JP6831221B2 - Learning device and learning method - Google Patents

Learning device and learning method Download PDF

Info

Publication number
JP6831221B2
JP6831221B2 JP2016230353A JP2016230353A JP6831221B2 JP 6831221 B2 JP6831221 B2 JP 6831221B2 JP 2016230353 A JP2016230353 A JP 2016230353A JP 2016230353 A JP2016230353 A JP 2016230353A JP 6831221 B2 JP6831221 B2 JP 6831221B2
Authority
JP
Japan
Prior art keywords
feature amount
learning
selection
selection process
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016230353A
Other languages
Japanese (ja)
Other versions
JP2018088080A (en
Inventor
稔 大竹
稔 大竹
河村 大輔
大輔 河村
将宏 荒川
将宏 荒川
和洋 武智
和洋 武智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Original Assignee
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd filed Critical Tokai Rika Co Ltd
Priority to JP2016230353A priority Critical patent/JP6831221B2/en
Publication of JP2018088080A publication Critical patent/JP2018088080A/en
Application granted granted Critical
Publication of JP6831221B2 publication Critical patent/JP6831221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、学習データを基に学習を行って未学習データを正しく認識させる学習装置及び学習方法に関する。 The present invention relates to a learning device and a learning method for learning based on learning data and correctly recognizing unlearned data.

近年、複数の学習データを基に学習を行って、未学習データに対する正しい出力を予測可能にする学習装置が開示されている(特許文献1等参照)。学習装置には、学習データを反復的に分析して傾向を判別して、未学習データに対する正しい出力を予測させる機械学習が周知である。 In recent years, a learning device that performs learning based on a plurality of learning data and makes it possible to predict a correct output for unlearned data has been disclosed (see Patent Document 1 and the like). The learning device is well known for machine learning that iteratively analyzes the learning data to determine the tendency and predicts the correct output for the unlearned data.

特開2015−185149号公報Japanese Unexamined Patent Publication No. 2015-185149

ところで、この種の学習装置においては、学習の効率化のために、学習に用いる特徴量を選択することが考えられる。この選択手法として、例えばサポートベクターマシンの正答率から特徴量を選択する手法があるが、この場合、計算コストが高くなる問題があった。また、例えば主成分分析から特徴量を選択する手法も考えられるが、この場合は特徴量選択には計算コストを低くできるものの、実機での計算コストが高くなってしまう問題があった。 By the way, in this kind of learning device, it is conceivable to select a feature amount used for learning in order to improve learning efficiency. As this selection method, for example, there is a method of selecting a feature amount from the correct answer rate of a support vector machine, but in this case, there is a problem that the calculation cost becomes high. Further, for example, a method of selecting a feature amount from principal component analysis can be considered. In this case, although the calculation cost can be reduced for the feature amount selection, there is a problem that the calculation cost in the actual machine becomes high.

本発明の目的は、特徴量選択及び学習の両方で計算コストを低く抑えることができる学習装置及び学習方法を提供することにある。 An object of the present invention is to provide a learning device and a learning method capable of keeping a calculation cost low in both feature quantity selection and learning.

前記問題点を解決する学習装置は、学習対象の情報データから特徴量を抽出し、当該特徴量を学習データとして学習を行うことにより、未学習データを識別可能にする構成において、互いに特徴量選択の仕方が異なる複数の処理を通じて、前記学習に使用する特徴量を選択する特徴量選択部を備えた。 The learning device that solves the above-mentioned problems extracts the feature amount from the information data of the learning target and performs learning using the feature amount as the learning data, so that the unlearned data can be identified. A feature amount selection unit for selecting a feature amount to be used for the learning is provided through a plurality of processes having different methods.

本構成によれば、特徴量を選択していくことが可能な複数の処理を設け、各処理の特徴を活かして好適に特徴量を絞り込んでいくので、計算コストがかからない態様で段階的に特徴量を少なくしていくことが可能となる。よって、特徴量選択に要する計算コストを低く抑えることが可能となる。また、選択後の特徴量を用いて学習を行うにあたっては、通常よりも少ない数の特徴量で学習を行うことが可能となるので、学習の計算コストも低く抑えることが可能となる。このように、特徴量選択及び学習時の両方で計算コストを低く抑えることが可能となる。 According to this configuration, a plurality of processes capable of selecting the feature amount are provided, and the feature amount is appropriately narrowed down by utilizing the features of each process. Therefore, the features are gradually characterized in a manner that does not require a calculation cost. It is possible to reduce the amount. Therefore, it is possible to keep the calculation cost required for feature quantity selection low. In addition, when learning is performed using the selected features, it is possible to perform learning with a smaller number of features than usual, so that the calculation cost of learning can be kept low. In this way, it is possible to keep the calculation cost low both during feature quantity selection and learning.

前記学習装置において、前記特徴量選択部は、特徴量同士の相関から当該特徴量を選択する第1選択処理と、判別分析のクラスの分け易さを通じて前記特徴量を選択する第2選択処理と、前記特徴量の学習結果の正答率を基に当該特徴量を選択する第3選択処理とのうち、少なくとも2つ以上の処理を経て前記特徴量を絞り込むことが好ましい。この構成によれば、相関を評価して特徴量を選択する第1選択処理と、判別分析のクラスの分け易さを評価して特徴量を選択する第2選択処理と、学習結果の正答率を評価して特徴量を選択する第3選択処理とを通じて、特徴量を絞り込んでいくので、学習に必要とされる特徴量の選択を精度よく行うのに有利となる。 In the learning device, the feature amount selection unit has a first selection process of selecting the feature amount from the correlation between the feature amounts and a second selection process of selecting the feature amount through the ease of classifying the discriminant analysis class. Of the third selection process of selecting the feature amount based on the correct answer rate of the learning result of the feature amount, it is preferable to narrow down the feature amount through at least two or more processes. According to this configuration, the first selection process of evaluating the correlation and selecting the feature amount, the second selection process of evaluating the ease of class division of the discriminant analysis and selecting the feature amount, and the correct answer rate of the learning result. Since the feature amount is narrowed down through the third selection process of evaluating and selecting the feature amount, it is advantageous to accurately select the feature amount required for learning.

