JP6832186B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP6832186B2
JP6832186B2 JP2017027992A JP2017027992A JP6832186B2 JP 6832186 B2 JP6832186 B2 JP 6832186B2 JP 2017027992 A JP2017027992 A JP 2017027992A JP 2017027992 A JP2017027992 A JP 2017027992A JP 6832186 B2 JP6832186 B2 JP 6832186B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium ion
ion secondary
secondary battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017027992A
Other languages
Japanese (ja)
Other versions
JP2018133303A (en
Inventor
嘉也 牧村
嘉也 牧村
啓太 二井谷
啓太 二井谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2017027992A priority Critical patent/JP6832186B2/en
Publication of JP2018133303A publication Critical patent/JP2018133303A/en
Application granted granted Critical
Publication of JP6832186B2 publication Critical patent/JP6832186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本明細書は、リチウムイオン二次電池を開示する。 The present specification discloses a lithium ion secondary battery.

正極と負極との間にリチウムイオン伝導性を有する非水電解液を介在させたリチウムイオン二次電池は、高電圧・高エネルギー密度が得られるだけでなく、小型・軽量化が図れるため、パソコンや携帯電話等の情報通信機器の関連分野ではすでに実用化されている。また、近年では、資源問題や環境問題から電気自動車やハイブリッド電気自動車に搭載される電源としても検討が進められている。こうしたリチウムイオン二次電池の正極に含まれる正極活物質としては、例えば、リチウムと、コバルト、ニッケル、マンガン等の遷移金属との複合酸化物が用いられる。LiNi1-x Mnx 2 (0<x≦0.5)で表される層状リチウムニッケルマンガン複合酸化物は、こうした複合酸化物の一つであるが、高容量化や高温での電池特性、経済性等の観点から有用とされている(例えば特許文献1参照)。 A lithium ion secondary battery in which a non-aqueous electrolyte solution having lithium ion conductivity is interposed between a positive electrode and a negative electrode not only provides high voltage and high energy density, but also makes it possible to reduce the size and weight of a personal computer. It has already been put into practical use in the related fields of information and communication devices such as mobile phones and mobile phones. Further, in recent years, due to resource problems and environmental problems, studies are underway as a power source to be installed in electric vehicles and hybrid electric vehicles. As the positive electrode active material contained in the positive electrode of such a lithium ion secondary battery, for example, a composite oxide of lithium and a transition metal such as cobalt, nickel, or manganese is used. The layered lithium nickel-manganese composite oxide represented by LiNi 1-x Mn x O 2 (0 <x ≦ 0.5) is one of these composite oxides, but it has high capacity and battery characteristics at high temperature. , It is said to be useful from the viewpoint of economic efficiency (see, for example, Patent Document 1).

特開2003−34536号公報Japanese Unexamined Patent Publication No. 2003-34536

しかしながら、層状リチウムニッケルマンガン複合酸化物を含む正極を用いたリチウムイオン電池では、充電時に正極が発熱したり、0℃を下回る低温領域での出力特性が低下したりするという問題があった。 However, a lithium ion battery using a positive electrode containing a layered lithium nickel-manganese composite oxide has problems that the positive electrode generates heat during charging and the output characteristics in a low temperature region below 0 ° C. deteriorate.

本開示はこのような課題を解決するためになされたものであり、充電時の正極の発熱を抑制すると共に低温領域での出力特性を向上させることを主目的とする。 The present disclosure has been made to solve such a problem, and its main purpose is to suppress heat generation of the positive electrode during charging and to improve output characteristics in a low temperature region.

本開示のリチウムイオン二次電池は、
正極と負極との間にリチウムイオン伝導性を有する非水電解液を介在させたリチウムイオン二次電池であって、
前記正極は、正極活物質として組成式LiNi1-XMnX2(式中、Xは0<X≦0.5)で表される層状リチウムニッケルマンガン酸化物を含むと共に、固体電解質としてガーネット型酸化物を含み、前記正極活物質の質量と前記固体電解質の質量との和に対する前記固体電解質の質量の割合が5〜40質量%である、
ものである。
The lithium ion secondary battery of the present disclosure is
A lithium ion secondary battery in which a non-aqueous electrolytic solution having lithium ion conductivity is interposed between a positive electrode and a negative electrode.
The positive electrode contains a layered lithium nickel manganese oxide represented by the composition formula LiNi 1-X Mn X O 2 (in the formula, X is 0 <X ≦ 0.5) as a positive electrode active material, and garnet as a solid electrolyte. The ratio of the mass of the solid electrolyte to the sum of the mass of the positive electrode active material and the mass of the solid electrolyte is 5 to 40% by mass, which contains a type oxide.
It is a thing.

このリチウムイオン二次電池は、層状リチウムニッケルマンガン酸化物を含むがガーネット型酸化物を含まない正極を用いた場合に比べて、充電時の正極の発熱が抑制されると共に低温領域での出力特性が向上する。こうした効果が得られる理由は、以下のように推察される。すなわち、リチウムイオン二次電池では、リチウム塩を溶解させた非水溶媒を電解液として用いている。今回、正極中に固体電解質であるガーネット型酸化物を含ませることで、正極内の非水電解液の含有量が減少し、充電時の正極の発熱量を抑制することができたと推測される。一方、正極内の非水電解液の含有量が減少すると、低温出力特性が低下すると予想されるが、ガーネット型酸化物の含有割合を適正に調整することにより、低温出力特性を向上させることができたと推測される。 Compared with the case of using a positive electrode containing layered lithium nickel manganese oxide but not garnet type oxide, this lithium ion secondary battery suppresses heat generation of the positive electrode during charging and has output characteristics in a low temperature region. Is improved. The reason why such an effect can be obtained is presumed as follows. That is, in the lithium ion secondary battery, a non-aqueous solvent in which a lithium salt is dissolved is used as the electrolytic solution. It is presumed that by including the garnet-type oxide, which is a solid electrolyte, in the positive electrode this time, the content of the non-aqueous electrolyte solution in the positive electrode was reduced, and the calorific value of the positive electrode during charging could be suppressed. .. On the other hand, if the content of the non-aqueous electrolyte solution in the positive electrode decreases, the low temperature output characteristics are expected to decrease, but the low temperature output characteristics can be improved by appropriately adjusting the content ratio of the garnet type oxide. It is presumed that it was possible.

リチウムイオン二次電池10の構造の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of the lithium ion secondary battery 10.

本開示のリチウムイオン二次電池の好適な実施形態について以下に説明する。本実施形態のリチウムイオン二次電池は、正極と負極との間にリチウムイオン伝導性を有する非水電解液が介在している。 A preferred embodiment of the lithium ion secondary battery of the present disclosure will be described below. In the lithium ion secondary battery of the present embodiment, a non-aqueous electrolytic solution having lithium ion conductivity is interposed between the positive electrode and the negative electrode.

正極は、正極活物質と固体電解質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極合材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。 For the positive electrode, a positive electrode active material, a solid electrolyte, a conductive material, and a binder are mixed, and an appropriate solvent is added to form a paste-like positive electrode mixture, which is applied to the surface of the current collector, dried, and required. Therefore, it may be formed by compression in order to increase the electrode density.

