JP6830235B2 - Synthetic resin container - Google Patents

Synthetic resin container Download PDF

Info

Publication number
JP6830235B2
JP6830235B2 JP2016199296A JP2016199296A JP6830235B2 JP 6830235 B2 JP6830235 B2 JP 6830235B2 JP 2016199296 A JP2016199296 A JP 2016199296A JP 2016199296 A JP2016199296 A JP 2016199296A JP 6830235 B2 JP6830235 B2 JP 6830235B2
Authority
JP
Japan
Prior art keywords
container
plate surface
wall portion
surface portion
peripheral wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016199296A
Other languages
Japanese (ja)
Other versions
JP2018058630A (en
Inventor
政志 上利
政志 上利
Original Assignee
パイオニア工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア工業株式会社 filed Critical パイオニア工業株式会社
Priority to JP2016199296A priority Critical patent/JP6830235B2/en
Publication of JP2018058630A publication Critical patent/JP2018058630A/en
Application granted granted Critical
Publication of JP6830235B2 publication Critical patent/JP6830235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、合成樹脂製容器、特に容器内の減圧時に容器形状が損なわれるのを抑える工夫を有する合成樹脂製容器に関するものである。 The present invention relates to a synthetic resin container, particularly a synthetic resin container having a device for suppressing the shape of the container from being damaged when the pressure inside the container is reduced.

従来から液体物を収容するための容器として、PETなどの合成樹脂材を材料とした合成樹脂製の容器(PETボトル)が流通していて、飲料や液体調味料などを収容する容器としても多く利用されている。 Conventionally, containers made of synthetic resin (PET bottles) made of synthetic resin materials such as PET have been distributed as containers for storing liquids, and many of them are containers for storing beverages and liquid seasonings. It's being used.

そして充填する飲料や液体調味料の種類によっては加熱充填が行われている。この加熱充填では、高温度の収容物が充填されてキャッピングをした後に、収容物の温度が放熱などによって低下すると収容物の体積が減少し、また容器内の口部や肩部に残る気体部分の体積が減少し、容器内が減圧の状態になることで、容器胴部の周壁部に凹みなどの変形が生じて容器の外観を損ない易くなる。 Depending on the type of beverage or liquid seasoning to be filled, heat filling is performed. In this heat filling, the volume of the container decreases when the temperature of the container drops due to heat dissipation after the high temperature container is filled and capped, and the gas portion remaining in the mouth and shoulder of the container. As the volume of the container decreases and the inside of the container becomes decompressed, the peripheral wall of the container body is deformed such as a dent, and the appearance of the container is easily spoiled.

そこで合成樹脂製容器では、容器の胴部に減圧を吸収する可動パネルを設け、パネルの胴部内方への凹入により減圧を吸収して容器内の減圧を軽減する工夫が多く提案されている。しかし、この種の容器はラベルを巻く胴部にパネルを設けるため、それを好まない容器において、底部が容器内の減圧に応じて、それを軽減するように容器内方に凹入して容積を減らし減圧を吸収し、キャップを開封すると減圧が解除されて元の底形状に戻るような容器が提案されている。 Therefore, in synthetic resin containers, many devices have been proposed in which a movable panel that absorbs decompression is provided in the body of the container, and the decompression is absorbed by denting the panel inward to reduce the decompression in the container. .. However, since this type of container has a panel on the body around which the label is wrapped, in a container that does not like it, the bottom is recessed inward to reduce the decompression inside the container. A container has been proposed in which the pressure is reduced, the pressure is absorbed, and the pressure is released when the cap is opened to return to the original bottom shape.

例えば特許文献1に示すように、容器の底部における底壁部を、周辺部の接地部と、この接地部の容器径方向の内側に連続して上方に向けて立ち上がる立ち上がり周壁部と、この立ち上がり周壁部の上端部に連続して容器径方向の内側に向けて連続する環状の可動部分と、この可動部分の容器径方向の内側から上方に向けて連続する上方に凸の凹陥部分を設け、凹陥部分を上方に向けて移動させるように可動部分を立ち上がり周壁部の上端部を中心にして上下方向に回動可能にした容器が示されている。 For example, as shown in Patent Document 1, the bottom wall portion at the bottom of the container is formed by a peripheral ground contact portion, a rising peripheral wall portion that continuously rises upward inward in the container radial direction of the ground contact portion, and this rise. An annular movable portion continuously extending inward in the container radial direction and a convex concave portion continuously upward from the inside of the movable portion in the container radial direction are provided at the upper end of the peripheral wall portion. A container in which a movable portion is raised so as to move the recessed portion upward and is rotatable in the vertical direction around the upper end portion of the peripheral wall portion is shown.

特許第5489953号公報Japanese Patent No. 5489953

ところで近年、使用済みの容器をリサイクルしたり廃棄物として処分する際、リサイクルまたは廃棄物の減量化が望まれているとともに、焼却処分するときの環境への悪影響が極力小さくすることが望まれている。そしてこの点から、容器の胴部の周壁部の肉厚を小さくして、合成樹脂製材料の使用量を少なくすることが検討されている。 By the way, in recent years, when recycling used containers or disposing of them as waste, it is desired to recycle or reduce the amount of waste, and it is desired to minimize the adverse effect on the environment when incineration is performed. There is. From this point of view, it is considered to reduce the wall thickness of the peripheral wall portion of the body of the container to reduce the amount of the synthetic resin material used.

しかしながら、前記底部の可動部分が上方に移動することで容器内の減圧の状態を低減する構成の従来容器では、肉厚を薄くした容器の弱い部分に変形が生じる恐れがある。 However, in the conventional container having a structure in which the state of decompression in the container is reduced by moving the movable portion of the bottom portion upward, the weak portion of the thinned container may be deformed.

また、高温充填された収容物が冷却し体積が減少し、それにより発生した減圧で底部が容器上方へ移動することで吸収された状態の容器のキャップを開封すると、容器内は大気圧になるため、上方へ移動していた容器底部は元の下方の形状に戻り、容器内の収容物のヘッドスペースの液面が低下して収容物が少ないとの印象を消費者に与えるという問題がある。 In addition, when the container filled with high temperature cools and the volume decreases, and the cap of the container in the absorbed state is opened by moving the bottom to the upper part of the container due to the reduced pressure generated by it, the inside of the container becomes atmospheric pressure. Therefore, there is a problem that the bottom of the container, which has moved upward, returns to the original lower shape, and the liquid level of the head space of the container in the container is lowered, giving the consumer the impression that the container is small. ..

