
その土壌を還元し元素を抽出する。そうすると酸化土壌粒子(風化相)から有害元素●、基準元素〇、Fe2+などが抽出される。
なお、この還元抽出における反応過程では、不溶性の鉄(III)イオンを可溶性の鉄(II)イオンに還元させるAOAH溶媒を用いている。これにより酸化鉄および水酸化鉄が溶解し、それらに吸着あるいは結合している元素が同時に遊離する。
つづいて、当該試料土壌を酸化した後、再度還元して元素を抽出する。そうすると当初の還元性鉱物からの有害元素●と、基準元素〇が抽出される。
それぞれの還元化で抽出された有害元素●の存在量(X)と、基準元素〇の存在量(M)の比率(EF値)を比較すると、採取した状態での酸化相中の有害元素●と基準元素〇の存在比率(X/M)oxと、採取した状態での還元相中の有害元素●と基準元素〇の存在比率(X/M)redを比較すると、同程度(≒1)のEF値である。
このような場合には、抽出された有害元素は自然由来のもののみで、それを含む土壌は自然由来汚染土と判定できる。
As shown in Fig. 2 (1), in soil aggregates containing only naturally occurring harmful elements, the abundance ratios of harmful elements ● and reference element 〇 are constant at any location (weathered phase, unweathered phase). Is.
The soil is reduced to extract the elements. Then, harmful elements ●, reference elements 〇, Fe 2+, etc. are extracted from the oxidized soil particles (weathered phase).
In the reaction process in this reduction extraction, an AOAH solvent that reduces insoluble iron (III) ions to soluble iron (II) ions is used. As a result, iron oxide and iron hydroxide are dissolved, and the elements adsorbed or bonded to them are simultaneously released.
Subsequently, after the sample soil is oxidized, it is reduced again to extract the element. Then, the harmful element ● and the reference element 〇 from the original reducing mineral are extracted.
Comparing the ratio (EF value) of the abundance (X) of the harmful element ● extracted by each reduction and the abundance (M) of the reference element 〇, the harmful element ● in the oxidation phase in the collected state Comparing the abundance ratio (X / M) ox of the reference element 〇 with the harmful element ● in the reduction phase in the collected state and the abundance ratio (X / M) red of the reference element 〇, they are about the same (≈1). EF value of.
In such a case, the extracted harmful elements are only naturally derived, and the soil containing them can be determined to be naturally contaminated soil.

他方、図2(2)に示すように、人為由来の有害元素を含む土壌団粒においては、有害元素●は土壌団粒表面/界面(酸化相)に局在する。他方、基準元素〇は、風化相、未風化相において、一定である。
その土壌を還元し元素を抽出する。そうすると酸化土壌粒子(風化相)から有害元素●、基準元素〇、Fe2+などが抽出される。
つづいて、当該試料土壌を酸化し後、再度還元して元素を抽出する。そうすると当初の還元性鉱物からの有害元素●と、基準元素〇が抽出される。
それぞれの還元化で抽出された有害元素●の濃度(X)と、基準元素〇の濃度(M)の比率(EF値)を比較すると、採取した状態での酸化相中の有害元素●と基準元素〇の濃度比率(X/M)oxと、採取した状態での還元相中の有害元素●と基準元素〇の濃度比率(X/M)redを比較すると、酸化相のEF値が、還元相のEF値より、極めて大きな値となる。
このような場合には、抽出された有害元素は人為由来のものを含み、それを含む土壌は人為由来汚染土と判定できる。
On the other hand, as shown in FIG. 2 (2), in the soil aggregate containing an artificially derived harmful element, the harmful element ● is localized on the surface / interface (oxidation phase) of the soil aggregate. On the other hand, the reference element 〇 is constant in the weathered phase and the unweathered phase.
The soil is reduced to extract the elements. Then, harmful elements ●, reference elements 〇, Fe 2+, etc. are extracted from the oxidized soil particles (weathered phase).
Subsequently, the sample soil is oxidized and then reduced again to extract the element. Then, the harmful element ● and the reference element 〇 from the original reducing mineral are extracted.
Comparing the ratio (EF value) of the concentration (X) of the harmful element ● extracted by each reduction and the concentration (M) of the reference element 〇, the harmful element ● in the oxidation phase in the collected state and the reference Comparing the concentration ratio (X / M) ox of element 〇 with the concentration ratio (X / M) redo of harmful element ● and reference element 〇 in the reduction phase in the collected state, the EF value of the oxidation phase is reduced. The value is extremely larger than the EF value of the phase.
In such a case, the extracted harmful element contains anthropogenic soil, and the soil containing the extracted harmful element can be determined to be anthropogenic contaminated soil.