前記学習装置において、前記第2選択処理で除外された特徴量のうち、前記第3選択処理で有効と考えられる前記特徴量を残して、これを前記第3選択処理に追加する有効特徴量選択部を備えることが好ましい。この構成によれば、第2選択処理で有効と判断されなくても第3選択処理で有効と考えられる特徴量を残して第3選択処理を行うことが可能となる。よって、学習において判別の精度を向上するのに有利となる。 In the learning device, among the feature amounts excluded in the second selection process, the feature amount considered to be effective in the third selection process is left and added to the third selection process. It is preferable to provide a part. According to this configuration, it is possible to perform the third selection process while leaving the feature amount considered to be effective in the third selection process even if it is not determined to be effective in the second selection process. Therefore, it is advantageous to improve the accuracy of discrimination in learning.

前記学習装置において、選択される前の全特徴量のうち前記第3選択処理で有効と考えられるものを、前記第1選択処理及び前記第2選択処理を飛ばして前記第3選択処理に追加する有効特徴量選択部を備えることが好ましい。この構成によれば、第1選択処理及び第2選択処理で有効と判断されなくても第3選択処理で有効と考えられる特徴量を残して第3選択処理を行うことが可能となる。よって、学習において判別の精度を向上するのに有利となる。 In the learning device, out of all the feature quantities before being selected, those considered to be effective in the third selection process are added to the third selection process by skipping the first selection process and the second selection process. It is preferable to include an effective feature amount selection unit. According to this configuration, it is possible to perform the third selection process while leaving the feature amount considered to be effective in the third selection process even if it is not determined to be effective in the first selection process and the second selection process. Therefore, it is advantageous to improve the accuracy of discrimination in learning.

前記問題点を解決する学習方法は、学習対象の情報データから特徴量を抽出し、当該特徴量を学習データとして学習を行うことにより、未学習データを識別可能にする方法において、学習装置の特徴量選択部により、互いに特徴量選択の仕方が異なる複数の処理を通じて、前記学習に使用する特徴量を選択させるステップと、前記特徴量選択部によって選択された前記特徴量を基に、前記学習装置に学習を実行させるステップとを備えた。 The learning method for solving the above-mentioned problem is a method of extracting a feature amount from information data to be learned and learning using the feature amount as learning data to make unlearned data identifiable. The learning device is based on a step of selecting a feature amount to be used for the learning through a plurality of processes in which the feature amount selection method is different from each other by the amount selection unit and the feature amount selected by the feature amount selection unit. It is equipped with a step to execute learning.

本発明によれば、特徴量選択及び学習の両方で計算コストを低く抑えることができる。 According to the present invention, the calculation cost can be kept low in both feature quantity selection and learning.

第1実施形態の学習装置の構成図。The block diagram of the learning apparatus of 1st Embodiment. (a)は線形式のデータを端末に登録するときの概要図、(b)は端末をモーション操作したときの概要図。(A) is a schematic diagram when registering linear data in the terminal, and (b) is a schematic diagram when the terminal is motion-operated. 特徴量選択の動作を示すフローチャート。A flowchart showing the operation of feature selection. 第1選択処理の説明図。Explanatory drawing of the first selection process. 第2選択処理及び第3選択処理の説明図。Explanatory drawing of the 2nd selection process and the 3rd selection process. 第2実施形態の学習装置の構成図。The block diagram of the learning apparatus of 2nd Embodiment. 特徴量選択の動作を示すフローチャート。A flowchart showing the operation of feature selection. 第3実施形態の特徴量選択の動作を示すフローチャート。The flowchart which shows the operation of the feature amount selection of 3rd Embodiment.

(第1実施形態)
以下、学習装置及び学習方法の第1実施形態を図1〜図5に従って説明する。
図1に示すように、学習装置1は、学習対象の情報データDaを入力するデータ入力部2と、集められた情報データDaの群から学習データとして特徴量xを抽出する特徴量抽出部3と、特徴量抽出部3により抽出された特徴量xを基に学習(機械学習)を実行する学習部4とを備える。本例の学習装置1は、車両の電子キー等の端末6(図2参照)に付与された動きを識別することが可能な判別式Y(クラス判別の境界)を学習により算出する。
(First Embodiment)
Hereinafter, the first embodiment of the learning device and the learning method will be described with reference to FIGS. 1 to 5.
As shown in FIG. 1, the learning device 1 includes a data input unit 2 for inputting information data Da to be learned, and a feature amount extraction unit 3 for extracting feature amount x as learning data from a group of collected information data Da. And a learning unit 4 that executes learning (machine learning) based on the feature amount x extracted by the feature amount extraction unit 3. The learning device 1 of this example calculates the discriminant Y (boundary of class discrimination) capable of discriminating the movement given to the terminal 6 (see FIG. 2) such as the electronic key of the vehicle by learning.

情報データDaは、例えば加速度センサ(Gセンサ)から出力された加速度信号であることが好ましい。特徴量xは、例えば加速度信号の波形に係る種々のパラメータからなる。特徴量xは、例えば1次特徴量x1や、2次特徴量x2などから構築されている。1次特徴量x1は、加速度信号の波形に係る「平均値」、「最大値」、「最小値」、「時間幅」、「傾き」などのパラメータからなる。2次特徴量x2は、1次特徴量から派生したパラメータである。2次特徴量x2は、例えば1次特徴量x1を2乗して求まる2乗特徴量xや、異なる種類の1次特徴量x1同士を掛け合わせて求まる値などから構築されている。 The information data Da is preferably an acceleration signal output from, for example, an acceleration sensor (G sensor). The feature amount x is composed of various parameters related to the waveform of the acceleration signal, for example. The feature amount x is constructed from, for example, a primary feature amount x1 and a secondary feature amount x2. The primary feature amount x1 is composed of parameters such as "mean value", "maximum value", "minimum value", "time width", and "slope" related to the waveform of the acceleration signal. The secondary feature amount x2 is a parameter derived from the primary feature amount. Secondary feature quantity x2, for example square feature quantity x 2 and which is obtained by the primary feature quantity x1 square and are constructed from such different types of value obtained by multiplying the primary feature quantity x1 together.