そこで本発明は上記事情に鑑み、収容物を高温充填してキャッピングされた容器の内圧が、収容物の放熱などによって減圧される場合に、容器内での減圧状態が進むことによる容器胴部のいびつ変形や凹みの発生を容器底部の凹入変形によって抑えることを課題とし、容器の胴部の外観形状が適切に保たれる合成樹脂製容器を提供することを目的とするものである。また、容器底部の上方への凹入変形移動により減圧が吸収された容器を開封した際、大気圧状態で底面が変形前の状態に戻ることを防止し、収容物の液面が低下することがない容器を提供することを目的とするものである。 Therefore, in view of the above circumstances, in view of the above circumstances, when the internal pressure of the container capped by filling the container at a high temperature is reduced by heat dissipation of the container, the reduced pressure state in the container progresses, so that the container body An object of the present invention is to suppress the occurrence of distorted deformation and dents by denting deformation of the bottom of the container, and an object of the present invention is to provide a synthetic resin container in which the appearance shape of the body of the container is appropriately maintained. In addition, when the container that has absorbed the decompression due to the dented deformation movement of the bottom of the container is opened, the bottom surface is prevented from returning to the state before the deformation under the atmospheric pressure state, and the liquid level of the container is lowered. The purpose is to provide a container without air pressure.

(請求項1の発明)
本発明は上記課題を考慮してなされたもので、口部(2)と肩部(3)と胴部(4)と底部(5)とからなる合成樹脂製の容器であり、前記底部(5)は底部外周壁部(9)と底壁部(10)とからなり、
前記底壁部(10)は、この底壁部(10)の外周に位置する環状の接地部分の容器径方向の内側に連続して上方に向けて立ち上がった立ち上がり周壁部(12)を有し、
底壁部(10)での前記立ち上がり周壁部(12)に囲まれた壁領域が上下方向に移動するように変形して、容器を据え置く接地面(15)と前記壁領域との距離が変化可能とされている合成樹脂製容器(1)において、
底壁部(10)での立ち上がり周壁部(12)に囲まれた前記壁領域に、
容器内が減圧される容器内圧力変化時に、自己変形によって容器内上方に反転凹入して、容器内の減圧を吸収するとともに、容器内圧力を大気解放圧にしたときに、前記反転凹入形状が維持される減圧吸収手段(14)が設けられていて、
前記減圧吸収手段(14)は、
前記立ち上がり周壁部(12)の上端部(13)から容器中心側での下方に向けて傾斜していて、立ち上がり周壁部(12)の前記上端部(13)を中心にして上下方向に回動可能とされている環状の第一板面部(18)と、
上方に向けて凸とされて容器中心軸が通る底中央凹壁部(17)と、
前記底中央凹壁部(17)の下端部(19)から立ち上がり周壁部(12)側に向けて容器中心軸に直交する方向で接地面(15)に平行にして延設されて前記第一板面部(18)の容器径方向の内側に連結部(21)を介して連接し、容器内が減圧される時に容器上方への引き上げ力を受ける第一板面部(18)の上方への反転凹入移動を抑止する方向に抗力を生じる環状の第二板面部(20)とからなり、
第一板面部(18)が受ける前記引き上げ力が、第二板面部(20)からの前記抗力を上回ったときに、前記第一板面部(18)が前記立ち上がり周壁部(12)の上端部(13)を中心に下方に向けて傾斜して容器中心軸周方向に配置の前記連結部(21)が下方に向けて断面形状が凸となる湾曲した形状になっている状態から、前記第一板面部(18)が容器内上方に傾斜した状態で、前記容器中心軸周方向に配置の連結部(21)が上方に向けて断面形状が凸となる湾曲した形状になって反転凹入回動し、この第一板面部(18)と前記第一板面部(18)に前記連結部(21)を介して連接する第二板面部(20)と底中央凹壁部(17)とが容器上方に反転凹入移動するとともに、
容器内圧力を大気解放圧にしたときに、容器内上方に傾斜した状態の前記第一板面部(18)と上方に向けて断面形状が凸となる湾曲した前記連結部(21)と第一板面部(18)に前記連結部(21)を介して連接する第二板面部(20)と底中央凹壁部(17)とからなる前記反転凹入状態が維持される構成を有することを特徴とする合成樹脂製容器を提供して、上記課題を解消するものである。
(Invention of claim 1)
The present invention has been made in consideration of the above problems, a container mouth (2) and the shoulder (3) and body portion (4) and the bottom (5) consisting of a synthetic resin, said bottom ( 5) consists of a bottom outer peripheral wall portion (9) and a bottom wall portion (10) .
The bottom wall portion (10) has a rising peripheral wall portion (12) that continuously rises upward in the container radial direction of an annular ground contact portion located on the outer periphery of the bottom wall portion (10). ,
The wall area surrounded by the rising peripheral wall portion (12) on the bottom wall portion (10) is deformed so as to move in the vertical direction, and the distance between the ground contact surface (15) on which the container is placed and the wall region changes. In the possible synthetic resin container (1)
In the wall area surrounded by the rising peripheral wall portion (12 ) at the bottom wall portion (10) ,
When the pressure inside the container is decompressed, the pressure inside the container is changed by self-deformation, and the pressure inside the container is reversed to absorb the decompression inside the container. A decompression absorbing means (14) that maintains its shape is provided.
The decompression absorption means (14)
It is inclined downward from the upper end portion (13) of the rising peripheral wall portion (12) on the container center side, and rotates in the vertical direction around the upper end portion (13) of the rising peripheral wall portion (12). An annular first plate surface (18) that is possible, and
The bottom central concave wall (17), which is convex upward and through which the central axis of the container passes,
From the lower end portion (19) of the bottom central concave wall portion (17), the first portion is extended in a direction orthogonal to the container central axis toward the rising peripheral wall portion (12) side and parallel to the ground contact surface (15). The first plate surface portion (18), which is connected to the inside of the plate surface portion (18) in the container radial direction via the connecting portion (21) and receives a pulling force upward of the container when the inside of the container is depressurized, is inverted upward. It consists of an annular second plate surface (20) that generates a resistance force in the direction of suppressing dented movement.
When the pulling force received by the first plate surface portion (18) exceeds the drag force from the second plate surface portion (20), the first plate surface portion (18) becomes the upper end portion of the rising peripheral wall portion (12). From a state in which the connecting portion (21), which is inclined downward with respect to (13) and arranged in the circumferential direction of the center axis of the container, has a curved shape in which the cross-sectional shape is convex downward. In a state where the one plate surface portion (18) is inclined upward in the container, the connecting portion (21) arranged in the circumferential direction of the central axis of the container becomes a curved shape in which the cross-sectional shape is convex upward and is inverted and recessed. A second plate surface portion (20) and a bottom center concave wall portion (17) that rotate and are connected to the first plate surface portion (18) and the first plate surface portion (18) via the connecting portion (21). Moves upside down in the container and moves
When the pressure inside the container is set to the atmospheric release pressure, the first plate surface portion (18) in a state of being inclined upward in the container and the curved connecting portion (21) having a convex cross-sectional shape upward are the first. It has a configuration in which the inverted recessed state is maintained, which is composed of a second plate surface portion (20) connected to the plate surface portion (18) via the connecting portion (21) and a bottom center concave wall portion (17). It is intended to solve the above-mentioned problems by providing a characteristic synthetic resin container.