正極に含まれる正極活物質は、組成式LiNi1-XMnX2(式中、Xは0<X≦0.5、好ましくは0.3≦X≦0.5)で表される層状リチウムニッケルマンガン酸化物が好ましい。こうした層状リチウムニッケルマンガン酸化物は、高容量化や高温での電池特性、経済性等の観点から有用である。層状リチウムニッケルマンガン酸化物は、Zr,Al及びMgの少なくとも1つをドープさせたものであってもよい。こうすることにより、充電時の正極の発熱がより抑制されると共に低温領域での出力特性がより向上する。Zrのドープ量はNiとMnとの総モル数に対して0.2〜0.5mol%が好ましい。Alのドープ量はNiとMnとの総モル数に対して2〜5mol%が好ましい。Mgの添加量はNiとMnとの総モル数に対して2〜5mol%が好ましい。 The positive electrode active material contained in the positive electrode is a layered material represented by the composition formula LiNi 1-X Mn X O 2 (in the formula, X is 0 <X ≦ 0.5, preferably 0.3 ≦ X ≦ 0.5). Lithium nickel manganese oxide is preferred. Such layered lithium nickel-manganese oxide is useful from the viewpoints of high capacity, battery characteristics at high temperature, economy, and the like. The layered lithium nickel manganese oxide may be doped with at least one of Zr, Al and Mg. By doing so, the heat generation of the positive electrode during charging is further suppressed, and the output characteristics in the low temperature region are further improved. The doping amount of Zr is preferably 0.2 to 0.5 mol% with respect to the total number of moles of Ni and Mn. The doping amount of Al is preferably 2 to 5 mol% with respect to the total number of moles of Ni and Mn. The amount of Mg added is preferably 2 to 5 mol% with respect to the total number of moles of Ni and Mn.

正極活物質は、共沈法によって合成されたものであることが好ましい。金属元素を原子レベルで均一に混合させることができ、より好適な性能が得られるからである。共沈法では、金属イオンを一粒子中に共存させた前駆体を作製し、これにリチウム塩を混合、焼成するものとしてもよい。 The positive electrode active material is preferably one synthesized by the coprecipitation method. This is because the metal elements can be uniformly mixed at the atomic level, and more suitable performance can be obtained. In the coprecipitation method, a precursor in which metal ions coexist in one particle may be prepared, mixed with a lithium salt, and calcined.

固体電解質は、ガーネット型酸化物が好ましい。ガーネット型酸化物は、リチウムイオンを伝導可能なものであれば特に限定されるものではないが、組成式Li5+YLa3(ZrY,A2-Y)O12(式中、AはSc,Ti,V,Y,Nb,Hf,Ta,Al,Si,Ga及びGeからなる群より選ばれた1種類以上の元素、Yは1.4≦Y<2)で表されるものが好ましい。こうしたガーネット型酸化物は、Yが1.4≦Y<2を満たすため、公知のガーネット型酸化物Li7La3Zr212(つまりY=2)と比べて、リチウムイオン伝導度が高くなり且つ活性化エネルギーも小さくなる。したがって、この酸化物を用いれば、リチウムイオンが伝導しやすく、抵抗が低くなり、電池の出力が向上する。また、活性化エネルギーが小さい、つまり温度に対する伝導度の変化の割合が小さいため、電池の出力が安定する。また、Yが1.6≦Y≦1.95を満たせば、伝導度がより高く、活性化エネルギーがより低くなるため、より好ましい。更に、Yが1.65≦Y≦1.9を満たせば、伝導度がほぼ極大、活性化エネルギーがほぼ極小となるため、一層好ましい。なお、Aとしては、TaやTaとイオン半径が同等のNbが好ましい。 The solid electrolyte is preferably a garnet-type oxide. The garnet-type oxide is not particularly limited as long as it can conduct lithium ions, but the composition formula Li 5 + Y La 3 (Zr Y , A 2-Y ) O 12 (in the formula, A is One or more elements selected from the group consisting of Sc, Ti, V, Y, Nb, Hf, Ta, Al, Si, Ga and Ge, where Y is represented by 1.4 ≤ Y <2). preferable. Since Y satisfies 1.4 ≦ Y <2, such a garnet-type oxide has higher lithium ion conductivity than the known garnet-type oxide Li 7 La 3 Zr 2 O 12 (that is, Y = 2). And the activation energy becomes smaller. Therefore, if this oxide is used, lithium ions are easily conducted, the resistance is lowered, and the output of the battery is improved. Further, since the activation energy is small, that is, the rate of change in conductivity with respect to temperature is small, the output of the battery is stable. Further, when Y satisfies 1.6 ≦ Y ≦ 1.95, the conductivity is higher and the activation energy is lower, which is more preferable. Further, when Y satisfies 1.65 ≦ Y ≦ 1.9, the conductivity is substantially maximized and the activation energy is substantially minimized, which is more preferable. As A, Nb having the same ionic radius as Ta or Ta is preferable.

ここで、リチウムイオンを伝導可能なガーネット型酸化物は、主としてガーネット型の構造を有していればよく、例えば、他の構造が一部含まれていたり、X線回折のピーク位置がシフトしているなどガーネットからみて歪んだ構造を含むものとしてもよい。また、組成式で示しているが、リチウムイオンを伝導可能なガーネット型酸化物には他の元素や構造などが一部含まれていてもよい。 Here, the garnet-type oxide capable of conducting lithium ions may mainly have a garnet-type structure, for example, a part of other structures may be contained or the peak position of X-ray diffraction may be shifted. It may include a structure that is distorted when viewed from the garnet. Further, as shown in the composition formula, the garnet-type oxide capable of conducting lithium ions may partially contain other elements and structures.

正極活物質の質量と固体電解質の質量との和に対する固体電解質の質量の割合は、5〜40質量%であることが好ましい。この範囲内であれば、充電状態の正極の発熱量を抑制できると共に、低温出力特性を向上させることができる。なお、この固体電解質の質量の割合は、6〜38質量%であることがより好ましい。 The ratio of the mass of the solid electrolyte to the sum of the mass of the positive electrode active material and the mass of the solid electrolyte is preferably 5 to 40% by mass. Within this range, the amount of heat generated by the positive electrode in the charged state can be suppressed, and the low temperature output characteristics can be improved. The mass ratio of this solid electrolyte is more preferably 6 to 38% by mass.

正極に含まれる導電材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。 The conductive material contained in the positive electrode is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the positive electrode. For example, graphite such as natural graphite (scaly graphite, scaly graphite), artificial graphite, or acetylene black. , Carbon black, Ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.), etc., or a mixture of two or more thereof can be used. Among these, carbon black and acetylene black are preferable as the conductive material from the viewpoint of electron conductivity and coatability.

正極に含まれる結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。 The binder contained in the positive electrode plays a role of binding the active material particles and the conductive material particles, and is, for example, a fluororesin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and fluororubber. Alternatively, a thermoplastic resin such as polypropylene or polyethylene, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, natural butyl rubber (NBR) or the like can be used alone or as a mixture of two or more kinds. Further, an aqueous dispersion of cellulose-based binder or styrene-butadiene rubber (SBR), which is an aqueous binder, can also be used.