図3は、本発明である土壌中有害元素由来判別法の元素抽出方法のフロー、試薬の詳細説明図である。 FIG. 3 is a detailed explanatory view of the flow and the reagent of the element extraction method of the method for determining the origin of harmful elements in soil according to the present invention.

土壌から各種元素を還元抽出する試薬としてはAOAH(シュウ酸緩衝液)が、土壌の還元を酸化する試薬としてはHが例示できる。 AOAH (oxalate buffer) can be exemplified as a reagent for reducing and extracting various elements from soil, and H 2 O 2 can be exemplified as a reagent for oxidizing the reducing phase of soil.

AOAH(シュウ酸緩衝液)500mlは、図2に示すように、
シュウ酸アンモニウム 14.21g
シュウ酸 9.0 g
アスコルビン酸 8.81g
1M 塩酸 5 mL
蒸留水 495 mL
のように調整できる。
500 ml of AOAH (oxalic acid buffer) was added as shown in FIG.
Ammonium oxalate 14.21 g
Oxalic acid 9.0 g
Ascorbic acid 8.81g
1M hydrochloric acid 5 mL
Distilled water 495 mL
It can be adjusted like this.

AOAH還元抽出(1回目)は、100mL容のバイアル瓶に、土壌(ここでは粒径250μm以下)0.8gあるいは2.0gを入れ、AOAH40mLを加え、115℃、1時間加熱する。冷却後、懸濁液を50mL遠沈管に移し、3000rpm、10分管遠心分離処理を施し、濾過する。そして、濾液をICP(誘導結合プラズマ)発光分光分析装置で多元素同時濃度測定する。その結果に基づき、試料土壌の酸化相中の有害元素、基準元素の濃度比率を求め、EF値を算出する。土壌粒径は、2mm以下でも正確に判定できた。土壌重量は、いずれであっても差はない。また、もちろん、他の重量を採用してもよい。 For AOAH reduction extraction (first time), 0.8 g or 2.0 g of soil (here, particle size 250 μm or less) is placed in a 100 mL vial, 40 mL of AOAH is added, and the mixture is heated at 115 ° C. for 1 hour. After cooling, the suspension is transferred to a 50 mL centrifuge tube, subjected to 3000 rpm, 10-minute tube centrifugation, and filtered. Then, the filtrate is measured for simultaneous multi-element concentration with an ICP (inductively coupled plasma) emission spectrophotometer. Based on the result, the concentration ratio of harmful elements and reference elements in the oxidation phase of the sample soil is obtained, and the EF value is calculated. The soil particle size could be accurately determined even if it was 2 mm or less. There is no difference in soil weight. Moreover, of course, other weights may be adopted.

次に、濾過残渣土壌を酸化させる。全体を酸化することで、当初の還元相から元素が抽出できる。具体的には、1回目のAOAH還元抽出残渣土壌を水ですすいだ後、その残渣に、2mLの10%(v/v)Hを加え、40℃で乾燥させる。 Next, the filtered residue soil is oxidized. Elements can be extracted from the initial reducing phase by oxidizing the whole. Specifically, after rinsing the soil of the first AOAH reduction extraction residue with water, 2 mL of 10% (v / v) H 2 O 2 is added to the residue and dried at 40 ° C.

その後、濾過残渣土壌の酸化物に対して、AOAH還元抽出(2回目)を行う。そのスケール、工程は、第1回目と同じである。その後、同様に、ICP(誘導結合プラズマ)発光分光分析装置で多元素同時濃度測定する。その結果に基づき、試料土壌の還元相中の有害元素、基準元素の濃度比率(モル比)を求め、EF値を算出する。 Then, AOAH reduction extraction (second time) is performed on the oxide of the filtered residue soil. The scale and process are the same as the first time. Then, similarly, the simultaneous concentration of multiple elements is measured by an ICP (inductively coupled plasma) emission spectroscopic analyzer. Based on the result, the concentration ratio (molar ratio) of harmful elements and reference elements in the reducing phase of the sample soil is obtained, and the EF value is calculated.

