JP6829882B2 - Wind power generator - Google Patents

Wind power generator Download PDF

Info

Publication number
JP6829882B2
JP6829882B2 JP2017089857A JP2017089857A JP6829882B2 JP 6829882 B2 JP6829882 B2 JP 6829882B2 JP 2017089857 A JP2017089857 A JP 2017089857A JP 2017089857 A JP2017089857 A JP 2017089857A JP 6829882 B2 JP6829882 B2 JP 6829882B2
Authority
JP
Japan
Prior art keywords
conduit
wind
wind power
impeller
air passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017089857A
Other languages
Japanese (ja)
Other versions
JP2018188989A (en
Inventor
山田 伸雄
伸雄 山田
Original Assignee
日本テクニカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本テクニカ株式会社 filed Critical 日本テクニカ株式会社
Priority to JP2017089857A priority Critical patent/JP6829882B2/en
Publication of JP2018188989A publication Critical patent/JP2018188989A/en
Application granted granted Critical
Publication of JP6829882B2 publication Critical patent/JP6829882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Description

本発明は、風力発電装置に関する。 The present invention relates to a wind power generator.

風力発電は、風のエネルギー(風力)を回転体の運動エネルギーに変換し、さらに発電機で電気エネルギーに変換して、発電する方式である。そのため、通常、風力(外気・空気、人工風等の風力)を、風力導入通路に誘導し、この風力で駆動される羽根車、発電機等を備えた風力発電装置を設置する必要がある(例えば、特許文献1参照)。 Wind power generation is a method of generating electricity by converting wind energy (wind power) into kinetic energy of a rotating body and then converting it into electric energy by a generator. Therefore, it is usually necessary to guide wind power (outside air / air, artificial wind, etc.) to the wind power introduction passage, and install a wind power generator equipped with an impeller, a generator, etc. driven by this wind power. For example, see Patent Document 1).

特許文献1に記載の風力発電装置は、ブレード(羽根)が地面に据え付けられたタワー上に設置され、羽根部がその回転軸と平行な風を直接受けるように構成されている。 The wind power generator described in Patent Document 1 is configured such that a blade (blade) is installed on a tower installed on the ground and the blade portion directly receives wind parallel to its rotation axis.

さらに、特許文献2に記載の発電装置は、液体貯留部を備え、液体の導入又は排出と連動した気体の移動によって羽根を回転させ、羽根の運動エネルギーを電力に変換するように構成されている。 Further, the power generation device described in Patent Document 2 is provided with a liquid storage unit, and is configured to rotate the blades by moving the gas in conjunction with the introduction or discharge of the liquid and convert the kinetic energy of the blades into electric power. ..

また、特許文献3に記載の発電装置は、本出願人が提案する発明である。この発明は、建屋の風胴に設けた羽根車を、自然風、及び/又は、高低差の位置エネルギーと、負圧領域による気圧差エネルギー等の何れか一つによる、人工風か、又はこれらの風を総合することで生成される人工風等を動力して発電する構造である。殊に、総合的な風の流れを利用することで、高効率的な発電と、一定した発電量が確保できるとの記載がある。 Further, the power generation device described in Patent Document 3 is an invention proposed by the present applicant. In the present invention, the impeller provided on the wind cylinder of the building is artificial wind and / or artificial wind by any one of the potential energy of the height difference and the atmospheric pressure difference energy due to the negative pressure region. It is a structure that generates electricity by powering the artificial wind generated by integrating the winds of. In particular, there is a description that highly efficient power generation and a constant amount of power generation can be secured by using the comprehensive wind flow.

特許第5864307号公報Japanese Patent No. 5864307 第5826354号公報No. 5826354 特開2016−125430号公報Japanese Unexamined Patent Publication No. 2016-125430

特許文献1に記載の技術は、風力発電であり、設置場所が、安定して風が吹く平野、山麓、海岸、海上又は湖上等に限定される。また、特許文献1は、構造上、羽根が受ける風の流れ、向き又は強さを調節することが困難、又は不可能であり、強風時に破損するおそれがある。
また、特許文献2に記載の技術は、気体の生成と、この気体を利用した発電装置であり、付帯設備を要し、コストの問題が発生する。また水車を利用することで、設置場所の限定がある。
さらに、特許文献3に記載の技術は、有益であるが、本件発明は、さらなる技術の向上と、この特許文献3の技術を補填する。
The technique described in Patent Document 1 is wind power generation, and its installation location is limited to plains, foothills, coasts, seas, lakes, etc. where a stable wind blows. Further, in Patent Document 1, it is difficult or impossible to adjust the flow, direction or strength of the wind received by the blades due to its structure, and there is a risk of damage in strong wind.
Further, the technique described in Patent Document 2 is a gas generation and a power generation device using this gas, which requires ancillary equipment and causes a cost problem. Also, by using a water wheel, the installation location is limited.
Further, although the technique described in Patent Document 3 is useful, the present invention further improves the technique and supplements the technique of Patent Document 3.

上記目的を達成するために、本発明に係る風力発電は、
建屋の土台から屋根裏に向かって備えた風路と、風路に介設した真直ぐな導管と、導管内に備えた導管本体収れん部と、導管本体収れん部の外側と、導管の壁面との間に形成した部屋と、部屋に羽根車の輪郭体の一部が陥入し、かつ羽根車に設けた風を導入できる多数の風取込み部屋と、を備える建屋に設けた風力発電装置であって、
輪郭体の一部は、導管に形成した狭窄部に陥入し、
導管本体収れん部の壁面と、部屋の壁面、及び風取込み部屋の壁面、滑らかな面とし、
導管本体収れん部を通った風を受止め得る、導管本体収れん部に繋がる導入風路を備える。
In order to achieve the above object, the wind power generation according to the present invention
Between the air passage provided from the base of the building to the attic, the straight conduit provided through the air passage , the conduit body converging part provided inside the conduit, the outside of the conduit body converging part, and the wall surface of the conduit. It is a wind power generator installed in a building equipped with a room formed in the above and a large number of wind intake rooms where a part of the outline of the impeller is recessed into the room and the wind provided in the impeller can be introduced. ,
A part of the contour body invades the constriction formed in the conduit and
The wall surface of the conduit body converging part, the wall surface of the room , and the wall surface of the wind intake room shall be smooth surfaces.
It is provided with an introduction air passage connected to the converging part of the conduit body, which can receive the wind passing through the converging part of the main body of the conduit .

