JP6830051B2 - Method for producing high-purity trifluoromethyl group-substituted aromatic ketone - Google Patents

Method for producing high-purity trifluoromethyl group-substituted aromatic ketone Download PDF

Info

Publication number
JP6830051B2
JP6830051B2 JP2017197648A JP2017197648A JP6830051B2 JP 6830051 B2 JP6830051 B2 JP 6830051B2 JP 2017197648 A JP2017197648 A JP 2017197648A JP 2017197648 A JP2017197648 A JP 2017197648A JP 6830051 B2 JP6830051 B2 JP 6830051B2
Authority
JP
Japan
Prior art keywords
substituted aromatic
trifluoromethyl group
aromatic ketone
purity
grignard reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017197648A
Other languages
Japanese (ja)
Other versions
JP2019069922A (en
Inventor
仁郎 中谷
仁郎 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Fine Chemicals Co Ltd
Original Assignee
Toray Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Fine Chemicals Co Ltd filed Critical Toray Fine Chemicals Co Ltd
Priority to JP2017197648A priority Critical patent/JP6830051B2/en
Publication of JP2019069922A publication Critical patent/JP2019069922A/en
Application granted granted Critical
Publication of JP6830051B2 publication Critical patent/JP6830051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、高純度トリフルオロメチル基置換芳香族ケトンの製造方法に関する。特に工業的に優れた高純度トリフルオロメチル基置換芳香族ケトンを製造する方法に関する。 The present invention relates to a method for producing a high-purity trifluoromethyl group-substituted aromatic ketone. In particular, the present invention relates to a method for producing an industrially excellent high-purity trifluoromethyl group-substituted aromatic ketone.

トリフルオロメチル基置換芳香族ケトンは、ファインケミカル、医農薬原料、樹脂・プラスチック原料、電子情報材料、光学材料など有用な化合物である。トリフルオロメチル基置換芳香族ケトンは、多岐にわたる分野の工業用途で有用である。特に医農薬原料として、トリフルオロメチル基置換芳香族ケトンの純度が99%を超える極めて高純度であることが求められる。 Trifluoromethyl group-substituted aromatic ketones are useful compounds such as fine chemicals, raw materials for medical and agricultural chemicals, raw materials for resins and plastics, electronic information materials, and optical materials. Trifluoromethyl group-substituted aromatic ketones are useful in a wide range of industrial applications. In particular, as a raw material for medical and agricultural chemicals, the purity of a trifluoromethyl group-substituted aromatic ketone is required to be extremely high, exceeding 99%.

特許文献1は、トリフルオロメチル基置換芳香族ケトンの製造方法として、ハロゲン置換ベンゾトリフルオライド化合物をマグネシウム金属と反応させて、グリニャール試薬に転化し、該グリニャール試薬を酸無水物と反応させた後、塩化水素水溶液で加水分解処理し、その粗液からトリフルオロメチル基置換芳香族ケトンを蒸留で取得することを記載する。 Patent Document 1 describes, as a method for producing a trifluoromethyl group-substituted aromatic ketone, a halogen-substituted benzotrifluoride compound is reacted with a magnesium metal, converted into a Grignard reagent, and the Grignard reagent is reacted with an acid anhydride. , Hydrolyze with an aqueous hydrogen chloride solution and obtain trifluoromethyl group-substituted aromatic ketone by distillation from the crude solution.

しかし、特許文献1では、得られるトリフルオロメチル基置換芳香族ケトンの純度が99%を越えるものが得られず、蒸留収率も66〜72%と低くなっていた。トリフルオロメチル基置換芳香族ケトンを製造するとき、不純物として脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルが副生する。これら不純物は、目的物であるトリフルオロメチル基置換芳香族ケトンと沸点が近いことから、蒸留分離が難しく、高純度の目的物を得ることを困難にする原因であった。また、脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルを蒸留で除去し、高純度の目的物を得ようとすると、目的物の蒸留ロスが大きくなり、蒸留収率が大きく低下させていた。 However, in Patent Document 1, the obtained trifluoromethyl group-substituted aromatic ketone was not obtained with a purity exceeding 99%, and the distillation yield was as low as 66 to 72%. When producing a trifluoromethyl group-substituted aromatic ketone, fatty acid halogenated butyl ester and fatty acid trifluoromethylphenyl ester are by-produced as impurities. Since these impurities have a boiling point close to that of the target trifluoromethyl group-substituted aromatic ketone, it is difficult to separate by distillation, which makes it difficult to obtain a high-purity target product. Further, when the fatty acid halogenated butyl ester and the fatty acid trifluoromethylphenyl ester are removed by distillation to obtain a high-purity target product, the distillation loss of the target product becomes large and the distillation yield is greatly reduced.

そこで、高収率で、かつ高純度の目的物を得るために、脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルを蒸留前に低減させる方法が望まれていた。 Therefore, in order to obtain a high-yield and high-purity target product, a method of reducing the fatty acid halogenated butyl ester and the fatty acid trifluoromethylphenyl ester before distillation has been desired.

国際公開2016/043079号公報International Publication 2016/043079

本発明の目的は、高純度のトリフルオロメチル基置換芳香族ケトンを、高い収率で製造する方法を提供することである。 An object of the present invention is to provide a method for producing a high-purity trifluoromethyl group-substituted aromatic ketone in a high yield.

本発明の高純度トリフルオロメチル基置換芳香族ケトンの製造方法は、下記一般式(1)で示されるハロゲン置換ベンゾトリフルオライド化合物を

Figure 0006830051
(但し、Xは、ClまたはBrである。)
マグネシウム金属と反応させて、グリニャール試薬に転化し、該グリニャール試薬を酸無水物と反応させた後、酸を含む水溶液で加水分解処理して、下記一般式(2)で示されるトリフルオロメチル基置換芳香族ケトンを生成させた後、
Figure 0006830051
(但し、nは、1〜4の整数である。)
前記反応の副生成物を、塩基を含む水溶液を用いて、相関移動触媒を共存させ、塩基性条件下で加水分解処理することを特徴とする。 The method for producing a high-purity trifluoromethyl group-substituted aromatic ketone of the present invention uses a halogen-substituted benzotrifluoride compound represented by the following general formula (1).
Figure 0006830051
(However, X is Cl or Br.)
It is reacted with a magnesium metal to be converted into a Grignard reagent, the Grignard reagent is reacted with an acid anhydride, and then hydrolyzed with an aqueous solution containing an acid to carry out a trifluoromethyl group represented by the following general formula (2). After generating the substituted aromatic ketone
Figure 0006830051
(However, n is an integer of 1 to 4.)
The by-products of the reaction, with an aqueous solution containing a base, it is allowed to coexist phase transfer catalyst, characterized by hydrolysis under basic conditions.

本発明の高純度トリフルオロメチル基置換芳香族ケトンの製造方法は、トリフルオロメチル基置換芳香族ケトンとの蒸留分離が難しい不純物である脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルを速やかに塩基性条件下で加水分解し、その分解物を水相に移行させ除去することができる。分解処理した油相を蒸留することで、高純度のトリフルオロメチル基置換芳香族ケトンを高い蒸留収率で、取得することができ、工業的に優れた製造方法である。 The method for producing a high-purity trifluoromethyl group-substituted aromatic ketone of the present invention rapidly removes fatty acid halogenated butyl ester and fatty acid trifluoromethylphenyl ester, which are impurities that are difficult to distill and separate from trifluoromethyl group-substituted aromatic ketone. It can be hydrolyzed under basic conditions and the degradation products can be transferred to the aqueous phase and removed. By distilling the decomposed oil phase, a high-purity trifluoromethyl group-substituted aromatic ketone can be obtained with a high distillation yield, which is an industrially excellent production method.