学習部4(学習装置1の学習方式)は、特徴量xを学習データとしてサポートベクターマシン(Support Vector Machine:SVM)によりパターン認識を実行する。サポートベクターマシンは、マージン最大化が特徴の1つであり、マージン最大化により求まった判別式Yを通じてパターン識別を行う。本例のサポートベクターマシンは、線形の判別式Y(線形式という)により、2クラスのパターン識別を行う。学習部4は、情報データDaから抽出される複数の特徴量xから、サポートベクターマシンにより判別式Yを求め、クラス判別の境界である判別式Yにより未学習データのクラス分けを実現可能にする。 The learning unit 4 (learning method of the learning device 1) executes pattern recognition by a support vector machine (SVM) using the feature amount x as learning data. One of the features of the support vector machine is margin maximization, and pattern identification is performed through the discriminant Y obtained by margin maximization. The support vector machine of this example performs two classes of pattern recognition by a linear discriminant Y (called a linear form). The learning unit 4 obtains the discriminant Y from the plurality of features x extracted from the information data Da by the support vector machine, and makes it possible to classify the unlearned data by the discriminant Y which is the boundary of the class discrimination. ..

図2(a)に示すように、学習結果の判別式Yは、車両の電子キー等の端末6(メモリ9等)に書き込み登録される。そして、図2(b)に示すように、ユーザにより端末6がモーション操作されるなどの動きが端末6に付与されたとき、端末6に搭載された加速度センサから出力される加速度信号を基に判別式Yから動きがクラス判別され、モーション操作がどのような操作であるのかが判定される。 As shown in FIG. 2A, the learning result discriminant Y is written and registered in a terminal 6 (memory 9 or the like) such as an electronic key of the vehicle. Then, as shown in FIG. 2B, when the terminal 6 is subjected to a motion such as a motion operation by the user, the acceleration signal output from the acceleration sensor mounted on the terminal 6 is used as a base. The movement is class-discriminated from the discriminant Y, and what kind of operation the motion operation is is determined.

図1に戻り、学習装置1は、学習に用いる特徴量xを選択する特徴量選択部12を備える。特徴量選択部12は、学習部4に設けられている。本例の特徴量選択部12は、互いに特徴量選択の仕方が異なる複数の処理を通じて特徴量xを選択する。具体的には、特徴量選択部12は、特徴量同士の相関から特徴量xを選択する第1選択処理と、判別分析のクラスの分け易さの基準を用いて特徴量xを選択する第2選択処理と、特徴量xの学習評価の正答率を基に特徴量xを選択する第3選択処理とのうち、少なくとも2つ以上の処理を経て特徴量xを絞り込む。 Returning to FIG. 1, the learning device 1 includes a feature amount selection unit 12 for selecting the feature amount x used for learning. The feature amount selection unit 12 is provided in the learning unit 4. The feature amount selection unit 12 of this example selects the feature amount x through a plurality of processes in which the feature amount selection methods are different from each other. Specifically, the feature amount selection unit 12 selects the feature amount x by using the first selection process of selecting the feature amount x from the correlation between the feature amounts and the criteria of the ease of class division of the discriminant analysis. Of the two-selection process and the third selection process of selecting the feature amount x based on the correct answer rate of the learning evaluation of the feature amount x, the feature amount x is narrowed down through at least two or more processes.

本例の場合、特徴量選択部12は、3段階の特徴量選択によって特徴量xを絞り込む。この場合、特徴量選択部12は、第1選択処理を行う第1選択部13と、第2選択処理を行う第2選択部14と、第3選択処理を行う第3選択部15を備える。第1選択部13は、まず最初に特徴量選択を行い、正規化された特徴量xから必要なものを選択する。第2選択部14は、第1選択部13により選択された特徴量xを更に絞り込む。第3選択部15は、第2選択部14により選択された特徴量xを更に絞り込む。 In the case of this example, the feature amount selection unit 12 narrows down the feature amount x by three-step feature amount selection. In this case, the feature amount selection unit 12 includes a first selection unit 13 that performs the first selection process, a second selection unit 14 that performs the second selection process, and a third selection unit 15 that performs the third selection process. The first selection unit 13 first selects a feature amount, and then selects a necessary feature amount from the normalized feature amount x. The second selection unit 14 further narrows down the feature amount x selected by the first selection unit 13. The third selection unit 15 further narrows down the feature amount x selected by the second selection unit 14.

学習部4は、特徴量選択部12によって選択された特徴量xを基に学習を行う学習処理部18を備える。学習処理部18は、特徴量選択部12(第3選択部15)から入力した特徴量xを基に学習を行って、パターン認識が可能な判別式Yを算出する。 The learning unit 4 includes a learning processing unit 18 that performs learning based on the feature amount x selected by the feature amount selection unit 12. The learning processing unit 18 performs learning based on the feature amount x input from the feature amount selection unit 12 (third selection unit 15), and calculates a discriminant Y capable of pattern recognition.

次に、図3〜図5を用いて、学習装置1の作用及び効果を説明する。
図3に示すように、特徴量抽出部3は、予め取得した情報データDaから複数(数百〜数千)の特徴量xを抽出する(ステップ101)。特徴量xには、例えば1次特徴量x1、2次特徴量x2、2乗特徴量xなどがある。
Next, the operation and effect of the learning device 1 will be described with reference to FIGS. 3 to 5.
As shown in FIG. 3, the feature amount extraction unit 3 extracts a plurality of (hundreds to thousands) of feature amounts x from the information data Da acquired in advance (step 101). The characteristic amount x, for example, there is such a primary feature quantity x1,2 primary feature quantity x2,2 square feature quantity x 2.