本発明に係る風力発電は、
狭窄部は、断面視して切欠き半月形状、又は眞半月形状を呈し、狭窄部は、吸気端及び排気端を備えた導管に膨出形成され、かつ輪郭体の導入風路、及び排気風路に接触し、接触部位に、導管の導管本体収れん部が位置する構成とした。
The wind power generation according to the present invention
The narrowed portion has a notched half-moon shape or a true half-moon shape when viewed in cross section, and the narrowed portion is formed to bulge in a conduit having an intake end and an exhaust end, and the introduction air passage of the contour body and the exhaust air. The structure was such that the converging part of the conduit body of the conduit was located at the contact site in contact with the road.

本発明に係る風力発電は、
輪郭体が備える平板は、羽根車の回転方向と垂直とする構成とした。
The wind power generation according to the present invention
The flat plate provided by the contour body is configured to be perpendicular to the rotation direction of the impeller .

本発明に係る風力発電は、
狭窄部において、輪郭体が備える平板の少なくとも1枚は、を垂直に受け止める構成とした。
The wind power generation according to the present invention
In constriction, at least one flat contour member comprises has a structure in which Ru receiving wind vertically.

本発明に係る風力発電装置は、以下の効果を有する。
(イ)風力という自然のエネルギーを利用するため、環境に対する負荷が低い。
(ロ)導管収れん部と羽根車の構造及びこれらの関係を最適化したことにより、風力のエネルギーを高い効率で電気エネルギーに変換することができる。
(ハ)羽根車が風を受ける部分が外界から遮蔽されているため、低周波音等による不快感や健康被害を低減することができる。
(ニ)コンパクトな羽根車を使用するため、発電装置全体の小型化を図ることができる。
(ホ)導管収れん部の吸入部は、管などの空洞部材で延長することができるため、発電装置の設置場所に関する自由度が高い。
The wind power generator according to the present invention has the following effects.
(B) Since it uses the natural energy of wind power, it has a low impact on the environment.
(B) By optimizing the structure of the conduit converging part and the impeller and their relationship, wind energy can be converted into electrical energy with high efficiency.
(C) Since the part where the impeller receives the wind is shielded from the outside world, it is possible to reduce discomfort and health damage caused by low frequency sound and the like.
(D) Since a compact impeller is used, the overall size of the power generation device can be reduced.
(E) Since the suction part of the conduit converging part can be extended by a hollow member such as a pipe, there is a high degree of freedom regarding the installation location of the power generation device.