本発明の高純度トリフルオロメチル基置換芳香族ケトンの製造方法により製造されたトリフルオロメチル基置換芳香族ケトンは、ファインケミカル、医農薬原料、樹脂・プラスチック原料、電子情報材料、光学材料などとして用いることができる。 The trifluoromethyl group-substituted aromatic ketone produced by the method for producing a high-purity trifluoromethyl group-substituted aromatic ketone of the present invention is used as a fine chemical, a raw material for medical and agricultural chemicals, a resin / plastic raw material, an electronic information material, an optical material, and the like. be able to.

以下に本発明の詳細を記載する。
本発明の高純度トリフルオロメチル基置換芳香族ケトンの製造方法は、下記一般式(1)で示されるハロゲン置換ベンゾトリフルオライド化合物を出発基質とする。

Figure 0006830051
(但し、Xは、ClまたはBrである。) Details of the present invention will be described below.
The method for producing a high-purity trifluoromethyl group-substituted aromatic ketone of the present invention uses a halogen-substituted benzotrifluoride compound represented by the following general formula (1) as a starting substrate.
Figure 0006830051
(However, X is Cl or Br.)

ハロゲン置換ベンゾトリフルオライド化合物の具体例としては、o−クロロベンゾトリフルオライド、o−ブロモベンゾトリフルオライド、m−クロロベンゾトリフルオライド、m−ブロモベンゾトリフルオライド、p−クロロベンゾトリフルオライド、p−ブロモベンゾトリフルオライドである。好ましくは、o−クロロベンゾトリフルオライド、o−ブロモベンゾトリフルオライドである。 Specific examples of the halogen-substituted benzotrifluoride compound include o-chlorobenzotrifluoride, o-bromobenzotrifluoride, m-chlorobenzotrifluoride, m-bromobenzotrifluoride, p-chlorobenzotrifluoride, and p-bromo. It is a benzotrifluoride. Preferred are o-chlorobenzotrifluoride and o-bromobenzotrifluoride.

本発明において、ハロゲン置換ベンゾトリフルオライド化合物のハロゲン原子をマグネシウム金属と反応させて、グリニャール試薬に転化する。グリニャール試薬への転化反応は、公知の転化反応を利用することができる。 In the present invention, the halogen atom of the halogen-substituted benzotrifluoride compound is reacted with a magnesium metal to convert it into a Grignard reagent. A known conversion reaction can be used for the conversion reaction to the Grignard reagent.

本発明において、用いるマグネシウム金属は、粉末状または削り屑状のものを用いることが好ましい。 In the present invention, the magnesium metal used is preferably in the form of powder or shavings.

本発明において、マグネシウム金属の使用量は、原料ハロゲン置換ベンゾトリフルオライド化合物に対して、0.8〜3モル倍が好ましい。 In the present invention, the amount of the magnesium metal used is preferably 0.8 to 3 mol times that of the raw material halogen-substituted benzotrifluoride compound.

本発明において、マグネシウム金属の表面酸化皮膜をとり、反応性を高めるため、ヨウ素、臭素あるいは、これらを含む安価な化合物を添加することが好ましい。このような化合物の例としては、ヨウ化メチル、臭化メチル、ヨウ化エチル、臭化エチル等が好ましく挙げられる。 In the present invention, it is preferable to add iodine, bromine, or an inexpensive compound containing these in order to remove the surface oxide film of the magnesium metal and enhance the reactivity. Preferable examples of such compounds include methyl iodide, methyl bromide, ethyl iodide, ethyl bromide and the like.

本発明において、グリニャール試薬に転化する反応は、脱水された系で行われる。このため、反応は、事前に脱水した溶媒を用いても良いし、あるいは反応前、溶媒に安価なグリニャール試薬を添加し、溶媒中に含まれる水を除去してもよい。 In the present invention, the reaction of conversion to Grignard reagent is carried out in a dehydrated system. Therefore, in the reaction, a solvent dehydrated in advance may be used, or before the reaction, an inexpensive Grignard reagent may be added to the solvent to remove water contained in the solvent.

本発明のグリニャール試薬製造で用いる溶媒は、反応を効率よく進行させることができる溶媒が使用される。グリニャール試薬製造で用いる溶媒は、テトラヒドロフランである。 As the solvent used in the production of the Grignard reagent of the present invention, a solvent capable of efficiently advancing the reaction is used. The solvent used in the production of Grignard reagents is tetrahydrofuran.

また、溶媒の使用量は、ハロゲン置換ベンゾトリフルオライド化合物またはグリニャール試薬の溶解性やスラリー濃度または反応液の性状に応じ、使用量を決めることが好ましい。溶媒の使用量は、好ましくは、ハロゲン置換ベンゾトリフルオライド化合物に対し1〜100モル倍量である。1モル倍以下だと、グリニャール試薬の収率が低くなることがあり、100モル倍以上だと生産性が悪くなるころがあり、非経済的なプロセスとなる場合がある。 The amount of the solvent used is preferably determined according to the solubility of the halogen-substituted benzotrifluoride compound or the Grignard reagent, the concentration of the slurry, or the properties of the reaction solution. The amount of the solvent used is preferably 1 to 100 mol times the amount of the halogen-substituted benzotrifluoride compound. If it is 1 mol times or less, the yield of Grignard reagent may be low, and if it is 100 mol times or more, the productivity may be deteriorated, which may be an uneconomical process.

本発明のグリニャール試薬製造において、前記一般式(1)で示されるハロゲン置換ベンゾトリフルオライド化合物をマグネシウム金属と反応させ、グリニャール試薬に転化する際に、LiCl(塩化リチウム)を共存させることが好ましい。LiCl共存させることで、グリニャール試薬の生成が速やかに起こり、続く、酸無水物との反応が高収率で起こるためである。 In the production of the Grignard reagent of the present invention, it is preferable that LiCl (lithium chloride) coexists when the halogen-substituted benzotrifluoride compound represented by the general formula (1) is reacted with a magnesium metal and converted into a Grignard reagent. This is because the coexistence of LiCl causes the Grignard reagent to be produced rapidly, and the subsequent reaction with the acid anhydride occurs in a high yield.

本発明において、用いるLiClの量は、ハロゲン置換ベンゾトリフルオライド化合物に対して、好ましくは、0.01〜3モル倍である。より好ましくは、0.05〜1モル倍量である。LiClの量が、ハロゲン置換ベンゾトリフルオライド化合物に対して、0.01〜3モル倍であると、グリニャール試薬の生成が、より速やかに起こり、LiClが反応系に完全に溶解する。 In the present invention, the amount of LiCl used is preferably 0.01 to 3 mol times that of the halogen-substituted benzotrifluoride compound. More preferably, the amount is 0.05 to 1 molar times. When the amount of LiCl is 0.01 to 3 mol times that of the halogen-substituted benzotrifluoride compound, the Grignard reagent is produced more rapidly and LiCl is completely dissolved in the reaction system.

本発明の製造方法においてグリニャール試薬と反応させる酸無水物の具体例としては、無水酢酸、無水プロピオン酸、無水酪酸、無水吉草酸があげられる。本発明の製造方法においてグリニャール試薬と反応させる酸無水物は、好ましくは、無水酢酸、無水プロピオン酸、または、無水酪酸である。 Specific examples of the acid anhydride to be reacted with the Grignard reagent in the production method of the present invention include acetic anhydride, propionic anhydride, butyric anhydride, and valeric anhydride. The acid anhydride to be reacted with the Grignard reagent in the production method of the present invention is preferably acetic anhydride, propionic anhydride, or butyric anhydride.