第1選択部13は、特徴量抽出部3により抽出された特徴量xにおいて、学習に使用する特徴量xを第1選択処理により選択する(ステップ102:第1選択処理)。第1選択処理は、特徴量xの評価値を相関係数とし、選択方法を閾値判定とした処理である。相関係数は、互いの特徴量x同士の関係性を示す指数であり、高い値をとる程、関係性が高いといえる。相関係数によって特徴量xを絞り込むのは、特徴量xの数が多いと、次段以降の特徴量選択で行うスケッターマトリックス(Scatter Matrix:F値)やサポートベクターマシンによる特徴量選択において、過剰適合が発生する可能性が生じるためである。 The first selection unit 13 selects the feature amount x to be used for learning in the feature amount x extracted by the feature amount extraction unit 3 by the first selection process (step 102: first selection process). The first selection process is a process in which the evaluation value of the feature amount x is used as the correlation coefficient and the selection method is set as the threshold value determination. The correlation coefficient is an index showing the relationship between the features x of each other, and it can be said that the higher the value, the higher the relationship. The reason for narrowing down the feature amount x by the correlation coefficient is that if the number of feature amount x is large, in the feature amount selection by the Scatter Matrix (F value) or the support vector machine performed in the feature amount selection in the next and subsequent stages. This is because overfitting may occur.

図4に、相関係数による特徴量選択の具体例を図示する。図の例では、特徴量1〜特徴量5の相関係数の絶対値を示し、これらの絞り込みの例を示す。例えば、相関係数の閾値を「0.9」とした場合、閾値以上の組み合わせ数は、特徴量1が「3」、特徴量2が「3」、特徴量3が「2」、特徴量4が「2」、特徴量5が「0」となる。このうち、組み合わせ数が最大のもの(組み合わせ数が同じ場合は特徴量の番号が小さいもの)を削除し、相関係数が閾値以上となる組み合わせがなくなるまで、同処理を繰り返す。図の例では、最終的に特徴量3,4,5が選択される。第1選択部13は、相関係数により選択した特徴量xを第2選択部14に出力する。 FIG. 4 illustrates a specific example of feature quantity selection based on the correlation coefficient. In the example of the figure, the absolute value of the correlation coefficient of the feature amount 1 to the feature amount 5 is shown, and an example of narrowing down these is shown. For example, when the threshold value of the correlation coefficient is "0.9", the number of combinations exceeding the threshold value is "3" for the feature amount 1, "3" for the feature amount 2, "2" for the feature amount 3, and "2" for the feature amount 4. “2” and the feature amount 5 are “0”. Of these, the one with the largest number of combinations (the one with the smaller number of features when the number of combinations is the same) is deleted, and the same process is repeated until there are no combinations having a correlation coefficient equal to or higher than the threshold value. In the example of the figure, the feature amounts 3, 4, and 5 are finally selected. The first selection unit 13 outputs the feature amount x selected by the correlation coefficient to the second selection unit 14.

図3に戻り、第2選択部14は、第1選択部13により絞り込まれた特徴量xにおいて、学習に使用する特徴量xを第2選択処理により選択する(ステップ103:第2選択処理)。第2選択処理は、特徴量xの評価値を判別分析のF値とし、評価方法を例えば前向き、後向き、SFFS(Sequential Floating Forward Selection)等とした処理である。本例の場合、操作の分布、非操作の分布、各分布間の距離を用いたスケッターマトリックスを指標として、サポートベクターマシンによる特徴量選択可能な数まで特徴量xを削減する。 Returning to FIG. 3, the second selection unit 14 selects the feature amount x to be used for learning in the feature amount x narrowed down by the first selection unit 13 by the second selection process (step 103: second selection process). .. The second selection process is a process in which the evaluation value of the feature amount x is set as the F value of the discriminant analysis, and the evaluation method is, for example, forward, backward, SFFS (Sequential Floating Forward Selection) or the like. In the case of this example, the feature amount x is reduced to the number that can be selected by the support vector machine by using the cotter matrix using the operation distribution, the non-operation distribution, and the distance between each distribution as an index.

図5に、判別分析のF値による特徴量選択の具体例を図示する。図の例では、特徴量1〜5を判別分析のF値によって絞り込む例を示す。まず、選択手法が「前向き選択」の場合、特徴量1〜5のうち評価値が最もよくなるものを組み合わせに追加していく。具体的には、1回目の処理では、特徴量3のF値が最も高いので、これが組み合わせに追加される。2回目の処理では、追加した特徴量3に対して残りの特徴量1,2,4,5とのF値を求められ、これらの中から最もF値の高いもの(図の例では特徴量4)が組み合わせに追加される。3回目の処理では、追加した特徴量3,4の組み合わせに対して、残りの特徴量1,2,5とのF値が求められ、これらの中から最もF値の高いもの(図の例では特徴量1)が組み合わせに追加される。以降、同様の処理が繰り返される。 FIG. 5 illustrates a specific example of feature quantity selection based on the F value of discriminant analysis. In the example of the figure, an example of narrowing down the feature amounts 1 to 5 by the F value of the discriminant analysis is shown. First, when the selection method is "forward selection", the feature amount 1 to 5 having the best evaluation value is added to the combination. Specifically, in the first process, the F value of the feature amount 3 is the highest, so this is added to the combination. In the second processing, the F values of the remaining feature quantities 1, 2, 4, and 5 are obtained for the added feature quantity 3, and the one with the highest F value among these (feature quantity in the example of the figure). 4) is added to the combination. In the third process, the F value with the remaining feature quantities 1, 2 and 5 is obtained for the combination of the added feature quantities 3 and 4, and the one with the highest F value among these (example in the figure). Then, the feature amount 1) is added to the combination. After that, the same process is repeated.

また、選択手法が「後ろ向き選択」の場合、全ての特徴量1〜5のうち、削除したときに評価が最もよくなる値を削除していく。図の表は、標記特徴量を取り除いたときの他特徴量組み合わせが、どのようなF値をとるのかを表したものである。1回目の処理では、特徴量3を取り除いたときのF値が最も高いので、特徴量3が削除される。2回目の処理では、特徴量4を取り除いたときのF値が最も高いので、特徴量4が削除される。以降、同様の処理が繰り返される。 When the selection method is "backward selection", the value that gives the best evaluation when deleted is deleted from all the features 1 to 5. The table in the figure shows what kind of F value the combination of other features takes when the marked features are removed. In the first process, since the F value when the feature amount 3 is removed is the highest, the feature amount 3 is deleted. In the second process, since the F value when the feature amount 4 is removed is the highest, the feature amount 4 is deleted. After that, the same process is repeated.