正極活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体の厚さは、例えば1〜500μmのものが用いられる。 Examples of the solvent for dispersing the positive electrode active material, the conductive material, and the binder include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methylethylketone, cyclohexanone, methyl acetate, methyl acrylate, diethylenetriamine, N, N-dimethylaminopropylamine. , Ethylene oxide, tetrahydrofuran and other organic solvents can be used. Further, a dispersant, a thickener or the like may be added to water, and the active material may be slurried with a latex such as SBR. As the thickener, for example, polysaccharides such as carboxymethyl cellulose and methyl cellulose can be used alone or as a mixture of two or more kinds. Examples of the coating method include roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, and the like, and any of these can be used to obtain an arbitrary thickness and shape. As the current collector, aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, conductive glass, etc., as well as aluminum, copper, etc. for the purpose of improving adhesiveness, conductivity, and oxidation resistance. The surface of the above can be treated with carbon, nickel, titanium, silver or the like. For these, it is also possible to oxidize the surface. Examples of the shape of the current collector include foil, film, sheet, net, punched or expanded, lath, porous body, foam, and fiber group forming body. As the thickness of the current collector, for example, one having a thickness of 1 to 500 μm is used.

負極は、負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極合材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。負極活物質としては、リチウムイオンを吸蔵・放出可能な材料であれば特に限定するものではないが、炭素質材料が安全性の面から見て好ましい。炭素質材料としては、例えば、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が、金属リチウムに近い作動電位を有し、高い作動電圧での充放電が可能であり電解質塩としてリチウム塩を使用した場合に自己放電を抑え、且つ充電時における不可逆容量を少なくできるため、好ましい。また、負極に用いられる導電材、結着材、溶剤などは、それぞれ正極で例示したものを用いることができる。負極の集電体には、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状は、正極と同様のものを用いることができる。 For the negative electrode, a negative electrode active material, a conductive material, and a binder are mixed, and an appropriate solvent is added to form a paste-like negative electrode mixture, which is applied to the surface of the current collector and dried. It may be formed by compression to increase the density. The negative electrode active material is not particularly limited as long as it can store and release lithium ions, but a carbonaceous material is preferable from the viewpoint of safety. Examples of the carbonaceous material include cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, carbon fibers and the like. Of these, graphites such as artificial graphite and natural graphite have an operating potential close to that of metallic lithium and can be charged and discharged at a high operating voltage. When a lithium salt is used as the electrolyte salt, self-discharge is suppressed. Moreover, it is preferable because the irreversible capacity at the time of charging can be reduced. Further, as the conductive material, the binder, the solvent and the like used for the negative electrode, those exemplified for the positive electrode can be used. The current collector of the negative electrode includes copper, nickel, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., as well as improved adhesiveness, conductivity and reduction resistance. For the purpose, for example, one in which the surface of copper or the like is treated with carbon, nickel, titanium, silver or the like can also be used. For these, it is also possible to oxidize the surface. The shape of the current collector can be the same as that of the positive electrode.

非水電解液は、非水溶媒と支持塩とを含むものとしてもよい。非水溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、エチレンカーボネートやプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類;ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネート類;γ−ブチルラクトン、γ−バレロラクトンなどの環状エステル類;ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類;ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類;アセトニトリル、ベンゾニトリルなどのニトリル類;テトラヒドロフラン、メチルテトラヒドロフランなどのフラン類;スルホラン、テトラメチルスルホランなどのスルホラン類;1,3−ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。このうち、環状カーボネート類と鎖状カーボネート類との組み合わせが好ましい。この組み合わせによると、充放電の繰り返しでの電池特性を表すサイクル特性が優れているばかりでなく、電解液の粘度、得られる電池の電気容量、電池出力などをバランスの取れたものとすることができる。 The non-aqueous electrolyte solution may contain a non-aqueous solvent and a supporting salt. Examples of the non-aqueous solvent include carbonates, esters, ethers, nitriles, furans, sulfolanes, dioxolanes and the like, and these can be used alone or in combination. Specifically, cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, and chloroethylene carbonate; dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl-n-butyl carbonate, methyl-t-butyl carbonate, Chain carbonates such as di-i-propyl carbonate and t-butyl-i-propyl carbonate; cyclic esters such as γ-butyl lactone and γ-valerolactone; methyl formate, methyl acetate, ethyl acetate, methyl butyrate and the like. Chain esters; Ethers such as dimethoxyethane, ethoxymethoxyethane, diethoxyethane; Nitriles such as acetonitrile and benzonitrile; Francs such as tetrahydrofuran and methyl tetrahydrofuran; Sulfolans such as sulfolane and tetramethylsulfolane; 1, Examples thereof include dioxolanes such as 3-dioxolane and methyldioxolane. Of these, a combination of cyclic carbonates and chain carbonates is preferable. According to this combination, not only the cycle characteristics that represent the battery characteristics by repeated charging and discharging are excellent, but also the viscosity of the electrolytic solution, the electric capacity of the obtained battery, the battery output, etc. can be balanced. it can.

支持塩としては、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiAsF6、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この支持塩は、非水電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。支持塩の濃度が0.1mol/L以上では、十分な電流密度を得ることができ、5mol/L以下では、電解液をより安定させることができる。また、この非水電解液には、リン系、ハロゲン系などの難燃剤を添加してもよい。 Examples of the supporting salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSiF 6 , LiAlF 4 , LiSCN, and the like. Examples thereof include LiClO 4 , LiCl, LiF, LiBr, LiI, and LiAlCl 4. Of these, from the group consisting of inorganic salts such as LiPF 6 , LiBF 4 , LiAsF 6 , and LiClO 4 , and organic salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiC (CF 3 SO 2 ) 3. It is preferable to use one or a combination of two or more selected salts from the viewpoint of electrical characteristics. The concentration of this supporting salt in the non-aqueous electrolytic solution is preferably 0.1 mol / L or more and 5 mol / L or less, and more preferably 0.5 mol / L or more and 2 mol / L or less. When the concentration of the supporting salt is 0.1 mol / L or more, a sufficient current density can be obtained, and when the concentration of the supporting salt is 5 mol / L or less, the electrolytic solution can be made more stable. Further, a flame retardant such as phosphorus or halogen may be added to this non-aqueous electrolytic solution.

本実施形態のリチウムイオン二次電池は、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、リチウムイオン二次電池の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を組み合わせて用いてもよい。 The lithium ion secondary battery of the present embodiment may include a separator between the negative electrode and the positive electrode. The separator is not particularly limited as long as it has a composition that can withstand the range of use of the lithium ion secondary battery. For example, a polymer non-woven fabric such as a polypropylene non-woven fabric or a polyphenylene sulfide non-woven fabric, or a thin olefin resin such as polyethylene or polypropylene is used. Examples include microporous membranes. These may be used alone or in combination of two or more.