次に、実施例に基づいて本発明を具体的に説明する。なお、本発明は下記実施例に限定されるものではない。 Next, the present invention will be specifically described based on Examples. The present invention is not limited to the following examples.

図4は、第一元素:ヒ素(As)、第二元素:鉛(Pb)としたときの分析結果である。土壌試料(●に対応する横軸に配置された記号(採取地は重要でないので説明を省略する))は、あらかじめ、破線より下の試料が人為汚染由来土で、破線より上の試料が自然由来汚染土であることが知られていた。異なる組成(海成、パイライト、陸成を含む)の土壌試料で試験している。分析手法は、図3の通りである。土壌試料、分析方法は、以下の実施例についても同じである。 FIG. 4 shows the analysis results when the first element: arsenic (As) and the second element: lead (Pb). For soil samples (symbols placed on the horizontal axis corresponding to ● (the collection site is not important, explanation is omitted)), the samples below the broken line are soils derived from human contamination, and the samples above the broken line are natural. It was known to be contaminated soil. Tested on soil samples of different compositions (including marine, pyrite and terrestrial). The analysis method is as shown in FIG. The soil sample and analysis method are the same for the following examples.

分析の結果、第一元素:ヒ素(As)、第二元素:鉛(Pb)の場合の、判定指標であるEF値(縦軸)は、「3」とすることができる。EF値=3を境に、自然由来汚染土と、人為由来汚染土を誤判定なく区別できる。 As a result of the analysis, in the case of the first element: arsenic (As) and the second element: lead (Pb), the EF value (vertical axis) which is a determination index can be set to "3". With an EF value of 3 as a boundary, naturally-derived contaminated soil and artificially-derived contaminated soil can be distinguished without misjudgment.

図5は、第一元素:ヒ素(As)、第二元素:チタン(Ti)としたときの分析結果である。 FIG. 5 shows the analysis results when the first element: arsenic (As) and the second element: titanium (Ti).

分析の結果、第一元素:ヒ素(As)、第二元素:チタン(Ti)の場合の、判定指標であるEF値(縦軸)は、「2」とすることができる。EF値=2を境に、自然由来汚染土と、人為由来汚染土を誤判定なく区別できる。 As a result of the analysis, in the case of the first element: arsenic (As) and the second element: titanium (Ti), the EF value (vertical axis) which is a determination index can be set to "2". With an EF value of 2 as a boundary, naturally-derived contaminated soil and artificially-derived contaminated soil can be distinguished without misjudgment.

図6は、第一元素:ヒ素(As)、第二元素:バリウム(Ba)としたときの分析結果である。 FIG. 6 shows the analysis results when the first element: arsenic (As) and the second element: barium (Ba).

分析の結果、第一元素:ヒ素(As)、第二元素:バリウム(Ba)の場合の、判定指標であるEF値(縦軸)は、「1.8」とすることができる。EF値=1.8を境に、自然由来汚染土と、人為由来汚染土を概ね区別することできる。ボーダに位置するものがあることから安全性をとって、例えばEF値1.5より上を人為由来汚染土扱いとすれば、自然由来汚染土の一部だけが人為由来汚染土として扱われるにとどまるため、現状よりはるかに処理コストの低減、自然由来汚染土の有効利用は促進され、意義ある。 As a result of the analysis, in the case of the first element: arsenic (As) and the second element: barium (Ba), the EF value (vertical axis) which is a determination index can be set to "1.8". With an EF value of 1.8 as a boundary, naturally-derived contaminated soil and artificially-derived contaminated soil can be roughly distinguished. For safety reasons, for example, if the EF value above 1.5 is treated as anthropogenic contaminated soil, only a part of the naturally derived contaminated soil will be treated as anthropogenic contaminated soil. Since it stays, the treatment cost is much lower than the current situation, and the effective use of naturally-derived contaminated soil is promoted, which is significant.

図7は、第一元素:ヒ素(As)、第二元素:ストロンチウム(Sr)としたときの分析結果である。 FIG. 7 shows the analysis results when the first element: arsenic (As) and the second element: strontium (Sr).