(請求項1の発明の効果)
請求項1の発明によれば、高温充填された収容物が冷える方向に温度変化して容器内の圧力が減圧される状態となったときに、胴部の変形が起きる前に、底部反転により、容積減少を一気に発生させることができるので、容器の外観を損なうことがない。
(Effect of the invention of claim 1)
According to the invention of claim 1, when the temperature of the hot-filled container changes in the cooling direction and the pressure inside the container is reduced, the bottom is inverted before the body is deformed. Since the volume reduction can be generated at once, the appearance of the container is not spoiled.

そのため胴部の周壁部の厚さを薄くでき、容器を成形する合成樹脂材の使用量を削減することができるようになるという優れた効果を奏する。 Therefore, the thickness of the peripheral wall portion of the body portion can be reduced, and the amount of the synthetic resin material used for molding the container can be reduced, which is an excellent effect.

また本発明によれば、請求項1の発明の効果に加え、底壁部の上方への移動により減圧が吸収された容器を開封した際、大気圧状態でも底壁部が変形前の状態に戻ることがなく、変形後の反転凹入状態を維持するため、冷却により体積が減少した収容物の液面が低下することがないという効果を奏する。 Further , according to the present invention, in addition to the effect of the invention of claim 1, when the container in which the decompression is absorbed by the upward movement of the bottom wall portion is opened, the bottom wall portion is in the state before deformation even in the atmospheric pressure state. Since it does not return and maintains the inverted recessed state after deformation, it has the effect that the liquid level of the container whose volume has been reduced by cooling does not decrease.

また本発明によれば、減圧吸収手段が環状の第一板面部を有していて、この第一板面部が下方への傾斜状態から上方への傾斜状態へと速やかに反転回動して、連接する部位も含めて、下位置(接地面に近い高さ位置)から上位置(接地面から離れた高さ位置)へと移動するので、減圧吸収手段の急激に変化する度合いを大きくすることができ、容器胴部等のいびつ変形や凹入等を防止することができるという効果を奏する。 Further , according to the present invention, the decompression absorbing means has an annular first plate surface portion, and the first plate surface portion rapidly reverses and rotates from a downwardly inclined state to an upwardly inclined state. Since it moves from the lower position (height position close to the ground plane) to the upper position (height position away from the ground plane) including the connecting part, increase the degree of sudden change of the decompression absorbing means. This has the effect of preventing the container body and the like from being distorted and dented.

また本発明によれば、前記第一板面部が受ける前記引き上げ力が、第二板面部からの前記抗力を上回ったときに、前記第一板面部が反転回動し、それに連接する第二板面部と底中央凹壁部がともに容器上方に移動し、下方に向けて傾斜した状態の環状の第一板面部が反転して上方に向けて傾斜した状態となり、容器内圧力を大気解放圧にしたときに、第一板面部の前記反転状態が好適に維持され、開封したときに収容物の液面が下がることが無いという効果を有する。 Further , according to the present invention, when the pulling force received by the first plate surface portion exceeds the drag force from the second plate surface portion, the first plate surface portion reversely rotates and is connected to the second plate. Both the face part and the bottom center concave wall part move to the upper part of the container, and the annular first plate surface part in a state of being inclined downward becomes a state of being inverted and inclined upward, and the pressure inside the container becomes the atmospheric release pressure. At that time, the inverted state of the first plate surface portion is preferably maintained, and there is an effect that the liquid level of the contained material does not drop when the package is opened.

本発明に係る合成樹脂製容器の実施の形態の一例を示す説明図である。It is explanatory drawing which shows an example of embodiment of the synthetic resin container which concerns on this invention. 一例における底部を断面で示す説明図である。It is explanatory drawing which shows the bottom part in one example in the cross section. 一例における底部を下方から見た状態で示す説明図である。It is explanatory drawing which shows the state which the bottom | bottom in one example is seen from the bottom. 減圧吸収手段の内圧変化時の底深さの推移を示すグラフである。It is a graph which shows the transition of the bottom depth at the time of change of the internal pressure of the decompression absorption means. 図4のグラフにおける底深さAと底深さBの位置を示す説明図である。It is explanatory drawing which shows the position of the bottom depth A and the bottom depth B in the graph of FIG. 一例における第一板面部の傾斜と第一板面部の傾斜方向に沿った長さを示す説明図である。It is explanatory drawing which shows the inclination of the 1st plate surface portion and the length along the inclination direction of the 1st plate surface portion in one example. 容器底部の板面部に突起部を設けた例を示す説明図である。It is explanatory drawing which shows the example which provided the protrusion part on the plate surface part of the bottom part of a container.

つぎに本発明を図1から図7に示す実施の形態に基づいて詳細に説明する。図中1は合成樹脂製容器で、該容器1はPETなどの合成樹脂を材料としてボトル状の形態にしてブロー成形されたものである。 Next, the present invention will be described in detail based on the embodiments shown in FIGS. 1 to 7. In the figure, 1 is a container made of synthetic resin, and the container 1 is blow-molded in a bottle shape using a synthetic resin such as PET as a material.

そしてこの合成樹脂製容器1は図1に示されているように口部2、肩部3、胴部4、底部5とからなるものであり、図示していないキャップを口部2に被せ付けて閉じることができるようにした容器である。 As shown in FIG. 1, the synthetic resin container 1 is composed of a mouth portion 2, a shoulder portion 3, a body portion 4, and a bottom portion 5, and a cap (not shown) is put on the mouth portion 2. It is a container that can be closed.

(胴部)
容器下部に向けて下がるに従って拡径している肩部3に連続する胴部4は円筒状とされていて、胴部4の周壁部6には、容器高さ方向に間隔を取って補強用の凹溝7が複数設けられ、この凹溝7が周方向に連続している。
(Body)
The body portion 4 continuous with the shoulder portion 3 whose diameter increases as it goes down toward the lower part of the container has a cylindrical shape, and the peripheral wall portion 6 of the body portion 4 is provided for reinforcement at intervals in the container height direction. A plurality of concave grooves 7 are provided, and the concave grooves 7 are continuous in the circumferential direction.

また胴部4は、胴部上端部が連続する上記肩部3との境界に近い位置、及び胴部下端部が連続する上記底部5との境界に近い位置で段差部8を形成して、肩部3と底部5との外径寸法より胴部4の外形寸法を僅かながら小さくして、胴部4の周りに図示していない包装ラベルを安定的に配置することができるようにしている。 Further, the body portion 4 forms a step portion 8 at a position close to the boundary with the shoulder portion 3 where the upper end portion of the body portion is continuous and at a position close to the boundary with the bottom portion 5 where the lower end portion of the body portion is continuous. The outer diameter of the body 4 is slightly smaller than the outer diameter of the shoulder 3 and the bottom 5, so that a packaging label (not shown) can be stably arranged around the body 4. ..