本実施形態のリチウムイオン二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、こうしたリチウムイオン二次電池を複数直列に接続して電気自動車等に用いる大型のものなどに適用してもよい。図1は、本実施形態のリチウムイオン二次電池10の一例を示す模式図である。このリチウムイオン二次電池10は、集電体11に正極合材12を形成した正極シート13と、集電体14の表面に負極合材17を形成した負極シート18と、正極シート13と負極シート18との間に設けられたセパレータ19と、正極シート13と負極シート18との間を満たす非水電解液20と、を備えたものである。このリチウムイオン二次電池10では、正極シート13と負極シート18との間にセパレータ19を挟み、これらを捲回して円筒ケース22に挿入し、正極シート13に接続された正極端子24と負極シートに接続された負極端子26とを配設して形成されている。このリチウムイオン二次電池10では、正極合材12は、正極活物質として組成式LiNi1-XMnX2(式中、Xは0<X≦0.5)で表される層状リチウムニッケルマンガン酸化物を含むと共に、固体電解質としてガーネット型酸化物を含み、正極活物質の質量と固体電解質の質量との和に対する固体電解質の質量の割合が5〜40質量%の範囲内にある。 The shape of the lithium ion secondary battery of the present embodiment is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Further, a plurality of such lithium ion secondary batteries may be connected in series and applied to a large-sized battery used for an electric vehicle or the like. FIG. 1 is a schematic view showing an example of the lithium ion secondary battery 10 of the present embodiment. The lithium ion secondary battery 10 includes a positive electrode sheet 13 having a positive electrode mixture 12 formed on a current collector 11, a negative electrode sheet 18 having a negative electrode mixture 17 formed on the surface of the current collector 14, and a positive electrode sheet 13 and a negative electrode. It is provided with a separator 19 provided between the sheets 18 and a non-aqueous electrolytic solution 20 that fills the space between the positive electrode sheet 13 and the negative electrode sheet 18. In the lithium ion secondary battery 10, a separator 19 is sandwiched between the positive electrode sheet 13 and the negative electrode sheet 18, and these are wound and inserted into the cylindrical case 22, and the positive electrode terminal 24 and the negative electrode sheet connected to the positive electrode sheet 13 are connected. It is formed by disposing the negative electrode terminal 26 connected to the above. In the lithium ion secondary battery 10, the positive electrode mixture 12 is a layered lithium nickel represented by the composition formula LiNi 1-X Mn X O 2 (in the formula, X is 0 <X ≦ 0.5) as the positive electrode active material. It contains manganese oxide and garnet-type oxide as a solid electrolyte, and the ratio of the mass of the solid electrolyte to the sum of the mass of the positive electrode active material and the mass of the solid electrolyte is in the range of 5 to 40 mass%.

以上詳述した本実施形態のリチウムイオン二次電池では、層状リチウムニッケルマンガン酸化物を含むがガーネット型酸化物を含まない正極を用いた場合に比べて、充電時の正極の発熱が抑制されると共に低温領域での出力特性が向上する。 In the lithium ion secondary battery of the present embodiment described in detail above, heat generation of the positive electrode during charging is suppressed as compared with the case of using a positive electrode containing a layered lithium nickel manganese oxide but not containing a garnet type oxide. At the same time, the output characteristics in the low temperature region are improved.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present invention is not limited to the above-described embodiment, and can be implemented in various aspects as long as it belongs to the technical scope of the present invention.

以下に本発明の好適な実施例を説明するが、本発明は以下の実施例に何ら限定されるものではない。 Preferable examples of the present invention will be described below, but the present invention is not limited to the following examples.

[実験例1]
(LiNi0.5Mn0.52の合成)
LiNi0.5Mn0.52を以下のようにシュウ酸塩共沈法により作製した。あらかじめ不活性ガスを通気させて溶存酸素を取り除いたイオン交換水に酢酸ニッケル、酢酸マンガンを、Ni元素とMn元素が0.5:0.5のモル比になるように溶解させ、これら金属元素の合計モル濃度が0.5mol/Lとなるように混合水溶液を調製した。一方、同様に溶存酸素を取り除いたイオン交換水を用いて0.5mol/Lシュウ酸水溶液、0.5mol/Lアンモニア水をそれぞれ調製した。溶存酸素を取り除いたイオン交換水を槽内温度80℃に設定された反応槽に入れ、400rpmで撹拌させた状態で、そこにアンモニア水を滴下して液温25℃を基準としたときにpHが6となるように調整した。反応槽に混合水溶液、シュウ酸水溶液、アンモニア水をpH6に制御しつつ加え、5時間撹拌を継続させて共沈生成物のシュウ酸塩を得た。反応終了後、シュウ酸塩をろ過、水洗して取り出し、120℃のオーブン内で一晩乾燥させてシュウ酸塩の粉末試料を得た。得られたシュウ酸塩粉末を600℃で加熱することでニッケルマンガン複合酸化物を作製し、その粉末と水酸化リチウム粉末を、リチウムのモル数Mol(Li)と遷移金属元素(Ni,Mn)の総モル数Mol(Me)との比(Mol(Li)/Mol(Me))が1.10となるように混合した。この混合粉末を6MPaの圧力で直径2cm、厚さ5mm程度のペレットに加圧成型し、空気雰囲気の電気炉中1000℃の温度まで2時間で昇温し、その温度で混合物を13時間焼成することにより目的試料を得た。焼成後ヒーターの電源を切り、自然放冷した。約8時間後、炉内温度が100℃以下になっていることを確認してペレットを取り出し、LiNi0.5Mn0.52を得た。
[Experimental Example 1]
(Synthesis of LiNi 0.5 Mn 0.5 O 2)
LiNi 0.5 Mn 0.5 O 2 was prepared by the oxalate coprecipitation method as follows. Nickel acetate and manganese acetate are dissolved in ion-exchanged water from which an inert gas has been aerated in advance to remove dissolved oxygen so that the molar ratio of Ni element and Mn element is 0.5: 0.5, and these metal elements. A mixed aqueous solution was prepared so that the total molar concentration of the above was 0.5 mol / L. On the other hand, 0.5 mol / L oxalic acid aqueous solution and 0.5 mol / L ammonia water were prepared using ion-exchanged water from which dissolved oxygen had been removed in the same manner. Ion-exchanged water from which dissolved oxygen has been removed is placed in a reaction tank set to a temperature of 80 ° C. in the tank, and the mixture is stirred at 400 rpm. Ammonia water is added dropwise thereto, and the pH is based on a liquid temperature of 25 ° C. Was adjusted to be 6. A mixed aqueous solution, an oxalic acid aqueous solution, and aqueous ammonia were added to the reaction vessel while controlling the pH to 6, and stirring was continued for 5 hours to obtain a oxalate of a coprecipitation product. After completion of the reaction, the oxalate was filtered, washed with water and taken out, and dried in an oven at 120 ° C. overnight to obtain a powder sample of the oxalate. The obtained oxalate powder is heated at 600 ° C. to prepare a nickel-manganese composite oxide, and the powder and lithium hydroxide powder are mixed with the number of moles of lithium Mol (Li) and the transition metal element (Ni, Mn). The mixture was mixed so that the ratio (Mol (Li) / Mol (Me)) to the total number of moles of Mol (Me) was 1.10. This mixed powder is pressure-molded into pellets having a diameter of 2 cm and a thickness of about 5 mm at a pressure of 6 MPa, heated to a temperature of 1000 ° C. in an air atmosphere in an electric furnace in 2 hours, and the mixture is calcined at that temperature for 13 hours. As a result, the target sample was obtained. After firing, the heater was turned off and allowed to cool naturally. After about 8 hours, it was confirmed that the temperature in the furnace was 100 ° C. or lower, and the pellets were taken out to obtain LiNi 0.5 Mn 0.5 O 2.