酸無水物の使用量は、ハロゲン置換ベンゾトリフルオライド化合物1モルに対し、0.5〜10モル倍量用いるのが好ましく、より好ましくは、1モル倍量〜5モル倍量である。0.5モル倍量より少ないと未反応のグリニャール試薬が残存し、収率が低下する場合があり、目的物の単離精製で負荷がかかる場合がある。10モル倍量より多いと未反応の酸無水物が残存し、生産性が悪くなる場合があり、未反応の酸無水物とトリフルオロメチル基置換芳香族ケトンの分離に負荷が大きくなる場合がある。 The amount of the acid anhydride used is preferably 0.5 to 10 mol times, more preferably 1 mol to 5 mol times, with respect to 1 mol of the halogen-substituted benzotrifluoride compound. If the amount is less than 0.5 mol times, the unreacted Grignard reagent may remain, the yield may decrease, and the isolation and purification of the target product may be burdensome. If the amount is more than 10 molar times, unreacted acid anhydride may remain and productivity may be deteriorated, which may increase the load on separation of unreacted acid anhydride and trifluoromethyl group-substituted aromatic ketone. is there.

本発明において、グリニャール試薬と酸無水物の反応は、溶媒を用いても良い。溶媒は、反応を阻害せず、効率よく進行させることができる溶媒が好ましい。溶媒の具体例としては、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、1,3−ジオキサン、1,4−ジオキサン、シクロプロピルメチルエーテル、メチル−ターシャリーブチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ベンゼン、トルエン、キシレンなどが挙げられる。中でも好ましいのは、テトラヒドロフラン、1,3−ジオキサン、シクロプロピルメチルエーテル、ベンゼン、トルエン、キシレン。メシチレンである。 In the present invention, a solvent may be used for the reaction between the Grignard reagent and the acid anhydride. The solvent is preferably a solvent that does not inhibit the reaction and can proceed efficiently. Specific examples of the solvent include diethyl ether, diisopropyl ether, tetrahydrofuran, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dioxane, 1,4-dioxane, cyclopropylmethyl ether. , Methyl-tertiary butyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, benzene, toluene, xylene and the like. Of these, tetrahydrofuran, 1,3-dioxane, cyclopropylmethyl ether, benzene, toluene and xylene are preferable. It is mesitylene.

溶媒の使用量は、グリニャール試薬に対し、0.05〜50重量倍が好ましい。溶媒の使用量が、0.05重量倍以下だと、反応熱を除熱しづらく、反応が暴走してしまう場合がある。50重量倍以上だと生産性が悪い場合がある。 The amount of the solvent used is preferably 0.05 to 50 times by weight with respect to the Grignard reagent. If the amount of the solvent used is 0.05 times by weight or less, it is difficult to remove the heat of reaction, and the reaction may run out of control. If it is 50 times or more by weight, productivity may be poor.

グリニャール試薬と酸無水物の反応方法は、グリニャール試薬溶液中へ酸無水物を含む溶液を投入しても良いし、酸無水物を含む溶液中にグリニャール試薬溶液を投入してもよい。急な発熱反応や反応暴走を防ぐために、投入する溶液を、時間をかけて連続的にまたは分割して間欠的に投入するなど反応系内の温度が設定範囲になるように制御しながら、投入速度を調整することが好ましい。投入に要する時間は、0.5〜6時間が好ましく選ばれる。 As a method for reacting a Grignard reagent with an acid anhydride, a solution containing an acid anhydride may be put into a Grignard reagent solution, or a Grignard reagent solution may be put into a solution containing an acid anhydride. In order to prevent sudden exothermic reaction and reaction runaway, the solution to be added is added while controlling the temperature in the reaction system so that it is within the set range, such as continuously or dividedly added over time. It is preferable to adjust the speed. The time required for charging is preferably 0.5 to 6 hours.

本発明の製造方法において、グリニャール試薬と酸無水物の反応温度は、0〜100℃が好ましく、10〜50℃がさらに好ましい。反応温度が0℃より低いと、反応がほとんど進行せず、例え反応が進行したとしても、途中で停止することがあり、また100℃を超えると、グリニャール試薬が反応する前に熱分解することがあり好ましくない。 In the production method of the present invention, the reaction temperature of the Grignard reagent and the acid anhydride is preferably 0 to 100 ° C, more preferably 10 to 50 ° C. If the reaction temperature is lower than 0 ° C, the reaction hardly proceeds, and even if the reaction proceeds, it may be stopped in the middle, and if it exceeds 100 ° C, the Grignard reagent is thermally decomposed before the reaction. Is not preferable.

本発明の製造方法において、グリニャール試薬と酸無水物の反応時間は、通常、グリニャール試薬溶液と酸無水物を含む溶液を全量混合後、0〜100℃で0.5〜40時間である。 In the production method of the present invention, the reaction time of the Grignard reagent and the acid anhydride is usually 0.5 to 40 hours at 0 to 100 ° C. after mixing the entire amount of the Grignard reagent solution and the solution containing the acid anhydride.

本発明の製造方法において、グリニャール試薬と酸無水物との反応終了後、トリフルオロメチル基置換芳香族ケトンとハロゲン化マグネシウムとからなる塩を形成していることから、これを酸を含む水溶液で加水分解することで、トリフルオロメチル基置換芳香族ケトンが得られる。好ましくは、反応終了液に、塩酸、硝酸、または硫酸などの鉱酸からなる酸を含む水溶液を加え、トリフルオロメチル基置換芳香族ケトンとハロゲン化マグネシウムからなる塩を加水分解し、生成したハロゲン化マグネシウムを水相に除去した後、トリフルオロメチル基置換芳香族ケトンを含んだ油相を取得する方法が好ましい。 In the production method of the present invention, after the reaction between the Grignard reagent and the acid anhydride is completed, a salt composed of a trifluoromethyl group-substituted aromatic ketone and magnesium halide is formed. Therefore, this is prepared with an aqueous solution containing an acid. Hydrolysis gives a trifluoromethyl group-substituted aromatic ketone. Preferably, an aqueous solution containing an acid composed of a mineral acid such as hydrochloric acid, nitric acid, or sulfuric acid is added to the reaction termination solution, and a salt composed of a trifluoromethyl group-substituted aromatic ketone and magnesium halide is hydrolyzed to produce a halogen. A method of obtaining an oil phase containing a trifluoromethyl group-substituted aromatic ketone after removing magnesium oxide into the aqueous phase is preferable.

使用する酸の量は、使用したマグネシウム金属に対し、0.1〜2.0モル倍量が好ましく用いられる。酸の量が0.1モル倍量未満であると、トリフルオロメチル基置換芳香族ケトンとハロゲン化マグネシウムからなる塩が残存することがある。2.0モル倍量を超える過剰の酸を用いると、続く塩基による塩基性条件下での加水分解の際、残存する酸により塩基が消費されてしてしまうことから、過剰の塩基が必要となってしまう。酸水溶液の濃度は、5〜35重量%が好ましく用いられる。 The amount of acid used is preferably 0.1 to 2.0 mol times the amount of the magnesium metal used. If the amount of acid is less than 0.1 molar times, a salt consisting of a trifluoromethyl group-substituted aromatic ketone and magnesium halide may remain. If an excess amount of acid exceeding 2.0 mol times is used, the base will be consumed by the remaining acid during subsequent hydrolysis under basic conditions, so an excess amount of base is required. turn into. The concentration of the aqueous acid solution is preferably 5 to 35% by weight.