分析の結果、第一元素:ヒ素(As)、第二元素:ストロンチウム(Sr)の場合の、判定指標であるEF値(縦軸)は、「4」とすることができる。EF値=4を境に、自然由来汚染土と、人為由来汚染土を誤判定なく区別できる。 As a result of the analysis, in the case of the first element: arsenic (As) and the second element: strontium (Sr), the EF value (vertical axis) which is a determination index can be set to "4". With an EF value of 4 as a boundary, naturally-derived contaminated soil and artificially-derived contaminated soil can be distinguished without misjudgment.

図8は、非海成土壌にも適用できるメカニズムの説明図である。(1)は海成土壌(パイライトなどを含有)における自然由来の有機元素のみを含む自然汚染土からの本発明の元素抽出法の概念図である。(2)は非海成土壌(輝石、黒雲母などを含有)における自然由来の有機元素のみを含む自然汚染土からの本発明の元素抽出法の概念図である。(3)は(1)、(2)の図に用いた記号の説明図である。●有害元素(由来判定対象)<M>、〇基準元素<M>などである<EF値計算式における表記>。(4)化学風化の説明図である。 FIG. 8 is an explanatory diagram of a mechanism applicable to non-marine soil. (1) is a conceptual diagram of the element extraction method of the present invention from naturally contaminated soil containing only naturally derived organic elements in marine soil (containing pyrolite and the like). (2) is a conceptual diagram of the element extraction method of the present invention from naturally contaminated soil containing only naturally derived organic elements in non-marine soil (containing bright stones, biotite, etc.). (3) is an explanatory diagram of the symbols used in the figures (1) and (2). ● Hazardous elements (targets for determination of origin) <M>, 〇 Reference elements <M>, etc. <Notation in EF value calculation formula>. (4) It is explanatory drawing of chemical weathering.

図8から非海成自然由来汚染土では、パイライト以外の鉱物に有害元素が含まれていることが考えられる。そのような場合でもパイライトと同様、未風化の段階では有害元素も基準元素も元々還元鉱物に取り込まれていると考えられる。
海成自然由来汚染土が一部風化すると酸化鉱物になるが、元々それは還元鉱物だったので、この酸化鉱物中の有害元素(X)および基準元素(M)の比は、未風化の還元鉱物中のそれらの比と理論上同じであると考えられる。
したがって、非海成自然汚染土のようにパイライトが土壌中に存在しなくても、海成自然由来汚染土と同様に酸化相でも還元相でも両者の比(X/M)は一定であることがわかる。
From FIG. 8, it is considered that the non-marine naturally-derived contaminated soil contains harmful elements in minerals other than pyrite. Even in such a case, as with pyrite, it is considered that both harmful elements and reference elements are originally incorporated into the reduced minerals at the unweathered stage.
When part of the marine naturally-derived contaminated soil is weathered, it becomes an oxidized mineral, but since it was originally a reduced mineral, the ratio of the harmful element (X) and the reference element (M) in this oxidized mineral is the unweathered reduced mineral. It is considered to be theoretically the same as those ratios in.
Therefore, even if pyrolite does not exist in the soil as in non-marine naturally contaminated soil, the ratio (X / M) of both is constant in both the oxidizing phase and the reducing phase, as in the case of marine naturally contaminated soil. I understand.

Claims (8)