なお、上述したシュウ酸塩共沈法は、遷移金属元素を原子レベルで均一に混合させるのに有効であるため採用したが、これ以外の方法で合成しても構わない。 The above-mentioned oxalate coprecipitation method was adopted because it is effective for uniformly mixing transition metal elements at the atomic level, but other methods may be used for synthesis.

(供試電池)
正極シートは以下のように作製した。正極活物質としてLiNi0.5Mn0.52を85質量%、導電材としてカーボンブラックを10質量%、結着材としてポリフッ化ビニリデンを5質量%混合し、溶剤としてN−メチル−2−ピロリドンを適量添加して正極活物質等を分散させることでスラリー状合材とした。このスラリー状合材を15μm厚のアルミニウム箔集電体に均一に塗布し、加熱乾燥させて塗布シートを作製した。その後塗布シートをロールプレスに通して高密度化させ、120mm幅×100mm長の形状に切り出して正極シートとした。
(Test battery)
The positive electrode sheet was prepared as follows. 85% by mass of LiNi 0.5 Mn 0.5 O 2 as the positive electrode active material, 10% by mass of carbon black as the conductive material, 5% by mass of polyvinylidene fluoride as the binder, and an appropriate amount of N-methyl-2-pyrrolidone as the solvent. By adding and dispersing the positive electrode active material and the like, a slurry-like mixture was obtained. This slurry-like mixture was uniformly applied to a 15 μm-thick aluminum foil current collector and dried by heating to prepare a coating sheet. After that, the coated sheet was passed through a roll press to increase the density, and cut into a shape having a width of 120 mm and a length of 100 mm to obtain a positive electrode sheet.

負極シートは以下のように作製した。負極活物質として黒鉛を95質量%、結着剤としてポリフッ化ビニリデンを5質量%混合し、正極と同様にスラリー状合材とした。これらスラリー状合材を10μm厚の銅箔集電体に均一に塗布し、加熱乾燥させて塗布シートを作製した。その後塗布シートをロールプレスに通して高密度化させ、122mm幅×102mm長の形状に切り出して負極シートとした。 The negative electrode sheet was prepared as follows. 95% by mass of graphite was mixed as the negative electrode active material, and 5% by mass of polyvinylidene fluoride was mixed as the binder to prepare a slurry-like mixture similar to the positive electrode. These slurry-like mixture materials were uniformly applied to a copper foil current collector having a thickness of 10 μm and dried by heating to prepare a coating sheet. After that, the coated sheet was passed through a roll press to increase the density, and cut into a shape having a width of 122 mm and a length of 102 mm to obtain a negative electrode sheet.

正極シートと負極シートとを25μm厚のポリエチレン製セパレータを挟んで対向させ、積層型電極体を作製した。この電極体をアルミラミネート型袋に封入し、非水電解液を含侵させた後に密閉してリチウムイオン二次電池を作製した。非水電解液には、エチレンカーボネートとジエチルカーボネートとを30:70vol%で混合した混合溶媒にLiPF6を1Mの濃度で溶解したものを用いた。 A laminated electrode body was produced by facing the positive electrode sheet and the negative electrode sheet with a polyethylene separator having a thickness of 25 μm sandwiched between them. This electrode body was sealed in an aluminum laminated bag, impregnated with a non-aqueous electrolytic solution, and then sealed to prepare a lithium ion secondary battery. As the non-aqueous electrolytic solution, one in which LiPF 6 was dissolved at a concentration of 1 M in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a ratio of 30:70 vol% was used.

[実験例2]
(ガーネット型固体電解質の合成)
立方晶のガーネット型酸化物であるLi6.75La3Zr1.75Ta0.2512を以下のように合成した。出発原料としてLi2CO3,La(OH)3,ZrO2,Ta25を用いた。出発原料を化学量論比となるように秤量し、エタノール中にてボールミル処理を行った。出発原料の混合粉末を乾燥後、アルミナるつぼで950℃、10時間空気中にて仮焼成を行った。その後、Li仕込み組成の10atom%に相当するLi2CO3を仮焼粉末に過剰添加し、エタノール中で混合粉末のボールミル処理を施した。得られた粉末を空気中950℃で10時間再度加熱し、圧粉成型後1200℃で36時間焼成することにより固体電解質を作製した。その後、合成粉末のボールミル処理を施し、粒径制御を行った。粒子径はレーザー回折式粒度分布測定装置(島津社製SALD−2200)を用いてエタノールを分散剤として測定し、メディアン径として算出したところ、2μmであった。
[Experimental Example 2]
(Synthesis of garnet type solid electrolyte)
Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 , which is a cubic garnet-type oxide, was synthesized as follows. Li 2 CO 3 , La (OH) 3 , ZrO 2 , and Ta 2 O 5 were used as starting materials. The starting materials were weighed to a stoichiometric ratio and ball milled in ethanol. After drying the mixed powder of the starting material, it was calcined in an alumina crucible at 950 ° C. for 10 hours in the air. Then, Li 2 CO 3 corresponding to 10 atom% of the Li-charged composition was excessively added to the calcined powder, and the mixed powder was ball-milled in ethanol. The obtained powder was reheated in air at 950 ° C. for 10 hours, and after compaction molding, it was calcined at 1200 ° C. for 36 hours to prepare a solid electrolyte. Then, the synthetic powder was ball-milled to control the particle size. The particle size was 2 μm when it was measured using ethanol as a dispersant using a laser diffraction type particle size distribution measuring device (SALD-2200 manufactured by Shimadzu Corporation) and calculated as the median size.

(供試電池)
正極を作製する際、上記手法で合成した粒径2μmのガーネット型固体電解質Li6.75La3Zr1.75Ta0.2512を、正極活物質と固体電解質との全体に対して6質量%加え、スラリー状合材とした以外は、実験例1と同様にしてリチウムイオン二次電池を作製した。
(Test battery)
When preparing the positive electrode, 6% by mass of the garnet-type solid electrolyte Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 with a particle size of 2 μm synthesized by the above method was added to the total of the positive electrode active material and the solid electrolyte to form a slurry. A lithium ion secondary battery was produced in the same manner as in Experimental Example 1 except that the material was mixed.

[実験例3]
正極を作製する際、実験例2に記載の方法で合成した粒径2μmのガーネット型固体電解質Li6.75La3Zr1.75Ta0.2512を、正極活物質と固体電解質との全体に対して20質量%加え、スラリー状合材とした以外は、実験例1と同様にしてリチウムイオン二次電池を作製した。
[Experimental Example 3]
When preparing the positive electrode, a garnet-type solid electrolyte Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 having a particle size of 2 μm synthesized by the method described in Experimental Example 2 was added to the total amount of 20 mass of the positive electrode active material and the solid electrolyte. A lithium ion secondary battery was produced in the same manner as in Experimental Example 1 except that the mixture was made into a slurry-like mixture.