(底部)
胴部4に上記段差部8を介して連続する底部5は、底部5の外周面を形成している底部外周壁部9と、この底部外周壁部9の下端に連続し、容器の下面として形成されている底壁部10とからなるものである。
(bottom)
The bottom portion 5 continuous with the body portion 4 via the step portion 8 is continuous with the bottom outer peripheral wall portion 9 forming the outer peripheral surface of the bottom portion 5 and the lower end of the bottom outer peripheral wall portion 9, and serves as the lower surface of the container. It is composed of a bottom wall portion 10 formed.

上記底壁部10は、図2に示されているようにこの底壁部10の外周に位置して上記底部外周壁部9の下端に連続する接地部11、この接地部11における容器径方向での内側に連続して上方に向けて立ち上がる立ち上がり周壁部12を有している。そしてこの立ち上がり周壁部12に囲まれた部分の壁領域として、この立ち上がり周壁部12の上端部13に連続する減圧吸収手段14が設けられている。 As shown in FIG. 2, the bottom wall portion 10 is located on the outer periphery of the bottom wall portion 10 and is continuous with the lower end of the bottom outer peripheral wall portion 9, the ground contact portion 11, and the container radial direction in the ground contact portion 11. It has a rising peripheral wall portion 12 that continuously rises upward inwardly. A decompression absorbing means 14 continuous with the upper end portion 13 of the rising peripheral wall portion 12 is provided as a wall region of the portion surrounded by the rising peripheral wall portion 12.

(減圧吸収手段)
上記減圧吸収手段14とされた立ち上がり周壁部12に囲まれた上記壁領域は、容器の上下方向に移動するように変形して、容器を据え置く接地面15との距離が変化可能とされている部分であり、上述したように高温度の収容物が充填されてキャッピングした後に収容物の温度が低下し、それに伴い収容物の体積が減少して、高温度充填直後の容器内の圧力に比べてその圧力が減圧され始めても、胴部4の周壁部6の形状が、変形や凹みなどによって損なわれないようにする役割を果たすものである。
(Decompression absorption means)
The wall region surrounded by the rising peripheral wall portion 12 which is the decompression absorbing means 14 is deformed so as to move in the vertical direction of the container, and the distance from the ground contact surface 15 on which the container is placed can be changed. It is a part, and as described above, after the high temperature container is filled and capped, the temperature of the container decreases, and the volume of the container decreases accordingly, compared with the pressure in the container immediately after the high temperature filling. Even if the pressure starts to be reduced, the shape of the peripheral wall portion 6 of the body portion 4 plays a role of preventing the shape from being damaged by deformation or dents.

そして減圧吸収手段14は、上述した胴部4の周壁部6の形状が損なわれないようにすべく、容器内が減圧されるときの容器内圧力変化時に、接地面15からの距離の変動が自己変形によって容器内方へ一気に反転凹入変化する変形動作を行なうように設けられている。 Then, the decompression absorbing means 14 changes the distance from the ground contact surface 15 when the pressure inside the container changes when the inside of the container is decompressed so that the shape of the peripheral wall portion 6 of the body portion 4 is not impaired. It is provided so as to perform a deformation operation in which the container is instantly inverted and recessed by self-deformation.

本実施の形態の合成樹脂製容器1において、上記減圧吸収手段14は、立ち上がり周壁部12の上端部13から容器径方向の内側に向けて連続していて、この上端部13の位置を中心にして容器1の上下方向に移動可能とされた環状の第一板面部18と、該第一板面部18に連接する接地面に平行な環状の第二板面部20と、該第二板面部20の容器径方向の内側から上方に向けて連続していて、上方に向けて凸とされた底中央凹壁部17とからなるものである。 In the synthetic resin container 1 of the present embodiment, the decompression absorbing means 14 is continuous from the upper end portion 13 of the rising peripheral wall portion 12 toward the inside in the container radial direction, and is centered on the position of the upper end portion 13. An annular first plate surface portion 18 that can be moved in the vertical direction of the container 1, an annular second plate surface portion 20 parallel to the ground contact surface connected to the first plate surface portion 18, and the second plate surface portion 20. It is composed of a bottom central concave wall portion 17 that is continuous from the inside in the container radial direction and is convex upward.

(底中央凹壁部)
上記底中央凹壁部17は、図1、2、3に示されているように容器中心軸O−Oが通っていて、下端部19から上方に向けて延設されてテーパー状に先細りする周形状とされた周壁部22とこの周壁部22の上端部に連続する天壁部23とからなるもので、第一板面部18が容器上下方向に移動する際、この底中央凹壁部17が第二板面部20に伴なって容器上下方向に移動することとなる。
(Bottom center concave wall)
As shown in FIGS. 1, 2, and 3, the bottom center concave wall portion 17 passes through the container central axis OO, extends upward from the lower end portion 19, and tapers in a tapered shape. It is composed of a peripheral wall portion 22 having a circumferential shape and a top wall portion 23 continuous with the upper end portion of the peripheral wall portion 22, and when the first plate surface portion 18 moves in the vertical direction of the container, the bottom center concave wall portion 17 is formed. Will move in the vertical direction of the container along with the second plate surface portion 20.

このように減圧吸収手段14では、底中央凹壁部17の周りに環状にした第一板面部18と第二板面部20とが同心円状に配置していることから、この減圧吸収手段14には底部5の中心(容器中心軸線O−O)に向けての面の広がり方向に、また底中央凹壁部17の周方向に延びる面の広がり方向に張りを持った板状物が存在することとなる。 As described above, in the decompression absorbing means 14, since the first plate surface portion 18 and the second plate surface portion 20 formed in an annular shape around the bottom central concave wall portion 17 are arranged concentrically, the decompression absorbing means 14 is used. There is a plate-like object having tension in the spreading direction of the surface toward the center of the bottom portion 5 (container center axis OO) and in the spreading direction of the surface extending in the circumferential direction of the bottom central concave wall portion 17. It will be.

そして上記張りを持つ第一板面部18が、上述したように立ち上がり周壁部12の上端部13に対して、この上端部13を中心にして容器上下方向に回動可能に容器中心側に向かって容器下方に傾斜しており、容器1の内圧が減じられていくとき(容器内が減圧される容器内圧力変化時)に、接地面15から第二板面部20までの距離が小となっている下位置状態24から、接地面15から第二板面部20までの距離が大となっている上位置状態25へと、自己変形によって、反転凹入して、前記距離が一気に大となり、収容物が冷却された状態でキャップを開栓し大気解放圧になっても反転凹入状態は維持されるように設けられている。 Then, as described above, the first plate surface portion 18 having the tension is rotatably oriented in the vertical direction of the container with respect to the upper end portion 13 of the rising peripheral wall portion 12 toward the container center side. It is inclined downward from the container, and when the internal pressure of the container 1 is reduced (when the pressure inside the container is depressurized), the distance from the ground contact surface 15 to the second plate surface portion 20 becomes small. From the lower position state 24, which is present, to the upper position state 25, where the distance from the ground contact surface 15 to the second plate surface portion 20 is large, the container is inverted and recessed by self-deformation, and the distance becomes large at once and is accommodated. It is provided so that the inverted recessed state is maintained even when the cap is opened while the object is cooled and the pressure is released to the atmosphere.