土壌に含まれる有害元素が、自然由来か人為由来か判別する、土壌中有害元素由来判別法であって、
前記土壌を、
還元液に反応させたうえで濾過した第一濾液を採取し、
濾過残渣を酸化したうえで、再び還元液に反応させたうえで濾過した第二濾液を採取し、
前記第一濾液中の第一元素と第二元素の濃度比A’を求め、
前記第二濾液中の第一元素と第二元素の濃度比B’を求め
A’/B’で求められるEF値を前記土壌に含まれる有害元素の由来判別の指標として利用することを特徴とする土壌中有害元素由来判別法。
It is a method for determining the origin of harmful elements in soil, which determines whether the harmful elements contained in the soil are of natural or artificial origin.
The soil
After reacting with the reducing solution, the filtered first filtrate was collected and collected.
After oxidizing the filtration residue, it was reacted with the reducing solution again, and then the filtered second filtrate was collected.
The concentration ratio A'of the first element and the second element in the first filtrate was determined.
The concentration ratio B'of the first element and the second element in the second filtrate was determined .
A method for determining the origin of harmful elements in soil, which comprises using the EF value determined by A'/ B'as an index for determining the origin of harmful elements contained in the soil.
前記第一元素が有害元素で、前記第二元素が基準元素であることを特徴とする請求項1に記載の土壌中有害元素由来判別法。 The method for determining the origin of a harmful element in soil according to claim 1 , wherein the first element is a harmful element and the second element is a reference element. 前記土壌が、工事残土であることを特徴とする請求項1又は請求項2に記載の土壌中有害元素由来判別法。 The method for determining the origin of harmful elements in soil according to claim 1 or 2 , wherein the soil is construction surplus soil. 前記土壌が、農業用土であることを特徴とする請求項1又は請求項2に記載の土壌中有害元素由来判別法。 The method for determining the origin of harmful elements in soil according to claim 1 or 2 , wherein the soil is agricultural soil. 土壌に含まれる有害元素が、自然由来か判定する自然由来有害元素判別法であって、
前記土壌を、
還元液に反応させたうえで濾過した第一濾液を採取し、
濾過残渣を酸化したうえで、再び還元液に反応させたうえで濾過した第二濾液を採取し、
前記第一濾液中の第一元素と第二元素の濃度比A’を求め、
前記第二濾液中の第一元素と第二元素の濃度比B’を求め、
A’/B’で求められるEF値を前記土壌に含まれる有害元素の由来判別の指標とし、
前記第一元素及び前記第二元素によって定まる値以下を自然由来有害元素と判定することを特徴とする自然由来有害元素判別法。
This is a method for determining whether the harmful elements contained in the soil are of natural origin.
The soil
After reacting with the reducing solution, the filtered first filtrate was collected and collected.
After oxidizing the filtration residue, it was reacted with the reducing solution again, and then the filtered second filtrate was collected.
The concentration ratio A'of the first element and the second element in the first filtrate was determined.
The concentration ratio B'of the first element and the second element in the second filtrate was determined.
The EF value obtained by A'/ B'is used as an index for determining the origin of harmful elements contained in the soil.
A method for discriminating naturally-derived harmful elements, which comprises determining a value equal to or less than the value determined by the first element and the second element as a naturally-derived harmful element.
請求項に記載の自然由来有害元素判別法によって、自然由来有害元素を含むと判定された土壌は、自然由来汚染土とすることを特徴とする自然由来汚染土の区別方法。 A method for distinguishing naturally-derived contaminated soil, wherein the soil determined to contain naturally-derived harmful elements by the naturally-derived harmful element discrimination method according to claim 5 is naturally-derived contaminated soil. 土壌に含まれる有害元素が、人為由来か判定する人為由来有害元素判別法であって、
前記土壌を、
還元液に反応させたうえで濾過した第一濾液を採取し、
濾過残渣を酸化したうえで、再び還元液に反応させたうえで濾過した第二濾液を採取し、
前記第一濾液中の第一元素と第二元素の濃度比A’を求め、
前記第二濾液中の第一元素と第二元素の濃度比B’を求め、
A’/B’で求められるEF値を前記土壌に含まれる有害元素の由来判別の指標とし、
前記第一元素及び前記第二元素によって定まる値以上を人為由来有害元素と判定することを特徴とする人為由来有害元素判別法。
It is an artificially-derived harmful element discrimination method that determines whether the harmful elements contained in the soil are artificially-derived.
The soil
After reacting with the reducing solution, the filtered first filtrate was collected and collected.
After oxidizing the filtration residue, it was reacted with the reducing solution again, and then the filtered second filtrate was collected.
The concentration ratio A'of the first element and the second element in the first filtrate was determined.
The concentration ratio B'of the first element and the second element in the second filtrate was determined.
The EF value obtained by A'/ B'is used as an index for determining the origin of harmful elements contained in the soil.
A method for discriminating anthropogenic harmful elements, which comprises determining a value equal to or greater than the value determined by the first element and the second element as an anthropogenic harmful element.
請求項に記載の人為由来有害元素判別法によって、人為由来有害元素を含むと判定された土壌は、人為由来汚染土とすることを特徴とする人為由来汚染土の区別方法。 A method for distinguishing anthropogenic contaminated soil, wherein the soil determined to contain anthropogenic harmful elements by the anthropogenic harmful element discrimination method according to claim 7 is anthropogenic contaminated soil.
JP2019178143A 2019-09-28 2019-09-28 Derivation method for harmful elements in soil Active JP6833221B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019178143A JP6833221B1 (en) 2019-09-28 2019-09-28 Derivation method for harmful elements in soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019178143A JP6833221B1 (en) 2019-09-28 2019-09-28 Derivation method for harmful elements in soil