[実験例4]
正極を作製する際、実験例2に記載の方法で合成した粒径2μmのガーネット型固体電解質Li6.75La3Zr1.75Ta0.2512を、正極活物質と固体電解質との全体に対して38質量%加え、スラリー状合材とした以外は、実験例1と同様にしてリチウムイオン二次電池を作製した。
[Experimental Example 4]
When producing a positive electrode, a garnet-type solid electrolyte Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 having a particle size of 2 μm synthesized by the method described in Experimental Example 2 was added to the total amount of 38 mass of the positive electrode active material and the solid electrolyte. A lithium ion secondary battery was produced in the same manner as in Experimental Example 1 except that a slurry-like mixture was added.

[実験例5]
正極活物質をLiNi0.7Mn0.32とした以外は、実験例2と同様にしてリチウムイオン二次電池を作製した。LiNi0.7Mn0.32は、Ni元素とMn元素が0.7:0.3のモル比になるようにした以外は、実験例1のLiNi0.5Mn0.52と同様にして合成した。
[Experimental Example 5]
A lithium ion secondary battery was produced in the same manner as in Experimental Example 2 except that the positive electrode active material was LiNi 0.7 Mn 0.3 O 2. LiNi 0.7 Mn 0.3 O 2 was synthesized in the same manner as LiNi 0.5 Mn 0.5 O 2 of Experimental Example 1 except that the molar ratio of Ni element and Mn element was 0.7: 0.3.

[実験例6]
正極活物質をLiNi0.7Mn0.32とした以外は、実験例3と同様にしてリチウムイオン二次電池を作製した。
[Experimental Example 6]
A lithium ion secondary battery was produced in the same manner as in Experimental Example 3 except that the positive electrode active material was LiNi 0.7 Mn 0.3 O 2.

[実験例7]
正極活物質をLiNi0.7Mn0.32とした以外は、実験例4と同様にしてリチウムイオン二次電池を作製した。
[Experimental Example 7]
A lithium ion secondary battery was produced in the same manner as in Experimental Example 4 except that the positive electrode active material was LiNi 0.7 Mn 0.3 O 2.

[実験例8]
正極活物質を、ZrをドープさせたLiNi0.5Mn0.52とした以外は、実験例3と同様にしてリチウムイオン二次電池を作製した。ZrをドープさせたLiNi0.5Mn0.52は、LiNi0.5Mn0.52に、水酸化リチウム粉末、ZrO2粉末を混合し、ペレットに加圧成型して焼成することにより合成した。ZrO2の使用量は、遷移金属元素(Ni,Mn)の総モル数に対して0.2mol%となるように調整した。水酸化リチウムの使用量は、Ni,Mn,Zrの総モル数に対して、1.10倍のモル数になるように調整した。
[Experimental Example 8]
A lithium ion secondary battery was produced in the same manner as in Experimental Example 3 except that the positive electrode active material was LiNi 0.5 Mn 0.5 O 2 doped with Zr. Zr-doped LiNi 0.5 Mn 0.5 O 2 was synthesized by mixing LiNi 0.5 Mn 0.5 O 2 with lithium hydroxide powder and ZrO 2 powder, pressure-molding the pellets, and firing. The amount of ZrO 2 used was adjusted to be 0.2 mol% with respect to the total number of moles of transition metal elements (Ni, Mn). The amount of lithium hydroxide used was adjusted to be 1.10 times the total number of moles of Ni, Mn, and Zr.

[実験例9]
正極活物質を作製する際、ZrO2の混合量を遷移金属元素(Ni,Mn)の総モル数に対して0.5mol%となるように調整した以外は、実験例8と同様にしてリチウムイオン二次電池を作製した。
[Experimental Example 9]
When producing the positive electrode active material, lithium was prepared in the same manner as in Experimental Example 8 except that the mixing amount of ZrO 2 was adjusted to 0.5 mol% with respect to the total number of moles of transition metal elements (Ni, Mn). An ion secondary battery was manufactured.

[実験例10]
正極活物質を、AlをドープさせたLiNi0.5Mn0.52とした以外は、実験例3と同様にしてリチウムイオン二次電池を作製した。AlをドープさせたLiNi0.5Mn0.52は、LiNi0.5Mn0.52に、水酸化リチウム粉末、Al(OH)3粉末を混合し、ペレットに加圧成型して焼成することにより合成した。Al(OH)3の使用量は、遷移金属元素(Ni,Mn)の総モル数に対して2mol%となるように調整した。水酸化リチウムの使用量は、Ni,Mn,Alの総モル数に対して、1.10倍のモル数になるように調整した。
[Experimental Example 10]
A lithium ion secondary battery was produced in the same manner as in Experimental Example 3 except that the positive electrode active material was LiNi 0.5 Mn 0.5 O 2 doped with Al. Al-doped LiNi 0.5 Mn 0.5 O 2 was synthesized by mixing LiNi 0.5 Mn 0.5 O 2 with lithium hydroxide powder and Al (OH) 3 powder, pressure-molding the pellets, and firing. The amount of Al (OH) 3 used was adjusted to be 2 mol% with respect to the total number of moles of transition metal elements (Ni, Mn). The amount of lithium hydroxide used was adjusted to be 1.10 times the total number of moles of Ni, Mn, and Al.

[実験例11]
正極活物質を作製する際、Al(OH)3の混合量を遷移金属元素(Ni,Mn)の総モル数に対して5mol%となるように調整した以外は、実験例10と同様にしてリチウムイオン二次電池を作製した。
[Experimental Example 11]
When the positive electrode active material was prepared, the mixing amount of Al (OH) 3 was adjusted to be 5 mol% with respect to the total number of moles of the transition metal elements (Ni, Mn) in the same manner as in Experimental Example 10. A lithium ion secondary battery was manufactured.

[実験例12]
正極活物質を、MgをドープさせたLiNi0.5Mn0.52とした以外は、実験例3と同様にしてリチウムイオン二次電池を作製した。MgをドープさせたLiNi0.5Mn0.52は、LiNi0.5Mn0.52に、水酸化リチウム粉末、Mg(OH)2粉末を混合し、ペレットに加圧成型して焼成することにより合成した。Mg(OH)2の混合量は、遷移金属元素(Ni,Mn)の総モル数に対して2mol%となるように調整した。水酸化リチウムの使用量は、Ni,Mn,Mgの総モル数に対して、1.10倍のモル数になるように調整した。
[Experimental Example 12]
A lithium ion secondary battery was produced in the same manner as in Experimental Example 3 except that the positive electrode active material was LiNi 0.5 Mn 0.5 O 2 doped with Mg. LiNi 0.5 Mn 0.5 O 2 doped with Mg was synthesized by mixing LiNi 0.5 Mn 0.5 O 2 with lithium hydroxide powder and Mg (OH) 2 powder, pressure-molding the pellets, and firing. The mixing amount of Mg (OH) 2 was adjusted to be 2 mol% with respect to the total number of moles of transition metal elements (Ni, Mn). The amount of lithium hydroxide used was adjusted to be 1.10 times the total number of moles of Ni, Mn, and Mg.