酸による加水分解処理の後、下層となる水相を除去して、トリフルオロメチル基置換芳香族ケトンを含んだ油相を取得する。この後、水で水洗することで、残存する酸性水を除去することが好ましい。 After the hydrolysis treatment with an acid, the underlying aqueous phase is removed to obtain an oil phase containing a trifluoromethyl group-substituted aromatic ketone. After that, it is preferable to remove the remaining acidic water by washing with water.

続いて、得られたトリフルオロメチル基置換芳香族ケトンを含んだ油相を塩基を含む水溶液を用いて、塩基性条件下で加水処理する。これにより、目的物であるトリフルオロメチル基置換芳香族ケトンと分離が困難な不純物である脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルを分解除去する。脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルは、下記一般式(3)および(4)で表される副生成物である。

Figure 0006830051
(但し、XはClまたはBr、nは1〜4の整数である。)
Figure 0006830051
(但し、nは1〜4の整数である。) Subsequently, the obtained oil phase containing a trifluoromethyl group-substituted aromatic ketone is hydrolyzed under basic conditions using an aqueous solution containing a base. As a result, the fatty acid halogenated butyl ester and the fatty acid trifluoromethylphenyl ester, which are difficult to separate from the target trifluoromethyl group-substituted aromatic ketone, are decomposed and removed. The fatty acid halogenated butyl ester and the fatty acid trifluoromethylphenyl ester are by-products represented by the following general formulas (3) and (4).
Figure 0006830051
(However, X is Cl or Br, and n is an integer of 1 to 4.)
Figure 0006830051
(However, n is an integer of 1 to 4.)

これらの分解物となる脂肪酸、ハロゲン化ブチルアルコールおよびトリフルオロメチルフェノールは、主に水相側に抽出され、除去される。脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステル以外の不純物で一部油相に残存するものは、トリフルオロメチル基置換芳香族ケトンと物性が大きく異なることから、分離が容易となる。 Fatty acids, butyl alcohol halides and trifluoromethylphenol, which are decomposition products of these substances, are mainly extracted and removed on the aqueous phase side. Some impurities other than the fatty acid halogenated butyl ester and the fatty acid trifluoromethylphenyl ester remaining in the oil phase have significantly different physical properties from the trifluoromethyl group-substituted aromatic ketone, and thus can be easily separated.

本発明で用いる塩基は、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の無機塩基、リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムプロポキシド、ナトリウムプロポキシド、カリウムプロポキシド、リチウムブトキシド、ナトリウムブトキシド、カリウムブトキシド等のアルカリ金属アルコキシド等が挙げられる。その中でも水酸化リチウム、水酸化ナトリウム、水酸化カリウムの無機塩基がより好ましい。 The bases used in the present invention are inorganic bases such as lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium methoxyd, sodium methoxy. Do, potassium methoxydo, lithium ethoxydo, sodium ethoxydo, potassium ethoxydo, lithium propoxide, sodium propoxide, potassium propoxide, lithium butoxide, sodium butoxide, alkali metal alkoxides such as potassium butoxide and the like can be mentioned. Among them, inorganic bases of lithium hydroxide, sodium hydroxide and potassium hydroxide are more preferable.

用いる塩基の量は、用いる酸無水物に対し、1.1モル倍以上用いれば良く、通常は、1.2〜5.0モル倍が好ましく用いられる。 The amount of the base used may be 1.1 mol times or more with respect to the acid anhydride used, and usually 1.2 to 5.0 mol times is preferably used.

トリフルオロメチル基置換芳香族ケトンを含んだ油相を、塩基を含む水溶液を用いて、塩基性条件下で加水処理する際、相関移動触媒の共存下で行うことが好ましい。相関移動触媒を添加し共存させることにより、不純物である脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルの加水分解が促進される。 When the oil phase containing a trifluoromethyl group-substituted aromatic ketone is hydrolyzed under basic conditions using an aqueous solution containing a base, it is preferably carried out in the presence of a phase transfer catalyst. By adding and coexisting with a phase transfer catalyst, hydrolysis of the fatty acid halogenated butyl ester and fatty acid trifluoromethylphenyl ester, which are impurities, is promoted.

本発明において、相関移動触媒とは、第四級アンモニウム塩や第四級ホスホニウム塩が挙げられる。第四級アンモニウム塩としては、テトラメチルアンモニウム、トリメチル−エチルアンモニウム、ジメチルジエチルアンモニウム、トリエチル−メチルアンモニウム、トリプロピル−メチルアンモニウム、トリブチル−メチルアンモニウム、トリオクチル−メチルアンモニウム、テトラエチルアンモニウム、トリメチル−プロピルアンモニウム、トリメチルフェニルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ジアリルジメチルアンモニウム、n−オクチルトリメチルアンモニウム、ステアリルトリメチルアンモニウム、セチルジメチルエチルアンモニウム、テトラプロピルアンモニウム、テトラn−ブチルアンモニウム、β−メチルコリンおよびフェニルトリメチルアンモニウム等の臭化塩、塩化塩、ヨウ化塩、硫酸水素塩および水酸化物等を挙げることができる。特に好ましくは、トリオクチル−メチルアンモニウム、テトラエチルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、テトラn−ブチルアンモニウムの臭化塩、塩化塩、硫酸水素塩および水酸化物である。 In the present invention, examples of the phase transfer catalyst include quaternary ammonium salts and quaternary phosphonium salts. Examples of the quaternary ammonium salt include tetramethylammonium, trimethyl-ethylammonium, dimethyldiethylammonium, triethyl-methylammonium, tripropyl-methylammonium, tributyl-methylammonium, trioctyl-methylammonium, tetraethylammonium, trimethyl-propylammonium, Trimethylphenylammonium, benzyltrimethylammonium, benzyltriethylammonium, diallyldimethylammonium, n-octyltrimethylammonium, stearyltrimethylammonium, cetyldimethylethylammonium, tetrapropylammonium, tetran-butylammonium, β-methylcholine, phenyltrimethylammonium, etc. Bromide, chloride, ammonium salt, ammonium hydrogensulfate, hydroxide and the like can be mentioned. Particularly preferred are trioctyl-methylammonium, tetraethylammonium, benzyltrimethylammonium, benzyltriethylammonium, tetran-butylammonium bromide, chloride, hydrogen sulfate and hydroxide.

また第四級ホスホニウム塩としては、テトラメチルホスホニウム、トリメチル−エチルホスホニウム、ジメチルジエチルホスホニウム、トリエチル−メチルホスホニウム、トリプロピル−メチルホスホニウム、トリブチル−メチルホスホニウム、トリオクチル−メチルホスホニウム、テトラエチルホスホニウム、トリメチル−プロピルホスホニウム、トリメチルフェニルホスホニウム、ベンジルトリメチルホスホニウム、ジアリルジメチルホスホニウム、n−オクチルトリメチルホスホニウム、ステアリルトリメチルホスホニウム、セチルジメチルエチルホスホニウム、テトラプロピルホスホニウム、テトラn−ブチルホスホニウム、フェニルトリメチルホスホニウム、メチルトリフェニルホスホニウム、エチルトリフェニルホスホニウムおよびテトラフェニルホスホニウム等の臭化塩、塩化塩、ヨウ化塩、硫酸水素塩および水酸化物等を挙げることができる。 As the quaternary phosphonium salt, tetramethylphosphonium, trimethyl-ethylphosphonium, dimethyldiethylphosphonium, triethyl-methylphosphonium, tripropyl-methylphosphonium, tributyl-methylphosphonium, trioctyl-methylphosphonium, tetraethylphosphonium, trimethyl-propylphosphonium. , Trimethylphenylphosphonium, benzyltrimethylphosphonium, diallyldimethylphosphonium, n-octyltrimethylphosphonium, stearyltrimethylphosphonium, cetyldimethylethylphosphonium, tetrapropylphosphonium, tetran-butylphosphonium, phenyltrimethylphosphonium, methyltriphenylphosphonium, ethyltriphenyl Examples thereof include bromide salts such as phosphonium and tetraphenylphosphonium, chloride salts, iodide salts, hydrogen sulfate salts and hydroxides.