さらに、選択手法が「SFFS」の場合、前向き選択の処理を通じ、評価値が最もよくなる特徴量を追加していくが、減らして評価値がよくなるときには、後ろ向き選択の処理を行って、特徴量xを減らす。本例の第2選択処理においては、前向き選択、後ろ向き選択、SFFSのいずれの手法を用いてもよい。 Further, when the selection method is "SFFS", the feature amount having the best evaluation value is added through the forward selection process, but when the evaluation value is reduced and the evaluation value is improved, the backward selection process is performed to perform the feature amount x. To reduce. In the second selection process of this example, any method of forward selection, backward selection, and SFFS may be used.

第2選択部14は、前述のような「前向き選択」、「後ろ向き選択」、「SFFS」などを通じて、最適な特徴量xの組み合わせを選択する。第2選択部14は、選択された特徴量xが所定個数(例えば30個)に到達したとき、最も評価値がよかった組み合わせを第3選択部15に出力する。または、第2選択部14は、特徴量選択を最後(前向き選択及びSFFSの場合は全特徴量、後ろ向き選択の場合は最後の1つ)まで実施し、最も評価値がよかった組み合わせを第3選択部15に出力する。 The second selection unit 14 selects the optimum combination of feature quantities x through the above-mentioned "forward selection", "backward selection", "SFFS" and the like. When the selected feature quantity x reaches a predetermined number (for example, 30), the second selection unit 14 outputs the combination having the best evaluation value to the third selection unit 15. Alternatively, the second selection unit 14 executes the feature amount selection to the end (all features in the case of forward selection and SFFS, the last one in the case of backward selection), and selects the combination with the best evaluation value as the third selection. Output to unit 15.

図3に戻り、第3選択部15は、第2選択部14により絞り込まれた特徴量xにおいて、学習に使用する特徴量xを第3選択処理により選択する(ステップ104:第3選択処理)。第3選択処理は、特徴量xの評価値をサポートベクターマシン正答率とし、評価方法を例えば前向き、後向き、SFFS等とした処理である。第3選択部15は、期待性能が高いサポートベクターマシンによる特徴量選択により、特徴量xの絞り込みの最終調整を行う。ここでは、サポートベクターマシンの判別率を低下させるような特徴量xを削減する。 Returning to FIG. 3, the third selection unit 15 selects the feature amount x to be used for learning in the feature amount x narrowed down by the second selection unit 14 by the third selection process (step 104: third selection process). .. The third selection process is a process in which the evaluation value of the feature amount x is set as the support vector machine correct answer rate, and the evaluation method is, for example, forward, backward, SFFS, or the like. The third selection unit 15 makes final adjustments for narrowing down the feature amount x by selecting the feature amount by a support vector machine having high expected performance. Here, the feature amount x that reduces the discrimination rate of the support vector machine is reduced.

サポートベクターマシン正答率による特徴量選択は、図5に示す「F値」を「サポートベクターマシン正答率」に置き換えた処理とほぼ同じである。よって、ここでは、サポートベクターマシン正答率による特徴量選択の説明を省略する。第3選択部15は、サポートベクターマシン正答率により選択された特徴量xを学習処理部18に出力する。 The feature quantity selection based on the support vector machine correct answer rate is almost the same as the process in which the "F value" shown in FIG. 5 is replaced with the "support vector machine correct answer rate". Therefore, the description of feature quantity selection based on the support vector machine correct answer rate will be omitted here. The third selection unit 15 outputs the feature amount x selected by the support vector machine correct answer rate to the learning processing unit 18.

学習処理部18は、特徴量選択部12(第1選択部13〜第3選択部15)により選択された特徴量xを基に学習を実行する(ステップ105)。本例の学習処理部18は、例えばサポートベクターマシンにより学習を実行し、未学習データをパターン認識可能な判別式Yを算出する。そして、この判別式Yが端末6に登録されて、端末6におけるモーション操作判定が可能にされる。 The learning processing unit 18 executes learning based on the feature amount x selected by the feature amount selection unit 12 (first selection unit 13 to third selection unit 15) (step 105). The learning processing unit 18 of this example executes learning by, for example, a support vector machine, and calculates a discriminant Y capable of pattern-recognizing unlearned data. Then, this discriminant Y is registered in the terminal 6, and the motion operation determination in the terminal 6 becomes possible.

さて、本例の場合、特徴量xを選択していくことが可能な複数の処理(第1選択処理、第2選択処理、第3選択処理)を設け、各処理の特徴を活かして好適に特徴量xを絞り込んでいくので、計算コストがかからない態様で段階的に特徴量xを少なくしていくことが可能となる。よって、特徴量選択に要する計算コストを低く抑えることができる。特に、本例の場合は、第1選択処理及び第2選択処理で特徴量xを絞り込むので、第3選択処理で行うサポートベクターマシン正答率の学習での計算コストを低く抑えることができる。 By the way, in the case of this example, a plurality of processes (first selection process, second selection process, third selection process) capable of selecting the feature amount x are provided, and the features of each process are utilized to be suitable. Since the feature amount x is narrowed down, it is possible to gradually reduce the feature amount x in a manner that does not require a calculation cost. Therefore, the calculation cost required for feature quantity selection can be kept low. In particular, in the case of this example, since the feature amount x is narrowed down in the first selection process and the second selection process, the calculation cost in learning the support vector machine correct answer rate performed in the third selection process can be suppressed low.

また、選択後の特徴量xを用いて学習処理部18により学習を行うにあたっては、通常よりも少ない数の特徴量xで学習を行うことが可能となるので、学習の計算コストも低く抑えることができる。すなわち、学習に使用する特徴量xが減少するため、コンピュータ等に実装したときの計算コストを低減することができる。以上のように、特徴量選択及び学習の両方で計算コストを低く抑えることができる。 Further, when learning is performed by the learning processing unit 18 using the selected feature amount x, it is possible to perform learning with a smaller number of feature amounts x than usual, so that the learning calculation cost should be kept low. Can be done. That is, since the feature amount x used for learning is reduced, the calculation cost when mounted on a computer or the like can be reduced. As described above, the calculation cost can be kept low in both feature quantity selection and learning.