[実験例13]
正極活物質を作製する際、Mg(OH)2の混合量を遷移金属元素(Ni,Mn)の総モル数に対して5mol%となるように調整した以外は、実験例12と同様にしてリチウムイオン二次電池を作製した。
[Experimental Example 13]
When producing the positive electrode active material, the mixing amount of Mg (OH) 2 was adjusted to be 5 mol% with respect to the total number of moles of the transition metal elements (Ni, Mn) in the same manner as in Experimental Example 12. A lithium ion secondary battery was manufactured.

[実験例14]
正極活物質を、ZrとMgとをドープさせたLiNi0.5Mn0.52とした以外は、実験例3と同様にしてリチウムイオン二次電池を作製した。ZrとMgとをドープさせたLiNi0.5Mn0.52は、LiNi0.5Mn0.52に、水酸化リチウム粉末、ZrO2粉末、Mg(OH)2粉末を混合し、ペレットに加圧成型して焼成することにより合成した。ZrO2とMg(OH)2の混合量は、遷移金属元素(Ni,Mn)の総モル数に対してそれぞれ0.2mol%と2mol%となるように調整した。
[Experimental Example 14]
A lithium ion secondary battery was produced in the same manner as in Experimental Example 3 except that the positive electrode active material was LiNi 0.5 Mn 0.5 O 2 doped with Zr and Mg. LiNi 0.5 Mn 0.5 O 2 doped with Zr and Mg is obtained by mixing Lithium hydroxide powder, ZrO 2 powder, and Mg (OH) 2 powder with LiNi 0.5 Mn 0.5 O 2 and press-molding the pellets. It was synthesized by firing. The mixing amounts of ZrO 2 and Mg (OH) 2 were adjusted to be 0.2 mol% and 2 mol%, respectively, with respect to the total number of moles of transition metal elements (Ni, Mn).

[評価]
実験例1〜14のリチウムイオン二次電池につき、以下の充電正極の発熱量と低温出力特性を測定した。表1にその結果を示した。
[Evaluation]
For the lithium ion secondary batteries of Experimental Examples 1 to 14, the calorific value and low temperature output characteristics of the following charged positive electrodes were measured. The results are shown in Table 1.

(充電正極の発熱量)
電池を4.1Vまで充電し、グローブボックス中でラミネート型電池を開封した。電池から微量の正極を切り出し、有機溶媒等で洗浄することなくステンレス製DSCパンに密閉した。DSC測定は測定系にアルゴンガスをフローさせた状態で行い、上限温度400℃まで5℃/minで昇温させたときの発熱・吸熱挙動を測定した。このとき得られた発熱ピークとベースラインで囲まれた領域の面積から発熱量(J/g)を算出した。なお、表1の充電正極の発熱量の欄には、実験例1の発熱量で規格化した数値(実験例1の発熱量を「1」としたときの相対的な値)を示した。
(The amount of heat generated by the charging positive electrode)
The battery was charged to 4.1 V and the laminated battery was opened in the glove box. A small amount of positive electrode was cut out from the battery and sealed in a stainless steel DSC pan without washing with an organic solvent or the like. The DSC measurement was performed with argon gas flowing through the measurement system, and the heat generation / endothermic behavior when the temperature was raised to the upper limit temperature of 400 ° C. at 5 ° C./min was measured. The calorific value (J / g) was calculated from the area of the region surrounded by the exothermic peak and the baseline obtained at this time. In the column of the calorific value of the charged positive electrode in Table 1, the numerical value standardized by the calorific value of Experimental Example 1 (relative value when the calorific value of Experimental Example 1 is "1") is shown.

(低温出力特性)
−30℃において電池容量の50%(SOC=50%)に調整した後に、種々の電流値で電流を流し、2秒後の電池電圧を測定した。流した電流と電圧を直線補間し、2秒後の電圧が3.0Vになる時の電流値を求め、その電流と電圧の積を低温領域での出力パワーとした。なお、表1の低温出力特性の欄には、実験例1の出力パワーで規格化した数値(実験例1の出力パワーを「1」としたときの相対的な値)を示した。
(Low temperature output characteristics)
After adjusting to 50% of the battery capacity (SOC = 50%) at −30 ° C., currents were applied at various current values, and the battery voltage after 2 seconds was measured. The applied current and voltage were linearly interpolated to obtain the current value when the voltage after 2 seconds became 3.0 V, and the product of the current and voltage was taken as the output power in the low temperature region. In the column of low temperature output characteristics in Table 1, the numerical values standardized by the output power of Experimental Example 1 (relative values when the output power of Experimental Example 1 is "1") are shown.

Figure 0006832186
Figure 0006832186

表1より、実験例2−14のように正極中に5〜40重量%の範囲で固体電解質としてガーネット型酸化物を含有させることにより、実験例1のように正極中にガーネット型酸化物が含有されていない場合に比べて、充電時の正極の発熱量を抑制できるだけでなく、電池の低温出力特性を高めることができることが分かった。特に、実験例8−14に示すように正極活物質にZr,Al,Mgの少なくとも一つをドープさせることで、より好ましい特性を示すことが分かった。また、ZrとMgの2つの元素をドープさせた場合には、一つの元素をドープさせた場合に比べて更に好ましい特性を示すことがわかった。 From Table 1, by containing a garnet-type oxide as a solid electrolyte in the positive electrode in the range of 5 to 40% by weight as in Experimental Example 2-14, the garnet-type oxide was formed in the positive electrode as in Experimental Example 1. It was found that not only the amount of heat generated by the positive electrode during charging can be suppressed but also the low temperature output characteristics of the battery can be improved as compared with the case where it is not contained. In particular, as shown in Experimental Examples 8-14, it was found that more preferable characteristics were exhibited by doping the positive electrode active material with at least one of Zr, Al, and Mg. Further, it was found that when two elements of Zr and Mg were doped, more preferable characteristics were exhibited as compared with the case where one element was doped.

上述した実験例1〜14のうち、実験例1が比較例、実験例2〜14が実施例に相当する。 Of the above-mentioned Experimental Examples 1 to 14, Experimental Example 1 corresponds to Comparative Example and Experimental Examples 2 to 14 correspond to Examples.

10 リチウムイオン二次電池、11 集電体、12 正極合材、13 正極シート、14 集電体、17 負極合材、18 負極シート、19 セパレータ、20 非水電解液、22 円筒ケース、24 正極端子、26 負極端子。 10 Lithium-ion secondary battery, 11 current collector, 12 positive electrode mixture, 13 positive electrode sheet, 14 current collector, 17 negative electrode mixture, 18 negative electrode sheet, 19 separator, 20 non-aqueous electrolyte, 22 cylindrical case, 24 positive electrode Terminal, 26 Negative terminal.