用いる相関移動触媒の量は、トリフルオロメチル基置換芳香族ケトンに対し、0.001モル倍以上用いれば良く、通常は、0.01〜1.0モル倍が好ましく用いられる。 The amount of the phase transfer catalyst used may be 0.001 mol times or more with respect to the trifluoromethyl group-substituted aromatic ketone, and usually 0.01 to 1.0 mol times is preferably used.

塩基を含む水溶液による加水分解においては、得られた油相に塩基を添加するだけでもよいし、新たに溶媒を追加して使用することもできる。追加する溶媒としては、炭化水素系溶媒が好ましく、例えばヘキサン、2−メチルペンタン、2,2−ジメチルブタン、2,3−ジメチルブタン、ヘプタン、オクタン、イソオクタン、ノナン、トリメチルヘキサン、デカン、ドデカン、ベンゼン、トルエン、キシレン、エチルベンゼン、クメン、メシチレン、シクロヘキシルベンゼン、ジエチルベンゼン、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサンおよびエチルシクロヘキサンなどが挙げられる。 In hydrolysis with an aqueous solution containing a base, the base may be simply added to the obtained oil phase, or a new solvent may be added and used. As the solvent to be added, a hydrocarbon solvent is preferable, and for example, hexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, octane, isooctane, nonane, trimethylhexane, decane, dodecane, etc. Examples thereof include benzene, toluene, xylene, ethylbenzene, cumene, mesitylene, cyclohexylbenzene, diethylbenzene, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane and ethylcyclohexane.

溶媒の使用量は、トリフルオロメチル基置換芳香族ケトン 1モルに対して好ましくは0.05L以上を用いれば良く、0.1Lから10Lがより好ましく用いられる。 The amount of the solvent used may be preferably 0.05 L or more with respect to 1 mol of the trifluoromethyl group-substituted aromatic ketone, and more preferably 0.1 L to 10 L.

本発明において、塩基による加水分解の処理温度は、好ましくは、10〜100℃で行われ、特に20〜70℃が好ましい。 In the present invention, the treatment temperature for hydrolysis with a base is preferably 10 to 100 ° C, particularly preferably 20 to 70 ° C.

処理時間は、通常は24時間以内であるが、脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルの低減状況を追跡し、不純物が殆ど消失した時点を処理の終点とすることが好ましい。 The treatment time is usually within 24 hours, but it is preferable to follow the reduction status of the fatty acid halogenated butyl ester and the fatty acid trifluoromethylphenyl ester and set the time point at which the impurities are almost eliminated as the end point of the treatment.

本発明の製造方法において、製造されるトリフルオロメチル基置換芳香族ケトンは、下記式(2)で示される。

Figure 0006830051
(但し、nは、1〜4の整数である。) The trifluoromethyl group-substituted aromatic ketone produced in the production method of the present invention is represented by the following formula (2).
Figure 0006830051
(However, n is an integer of 1 to 4.)

本発明の製造方法において、製造される高純度トリフルオロメチル基置換芳香族ケトンは、2’-トリフルオロメチルアセトフェノン、2’-トリフルオロメチルプロピオフェノン、2’-トリフルオロメチルブチロフェノン、2’-トリフルオロメチルバレロフェノン、3’-トリフルオロメチルアセトフェノン、3’-トリフルオロメチルプロピオフェノン、3’-トリフルオロメチルブチロフェノン、3’-トリフルオロメチルバレロフェノン、4’-トリフルオロメチルアセトフェノン、4’-トリフルオロメチルプロピオフェノン、4’-トリフルオロメチルブチロフェノン、4’-トリフルオロメチルバレロフェノン、である。好ましくは、2’-トリフルオロメチルアセトフェノン、2’-トリフルオロメチルプロピオフェノン、2’-トリフルオロメチルブチロフェノンである。 The high-purity trifluoromethyl group-substituted aromatic ketone produced in the production method of the present invention is 2'-trifluoromethylacetophenone, 2'-trifluoromethylpropiophenone, 2'-trifluoromethylbutyrophenone, 2'. -Trifluoromethylvalerophenone, 3'-trifluoromethylacetophenone, 3'-trifluoromethylpropiophenone, 3'-trifluoromethylbutyrophenone, 3'-trifluoromethylvalerophenone, 4'-trifluoromethylacetophenone, 4'-trifluoromethylpropiophenone, 4'-trifluoromethylbutyrophenone, 4'-trifluoromethylvalerophenone. Preferably, it is 2'-trifluoromethylacetophenone, 2'-trifluoromethylpropiophenone, and 2'-trifluoromethylbutyrophenone.

本発明の反応液から目的のトリフルオロメチル基置換芳香族ケトンを単離する方法は、蒸留法が好ましく用いられる。例えば、単蒸留、精留、減圧蒸留、常圧蒸留が好ましく、より好ましくは、減圧蒸留が用いられる。本発明の製造方法で得られたトリフルオロメチル基置換芳香族ケトンの純度は、好ましくは99.0%以上、より好ましくは99.2%以上100.0%以下、更に好ましくは99.5%以上100.0%以下であるとよい。 As a method for isolating the desired trifluoromethyl group-substituted aromatic ketone from the reaction solution of the present invention, a distillation method is preferably used. For example, simple distillation, rectification, vacuum distillation, atmospheric distillation are preferable, and vacuum distillation is more preferable. The purity of the trifluoromethyl group-substituted aromatic ketone obtained by the production method of the present invention is preferably 99.0% or more, more preferably 99.2% or more and 100.0% or less, still more preferably 99.5%. It is preferable that it is 100.0% or more and 100.0% or less.

本発明の製造方法により得られた高純度トリフルオロメチル基置換芳香族ケトンは、多岐にわたる分野で有用な化合物であることから、これを効率よく工業的に得られることの意義は大きい。 Since the high-purity trifluoromethyl group-substituted aromatic ketone obtained by the production method of the present invention is a compound useful in a wide range of fields, it is of great significance to efficiently obtain it industrially.

以下、実施例により本発明をさらに詳細に説明する。なお、ここで用いている試薬類のメーカーグレードは、いずれも1級レベル以上に相当するものである。 Hereinafter, the present invention will be described in more detail with reference to Examples. The manufacturer grades of the reagents used here are all equivalent to the first grade level or higher.

トリフルオロメチル基置換芳香族ケトンの純度、並びに脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルの含有量(トリフルオロメチル基置換芳香族ケトン基準の%)は、ガスクロマトグラフィー(GC)法による測定における面積%として求めることができる。GC法の分析条件を以下に示す。 The purity of the trifluoromethyl group-substituted aromatic ketone and the content of the fatty acid halogenated butyl ester and the fatty acid trifluoromethylphenyl ester (% of the trifluoromethyl group-substituted aromatic ketone standard) are determined by the gas chromatography (GC) method. It can be obtained as% of the area in the measurement. The analysis conditions of the GC method are shown below.