特徴量選択部12は、特徴量同士の相関から特徴量xを選択する第1選択処理(相関係数による評価)と、判別分析のクラスの分け易さの基準を用いて特徴量xを選択する第2選択処理(F値による評価)と、特徴量xの学習結果の正答率を基に特徴量xを選択する第3選択処理(SVM正答率による評価)とのうち、少なくとも2つ以上(本例は3つ全て)の処理を経て特徴量xを絞り込む。よって、これら3つの段階を経る複数の処理を通じて特徴量xを絞り込んでいくので、学習に必要とされる特徴量xの選択を精度よく行うのに有利となる。 The feature amount selection unit 12 selects the feature amount x by using the first selection process (evaluation by the correlation coefficient) for selecting the feature amount x from the correlation between the feature amounts and the criteria of the ease of class division of the discriminant analysis. At least two or more of the second selection process (evaluation based on the F value) and the third selection process (evaluation based on the SVM correct answer rate) for selecting the feature amount x based on the correct answer rate of the learning result of the feature amount x. The feature amount x is narrowed down through the processing (all three in this example). Therefore, since the feature amount x is narrowed down through a plurality of processes that go through these three stages, it is advantageous to accurately select the feature amount x required for learning.

(第2実施形態)
次に、第2実施形態を図6及び図7に従って説明する。本例は、第1実施形態に対し、特徴量の選択方法を変更した実施例である。よって、第1実施形態と同一部分には同じ符号を付して詳しい説明を省略し、異なる部分についてのみ詳述する。
(Second Embodiment)
Next, the second embodiment will be described with reference to FIGS. 6 and 7. This example is an example in which the selection method of the feature amount is changed with respect to the first embodiment. Therefore, the same parts as those in the first embodiment are designated by the same reference numerals, detailed description thereof will be omitted, and only different parts will be described in detail.

図6に示すように、学習装置1は、特徴量選択の主の判定ループから逸れた特徴量xのうち学習処理に有効な特徴量xを選択する有効特徴量選択部21を備える。有効特徴量選択部21は、学習部4に設けられている。本例の有効特徴量選択部21は、第2選択処理で除外された特徴量xのうち、第3選択処理で有効と考えられる特徴量xを残して、これを第3選択処理に追加する。 As shown in FIG. 6, the learning device 1 includes an effective feature amount selection unit 21 that selects a feature amount x effective for learning processing from the feature amounts x deviating from the main determination loop of feature amount selection. The effective feature amount selection unit 21 is provided in the learning unit 4. The effective feature amount selection unit 21 of this example leaves the feature amount x considered to be effective in the third selection process among the feature amounts x excluded in the second selection process, and adds this to the third selection process. ..

図7に示すように、有効特徴量選択部21は、第2選択処理(判別分析のF値による評価)で選択されなかった特徴量x0を取得し、これら特徴量x0のうち、第3選択処理(サポートベクターマシン正答率による評価)で有効と考えられる特徴量x’を選択する(ステップ201)。同ステップにおける特徴量選択は、例えばサポートベクターマシンを用いた評価であることが好ましい。有効特徴量選択部21は、第3選択処理で有効と考えられる特徴量x’を選択すると、これら特徴量x’を第3選択部15に出力する。 As shown in FIG. 7, the effective feature amount selection unit 21 acquires the feature amount x0 that was not selected in the second selection process (evaluation by the F value of the discriminant analysis), and among these feature amount x0, the third selection. The feature amount x'that is considered to be effective in the processing (evaluation based on the support vector machine correct answer rate) is selected (step 201). The feature amount selection in the same step is preferably an evaluation using, for example, a support vector machine. When the effective feature amount selection unit 21 selects the feature amount x'that is considered to be effective in the third selection process, the effective feature amount selection unit 21 outputs these feature amounts x'to the third selection unit 15.

第3選択部15は、ステップ103で選択された特徴量xと、ステップ201で選択された特徴量x’とを用い、学習に使用する特徴量xを選択する(ステップ104)。よって、第2選択処理で有効と判断されなくても第3選択処理で有効であると考えられる特徴量x’を残して第3選択処理を行うことが可能となるので、判別の精度を向上するのに有利となる。 The third selection unit 15 uses the feature amount x selected in step 103 and the feature amount x'selected in step 201 to select the feature amount x to be used for learning (step 104). Therefore, even if it is not judged to be effective in the second selection process, the third selection process can be performed while leaving the feature amount x'that is considered to be effective in the third selection process, so that the accuracy of discrimination is improved. It will be advantageous to do.

(第3実施形態)
次に、第3実施形態を図8に従って説明する。本例も、第1及び第2実施形態に対して異なる部分についてのみ詳述する。
(Third Embodiment)
Next, the third embodiment will be described with reference to FIG. This example will also detail only the parts that differ from the first and second embodiments.

図8に示すように、本例の有効特徴量選択部21は、選択される前の全特徴量のうち第3選択処理で有効と考えられるものを、第1選択処理及び第2選択処理を飛ばして第3選択処理に追加する(ステップ301)。同ステップにおける特徴量選択は、例えばサポートベクターマシンを用いた評価であることが好ましい。有効特徴量選択部21は、第3選択処理で有効と考えられる特徴量x’を選択すると、これら特徴量x’を第3選択部15に出力する。 As shown in FIG. 8, the effective feature amount selection unit 21 of this example performs the first selection process and the second selection process on all the feature amounts before being selected, which are considered to be effective in the third selection process. It is skipped and added to the third selection process (step 301). The feature amount selection in the same step is preferably an evaluation using, for example, a support vector machine. When the effective feature amount selection unit 21 selects the feature amount x'that is considered to be effective in the third selection process, the effective feature amount selection unit 21 outputs these feature amounts x'to the third selection unit 15.