即ち、減圧吸収手段14は、容器内の圧力が減圧される方向に変化する容器内圧力変化時に、第一板面部18が接地面15に近い下位置から、接地面15に対して離れている上位置へと瞬時に移動するように設けられており、図4のグラフに示すように減圧度に対する接地面15からの距離の変動が自己変形で後述する図4のdに示すような段状に変化する変形動作を行なうものである。 That is, in the decompression absorbing means 14, when the pressure inside the container changes in the direction in which the pressure inside the container is reduced, the first plate surface portion 18 is separated from the ground surface 15 from a lower position close to the ground surface 15. It is provided so as to move to the upper position instantly, and as shown in the graph of FIG. 4, the fluctuation of the distance from the ground plane 15 with respect to the degree of decompression is self-deformation and has a stepped shape as shown in d of FIG. It performs a deformation operation that changes to.

下位置から上位置へと瞬時に移動する仕組みを説明すると次の通りである。図2、3に示されているように下方に向けて傾斜した環状の第一板面部18には、容器中心軸周方向に配置の連結部21を介して環状の第二板面部20が連続していて、この第二板面部20は、接地面15に平行に、すなわち容器中心軸O−Oに直交する方向に配された板材であるので、減圧される時に容器上方への引き上げ力を受ける第一板面部18の上方移動を抑止する方向に抗力を生じる抵抗部材の役割を担うものである。 The mechanism for instantaneously moving from the lower position to the upper position is as follows. As shown in FIGS. 2 and 3 , the annular first plate surface portion 18 inclined downward is continuous with the annular second plate surface portion 20 via the connecting portion 21 arranged in the circumferential direction of the container center axis. Since the second plate surface portion 20 is a plate material arranged parallel to the ground plane 15, that is, in the direction orthogonal to the container central axis OO, the pulling force upward of the container is applied when the pressure is reduced. It plays the role of a resistance member that generates a resistance force in the direction of suppressing the upward movement of the first plate surface portion 18 to be received.

そして、充填直後の圧力から減圧が進んで、第一板面部18が受ける引き上げ力が、第二板面部20からの抗力を上回ったときに、この第一板面部18が上記立ち上がり周壁部12の上端部13を中心にして上方に一気に回動し、よって
図2に示されているように、立ち上がり周壁部12の上端部13を中心に下方に向けて傾斜する第一板面部18と容器中心軸周方向に配置され下方に向けて断面形状が凸となる湾曲した形状になっている状態の連結部21と接地面15に平行な第二板面部20と底中央凹壁部17とからなる下位置状態24から、
容器内上方に傾斜する前記第一板面部18と容器中心軸周方向に配置されて上方に向けて断面形状が凸となる湾曲した形状になっている連結部21と接地面15に平行な前記第二板面部20と底中央凹壁部17とからなる上位置状態25に瞬時に移動する自己変形が行われるようにしている。
Then, when the pressure is reduced from the pressure immediately after filling and the pulling force received by the first plate surface portion 18 exceeds the drag force from the second plate surface portion 20, the first plate surface portion 18 rises to the peripheral wall portion 12. once it rotated upward by the upper end portion 13 to the center, thus,
As shown in FIG. 2, the first plate surface portion 18 which is inclined downward with respect to the upper end portion 13 of the rising peripheral wall portion 12 and the container center axis are arranged in the circumferential direction and the cross-sectional shape is convex downward. From the lower position state 24 consisting of the connecting portion 21 in a curved shape, the second plate surface portion 20 parallel to the ground contact surface 15, and the bottom center concave wall portion 17 .
The first plate surface portion 18 that is inclined upward in the container, the connecting portion 21 that is arranged in the circumferential direction of the container center axis and has a curved cross-sectional shape that is convex upward, and the above-mentioned parallel to the ground contact surface 15. The self-deformation that instantly moves to the upper position state 25 including the second plate surface portion 20 and the bottom center concave wall portion 17 is performed.

特に減圧吸収手段14では、第一板面部18と連結部21と第二板面部20とが同心状に配置されているので、容器内の圧力が減圧される容器内圧力変化時に起きる変形動作の推移はつぎのようになる。 In particular, in the decompression absorbing means 14, since the first plate surface portion 18, the connecting portion 21, and the second plate surface portion 20 are arranged concentrically, the deformation operation that occurs when the pressure inside the container is reduced and the pressure inside the container changes. The transition is as follows.

(底深さグラフ)
上記実施の形態よりなる容器1の減圧吸収手段14の変動の形態を以下に示す。図4は内圧変化時の深さの推移を示すグラフであり、図5に示すように底中央凹壁部17における天壁部23の下面中央(ボトル底部のゲート位置に相当する箇所)から接地面15までの距離を底深さAとし、第二板面部20の下面から接地面15までの距離を底深さBとして、それぞれの内圧変化時の底深さの推移を示している。
(Bottom depth graph)
The variation of the decompression absorption means 14 of the container 1 according to the above embodiment is shown below. FIG. 4 is a graph showing the transition of the depth when the internal pressure changes, and as shown in FIG. 5, the bottom center concave wall portion 17 is in contact with the bottom center of the top wall portion 23 (the portion corresponding to the gate position at the bottom of the bottle). The distance to the ground 15 is defined as the bottom depth A, and the distance from the lower surface of the second plate surface portion 20 to the ground surface 15 is defined as the bottom depth B, indicating the transition of the bottom depth when the internal pressure changes.

図4のグラフにおいて縦軸は底深さ(mm)であり、横軸はボトル内圧(kPa)である。そして減圧吸収手段14の変動の形態を表しているグラフにおいて、まず推移aの部分は、減圧吸収手段14が下位置状態24であって容器1に対して容器内の減圧を行なっていて、その減圧を進めていく負圧状態下での容器内圧力変化時の底高さの推移である。推移aの開始点は、容器内の圧力と容器外の気圧とは同じである。 In the graph of FIG. 4, the vertical axis is the bottom depth (mm) and the horizontal axis is the bottle internal pressure (kPa). Then, in the graph showing the variation form of the decompression absorption means 14, first, in the portion of transition a, the decompression absorption means 14 is in the lower position state 24 and the container 1 is depressurized in the container. It is the transition of the bottom height when the pressure inside the container changes under the negative pressure state where the decompression is promoted. The starting point of transition a is the same as the pressure inside the container and the air pressure outside the container.