1. GC法の測定条件
検出器 : FID
カラム :TC−17,0.32mmφ×60m,0.25μm(J&W社製)
カラム温度:50℃(3.0分保持)→(10℃/分)→250℃(3.0分保持)
注入口温度:250℃
検出器温度:250℃
全流量 :62.6mL/分 (He 141.9kPa)
スプリット比:1/20
サンプル注入量:1.0μL
2. サンプル
10mlメスフラスコにサンプル0.2gを、電子上皿天秤を使用し秤量する。これにアセトンを加え、メスアップした溶液をサンプル溶液とした。
1. 1. Measurement conditions of GC method Detector: FID
Column: TC-17, 0.32 mmφ x 60 m, 0.25 μm (manufactured by J & W)
Column temperature: 50 ° C (hold for 3.0 minutes) → (10 ° C / min) → 250 ° C (hold for 3.0 minutes)
Injection port temperature: 250 ° C
Detector temperature: 250 ° C
Total flow rate: 62.6 mL / min (He 141.9 kPa)
Split ratio: 1/20
Sample injection volume: 1.0 μL
2. 2. Sample 0.2 g of the sample is weighed in a 10 ml volumetric flask using an electronic precision balance. Acetone was added to this, and the scalpel-up solution was used as a sample solution.

[実施例1]
テトラヒドロフラン75.0g(1.04mol;nacalai tesque社製)、マグネシウム粉末5.1g(0.208mol;中央工産社製)、LiCl 2.5g(0.08mol;nacalai tesque社製)を温度計付き四つ口フラスコ(容量200ml)に投入し、系内を窒素置換しながら、撹拌した。これに1mol/LエチルマグネシウムブロミドTHF溶液0.5g(東京化成社製)を添加し、系内の水分を除去した。続いて、臭化エチル 0.44g(0.004mol;和光純薬社製)を加えた。暫く撹拌し、発熱が起こることを確認した。次に反応液温度45〜50℃に保ちながら、o−クロロベンゾトリフルオライド36.1g(0.2mol;和光純薬社製)を徐々に滴下した。滴下終了後、45℃で5時間撹拌しながら、熟成した。熟成後、トルエン 10.8gを加えて、希釈し、グリニャール試薬溶液を得た。
[Example 1]
75.0 g of tetrahydrofuran (1.04 mol; manufactured by nacalai tesque), 5.1 g of magnesium powder (0.208 mol; manufactured by Chuo Kosan Co., Ltd.), 2.5 g of LiCl (0.08 mol; manufactured by nacalai tesque) with a thermometer The mixture was placed in a four-necked flask (capacity: 200 ml), and the system was stirred while substituting nitrogen. To this, 0.5 g of a 1 mol / L ethylmagnesium bromide THF solution (manufactured by Tokyo Kasei Co., Ltd.) was added to remove water in the system. Subsequently, 0.44 g (0.004 mol; manufactured by Wako Pure Chemical Industries, Ltd.) of ethyl bromide was added. After stirring for a while, it was confirmed that heat generation occurred. Next, while maintaining the reaction solution temperature at 45 to 50 ° C., 36.1 g (0.2 mol; manufactured by Wako Pure Chemical Industries, Ltd.) of o-chlorobenzotrifluoride was gradually added dropwise. After completion of the dropping, the mixture was aged with stirring at 45 ° C. for 5 hours. After aging, 10.8 g of toluene was added and diluted to obtain a Grignard reagent solution.

次に、無水酢酸19.8g(0.19mol;和光純薬社製)、トルエン43.3g(1.2重量倍/o−クロロベンゾトリフルオライド:和光純薬社製)を温度計付き四つ口フラスコ(容量200ml)に投入し、系内を窒素置換しながら、水浴中で撹拌した。これに上記グリニャール試薬溶液を反応液温度20〜30℃になるように制御しながら滴下した。グリニャール試薬溶液を全量滴下した後、25℃で2時間攪拌した。 Next, 4 9.8 g of acetic anhydride (0.19 mol; manufactured by Wako Pure Chemical Industries, Ltd.) and 43.3 g of toluene (1.2 weight times / o-chlorobenzotrifluoride: manufactured by Wako Pure Chemical Industries, Ltd.) with a thermometer. It was put into a mouth flask (capacity 200 ml), and the inside of the system was stirred in a water bath while substituting with nitrogen. The Grignard reagent solution was added dropwise thereto while controlling the reaction solution temperature to be 20 to 30 ° C. After the whole amount of the Grignard reagent solution was added dropwise, the mixture was stirred at 25 ° C. for 2 hours.

攪拌終了後、反応液を室温へ降温し、水浴中で、13重量%塩化水素水溶液57.8gを徐々に滴下した。滴下後、1時間攪拌することで、加水分解を完結させた。加水分解後、攪拌を停止し、静置分液により、水相を除去した。得られた油相を5重量%食塩水 18.6gで洗浄し、水相を除去した。 After completion of stirring, the reaction solution was cooled to room temperature, and 57.8 g of a 13 wt% hydrogen chloride aqueous solution was gradually added dropwise in a water bath. Hydrolysis was completed by stirring for 1 hour after the dropping. After hydrolysis, stirring was stopped and the aqueous phase was removed by static separation. The obtained oil phase was washed with 18.6 g of 5 wt% saline solution to remove the aqueous phase.

この油相に27.5重量%NaOH水溶液 42.3g、テトラn−ブチルアンモニウムブロミド 1.67gを加え、液温50℃で塩基性条件下での加水分解処理を3時間行った。加水分解処理後、攪拌を停止し、静置分液により、水相を除去した。得られた油相を5重量%食塩水 18.6gで2回洗浄し、水相を除去することで、2’−トリフルオロメチルアセトフェノンを含む油相を取得した。この油相に含まれる不純物酢酸クロロブチルエステルおよび酢酸トリフルオロメチルフェニルエステルの含有量は、含まれる2’−トリフルオロメチルアセトフェノンに対して、それぞれ0.1%、0.1%であった。 To this oil phase, 42.3 g of a 27.5 wt% NaOH aqueous solution and 1.67 g of tetran-butylammonium bromide were added, and hydrolysis treatment was carried out at a liquid temperature of 50 ° C. under basic conditions for 3 hours. After the hydrolysis treatment, stirring was stopped and the aqueous phase was removed by a static liquid separation. The obtained oil phase was washed twice with 18.6 g of 5 wt% saline solution, and the aqueous phase was removed to obtain an oil phase containing 2'-trifluoromethylacetophenone. The contents of the impurities chlorobutyl ester acetate and trifluoromethyl phenyl ester acetate contained in this oil phase were 0.1% and 0.1%, respectively, with respect to the contained 2'-trifluoromethylacetophenone.

この油相を濃縮後、減圧蒸留(減圧度0.4〜1.3kPa、留出温度95〜100℃)した結果、トータル収率82.7%(原料o−クロロベンゾトリフルオライド基準)で、GC純度99.2%の2’-トリフルオロメチルアセトフェノンを得た。不純物として、酢酸クロロブチルエステルおよび酢酸トリフルオロメチルフェニルエステルの含有量は、0.1%以下であった。 After concentrating this oil phase, it was distilled under reduced pressure (vacuum degree 0.4 to 1.3 kPa, distillation temperature 95 to 100 ° C.), and as a result, the total yield was 82.7% (based on raw material o-chlorobenzotrifluoride). A 2'-trifluoromethylacetophenone with a GC purity of 99.2% was obtained. The contents of chlorobutyl acetate ester and trifluoromethylphenyl ester acetate as impurities were 0.1% or less.