第3選択部15は、ステップ103で選択された特徴量xと、ステップ301で選択された特徴量x’とを用い、学習に使用する特徴量xを選択する(ステップ104)。よって、第1選択処理及び第2選択処理で有効と判断されなくても第3選択処理で有効であると考えられる特徴量x’を残して第3選択処理を行うことが可能となるので、判別の精度を向上するのに有利となる。 The third selection unit 15 uses the feature amount x selected in step 103 and the feature amount x'selected in step 301 to select the feature amount x to be used for learning (step 104). Therefore, even if it is not determined to be effective in the first selection process and the second selection process, the third selection process can be performed while leaving the feature amount x'that is considered to be effective in the third selection process. This is advantageous for improving the accuracy of discrimination.

なお、実施形態はこれまでに述べた構成に限らず、以下の態様に変更してもよい。
・各実施形態において、判別分析のF値による評価析は、例えばスケッターマトリックスなど種々の手法が採用可能である。
The embodiment is not limited to the configuration described so far, and may be changed to the following aspects.
-In each embodiment, various methods such as a sketter matrix can be adopted for the evaluation analysis based on the F value of the discriminant analysis.

・第2及び第3実施形態において、特徴量xが第3選択処理で有効か否かの判定は、サポートベクターマシンを用いた処理に限定されず、他の処理に変更してもよい。
・各実施形態において、情報データDaは、加速度データに限らず、種々のデータに変更してもよい。
-In the second and third embodiments, the determination of whether or not the feature amount x is effective in the third selection process is not limited to the process using the support vector machine, and may be changed to another process.
-In each embodiment, the information data Da is not limited to the acceleration data, and may be changed to various data.

・各実施形態において、動き判定を行うための判別式Yを算出することに限定されず、判定対象は特に限定されない。
・各実施形態において、判別式Yの特定の仕方は、実施例以外の他の手法を用いてもよい。
-In each embodiment, the discriminant Y for performing the motion determination is not limited to the calculation, and the determination target is not particularly limited.
-In each embodiment, the method of specifying the discriminant Y may be a method other than the examples.

・各実施形態に記載のある判別式Y、判別関数、決定関数、線形式などは、同義である。
・各実施形態において、サポートベクターマシンは、線形パターン認識手法をとるものに限定されず、例えば非線形であってもよい。
-The discriminant Y, the discriminant function, the determination function, the linear form, etc. described in each embodiment have the same meaning.
-In each embodiment, the support vector machine is not limited to one that adopts a linear pattern recognition method, and may be non-linear, for example.

・各実施形態において、第1選択処理は、相関係数を用いた評価処理に限定されず、特徴量xを絞り込むことができる処理であればよい。
・各実施形態において、第2選択処理は、クラスタ分析(F値)を用いた処理に限定されず、特徴量xを絞り込むことができる処理であればよい。
-In each embodiment, the first selection process is not limited to the evaluation process using the correlation coefficient, and may be any process that can narrow down the feature amount x.
-In each embodiment, the second selection process is not limited to the process using the cluster analysis (F value), and may be any process that can narrow down the feature amount x.

・各実施形態において、第3選択処理は、学習評価の正答率を用いた処理に限定されず、特徴量xを絞り込むことができる処理であればよい。
・各実施形態において、特徴量選択の段階数は、3段階に限定されず、例えば2段階や4段階以上としてもよい。
-In each embodiment, the third selection process is not limited to the process using the correct answer rate of the learning evaluation, and may be any process that can narrow down the feature amount x.
-In each embodiment, the number of stages for selecting the feature amount is not limited to three stages, and may be, for example, two stages or four or more stages.

・各実施形態において、端末6は、電子キーに限定されず、他の機器や装置に変更可能である。
・各実施形態において、学習は、サポートベクターマシンに限定されず、ニューラルネットワークやブースティングなどの他の方式を採用してもよい。また、学習は、例えばパーセプトロン、線形重回帰分析などでもよい。
-In each embodiment, the terminal 6 is not limited to the electronic key, and can be changed to another device or device.
-In each embodiment, learning is not limited to the support vector machine, and other methods such as neural networks and boosting may be adopted. Further, the learning may be, for example, perceptron, linear multiple regression analysis, or the like.

次に、上記実施形態及び別例から把握できる技術的思想について、以下に追記する。
(イ)学習対象の情報データから特徴量を抽出し、当該特徴量を学習データとして学習を行うことにより、未学習データを識別可能にするプログラムにおいて、学習装置の特徴量選択部により、互いに特徴量選択の仕方が異なる複数の処理を通じて、前記学習に使用する特徴量を選択させるステップと、前記特徴量選択部によって選択された前記特徴量を基に、前記学習装置に学習を実行させるステップとをコンピュータに実行させることを特徴とするプログラム。
Next, the technical idea that can be grasped from the above embodiment and another example will be added below.
(B) In a program that makes it possible to identify unlearned data by extracting feature quantities from information data to be learned and learning using the feature quantities as learning data, the feature quantity selection unit of the learning device features each other. A step of selecting a feature amount to be used for the learning through a plurality of processes having different quantity selection methods, and a step of causing the learning device to execute learning based on the feature amount selected by the feature amount selection unit. A program characterized by having a computer execute.

1…学習装置、2…データ入力部、3…特徴量抽出部、4…学習部、12…特徴量選択部、13…第1選択部、14…第2選択部、15…第3選択部、18…学習処理部、21…有効特徴量選択部、Da…情報データ、x(x1,x2,x)…特徴量。 1 ... Learning device, 2 ... Data input unit, 3 ... Feature amount extraction unit, 4 ... Learning unit, 12 ... Feature amount selection unit, 13 ... First selection unit, 14 ... Second selection unit, 15 ... Third selection unit , 18 ... learning section, 21 ... effective characteristic amount selecting unit, Da ... information data, x (x1, x2, x 2) ... feature amount.