推移bの部分は、推移aに続いて、容器内の圧力を容器外の気圧に対して負圧の状態で容器内の負圧レベルを下げて昇圧を行なっていて、その昇圧を進めてゆき、容器内圧力が容器外圧力に対して陽圧となる状態までの容器内圧力変化時の底高さの推移である。 In the part of transition b, following transition a, the pressure inside the container is pressurized with respect to the air pressure outside the container by lowering the negative pressure level inside the container, and the pressure is increased. This is the transition of the bottom height when the pressure inside the container changes until the pressure inside the container becomes positive with respect to the pressure outside the container.

推移cの部分は、推移bに続いて、容器内の圧力が容器外の気圧に対して陽圧の状態で容器内の昇圧をさらに行なっていて、その昇圧を進めていく陽圧状態下での容器内圧力変化時の底高さの推移を示している。 In the part of transition c, following transition b, the pressure inside the container is further increased in a positive pressure state with respect to the atmospheric pressure outside the container, and the pressure is further increased in a positive pressure state. It shows the transition of the bottom height when the pressure inside the container changes.

(段状の推移d)
そして上記推移a中で示されているように容器内の圧力が容器外の気圧に対して低い圧力となっている負圧の状態下で、容器内の減圧が進んでいるときに、距離変動の段状推移dが生じるように、接地面15からの距離の変動が自己変形によって段状に変化する変形動作を減圧吸収手段14が行なって、下位置状態24から上位置状態25へと急激に変化することが示されている。
(Stepped transition d)
Then, as shown in the above transition a, the distance fluctuates when the decompression inside the container is progressing under the negative pressure state where the pressure inside the container is lower than the air pressure outside the container. The decompression absorbing means 14 performs a deformation operation in which the fluctuation of the distance from the ground contact surface 15 changes in a stepwise manner due to self-deformation so that the stepwise transition d of is suddenly changed from the lower position state 24 to the upper position state 25. It has been shown to change to.

(段状の推移e)
また上記推移c中で示されているように容器内の圧力が容器外の気圧に対して高い圧力となっている陽圧の状態下で、容器内の昇圧が進んでいるときに、距離変動の段状推移eが生じるように、接地面15からの距離の変動が自己変形によって段状に変化する変形動作を減圧吸収手段14が行なって、上位置状態25から下位置24へと急激に変化することが示されている。この図より、減圧により急激に距離変動した状態は、キャップを開き容器内圧が大気圧と同じになった状態(ボトル内圧0kPa)では反転前の元の位置に戻らず、凹入変化した状態(図2において上記上位置状態25で示されている状態)を維持しており、更に加圧することにより元の状態に戻ることがわかる。
(Stepped transition e)
Further, as shown in the above transition c, the distance fluctuates when the pressure inside the container is increasing under the positive pressure state where the pressure inside the container is higher than the air pressure outside the container. The decompression absorbing means 14 performs a deformation operation in which the fluctuation of the distance from the ground contact surface 15 changes in a stepwise manner due to self-deformation so that the stepped transition e of the above position is suddenly changed from the upper position state 25 to the lower position 24. It has been shown to change. From this figure, in the state where the distance suddenly fluctuates due to decompression, when the cap is opened and the internal pressure of the container becomes the same as the atmospheric pressure (bottle internal pressure 0 kPa), it does not return to the original position before reversal, and it is in a recessed state ( It can be seen that the state shown in the upper position state 25 in FIG. 2) is maintained, and the original state is restored by further pressurizing.

底部5に上記減圧吸収手段14を有する本発明の合成樹脂製容器1においては、高温の収容物を収容してキャッピングした後に、その収容物が冷える方向に温度変化して容器内の圧力が減圧される状態となる。そして、本容器1では、減圧吸収手段14が、接地面に近い下位置から、接地面から離れる上位置へと徐々に変化するのではなく、上述したように一気に急激に変化するようにしている。これによって、胴部の周壁部に減圧力が継続してかかることでの凹みや変形が継続的に形成されることがなく、容器の外観を損なうことがないという効果を有するものである。 In the synthetic resin container 1 of the present invention having the decompression absorbing means 14 at the bottom 5, after accommodating and capping a high-temperature container, the temperature of the container changes in the direction of cooling and the pressure inside the container is reduced. It will be in a state of being. Then, in the present container 1, the decompression absorbing means 14 does not gradually change from the lower position close to the ground plane to the upper position away from the ground plane, but suddenly changes as described above. .. As a result, there is no continuous formation of dents or deformations due to the continuous application of the depressurizing force to the peripheral wall portion of the body portion, and there is an effect that the appearance of the container is not spoiled.

充填量300ml用の合成樹脂製容器1、充填量500ml用の合成樹脂製容器1において、上記立ち上がり周壁部12と減圧吸収手段14の第一板面部18との間の角度θ1、水平面に対してこの第一板面部18の容器中心側下方への傾斜の角度(俯角)θ2、第一板面部18の傾斜方向に沿った長さDについて例を挙げれば、以下に示す値の組み合わせとすることが良好である。 In the synthetic resin container 1 for a filling amount of 300 ml and the synthetic resin container 1 for a filling amount of 500 ml, the angle θ1 between the rising peripheral wall portion 12 and the first plate surface portion 18 of the decompression absorbing means 14 with respect to the horizontal plane. For example, the angle of inclination (depression angle) θ2 of the first plate surface portion 18 downward toward the center of the container and the length D along the inclination direction of the first plate surface portion 18 should be a combination of the values shown below. Is good.

図6において、立ち上がり周壁部12と減圧吸収持手段14の第一板面部18との間の角度をθ1、この第一板面部18の容器中心側下方への傾斜の角度をθ2、第一板面部18の傾斜方向に沿った長さをDとして示している。また充填量300ml用の合成樹脂製容器1ではボトル外径が60mm、減圧吸収手段14の径が49mmであり、充填量500ml用の合成樹脂製容器1ではボトル外径が72mm、減圧吸収手段14の径が60mmである。 In FIG. 6, the angle between the rising peripheral wall portion 12 and the first plate surface portion 18 of the decompression absorbing means 14 is θ1, the angle of inclination of the first plate surface portion 18 downward on the container center side is θ2, and the first plate. The length of the surface portion 18 along the inclination direction is shown as D. Further, the synthetic resin container 1 for a filling amount of 300 ml has a bottle outer diameter of 60 mm and the diameter of the decompression absorbing means 14 is 49 mm, and the synthetic resin container 1 for a filling amount of 500 ml has a bottle outer diameter of 72 mm and the decompression absorbing means 14 The diameter of is 60 mm.