本発明の実施の形態1〜6に係る風力発電装置を備えた建屋の一例を示した縮尺断面図である。It is a scale sectional view which showed an example of the building equipped with the wind power generation apparatus which concerns on Embodiments 1-6 of this invention. 実施の形態1に係る風力発電装置の要部の斜視断面図である。It is a perspective sectional view of the main part of the wind power generation apparatus which concerns on Embodiment 1. FIG. 実施の形態1の変形に係る風力発電装置の要部の斜視断面図である。It is a perspective sectional view of the main part of the wind power generation apparatus which concerns on the modification of Embodiment 1. FIG. 図2の例における実施の形態1に係る風力発電装置の正面視した断面図であり、狭窄部の収れん部の基本形を示した正面視した断面図である。It is a front view sectional view of the wind power generation apparatus which concerns on Embodiment 1 in the example of FIG. 2, and is the front view which showed the basic form of the converging part of a constriction part. 図3の例における実施の形態1の狭窄部の突部の変形1に係る風力発電装置の正面視した断面図である。It is sectional drawing which made the front view of the wind power generation apparatus which concerns on the deformation 1 of the protrusion of the constriction part of Embodiment 1 in the example of FIG. 図3の例における実施の形態1の狭窄部の突部の変形2に係る風力発電装置の正面視した断面図である。It is sectional drawing which made the front view of the wind power generation apparatus which concerns on the deformation 2 of the protrusion of the constriction part of Embodiment 1 in the example of FIG. 図3の例における実施の形態1の風力導入第一風路(導管を含む)の基本形(形態1)を示した風力発電装置の正面視した断面図である。It is a front view sectional view of the wind power generation apparatus which showed the basic form (form 1) of the wind power introduction first wind path (including a conduit) of Embodiment 1 in the example of FIG. 図3の例における実施の形態1の風力導入第一風路の形態2を示した風力発電装置の正面視した断面図である。FIG. 5 is a front sectional view of a wind power generator showing the second form of the first wind path for introducing wind power according to the first embodiment in the example of FIG. 図3の例における実施の形態1の風力導入第一風路の形態3を示した風力発電装置の正面視した断面図である。FIG. 5 is a front sectional view of a wind power generator showing the third form of the first wind path for introducing wind power according to the first embodiment in the example of FIG. 図3の例における実施の形態1の風力導入第一風路の形態4を示した風力発電装置の正面視した断面図である。It is sectional drawing which showed the front view of the wind power generation apparatus which showed the form 4 of the wind power introduction first wind path of Embodiment 1 in the example of FIG. 実施の形態1に係る羽根車の正面図である。It is a front view of the impeller according to the first embodiment. 実施の形態1に係る羽根車の側面図である。It is a side view of the impeller according to the first embodiment. 実施の形態1に係る羽根車の斜視図である。It is a perspective view of the impeller according to the first embodiment. 実施の形態2に係る風力発電装置の正面断面図である。It is a front sectional view of the wind power generation apparatus which concerns on Embodiment 2. FIG. 実施の各形態に係る羽根車と導管とを示した断面図である。(イ)及びその要部の(イ´)は、実施の形態1に係る構造を、さらに(ロ)及びその要部の(ロ´)は、実施の形態2に係る構造を示している。It is sectional drawing which showed the impeller and the conduit which concerns on each embodiment. (A) and (a') of the main part thereof indicate the structure according to the first embodiment, and (b) and (b') of the main part thereof indicate the structure according to the second embodiment. 実施の各形態に係る羽根車と導管とを示した断面図である。(ハ)及びその要部の(ハ´)は図9−1(イ)の実施の形態1の変形形態である実施の形態3に係る構造を、(ニ)及びその要部の(ニ´)は図9−1(ロ)の実施の形態2の変形形態である実施の形態4に係る構造を、それぞれ示している。It is sectional drawing which showed the impeller and the conduit which concerns on each embodiment. (C) and (c') of the main part thereof are the structures according to the third embodiment, which is a modified form of the first embodiment of FIG. 9-1 (a), and (d) and (d') of the main part thereof. ) Shows the structure according to the fourth embodiment, which is a modified form of the second embodiment of FIG. 9-1 (b). 導管収れん部及び/又は狭窄部と羽根車との変形形態を示しており、(ホ)及びその要部の(ホ´)は実施の形態5に係る構造を、(へ)及びその要部の(へ´)は、実施の形態5を変形した実施の形態6に係る構造を、それぞれ示している。The deformation form of the conduit converging part and / or the constricted part and the impeller is shown, and (e) and (e') of the main part thereof are the structure according to the fifth embodiment, and (he) and the main part thereof. (He') shows the structure according to the sixth embodiment which is a modification of the fifth embodiment. 風力収れん部、及び/又は、狭窄部と、特に羽根車との一案を示しており、(ト)及びその要部の(ト´)は、実施の形態1の変形形態に係る構造を示している。A proposal of a wind astringent portion and / or a constricted portion and an impeller in particular is shown, and (g) and (g') of the main part thereof show a structure according to a modified form of the first embodiment. ing. 本発明の人工風を発生する仕組みの一例を示した、図3の例における実施の形態1を採用した風力発電装置の正面視した断面図である。It is a front view sectional view of the wind power generation apparatus which adopted Embodiment 1 in the example of FIG. 3, which showed an example of the mechanism which generates the artificial wind of this invention. 本発明の人工風を発生する仕組みの他の一例を示した、図3の例における実施の形態1を採用した風力発電装置の正面視した断面図である。It is a front view sectional view of the wind power generation apparatus which adopted Embodiment 1 in the example of FIG. 3, which showed another example of the mechanism for generating artificial wind of this invention. 本発明の人工風の仕組みの一例を示した図である。It is a figure which showed an example of the mechanism of the artificial wind of this invention. 本発明の羽根車の仕組みの一例を示した図である。It is a figure which showed an example of the mechanism of the impeller of this invention. 本発明の人工風生成(ハイブリッド)の仕組みの一例を示した図である。It is a figure which showed an example of the mechanism of the artificial wind generation (hybrid) of this invention.

以下、本発明の実施の形態に係る風力発電装置について、図面を用いて説明する。
Hereinafter, the wind power generation device according to the embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態1〜6に係る風力発電装置の基本構造を示している。風力導入第一風路100(後述する導管11に繋ぐ)を兼ねる柱R1(芯柱)の基端は、土台2に立設されており、図示しない筋交部材で補強されている。この柱R1は風力導入第一風路100を備えた中空形状であり、空気(風力)を取込む構成である。柱R1は、床下から、少なくとも、建屋Rの天井R2に到る構造である。柱R1は、耐震機能を備える。例えば、鋼管とする。この柱R1は、床下と屋根との気圧差(高低差)により発生する上昇による風(上昇気流、又は位置エネルギー)を生成する。地下空気(床下)、又は地中空気を取込む床下空間の入口101(開口)を備えており、前記柱R1の風力(空気)導入第一風路100に繋がり、後述する屋根裏R4に配備した発電室3に到る。この発電室3には、入口101と風力導入第一風路100を経由して、自然気流X1(蒸気、またはガス等を含む)とか、後述する、発電機、ストーブ、又はその他の機械からの人工風を生成するハイブリッドAの発電装置を備えることも有り得る。
図中102は、空中の空気を取入れる風力(空気)導入第二風路を示す。風力導入第二風路102は、風力導入第一風路100を邪魔しない位置で発電室3に繋がる。また、図示しないが、風力導入第一・第二風路100・102には、それぞれ切換弁を備えてあり、風力導入経路を制御できる。
FIG. 1 shows the basic structure of the wind power generation device according to the first to sixth embodiments of the present invention. The base end of the pillar R1 (core pillar) that also serves as the wind power introduction first air passage 100 (connecting to the conduit 11 described later) is erected on the base 2 and is reinforced by a bracing member (not shown). This pillar R1 has a hollow shape provided with a wind power introduction first air passage 100, and has a configuration for taking in air (wind power). The pillar R1 has a structure that reaches at least the ceiling R2 of the building R from under the floor. The pillar R1 has a seismic function. For example, a steel pipe. The pillar R1 generates wind (updraft or potential energy) due to the rise generated by the pressure difference (height difference) between the underfloor and the roof. It is equipped with an entrance 101 (opening) of an underfloor space that takes in underground air (underfloor) or underground air, is connected to the wind power (air) introduction first air passage 100 of the pillar R1, and is deployed in the attic R4 described later. It reaches the power generation room 3. The power generation chamber 3 is provided with a natural air flow X1 (including steam, gas, etc.) or a generator, a stove, or other machine described later via the inlet 101 and the first wind path 100 for introducing wind power. It is also possible to have a hybrid A power generator that generates artificial wind.
In the figure, 102 shows a second wind path for introducing wind power (air) that takes in air in the air. The wind power introduction second air passage 102 is connected to the power generation chamber 3 at a position that does not interfere with the wind power introduction first air passage 100. Further, although not shown, the wind power introduction first and second air passages 100 and 102 are provided with switching valves, respectively, and can control the wind power introduction route.