Claims (2)

学習対象の情報データから特徴量を抽出し、当該特徴量を学習データとして学習を行うことにより、未学習データを識別可能にする学習装置において、
特徴量同士の相関から当該特徴量を選択する第1選択処理と、判別分析のクラスの分け易さを通じて前記特徴量を選択する第2選択処理と、前記特徴量の学習結果の正答率を基に当該特徴量を選択する第3選択処理とのうち、少なくとも2つ以上の処理を経て前記特徴量を絞り込み、互いに特徴量選択の仕方が異なる複数の処理を通じて、前記学習に使用する特徴量を選択する特徴量選択部と、
選択される前の全特徴量のうち前記第3選択処理で有効と考えられるものを、前記第1選択処理及び前記第2選択処理を飛ばして前記第3選択処理に追加する有効特徴量選択部を備えたことを特徴とする学習装置。
In a learning device that makes it possible to identify unlearned data by extracting features from information data to be learned and learning using the features as learning data.
Based on the first selection process that selects the feature amount from the correlation between the feature amounts, the second selection process that selects the feature amount through the ease of class division of the discriminant analysis, and the correct answer rate of the learning result of the feature amount. Of the third selection process for selecting the feature amount, the feature amount is narrowed down through at least two or more processes, and the feature amount used for the learning is obtained through a plurality of processes in which the feature amount selection method is different from each other. Feature selection section to be selected and
An effective feature amount selection unit that skips the first selection process and the second selection process and adds the total feature amount before selection that is considered to be effective in the third selection process to the third selection process. A learning device characterized by being equipped with.
学習対象の情報データから特徴量を抽出し、当該特徴量を学習データとして学習を行うことにより、未学習データを識別可能にする学習方法において、
学習装置の特徴量選択部により、特徴量同士の相関から当該特徴量を選択する第1選択処理と、判別分析のクラスの分け易さを通じて前記特徴量を選択する第2選択処理と、前記特徴量の学習結果の正答率を基に当該特徴量を選択する第3選択処理とのうち、少なくとも2つ以上の処理を経て前記特徴量を絞り込み、互いに特徴量選択の仕方が異なる複数の処理を通じて、前記学習に使用する特徴量を選択させるステップと、
学習装置の有効特徴量選択部により、選択される前の全特徴量のうち前記第3選択処理で有効と考えられるものを、前記第1選択処理及び前記第2選択処理を飛ばして前記第3選択処理に追加させるステップと、
前記特徴量選択部によって選択された前記特徴量を基に、前記学習装置に学習を実行させるステップとを備えたことを特徴とする学習方法。
In a learning method that makes it possible to identify unlearned data by extracting features from information data to be learned and learning using the features as learning data.
The first selection process of selecting the feature amount from the correlation between the feature amounts by the feature amount selection unit of the learning device, the second selection process of selecting the feature amount through the ease of classifying the discriminant analysis class, and the feature. Of the third selection process of selecting the feature amount based on the correct answer rate of the amount learning result, the feature amount is narrowed down through at least two or more processes, and through a plurality of processes in which the feature amount selection method is different from each other. , The step of selecting the feature amount to be used for the learning, and
The third selection process skips the first selection process and the second selection process for all the feature amounts before being selected by the effective feature amount selection unit of the learning device, which are considered to be effective in the third selection process. Steps to add to the selection process and
A learning method including a step of causing the learning device to execute learning based on the feature amount selected by the feature amount selection unit.
JP2016230353A 2016-11-28 2016-11-28 Learning device and learning method Active JP6831221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016230353A JP6831221B2 (en) 2016-11-28 2016-11-28 Learning device and learning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016230353A JP6831221B2 (en) 2016-11-28 2016-11-28 Learning device and learning method

Publications (2)

Publication Number Publication Date
JP2018088080A JP2018088080A (en) 2018-06-07
JP6831221B2 true JP6831221B2 (en) 2021-02-17

Family

ID=62494428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016230353A Active JP6831221B2 (en) 2016-11-28 2016-11-28 Learning device and learning method

Country Status (1)

Country Link
JP (1) JP6831221B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047879A1 (en) * 2022-09-02 2024-03-07 日本電信電話株式会社 Feature amount selection device, feature amount selection method, and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04361387A (en) * 1991-06-07 1992-12-14 Yokogawa Electric Corp Image recognition device
JP5083320B2 (en) * 2007-08-22 2012-11-28 富士通株式会社 Compound physical property prediction apparatus, physical property prediction method, and program for implementing the method
JP6403261B2 (en) * 2014-12-03 2018-10-10 タカノ株式会社 Classifier generation device, visual inspection device, classifier generation method, and program

Also Published As

Publication number Publication date
JP2018088080A (en) 2018-06-07

Similar Documents

Publication Publication Date Title
US9002101B2 (en) Recognition device, recognition method, and computer program product
US7725413B2 (en) Generating two-class classification model for predicting chemical toxicity
US9842279B2 (en) Data processing method for learning discriminator, and data processing apparatus therefor
US20110137841A1 (en) Sample class prediction method, prediction program, and prediction apparatus
JP6282045B2 (en) Information processing apparatus and method, program, and storage medium
JP2020053073A (en) Learning method, learning system, and learning program
KR102370910B1 (en) Method and apparatus for few-shot image classification based on deep learning
US11562294B2 (en) Apparatus and method for analyzing time-series data based on machine learning
US20190377027A1 (en) Tester and method for testing a device under test and tester and method for determining a single decision function
WO2021079442A1 (en) Estimation program, estimation method, information processing device, relearning program, and relearning method
JP6879749B2 (en) Support device and support method
JP2016095640A (en) Density measurement device, density measurement method and program
JP6831221B2 (en) Learning device and learning method
JP2012226607A5 (en) Information processing method and apparatus, pattern identification method and apparatus
CN107077617B (en) Fingerprint extraction method and device
JP6786364B2 (en) Learning device and learning method
KR102646430B1 (en) Method for learning classifier and prediction classification apparatus using the same
JP5633424B2 (en) Program and information processing system
JP5020513B2 (en) Pattern recognition apparatus, pattern recognition method, pattern recognition program, and recording medium
CN111178292A (en) Vehicle type identification method, device and equipment
CN112840360A (en) Information processing method and information processing system
JP2009271890A (en) Image processing apparatus and method thereof
JP2007257248A (en) Pattern recognition method and its device and storage medium with its program stored
JP2009043280A (en) Pattern recognizing device
US20220222582A1 (en) Generation method, computer-readable recording medium storing generation program, and information processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210128

R150 Certificate of patent or registration of utility model

Ref document number: 6831221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150