Claims (4)

正極と負極との間にリチウムイオン伝導性を有する非水電解液を介在させたリチウムイオン二次電池であって、
前記正極は、正極活物質として他の元素でドープされていない組成式LiNi1-XMnX2(式中、Xは0<X≦0.5)で表される層状リチウムニッケルマンガン酸化物を含むと共に、固体電解質としてガーネット型酸化物を含み、前記正極活物質の質量と前記固体電解質の質量との和に対する前記固体電解質の質量の割合が5〜40質量%である、
リチウムイオン二次電池。
A lithium ion secondary battery in which a non-aqueous electrolytic solution having lithium ion conductivity is interposed between a positive electrode and a negative electrode.
The positive electrode is a layered lithium nickel manganese oxide represented by the composition formula LiNi 1-X Mn X O 2 (in the formula, X is 0 <X ≦ 0.5) which is not doped with other elements as the positive electrode active material. , And garnet-type oxide as a solid electrolyte, and the ratio of the mass of the solid electrolyte to the sum of the mass of the positive electrode active material and the mass of the solid electrolyte is 5 to 40% by mass.
Lithium-ion secondary battery.
前記ガーネット型酸化物は、組成式Li5+YLa3(ZrY,A2-Y)O12(式中、AはSc,Ti,V,Y,Nb,Hf,Ta,Al,Si,Ga及びGeからなる群より選ばれた1種類以上の元素、Yは1.4≦Y<2)で表される、
請求項1に記載のリチウムイオン二次電池。
The garnet-type oxide is composed of Li 5 + Y La 3 (Zr Y , A 2-Y ) O 12 (in the formula, A is Sc, Ti, V, Y, Nb, Hf, Ta, Al, Si, One or more elements selected from the group consisting of Ga and Ge, Y is represented by 1.4 ≦ Y <2).
The lithium ion secondary battery according to claim 1.
前記組成式のAはTa又はNbである、
請求項2に記載のリチウムイオン二次電池。
A in the composition formula is Ta or Nb.
The lithium ion secondary battery according to claim 2.
Xは0.3≦X≦0.5の範囲である、
請求項1〜3のいずれか1項に記載のリチウムイオン二次電池。
X is in the range of 0.3 ≤ X ≤ 0.5,
The lithium ion secondary battery according to any one of claims 1 to 3.
JP2017027992A 2017-02-17 2017-02-17 Lithium ion secondary battery Active JP6832186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017027992A JP6832186B2 (en) 2017-02-17 2017-02-17 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017027992A JP6832186B2 (en) 2017-02-17 2017-02-17 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2018133303A JP2018133303A (en) 2018-08-23
JP6832186B2 true JP6832186B2 (en) 2021-02-24

Family

ID=63248516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017027992A Active JP6832186B2 (en) 2017-02-17 2017-02-17 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6832186B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7211232B2 (en) * 2019-04-11 2023-01-24 トヨタ自動車株式会社 Positive electrode active material layer

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000507996A (en) * 1997-01-22 2000-06-27 エルフ アトケム ソシエテ アノニム Method of bonding fluororesin to metal material
JP2002145623A (en) * 2000-11-06 2002-05-22 Seimi Chem Co Ltd Lithium-containing transition metal multiple oxide and manufacturing method thereof
EP2144314B1 (en) * 2001-04-20 2015-01-28 GS Yuasa International Ltd. Positive active materials and process for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5211416B2 (en) * 2001-05-17 2013-06-12 三菱化学株式会社 Layered lithium nickel manganese composite oxide
JP5381640B2 (en) * 2009-11-24 2014-01-08 株式会社豊田中央研究所 Lithium secondary battery
JP5024359B2 (en) * 2009-12-15 2012-09-12 株式会社豊田中央研究所 Negative electrode active material for non-aqueous secondary battery, non-aqueous secondary battery and method of use
CN103782418A (en) * 2011-09-08 2014-05-07 三洋电机株式会社 Nonaqueous electrolyte secondary battery
JP6018930B2 (en) * 2012-05-17 2016-11-02 日本碍子株式会社 Method for producing positive electrode-solid electrolyte composite
KR102183992B1 (en) * 2014-02-07 2020-11-27 삼성에스디아이 주식회사 Positive active material, positive electrode and lithium battery containing the same, and manufacturing method thereof
CN104617328B (en) * 2014-07-10 2017-05-31 天津东皋膜技术有限公司 A kind of long-life lithium rechargeable battery and its manufacture method
JP6377997B2 (en) * 2014-08-08 2018-08-22 トヨタ自動車株式会社 Positive electrode composite material and sulfide all solid state battery using the same
US10319985B2 (en) * 2014-10-27 2019-06-11 National Institute Of Advanced Industrial Science And Technology Lithium lanthanum zirconium tantalum oxide garnet crystal and all-solid-state lithium ion secondary battery
JP2017199488A (en) * 2016-04-26 2017-11-02 日立化成株式会社 Lithium ion battery
JP6100420B2 (en) * 2016-04-26 2017-03-22 株式会社東芝 Bipolar battery, battery pack and car

Also Published As

Publication number Publication date
JP2018133303A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
CN107925065B (en) Positive electrode active material for lithium secondary battery comprising lithium metal oxide having multilayer structure, and positive electrode comprising same
JP5580284B2 (en) Cathode active material for non-aqueous secondary battery and non-aqueous lithium secondary battery
JP7113300B2 (en) Positive electrode active material and battery
KR101397022B1 (en) Positive active material for lithium secondary battery, preparing method thereof and lithium secondary battery using the same
KR101312275B1 (en) Composite, electrode active material for lithium secondary battery including the composite, preparing method thereof, electrode for lithium secondary battery using the same, and lithium secondary battery employing the same
US8932758B2 (en) Electrode active material, nonaqueous secondary battery electrode, and nonaqueous secondary battery
JP5099168B2 (en) Lithium ion secondary battery
JP2004342500A (en) Non-aqueous electrolyte secondary battery and battery charge/discharge system
EP2840639A1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery using the same
JP2011159528A (en) Lithium secondary battery and electrode for the same
JP6750196B2 (en) Non-aqueous lithium battery and method of using the same
JP2015503181A (en) Positive electrode active material, lithium secondary battery for controlling impurities or swelling, and method for producing positive electrode active material with improved productivity
JP7113301B2 (en) Positive electrode active material and battery
JP5644083B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery using the same, and method for producing negative electrode active material for lithium secondary battery
JP2011233368A (en) Lithium ion secondary battery
CN102097623B (en) Anode for lithium battery active material and manufacture method, positive pole and lithium battery
JP2012099316A (en) Cathode active material for lithium-ion secondary battery, and lithium-ion secondary battery
JP2012169299A (en) Method for manufacturing lithium ion secondary battery
Liu et al. The electrochemical properties of Fe-and Ni-cosubstituted Li 2 MnO 3 via combustion method
KR20150133552A (en) Composite precursor and preparing method thereof
JP5241766B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2009129820A (en) Lithium-nickel composite oxide, lithium-ion secondary battery using it, and manufacturing method of lithium-nickel composite oxide
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2015207538A (en) Nonaqueous electrolyte lithium secondary battery
KR101255539B1 (en) Positive electrode active material for lithium battery and lithium battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201109

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201116

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210201

R150 Certificate of patent or registration of utility model

Ref document number: 6832186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250