そして、発電室3に繋がる風力排気風路5(風路となり、柱R1となる)が形成されており、風力排気風路5は屋根裏R4より空中高く配備され、かつ排気風力が建屋Rの周辺風力に邪魔されない構造である。図中500は排気口である。この風力排気風路5は、風力導入第一風路100に嵌合されており、回転自在である。この回転を司る風見鶏501を有する。風力排気風路5は、柱R1となり、前述の効果が期待できる。また、排気口500からの風力の排気で、この排気口500の下側と近傍に負圧領域を形成し、風力導入第一・第二風路100・102と導管11等に風力誘引効果を与えることもできる。図中6は入口101に設けたシャッタで、自動制御である。
Then, a wind exhaust air passage 5 (which becomes an air passage and becomes a pillar R1) connected to the power generation chamber 3 is formed, the wind exhaust air passage 5 is deployed higher in the air than the attic R4, and the exhaust wind power is around the building R. It is a structure that is not disturbed by wind power. In the figure, 500 is an exhaust port. The wind exhaust air passage 5 is fitted to the wind power introduction first air passage 100 and is rotatable. It has a weathercock 501 that controls this rotation. The wind exhaust air passage 5 becomes a pillar R1, and the above-mentioned effect can be expected. Further, the exhaust of wind power from the exhaust port 500 forms a negative pressure region on the lower side and the vicinity of the exhaust port 500, and exerts a wind power attracting effect on the wind power introduction first and second air passages 100 and 102 and the conduit 11 and the like. You can also give. In the figure, 6 is a shutter provided at the inlet 101, which is automatically controlled.

図2〜図2−1は、実施の形態1に係る、圧力を増強する風力発電装置1の要部を示す斜視断面図である。
風力発電装置1、風力導入第一風路100(風路となり、柱R1となる)に繋がる吸気端(吸入口)12と、風力導入第一風路100、又は風力導入第二風路102(風路となる)に繋がる排気端(排気口)13とを備えた導管11(導管本管である)と、羽根車21とを備える。導管11は、風を通すための管状部材であり、例えば、直径5cmに設定されている。羽根車21(風車構造)は、風力を回転の運動エネルギーに変換する要素であり、例えば、直径15cm、幅5cmに設定されている。図2には、羽根車21の厚さ方向(後述のZ方向)の中央で風力発電装置1を中心軸に垂直な平面で切断した断面を、切断した側から見下した場合の斜視断面図が示されている。図1の如く、風力導入第一風路100は、建屋の柱R1を兼用する構成である。また、この構造であれば、耐震効果が期待できる。
2 to 2-1 are perspective cross-sectional views showing a main part of the wind power generation device 1 for increasing pressure according to the first embodiment.
The wind power generator 1, the intake end (intake port) 12 connected to the wind power introduction first air passage 100 (which becomes the air passage and becomes the pillar R1), the wind power introduction first air passage 100, or the wind power introduction second air passage 102 ( It is provided with a conduit 11 (conduit main) having an exhaust end (exhaust port) 13 connected to (which serves as an air passage), and an impeller 21. The conduit 11 is a tubular member for passing air, and is set to, for example, a diameter of 5 cm. The impeller 21 (wind turbine structure) is an element that converts wind power into rotational kinetic energy, and is set to, for example, a diameter of 15 cm and a width of 5 cm. FIG. 2 is a perspective sectional view of a cross section of the wind turbine generator 1 cut in a plane perpendicular to the central axis at the center in the thickness direction (Z direction described later) of the impeller 21 when viewed from the cut side. It is shown. As shown in FIG. 1, the wind power introduction first air passage 100 is configured to also serve as the pillar R1 of the building. In addition, with this structure, seismic effects can be expected.