(300ml容器)
θ1=70°、θ2=25°、D=10mm
θ1=78°、θ2=17°、D=9mm
θ1=85°、θ2=8°、D=9mm
(300 ml container)
θ1 = 70 °, θ2 = 25 °, D = 10mm
θ1 = 78 °, θ2 = 17 °, D = 9mm
θ1 = 85 °, θ2 = 8 °, D = 9mm

(500ml容器)
θ1=77°、θ2=18°、D=12mm
θ1=82°、θ2=13°、D=12mm
θ1=87°、θ2=8°、D=11mm
(500 ml container)
θ1 = 77 °, θ2 = 18 °, D = 12mm
θ1 = 82 °, θ2 = 13 °, D = 12mm
θ1 = 87 °, θ2 = 8 °, D = 11mm

本発明において、減圧により第一板面部18が反転回動して底壁部10が容器1の上方へと移動することによって容器内容積が減少し減圧を吸収するが、底壁部10の移動による内容積の変化は、上記立ち上がり周壁部12と減圧吸収持手段14の第一板面部18との間の角度、この第一板面部18の容器中心側下方への傾斜の角度、第一板面部18の傾斜方向に沿った長さ等によりおおむね決まるため、かかる数値は、充填温度条件や、容器の大きさ、容器の肉厚等強度にかかわる条件に応じて好適数値に決定されるものであり限定されるものではないが、本発明においては、特に、容器形状が250〜1000mlのボトル、特に300〜500mlのボトルにおいては、反転部位のθ2が7〜26°の範囲、より好適には8〜25°が適しており、この範囲を超えて小さいと、減圧により変形したときの自己変形状態が安定せず、また前記範囲を超えて大きすぎると、自己変形による反転のために、より大きな減圧力を要し、容器の他の部位に好ましくない変形が生じる恐れがある。 In the present invention, the first plate surface portion 18 reverses and rotates due to the depressurization, and the bottom wall portion 10 moves upward of the container 1 to reduce the internal volume of the container and absorb the decompression, but the movement of the bottom wall portion 10 The change in the internal volume due to the above is the angle between the rising peripheral wall portion 12 and the first plate surface portion 18 of the decompression absorbing means 14, the angle of inclination of the first plate surface portion 18 downward toward the center of the container, and the first plate. Since it is generally determined by the length along the inclination direction of the surface portion 18, such a numerical value is determined to be a suitable numerical value according to the filling temperature condition, the size of the container, the wall thickness of the container, and other conditions related to strength. Although not limited, in the present invention, particularly in a bottle having a container shape of 250 to 1000 ml, particularly in a bottle having a container shape of 300 to 500 ml, θ2 of the inversion site is in the range of 7 to 26 °, more preferably. 8 to 25 ° is suitable, and if it is smaller than this range, the self-deformation state when deformed by decompression is not stable, and if it is too large beyond the above range, it becomes more due to inversion due to self-deformation. It requires a large decompression force and may cause unfavorable deformation in other parts of the container.

そして、第一板面部18の傾斜角度を水平面に対して上述の角度とすることで、減圧時の容器内方への反転が容器の他の部位への影響を与えることなくより良好に進み、かつその形状が大気解放圧状態でも良好に維持され、さらに、反転による容器内容積の減少を適宜に大きく設定することができるため、十分な減圧吸収効果を得ることができるという効果を有する。 Then, by setting the inclination angle of the first plate surface portion 18 to the above-mentioned angle with respect to the horizontal plane, the inversion of the first plate surface portion 18 inward of the container proceeds better without affecting other parts of the container. Moreover, the shape is well maintained even in the state of open pressure to the atmosphere, and the decrease in the internal volume of the container due to inversion can be set appropriately large, so that there is an effect that a sufficient decompression absorption effect can be obtained.

図7は容器底部の第一板面部18に渦巻状に間隔をおいて容器内方に向けて凸の突起部26を設けた形状を示している。本発明においては、第一板面部18が反転する際、板面は変形するが、その際の変形の起点となり、力を分散させて、より変形し易く、また、変形によって板面に好ましくない変形痕等がのこらないようにする効果を有する。このような突起部26を第二板面部20に複数個配することにより第二板面部20を含めた変形においても前記と同様の効果を有するものである。 FIG. 7 shows a shape in which convex protrusions 26 are provided on the first plate surface 18 at the bottom of the container at intervals in a spiral shape toward the inside of the container. In the present invention, when the first plate surface portion 18 is inverted, the plate surface is deformed, but it becomes the starting point of the deformation at that time, disperses the force, is more easily deformed, and is not preferable to the plate surface due to the deformation. It has the effect of preventing deformation marks and the like from remaining. By arranging a plurality of such protrusions 26 on the second plate surface portion 20, the same effect as described above can be obtained even in the deformation including the second plate surface portion 20.

1…合成樹脂製容器
4…胴部
5…底部
6…胴部の周壁部
9…底部外周壁部
10…底壁部
11…接地部
12…立ち上がり周壁部
13…立ち上がり周壁部の上端部
14…減圧吸収手段
15…接地面
17…底中央凹壁部
18…第一板面部
19…底中央凹壁部の下端部
20…第二板面部
21…連結部
22…底中央凹壁部の周壁部
23…底中央凹壁部の天壁部
24…下位置状態
25…上位置状態
26…突起部
1 ... Synthetic resin container 4 ... Body 5 ... Bottom 6 ... Peripheral wall of the body 9 ... Bottom outer wall 10 ... Bottom wall 11 ... Grounding 12 ... Rising peripheral wall 13 ... Upper end of rising peripheral wall 14 ... Decompression absorption means 15 ... Grounding surface 17 ... Bottom center concave wall 18 ... First plate surface 19 ... Bottom center concave wall 20 ... Second plate surface 21 ... Connecting 22 ... Bottom center concave wall peripheral wall 23 ... Top wall part of the bottom center concave wall part 24 ... Lower position state 25 ... Upper position state 26 ... Protrusion

Claims (1)