[実施例2]
実施例1において、無水酢酸19.8g(0.19mol)を無水プロピオン酸25.2g(0.19mol;和光純薬社製)に変更した以外は、実施例1と同様に反応を行った。塩基性条件下での加水分解処理を行った後、油相に含まれる不純物プロピオン酸クロロブチルエステルおよびプロピオン酸トリフルオロメチルフェニルエステルの含有量は、含まれる2’−トリフルオロメチルプロピオフェノンに対して、それぞれ0.2%、0.1%であった。
[Example 2]
In Example 1, the reaction was carried out in the same manner as in Example 1 except that 19.8 g (0.19 mol) of acetic anhydride was changed to 25.2 g (0.19 mol; manufactured by Wako Pure Chemical Industries, Ltd.) of propionic anhydride. After the hydrolysis treatment under basic conditions, the content of the impurities propionic acid chlorobutyl ester and propionic acid trifluoromethylphenyl ester contained in the oil phase was changed to 2'-trifluoromethylpropiophenone contained. On the other hand, it was 0.2% and 0.1%, respectively.

得られた油相を減圧蒸留(減圧度0.4〜1.3kPa、留出温度105〜110℃)した結果、トータル収率84.5%(原料o−クロロベンゾトリフルオライド基準)で、GC純度99.6%の2’-トリフルオロメチルプロピオフェノンを得た。不純物として、プロピオン酸クロロブチルエステルおよびプロピオン酸トリフルオロメチルフェニルエステルの含有量は、0.1%以下であった。 The obtained oil phase was distilled under reduced pressure (vacuum degree 0.4 to 1.3 kPa, distillation temperature 105-110 ° C.), and as a result, the total yield was 84.5% (based on raw material o-chlorobenzotrifluoride), and GC. A 2'-trifluoromethylpropiophenone with a purity of 99.6% was obtained. The contents of propionic acid chlorobutyl ester and propionic acid trifluoromethylphenyl ester as impurities were 0.1% or less.

[比較例1]
実施例1において、塩基性条件下での加水分解処理を行わず、油相を取得した。この油相に含まれる不純物 酢酸クロロブチルエステルおよび酢酸トリフルオロメチルフェニルエステルの含有量は、含まれる2’−トリフルオロメチルアセトフェノンに対して、それぞれ2.5%、1.2%であった。これを減圧蒸留(減圧度0.4〜1.3kPa、留出温度95〜100℃)した結果、トータル収率62.5%(原料o−クロロベンゾトリフルオライド基準)で、GC純度97.2%の2’-トリフルオロメチルアセトフェノンを得た。不純物として、酢酸クロロブチルエステル 1.2%および酢酸トリフルオロメチルフェニルエステルの含有量は、0.7%であった。
[Comparative Example 1]
In Example 1, an oil phase was obtained without performing hydrolysis treatment under basic conditions. The contents of the impurities chlorobutyl ester acetate and trifluoromethylphenyl acetate acetate contained in this oil phase were 2.5% and 1.2%, respectively, with respect to the contained 2'-trifluoromethylacetophenone. As a result of vacuum distillation (vacuum degree 0.4 to 1.3 kPa, distillation temperature 95 to 100 ° C.), the total yield was 62.5% (based on raw material o-chlorobenzotrifluoride), and the GC purity was 97.2. % 2'-Trifluoromethylacetophenone was obtained. As impurities, the content of chlorobutyl acetate ester 1.2% and trifluoromethyl phenyl ester acetate was 0.7%.

[比較例2]
実施例2において、塩基性条件下での加水分解処理を行わず、油相を取得した。この油相に含まれる不純物 プロピオン酸クロロブチルエステルおよびプロピオン酸トリフルオロメチルフェニルエステルの含有量は、含まれる2’−トリフルオロメチルプロピオフェノンに対して、それぞれ3.1%、1.4%であった。これを減圧蒸留(減圧度0.4〜1.3kPa、留出温度105〜110℃)した結果、トータル収率68.2%(原料o−クロロベンゾトリフルオライド基準)で、GC純度96.8%の2’−トリフルオロメチルプロピオフェノンを得た。不純物として、プロピオン酸クロロブチルエステル 1.5%およびプロピオン酸トリフルオロメチルフェニルエステルの含有量は、0.9%であった。
[Comparative Example 2]
In Example 2, an oil phase was obtained without performing hydrolysis treatment under basic conditions. The contents of the impurities propionic acid chlorobutyl ester and propionic acid trifluoromethylphenyl ester contained in this oil phase are 3.1% and 1.4%, respectively, with respect to the contained 2'-trifluoromethylpropiophenone. Met. This was distilled under reduced pressure (vacuum degree 0.4 to 1.3 kPa, distillation temperature 105-110 ° C.), resulting in a total yield of 68.2% (based on raw material o-chlorobenzotrifluoride) and a GC purity of 96.8. % 2'-Trifluoromethylpropiophenone was obtained. As impurities, the content of propionic acid chlorobutyl ester 1.5% and propionic acid trifluoromethylphenyl ester was 0.9%.

参考例3]
実施例1において、テトラn−ブチルアンモニウムプロミドを入れずに加水分解処理を行った以外、実施例1と同様に反応を行った。油相に含まれる不純物 酢酸クロロブチルエステルおよび酢酸トリフルオロメチルフェニルエステルの含有量は、含まれる2’−トリフルオロメチルアセトフェノンに対して、それぞれ0.5%、0.3%であった。さらに加水分解処理時間を延長し、10時間行ったところ、それぞれ0.3%、0.2%となった。
[ Reference example 3]
In Example 1, the reaction was carried out in the same manner as in Example 1 except that the hydrolysis treatment was carried out without adding tetra n-butylammonium promid. The contents of impurities chlorobutyl ester acetate and trifluoromethyl phenyl ester acetate contained in the oil phase were 0.5% and 0.3%, respectively, with respect to the contained 2'-trifluoromethylacetophenone. When the hydrolysis treatment time was further extended and carried out for 10 hours, the values were 0.3% and 0.2%, respectively.

参考例4]
実施例2において、テトラn−ブチルアンモニウムプロミドを入れずに加水分解処理を行った以外、実施例2と同様に反応を行った。油相に含まれる不純物 プロピオン酸クロロブチルエステルおよびプロピオン酸トリフルオロメチルフェニルエステルの含有量は、含まれる2’−トリフルオロメチルプロピオフェノンに対して、それぞれ0.4%、0.2%であった。さらに加水分解処理時間を延長し、10時間行ったところ、それぞれ0.3%、0.1%となった。
[ Reference example 4]
In Example 2, the reaction was carried out in the same manner as in Example 2 except that the hydrolysis treatment was carried out without adding tetra n-butylammonium promid. The impurities contained in the oil phase, propionic acid chlorobutyl ester and propionic acid trifluoromethylphenyl ester, were 0.4% and 0.2%, respectively, with respect to the contained 2'-trifluoromethylpropiophenone. there were. When the hydrolysis treatment time was further extended and carried out for 10 hours, the values were 0.3% and 0.1%, respectively.

本発明の高純度トリフルオロメチル基置換芳香族ケトンの製造方法は、グリニャール試薬を中間体として生成し、このグリニャール試薬を酸無水物と反応させた後、酸を含む水溶液で加水分解処理して水相を分離除去し、続いて、油相を塩基を含む水溶液を用いて、塩基性条件下で加水処理し水相を分離除去することにより、高純度トリフルオロメチル基置換芳香族ケトンを製造することができる。本発明の高純度トリフルオロメチル基置換芳香族ケトンの製造方法は、工業的に優れた製造方法である。 In the method for producing a high-purity trifluoromethyl group-substituted aromatic ketone of the present invention, a Grignard reagent is produced as an intermediate, the Grignard reagent is reacted with an acid anhydride, and then hydrolyzed with an aqueous solution containing an acid. A high-purity trifluoromethyl group-substituted aromatic ketone is produced by separating and removing the aqueous phase and then hydrolyzing the oil phase with an aqueous solution containing a base under basic conditions to separate and remove the aqueous phase. can do. The method for producing a high-purity trifluoromethyl group-substituted aromatic ketone of the present invention is an industrially excellent production method.