Publications (2)

Publication Number Publication Date
JP6833221B1 true JP6833221B1 (en) 2021-02-24
JP2021056051A JP2021056051A (en) 2021-04-08

Family

ID=74661777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019178143A Active JP6833221B1 (en) 2019-09-28 2019-09-28 Derivation method for harmful elements in soil

Country Status (1)

Country Link
JP (1) JP6833221B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4199143B2 (en) * 2004-03-04 2008-12-17 株式会社東芝 Method for analyzing harmful metal elements and pretreatment method thereof
JP2013050427A (en) * 2011-08-31 2013-03-14 Railway Technical Research Institute Evaluation test method for elution tendency of nature-derived metals
JP6351012B2 (en) * 2014-09-22 2018-07-04 Jxtgエネルギー株式会社 Soil analysis method
JP6361980B2 (en) * 2015-05-26 2018-07-25 住友金属鉱山株式会社 Method for analysis of oxalic acid in organic solution

Also Published As

Publication number Publication date
JP2021056051A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
RU2651353C1 (en) Geochemical method for mineral deposit field search
Ahn et al. Mineralogical and geochemical characterization of arsenic in an abandoned mine tailings of Korea
Baker et al. Epidote trace element chemistry as an exploration tool in the Collahuasi district, northern Chile
Du Laing Analysis and fractionation of trace elements in soils
McKinley et al. Geochemical controls on contaminant uranium in vadose Hanford formation sediments at the 200 area and 300 area, Hanford Site, Washington
Cantrell et al. Plutonium and Americium geochemistry at hanford: a site wide review
JP6833221B1 (en) Derivation method for harmful elements in soil
Casalino et al. Total and fractionation metal contents obtained with sequential extraction procedures in a sediment core from Terra Nova Bay, West Antarctica
Oppermann et al. Mobility and distribution of palladium and platinum in soils above Lower and Middle Group chromitites of the western Bushveld Complex, South Africa
Emerson et al. Solubility controls on plutonium and americium release in subsurface environments exposed to acidic processing wastes
Hakala et al. Role of Organic Acids in Controlling Mineral Scale Formation During Hydraulic Fracturing at the Marcellus Shale Energy and Environmental Laboratory (MSEEL) Site
Almond et al. Geochemical techniques as applied in recent investigations in the Tintic district, Utah
Yokoyama et al. Determination of trace gold in rock samples by a combination of two-stage solvent extraction and graphite furnace atomic absorption spectrometry: the problem of iron interference and its solution
Lian Svendsen et al. Partitioning of Zn, Cd, Pb, and Cu in organic-rich soil profiles in the vicinity of a zinc smelter
Ram An investigation on the dissolution of synthetic and natural uraninite
Tutu et al. Determination and modelling of geochemical speciation of uranium in gold mine polluted land in South Africa
Tarvainen et al. Geochemical baselines in relation to analytical methods in the Ita-Uusimaa and Pirkanmaa regions, Finland
van Geffen et al. Lead isotope ratios in till and vegetation over a VMS occurrence under significant allochthonous cover
Ervanne Oxidation state analyses of uranium with emphasis on chemical speciation in geological media
Dinu et al. Evaluation of the bioavailability and pollution indexes of some toxic metals in polluted soils from an abandoned mining area
Gamble The Lake Raeside uranium deposit
Gartman et al. Uranium Interaction with Soil Minerals in the Presence of Co-Contaminants: Case Study of Subsurface Sediments at or below the Water Table
Poduval et al. Searching for" Gold" in Wells: Converting Drill Cuttings into a Commodity by Identifying and Extracting Critical Minerals
de Junet et al. New methodological approach for deep penetrating geochemistry and environmental studies part 1: on-site soil extraction of trace and rare earth elements
Ödman et al. Validation of a field filtration technique for characterization of suspended particulate matter from freshwater. Part II. Minor, trace and ultra trace elements

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20191024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200716

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200716

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210120

R150 Certificate of patent or registration of utility model

Ref document number: 6833221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250