図3〜図3−2は、実施の形態1に係る風力発電装置1の正面視した断面図であり、収れん部14、殊に、狭窄部14aの、好ましい、各構成を説明する。
図7に示すように、実施の形態1に係る風力発電装置1の羽根車21は、例えば、1対の環状輪郭体24(羽根車21の外郭体)の間に、複数の羽根25を差し渡して構成される。羽根25の各々は、例えば、1枚の平板22と、1枚の傾斜板23とで形成される。なお、羽根25は、対の環状輪郭体24(羽根車21の外郭体)の間に、均等に(整然と)配備されている。また、この導管11には、その両端にそれぞれ吸気端12及び排気端13を形成するとともに、後述する羽根車21に接触する部位に導管本体収れん部14を形成する。この例では、導管本体収れん部14は、導管11の一方の内壁曲面より突出した膨出曲面形状の突部14a1と、対峙する羽根車21の輪郭体24、又は導管11の他方の内壁曲面とで形成した、断面視して、切欠きした半月形状、又は眞半月形状等の狭窄部14aであり、収れん部14(狭窄部14a)は、当該導管11を流れる風の流れ、向き又は強さを調節する(絞り形態である)。この例では、狭窄部14aは、導管11の管路内に形成した羽根車21の陥入を許す滑らかに凹んだ部分(各形態を後述する)をいう。狭窄部14aは、後述する図2〜図4−4と、図8〜図10に示した、それぞれの形態があるが、何れも一例である。
なお、図2や図7などでは、この対の輪郭体24の中間に位置する支持構造も、環状輪郭体24として示してあるが、図2−1に示すように、羽根25の軸側(裏側)の面を面一に覆う、いわば対の輪郭体24と中間の輪郭体24とを一体化した構造の環状輪郭体24も有り得る。
3 to 3-2 are front-view sectional views of the wind power generation device 1 according to the first embodiment, and each preferred configuration of the astringent portion 14, particularly the constricted portion 14a, will be described.
As shown in FIG. 7, in the impeller 21 of the wind power generation device 1 according to the first embodiment, for example, a plurality of blades 25 are passed between a pair of annular contour bodies 24 (outer bodies of the impeller 21). It is composed of. Each of the blades 25 is formed of, for example, one flat plate 22 and one inclined plate 23. The blades 25 are evenly (orderly) arranged between the pair of annular contours 24 (outer bodies of the impeller 21). Further, the conduit 11 is formed with an intake end 12 and an exhaust end 13 at both ends thereof, and a conduit body converging portion 14 is formed at a portion in contact with the impeller 21 described later. In this example, the conduit body converging portion 14 includes a protruding curved surface-shaped protrusion 14a1 protruding from one inner wall curved surface of the conduit 11 and a contour body 24 of the impeller 21 facing the conduit 11 or the other inner wall curved surface of the conduit 11. It is a constricted portion 14a formed in the above, and has a notched half-moon shape or a true half-moon shape in cross section, and the converging portion 14 (narrowed portion 14a) is the flow, direction or strength of the wind flowing through the conduit 11. (Astringent form). In this example, the narrowed portion 14a refers to a smoothly recessed portion (each form will be described later) that allows the impeller 21 formed in the conduit of the conduit 11 to enter. The narrowed portion 14a has the respective forms shown in FIGS. 2 to 4-4 and 8 to 10 which will be described later, and all of them are examples.
In addition, in FIG. 2 and FIG. 7, the support structure located in the middle of the pair of contour bodies 24 is also shown as the annular contour body 24, but as shown in FIG. 2-1 the axial side of the blade 25 ( There may be an annular contour body 24 having a structure in which a pair of contour bodies 24 and an intermediate contour body 24 are integrated so as to cover the surface of the back side) flush with each other.

また、導管11には、膨出した扁平かつ略球状の部屋16(狭窄部14aと同じ)を備えており、この部屋16には、羽根車21の一部(風取込み部屋25a)を回転自在に、軸支されている(収容されている)。また、実施例では、該部屋16は、例えば、導管11の壁を外側に膨出させる形で形成されており、導管11の内部空間と気密に連通した空間部位であって、前述の如く、羽根車21が、滑らかな回転を確保するためにも部屋16の内面と僅かなクリアランスをもって、収められている。
Further, the conduit 11 is provided with a bulging flat and substantially spherical chamber 16 (same as the narrowed portion 14a), and a part of the impeller 21 (wind intake chamber 25a) can be rotated in this chamber 16. It is pivotally supported (contained). Further, in the embodiment, the room 16 is formed, for example, in a form in which the wall of the conduit 11 is bulged outward, and is a space portion airtightly communicated with the internal space of the conduit 11, as described above. The impeller 21 is housed with a slight clearance from the inner surface of the room 16 in order to ensure smooth rotation.

図2〜図3−2に示すように、部屋16に収容された羽根車21の一部21a(図3において、羽根車21の導管11側であって、少なくとも、風取込み部屋25a(ポケット))は、導管11の右側に陥入(嵌入)されている。導管11の吸気端12側と羽根車21の傾斜板23とか、平板22、又は部屋16の表面は、いずれも滑らかな曲面、又は平面等の壁面で形成されており、両者は、滑らかに接続する。また、導管11の吸気端12側と羽根車21の平板22も接続する。これにより、導管11の吸気端12から流入した風は、狭窄部14aで平板22に衝突し、回転軸29を中心として羽根車21を回転させる。図2、図3においては、羽根車21の回転方向は、例えば、時計回りである。図2、図3に示すように、流入した風が平板22に衝突する直前の向きと平板22は垂直であるため、風力が高い効率で羽根車21の回転に係る運動エネルギーに変換される。また、部屋16により、導管11を通る風力の逃げが最小限となり、羽根車21に効果的に風力を伝達することが可能となっている。羽根車21を回転させた風は、導管11の排気端13から排出される(風力排気風路5に送られる)。
なお、導管11の吸気端12には、前述の如く、風力導入第一風路100が、また排気端13には、大気中に、働きを終えた風を排出する風力排気風路5が接続される。
As shown in FIGS. 2 to 3-2, a part 21a of the impeller 21 housed in the room 16 (in FIG. 3, at least the wind intake room 25a (pocket) on the conduit 11 side of the impeller 21). ) Is recessed (fitted) on the right side of the conduit 11. The surface of the intake end 12 side of the conduit 11 and the inclined plate 23 of the impeller 21, the flat plate 22, or the room 16 are all formed of a smooth curved surface or a wall surface such as a flat surface, and the two are smoothly connected. To do. Further, the intake end 12 side of the conduit 11 and the flat plate 22 of the impeller 21 are also connected. As a result, the wind flowing from the intake end 12 of the conduit 11 collides with the flat plate 22 at the narrowed portion 14a, and rotates the impeller 21 around the rotating shaft 29. In FIGS. 2 and 3, the direction of rotation of the impeller 21 is, for example, clockwise. As shown in FIGS. 2 and 3, since the direction immediately before the inflowing wind collides with the flat plate 22 and the flat plate 22 are perpendicular to each other, the wind power is converted into kinetic energy related to the rotation of the impeller 21 with high efficiency. Further, the room 16 minimizes the escape of wind power through the conduit 11, and makes it possible to effectively transmit the wind power to the impeller 21. The wind that rotates the impeller 21 is discharged from the exhaust end 13 of the conduit 11 (sent to the wind exhaust air passage 5).
As described above, the intake end 12 of the conduit 11 is connected to the wind power introduction first air passage 100, and the exhaust end 13 is connected to the wind exhaust air passage 5 that discharges the finished wind into the atmosphere. Will be done.