本発明のトリフルオロメチル基置換芳香族ケトンの製造方法により製造された高純度トリフルオロメチル基置換芳香族ケトンは、ファインケミカル、医農薬原料、樹脂・プラスチック原料、電子情報材料、光学材料などとして用いることができる。 The high-purity trifluoromethyl group-substituted aromatic ketone produced by the method for producing a trifluoromethyl group-substituted aromatic ketone of the present invention is used as a fine chemical, a medical and agricultural chemical raw material, a resin / plastic raw material, an electronic information material, an optical material, and the like. be able to.

Claims (5)

下記一般式(1)で示されるハロゲン置換ベンゾトリフルオライド化合物を
Figure 0006830051
(但し、Xは、ClまたはBrである。)
マグネシウム金属と反応させて、グリニャール試薬に転化し、該グリニャール試薬を酸無水物と反応させた後、酸を含む水溶液で加水分解処理して、下記一般式(2)で示されるトリフルオロメチル基置換芳香族ケトンを生成させた後、
Figure 0006830051
(但し、nは、1〜4の整数である。)
前記反応の副生成物を、塩基を含む水溶液を用いて、相関移動触媒を共存させ、塩基性条件下で加水分解処理する高純度トリフルオロメチル基置換芳香族ケトンの製造方法。
A halogen-substituted benzotrifluoride compound represented by the following general formula (1)
Figure 0006830051
(However, X is Cl or Br.)
It is reacted with a magnesium metal to be converted into a Grignard reagent, the Grignard reagent is reacted with an acid anhydride, and then hydrolyzed with an aqueous solution containing an acid to carry out a trifluoromethyl group represented by the following general formula (2). After generating the substituted aromatic ketone
Figure 0006830051
(However, n is an integer of 1 to 4.)
The by-products of the reaction, with an aqueous solution containing a base, are allowed to coexist phase transfer catalyst, high purity method for producing a trifluoromethyl-substituted aromatic ketones that hydrolysis under basic conditions.
前記相関移動触媒が、テトラ−n−ブチルアンモニウム塩である請求項1に記載の高純度トリフルオロメチル基置換芳香族ケトンの製造方法。 The method for producing a high-purity trifluoromethyl group-substituted aromatic ketone according to claim 1, wherein the phase transfer catalyst is a tetra-n-butylammonium salt . 酸無水物が、無水酢酸、無水プロピオン酸または無水酪酸である請求項1または2記載の高純度トリフルオロメチル基置換芳香族ケトンの製造方法。 The method for producing a high-purity trifluoromethyl group-substituted aromatic ketone according to claim 1 or 2, wherein the acid anhydride is acetic anhydride, propionic anhydride or butyric anhydride. トリフルオロメチル基置換芳香族ケトンが、トリフルオロメチルアセトフェノン、トリフルオロメチルプロピオフェノン、または、トリフルオロメチルブチロフェノンである請求項1から3のいずれか記載の高純度トリフルオロメチル基置換芳香族ケトンの製造方法。 The high-purity trifluoromethyl group-substituted aromatic ketone according to any one of claims 1 to 3, wherein the trifluoromethyl group-substituted aromatic ketone is trifluoromethylacetophenone, trifluoromethylpropiophenone, or trifluoromethylbutyrophenone. Manufacturing method. 塩基を含む水溶液を用いて加水分解処理する際に、処理温度40〜100℃で実施する請求項1〜4のいずれか記載の高純度トリフルオロメチル基置換芳香族ケトンの製造方法。 The method for producing a high-purity trifluoromethyl group-substituted aromatic ketone according to any one of claims 1 to 4, which is carried out at a treatment temperature of 40 to 100 ° C. when hydrolyzing with an aqueous solution containing a base.
JP2017197648A 2017-10-11 2017-10-11 Method for producing high-purity trifluoromethyl group-substituted aromatic ketone Active JP6830051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017197648A JP6830051B2 (en) 2017-10-11 2017-10-11 Method for producing high-purity trifluoromethyl group-substituted aromatic ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017197648A JP6830051B2 (en) 2017-10-11 2017-10-11 Method for producing high-purity trifluoromethyl group-substituted aromatic ketone

Publications (2)

Publication Number Publication Date
JP2019069922A JP2019069922A (en) 2019-05-09
JP6830051B2 true JP6830051B2 (en) 2021-02-17

Family

ID=66440630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017197648A Active JP6830051B2 (en) 2017-10-11 2017-10-11 Method for producing high-purity trifluoromethyl group-substituted aromatic ketone

Country Status (1)

Country Link
JP (1) JP6830051B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117222615A (en) * 2020-08-19 2023-12-12 阿尔萨达股份公司 Process for the preparation of phenyl ketones
JP7441378B2 (en) 2020-08-19 2024-02-29 アークサーダ・アー・ゲー Method for preparing phenyl ketone

Also Published As

Publication number Publication date
JP2019069922A (en) 2019-05-09

Similar Documents

Publication Publication Date Title
JP6830051B2 (en) Method for producing high-purity trifluoromethyl group-substituted aromatic ketone
WO2016152226A1 (en) Method for producing dialkylaminosilane
TW201538456A (en) Method for producing fluorinated hydrocarbon
JP6086163B2 (en) Method for producing 2'-trifluoromethyl group-substituted aromatic ketone
JP5211876B2 (en) Method for producing high purity 2'-trifluoromethylpropiophenone
JP6225788B2 (en) Process for producing 1,1,1,5,5,5-hexafluoroacetylacetone
WO2013015156A1 (en) Method for producing alkyldiol monoglycidyl ether
JP2021054745A (en) Method for producing 2',3'-dimethyl aromatic ketone
JP6861060B2 (en) Method for Producing 4,4'-Diiodot-3,3'-Dimethylbiphenyl
JP2016069299A (en) Method for producing 2-trifluoromethyl benzoic acid ester
JP2019104702A (en) Method for producing a 3'-trifluoromethyl group-substituted aromatic ketone
CN106046046A (en) Preparation method of tris(trimethylsilyl)phosphite
WO2008075672A1 (en) Method for producing tris(perfluoroalkanesulfonyl)methide acid salt
WO2016132805A1 (en) PRACTICAL PROCESSES FOR PRODUCING FLUORINATED α-KETOCARBOXYLIC ESTERS AND ANALOGUES THEREOF
JP2001322955A (en) Method for producing 2-bromo-3,3,3-trifluoropropene
JP7061570B2 (en) Method for producing cycloalkyl (trifluoromethyl) benzene
JP2008150339A (en) Method for producing fluorine-containing alkane ester
JP2010001222A (en) Method for producing alcohol
JP6341040B2 (en) Process for producing 1,1,1,5,5,5-hexafluoroacetylacetone
JP2005314356A (en) Method for production of fluoroalykylfluoroalkane-sulfonate
JP2017008006A (en) Practical manufacturing method of 3,3-difluoro-1-chloro-2-propanone
JP4329304B2 (en) 1,4-Dibromobutane and process for producing the same
WO2003004446A1 (en) Process for producing fluorinated alcohol
KR0129408B1 (en) Process for preparation of 1-hydroxycyclohexylphenyl ketone
JP2001019418A (en) Production of monosilane and tetraalkoxysilane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210125

R150 Certificate of patent or registration of utility model

Ref document number: 6830051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250