口部(2)と肩部(3)と胴部(4)と底部(5)とからなる合成樹脂製の容器であり、前記底部(5)は底部外周壁部(9)と底壁部(10)とからなり、
前記底壁部(10)は、この底壁部(10)の外周に位置する環状の接地部分の容器径方向の内側に連続して上方に向けて立ち上がった立ち上がり周壁部(12)を有し、
底壁部(10)での前記立ち上がり周壁部(12)に囲まれた壁領域が上下方向に移動するように変形して、容器を据え置く接地面(15)と前記壁領域との距離が変化可能とされている合成樹脂製容器(1)において、
底壁部(10)での立ち上がり周壁部(12)に囲まれた前記壁領域に、
容器内が減圧される容器内圧力変化時に、自己変形によって容器内上方に反転凹入して、容器内の減圧を吸収するとともに、容器内圧力を大気解放圧にしたときに、前記反転凹入形状が維持される減圧吸収手段(14)が設けられていて、
前記減圧吸収手段(14)は、
前記立ち上がり周壁部(12)の上端部(13)から容器中心側での下方に向けて傾斜していて、立ち上がり周壁部(12)の前記上端部(13)を中心にして上下方向に回動可能とされている環状の第一板面部(18)と、
上方に向けて凸とされて容器中心軸が通る底中央凹壁部(17)と、
前記底中央凹壁部(17)の下端部(19)から立ち上がり周壁部(12)側に向けて容器中心軸に直交する方向で接地面(15)に平行にして延設されて前記第一板面部(18)の容器径方向の内側に連結部(21)を介して連接し、容器内が減圧される時に容器上方への引き上げ力を受ける第一板面部(18)の上方への反転凹入移動を抑止する方向に抗力を生じる環状の第二板面部(20)とからなり、
第一板面部(18)が受ける前記引き上げ力が、第二板面部(20)からの前記抗力を上回ったときに、前記第一板面部(18)が前記立ち上がり周壁部(12)の上端部(13)を中心に下方に向けて傾斜して容器中心軸周方向に配置の前記連結部(21)が下方に向けて断面形状が凸となる湾曲した形状になっている状態から、前記第一板面部(18)が容器内上方に傾斜した状態で、前記容器中心軸周方向に配置の連結部(21)が上方に向けて断面形状が凸となる湾曲した形状になって反転凹入回動し、この第一板面部(18)と前記第一板面部(18)に前記連結部(21)を介して連接する第二板面部(20)と底中央凹壁部(17)とが容器上方に反転凹入移動するとともに、
容器内圧力を大気解放圧にしたときに、容器内上方に傾斜した状態の前記第一板面部(18)と上方に向けて断面形状が凸となる湾曲した前記連結部(21)と第一板面部(18)に前記連結部(21)を介して連接する第二板面部(20)と底中央凹壁部(17)とからなる前記反転凹入状態が維持される構成を有することを特徴とする合成樹脂製容器。
It is a container made of synthetic resin consisting of a mouth (2) , a shoulder (3) , a body (4), and a bottom (5) , and the bottom (5) is a bottom outer peripheral wall (9) and a bottom wall. It consists of (10)
The bottom wall portion (10) has a rising peripheral wall portion (12) that continuously rises upward in the container radial direction of an annular ground contact portion located on the outer periphery of the bottom wall portion (10). ,
The wall area surrounded by the rising peripheral wall portion (12) on the bottom wall portion (10) is deformed so as to move in the vertical direction, and the distance between the ground contact surface (15) on which the container is placed and the wall region changes. In the possible synthetic resin container (1)
In the wall area surrounded by the rising peripheral wall portion (12 ) at the bottom wall portion (10) ,
When the pressure inside the container is decompressed, the pressure inside the container is changed by self-deformation, and the pressure inside the container is reversed to absorb the decompression inside the container. A decompression absorbing means (14) that maintains its shape is provided.
The decompression absorption means (14)
It is inclined downward from the upper end portion (13) of the rising peripheral wall portion (12) on the container center side, and rotates in the vertical direction around the upper end portion (13) of the rising peripheral wall portion (12). An annular first plate surface (18) that is possible, and
The bottom central concave wall (17), which is convex upward and through which the central axis of the container passes,
From the lower end portion (19) of the bottom central concave wall portion (17), the first portion is extended in a direction orthogonal to the container central axis toward the rising peripheral wall portion (12) side and parallel to the ground contact surface (15). The first plate surface portion (18), which is connected to the inside of the plate surface portion (18) in the container radial direction via the connecting portion (21) and receives a pulling force upward of the container when the inside of the container is depressurized, is inverted upward. It consists of an annular second plate surface (20) that generates a resistance force in the direction of suppressing dented movement.
When the pulling force received by the first plate surface portion (18) exceeds the drag force from the second plate surface portion (20), the first plate surface portion (18) becomes the upper end portion of the rising peripheral wall portion (12). From a state in which the connecting portion (21), which is inclined downward with respect to (13) and arranged in the circumferential direction of the center axis of the container, has a curved shape in which the cross-sectional shape is convex downward. In a state where the one plate surface portion (18) is inclined upward in the container, the connecting portion (21) arranged in the circumferential direction of the central axis of the container becomes a curved shape in which the cross-sectional shape is convex upward and is inverted and recessed. A second plate surface portion (20) and a bottom center concave wall portion (17) that rotate and are connected to the first plate surface portion (18) and the first plate surface portion (18) via the connecting portion (21). Moves upside down in the container and moves
When the pressure inside the container is set to the atmospheric release pressure, the first plate surface portion (18) in a state of being inclined upward in the container and the curved connecting portion (21) having a convex cross-sectional shape upward are the first. It has a configuration in which the inverted recessed state is maintained, which is composed of a second plate surface portion (20) connected to the plate surface portion (18) via the connecting portion (21) and a bottom center concave wall portion (17). Characterized synthetic resin container.
JP2016199296A 2016-10-07 2016-10-07 Synthetic resin container Active JP6830235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016199296A JP6830235B2 (en) 2016-10-07 2016-10-07 Synthetic resin container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016199296A JP6830235B2 (en) 2016-10-07 2016-10-07 Synthetic resin container

Publications (2)

Publication Number Publication Date
JP2018058630A JP2018058630A (en) 2018-04-12
JP6830235B2 true JP6830235B2 (en) 2021-02-17

Family

ID=61909634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016199296A Active JP6830235B2 (en) 2016-10-07 2016-10-07 Synthetic resin container

Country Status (1)

Country Link
JP (1) JP6830235B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290772A (en) * 2006-04-27 2007-11-08 Hokkai Can Co Ltd Synthetic resin bottle and synthetic resin bottle manufacturing method
JP5826020B2 (en) * 2011-12-27 2015-12-02 株式会社吉野工業所 Bottle
US9994378B2 (en) * 2011-08-15 2018-06-12 Graham Packaging Company, L.P. Plastic containers, base configurations for plastic containers, and systems, methods, and base molds thereof

Also Published As

Publication number Publication date
JP2018058630A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
US8328033B2 (en) Hot-fill container
US8596479B2 (en) Hot-fill container
US8308007B2 (en) Hot-fill container
EP2744715B1 (en) Plastic containers, and systems, methods, and base molds thereof
CA2960638C (en) Method and system for handling containers
US8651307B2 (en) Hot-fill container
EP3206956B1 (en) Container with base multi-function
JP6830235B2 (en) Synthetic resin container
JP2013079096A (en) Container made of synthetic resin
JP6894085B2 (en) Nitrogen-filled polyester resin bottle for hot pack and nitrogen-filled filling method for hot pack contents
JP2004067128A (en) Resin-made packaging container
JP2021098522A (en) Container and cap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210112

R150 Certificate of patent or registration of utility model

Ref document number: 6830235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250