以下、導管11に平行な方向(吸気端12から排気端13への方向)をX方向、導管11に垂直な方向で、羽根車21に向かう方向をY方向、回転軸29と平行な方向(X方向及びY方向に垂直な方向で、例えば、図2、図3において、手前から奥に向かう方向)をZ方向とする。
Hereinafter, the direction parallel to the conduit 11 (the direction from the intake end 12 to the exhaust end 13) is the X direction, the direction perpendicular to the conduit 11 is the Y direction, and the direction parallel to the rotation axis 29 (the direction parallel to the rotation axis 29). The direction perpendicular to the X and Y directions, for example, the direction from the front to the back in FIGS. 2 and 3) is defined as the Z direction.

図3は、狭窄部14aの基本形であり、狭窄部14aは、膨出形状の突部14a1と、この突部14a1と羽根車21の一部21aとの間に形成され、導かれた風力(空気)を羽根車21に強制的にかつ圧縮して(加圧して)送達し、この羽根車21の回転速度を速める。導管11のこの突部14a1に対峙する側には、導管11と部屋16とを繋ぐ通路である風取込み部屋25aを設ける。また、導管本体収れん部14には、風力を誘導し、かつ狭窄箇所を形成するガイド片14bを、導管11の内壁に配備する。このガイド片14bは、望ましくは部屋16の構成部品に併設して設けられる。図3−1は、突部14a1に風力の流れを規制する横方向の抜け道14cを形成し、過剰な風力を排除する変形1を示し、また、図3−2は、傾斜方向の抜け道14cを示してあり、図3−1より優れた機能を備える変形2を示している。
FIG. 3 shows the basic shape of the narrowed portion 14a, in which the narrowed portion 14a is formed between the protruding portion 14a1 and the protruding portion 14a1 and a part 21a of the impeller 21, and is guided by the wind force ( Air) is forcibly and compressed (pressurized) and delivered to the impeller 21 to increase the rotational speed of the impeller 21. On the side of the conduit 11 facing the protrusion 14a1, a wind intake chamber 25a, which is a passage connecting the conduit 11 and the room 16, is provided. Further, in the conduit body converging portion 14, a guide piece 14b that guides wind power and forms a constricted portion is provided on the inner wall of the conduit 11. The guide piece 14b is preferably provided side by side with the components of the room 16. FIG. 3-1 shows a modification 1 in which a lateral loophole 14c for regulating the flow of wind power is formed in the protrusion 14a1 to eliminate excess wind power, and FIG. 3-2 shows a loophole 14c in the inclined direction. It is shown, and the modification 2 having a function superior to that of FIG. 3-1 is shown.

図4−1〜4−は、実施の形態1に係る、主として、風力導入第一風路100の各態様を説明する正面視した断面図である。図4−1は、導管11の基本形(形態1)を示し、図4−2は、導管11の形態2を示し、後述する角度θのものより緩やかな曲管である。また、図4−3は、導管11の形態3を示し、図4−4は、導管11の形態4を示し、角度θの曲管である。即ち、形態2は、曲折の一例であり、排気端13の先の導管11が、羽根車21のセンターの近傍までに曲折(排気端13の水平面を基点として角度θとなる)する構造であり、排気スピードを抑えて、風力の流速を利用する。また、形態3は、吸気端12側の導管11を、図4−3の如く、曲折する構造であり、吸入スピードを抑えて、導管本体の収れん部14に風圧を勢いよく流すことで、羽根車21に大きな力を与える。さらに、形態4は、形態2と形態3との合体構造であって、羽根車21に、優れた大きな風圧(羽根車21)とを与える。角度θは一例であり限定されない。
FIGS. 4-1 to 4 are front sectional views for explaining each aspect of the first wind power introduction air passage 100 according to the first embodiment. FIG. 4-1 shows the basic form (form 1) of the conduit 11, and FIG. 4-2 shows the form 2 of the conduit 11, which is a curved tube having a gentler angle than that of the angle θ described later. Further, FIG. 4-3 shows the form 3 of the conduit 11, and FIG. 4-4 shows the form 4 of the conduit 11, which is a curved tube at an angle θ. That is, Form 2 is an example of bending, and has a structure in which the conduit 11 at the tip of the exhaust end 13 bends to the vicinity of the center of the impeller 21 (the angle θ is based on the horizontal plane of the exhaust end 13). , Suppress the exhaust speed and use the flow velocity of the wind power. Further, the third form has a structure in which the conduit 11 on the intake end 12 side is bent as shown in FIG. 4-3, and the blades are formed by suppressing the suction speed and forcing the wind pressure to flow vigorously to the converging portion 14 of the conduit body. Gives great power to the car 21. Further, the fourth form is a combined structure of the second and third forms, and gives the impeller 21 an excellent large wind pressure (impeller 21). The angle θ is an example and is not limited.

この羽根車21を詳細に説明すると、この羽根車21は、1対の帯状環体でなる輪郭体24と、この対の輪郭体24の間に多数個差し渡して設けた風の受入部屋となる羽根25と、この羽根25を構成する平板22及び傾斜板23と、輪郭体24及び/又は羽根25に接続されたスポーク27と、スポーク27の中心部を支持する回転軸29とで構成する。輪郭体24は、回転軸29を中心とする環状に形成され、平板22及び傾斜板23を支持するとともに、羽根車21の放射方向の外郭を構成する(水車の形態である)。スポーク27は、羽根車21の径方向の強度を保つ平板状の部材であり、周方向支持部材28は、羽根車21の周方向の強度を保つ円筒状の部材である。スポーク27と周方向支持部材28は、直角に交差している。このような部材により構成された羽根車21は、回転方向の力に対しても、径方向の力に対しても、十分な強度を有する。
回転軸29は、羽根車21の中心軸であり、図示しないシャフト等の棒状部材によって、回転力を直接的又は間接的に図示しない発電機に伝える。これにより、風力が電力に変換される。回転軸29は、複数のスポーク27の交点に位置する。
本実施の形態に係る羽根車21は、回転軸29を中心として、例えば、8つのスポーク27を備え、45°毎回転した位置に形成される。
Explaining the impeller 21 in detail, the impeller 21 is a wind receiving chamber provided by passing a large number of the contour bodies 24 formed of a pair of strip-shaped rings and the contour bodies 24 of the pair. It is composed of a blade 25, a flat plate 22 and an inclined plate 23 forming the blade 25, a spoke 27 connected to the contour body 24 and / or the blade 25, and a rotating shaft 29 supporting the central portion of the spoke 27. The contour body 24 is formed in an annular shape centered on the rotation shaft 29, supports the flat plate 22 and the inclined plate 23, and constitutes the outer shell of the impeller 21 in the radial direction (in the form of a water wheel). The spokes 27 are flat plate-shaped members that maintain the radial strength of the impeller 21, and the circumferential support member 28 is a cylindrical member that maintains the circumferential strength of the impeller 21. The spokes 27 and the circumferential support member 28 intersect at right angles. The impeller 21 made of such a member has sufficient strength against both a force in the rotational direction and a force in the radial direction.
The rotating shaft 29 is the central shaft of the impeller 21, and the rotational force is directly or indirectly transmitted to a generator (not shown) by a rod-shaped member such as a shaft (not shown). This converts wind power into electricity. The rotation shaft 29 is located at the intersection of the plurality of spokes 27.
The impeller 21 according to the present embodiment is provided with, for example, eight spokes 27 about the rotation shaft 29, and is formed at a position rotated every 45 °.

図5は、実施の形態1に係る羽根車21の正面図である。理解を容易にするため、図5において、平板22及び傾斜板23は省略されている。また、図6に示すように、実施の形態1(他の態様も同じ)の羽根車21の幅は一定である。
FIG. 5 is a front view of the impeller 21 according to the first embodiment. In FIG. 5, the flat plate 22 and the inclined plate 23 are omitted for ease of understanding. Further, as shown in FIG. 6, the width of the impeller 21 of the first embodiment (the same applies to other aspects) is constant.

図7は、実施の形態1に係る羽根車21の斜視図である。図示のように、実施の形態1においては、図2に示すように、羽根車21は、平板22と傾斜板23(風取込み部屋25a)を、例えば、それぞれ30枚ずつ備えている。平板22は、回転軸29と同一の平面上にある。即ち、導管11を上昇してきた風が、狭窄部14aから羽根25に入るときに、平板22に正面より当たり、最大の力が発生する構成である。当たる方向を、図9−1の(イ)、(ロ)において、直角rで示す。傾斜板23は、隣接する2つの平板22の間に形成されている。傾斜板23の一端は、ある平板22の回転軸29から遠い側の端と接し、傾斜板23の他端は、隣接する別の平板22の回転軸29側の端と接している。傾斜板23は、回転軸29に向って凹んだ斜面(曲面状のスロープ)として形成されている。この羽根車21は、図15の表の(A)を参照されたい。その他の羽根車21としては、例えば、図2−1は、傾斜板23を有さず、平板22と輪郭体24とで風取込み部屋25aを形成する、簡易型の羽根車である。図15の表の(B)を参照されたい。
FIG. 7 is a perspective view of the impeller 21 according to the first embodiment. As shown in the figure, in the first embodiment, as shown in FIG. 2, the impeller 21 includes, for example, 30 flat plates 22 and 30 inclined plates 23 (wind intake chamber 25a). The flat plate 22 is on the same plane as the rotating shaft 29. That is, when the wind rising from the conduit 11 enters the blade 25 from the narrowed portion 14a, it hits the flat plate 22 from the front and the maximum force is generated. The direction of contact is indicated by a right angle r in (a) and (b) of FIG. 9-1. The inclined plate 23 is formed between two adjacent flat plates 22. One end of the inclined plate 23 is in contact with the end of one flat plate 22 on the side far from the rotating shaft 29, and the other end of the inclined plate 23 is in contact with the end of another adjacent flat plate 22 on the rotating shaft 29 side. The inclined plate 23 is formed as a slope (curved slope) recessed toward the rotation axis 29. For the impeller 21, refer to (A) in the table of FIG. As another impeller 21, for example, FIG. 2-1 is a simple impeller that does not have the inclined plate 23 and forms the wind intake chamber 25a with the flat plate 22 and the contour body 24. See (B) in the table of FIG.

[実施の形態2]
図8は、実施の形態2に係る風力発電装置1の正面断面図である。図示のように、実施の形態2の導管11は、狭窄部14aの羽根車21から遠い側(−Y方向)に、支持板31を備えている。吸気端12から流入した風は、その一部が狭窄部14a付近のカーブに沿って羽根車21に導かれ、他の一部が導管11の方向に直進して支持板31に衝突する。これにより、支持板31がない場合に比べ、強い風が流入した場合でも、導管11や羽根車21が破損し難い。また、支持板31に衝突した風は、その後、羽根車21に向かい、羽根車21を回転させることになるため、エネルギーの損失が少なく、高効率の発電を維持することができる。尚、支持板31には、余剰風力を逃がす開口を形成する構造も有り得る。
[Embodiment 2]
FIG. 8 is a front sectional view of the wind power generation device 1 according to the second embodiment. As shown in the figure, the conduit 11 of the second embodiment includes a support plate 31 on the side (-Y direction) of the narrowed portion 14a from the impeller 21. A part of the wind flowing in from the intake end 12 is guided to the impeller 21 along the curve near the narrowed portion 14a, and the other part goes straight in the direction of the conduit 11 and collides with the support plate 31. As a result, the conduit 11 and the impeller 21 are less likely to be damaged even when a strong wind flows in, as compared with the case where the support plate 31 is not provided. Further, since the wind colliding with the support plate 31 then heads toward the impeller 21 and rotates the impeller 21, energy loss is small and high-efficiency power generation can be maintained. The support plate 31 may also have a structure for forming an opening for allowing excess wind power to escape.

図9で示した各図(イ)、(イ´)〜(ニ)、(ニ´)は、狭窄部14aと羽根車21との各案を示しており、各図に対して、以下に説明する。
(イ)及び要部の図面(イ´)は、実施の形態1に係るものであり、導管11の内壁より、羽根車21側に向って膨出した例えば可撓性の突部14a1を利用して狭窄部14aを形成する。この狭窄部14aにより、風力導入第一風路100を流れる風を絞り込み、風の増速と増圧を達成する(圧力を上げる)。この増圧した風を、導管11と狭窄部14aとを繋ぐ導入風路11aより、羽根車21の羽根25(羽根25と外の郭輪体24−1とで形成した風取込み部屋25a)に送り、平板22に直角rに当てる。この風の圧力を、羽根車21の回転動力とするのが、本発明の特徴である。その後は、狭窄部14aから排気風路11bに到った風(働きを終えた風)は、導管11の排気風路11bを利用して排出するが、羽根25によって長く蓄えることで、羽根車21の回転動力(駆動力)の向上に役立ち、かつ発電量の拡充が確保できる。
尚、導管11の排気風路11bより、その排気端13に到る。この風力の流れを、図9と図10において、矢視Aで示す。
(ロ)及び要部の図面(ロ´)は、実施の形態2に係るものであり、前述の(イ)及び要部の図面(イ´)に準ずる。但し、突部14a1の形態が異なる。その構成と作用は略同じである。
(ハ)及び要部の図面(ハ´)は、実施の形態3に係るものであり、図3−1の実施の形態1に準ずるが、排気風路11bがより大きく形成されている。風を搾り込む狭窄部14aに送られた風力を、導管11と部屋16とを繋ぐ導入風路11aより、羽根車21の羽根24の風取込み部屋25a(ポケット)に送り、当該羽根車21の回転動力とする、等のその他の点は、前述(イ)等に準ずる。
(ニ)及び要部の図面(ニ´)は、実施の形態4に係るものであり、実施の形態2及び3の特徴を併せ持ち、前述の(ロ)及び(ハ)に準ずる。
Each of FIGS. (A), (A') to (D), and (D') shown in FIG. 9 shows each plan of the narrowed portion 14a and the impeller 21. explain.
(A) and the drawing (a') of the main part are related to the first embodiment, and use, for example, a flexible protrusion 14a1 that bulges from the inner wall of the conduit 11 toward the impeller 21 side. To form the narrowed portion 14a. The narrowed portion 14a narrows down the wind flowing through the wind power introduction first air passage 100, and achieves speed increase and pressure increase (increases pressure) of the wind. The increased pressure is applied to the blades 25 of the impeller 21 (the wind intake chamber 25a formed by the blades 25 and the outer ring body 24-1) from the introduction air passage 11a connecting the conduit 11 and the narrowed portion 14a. Feed and hit the flat plate 22 at a right angle r. It is a feature of the present invention that this wind pressure is used as the rotational power of the impeller 21. After that, the wind that has reached the exhaust air passage 11b from the narrowed portion 14a (the wind that has finished working) is discharged using the exhaust air passage 11b of the conduit 11, but by storing it for a long time by the blades 25, the impeller It is useful for improving the rotational power (driving force) of 21 and can secure the expansion of the amount of power generation.
It should be noted that the exhaust air passage 11b of the conduit 11 reaches the exhaust end 13. The flow of this wind force is shown by arrow A in FIGS. 9 and 10.
(B) and the drawing of the main part (b') are related to the second embodiment, and are based on the above-mentioned (a) and the drawing of the main part (a'). However, the form of the protrusion 14a1 is different. Its composition and action are almost the same.
(C) and the drawing (c') of the main part relate to the third embodiment and conform to the first embodiment of FIG. 3-1 but the exhaust air passage 11b is formed to be larger. The wind power sent to the narrowed portion 14a that squeezes the wind is sent from the introduction air passage 11a that connects the conduit 11 and the room 16 to the wind intake room 25a (pocket) of the blade 24 of the impeller 21, and the impeller 21 Other points such as using rotational power are the same as in (a) above.
(D) and the drawing (d') of the main part are related to the fourth embodiment, have the features of the second and third embodiments, and conform to the above-mentioned (b) and (c).

図10で示した各図(ホ)、(ホ´)と、(へ)、(へ´)は、風力収れん部14、及び/又は、狭窄部14aと羽根車21との各案を示しており、各図に対して、以下に説明する。(ホ)、(ホ´)は、実施の形態5に係るものであり、羽根車21の各傾斜板23の径方向外側に受入れ傾斜板23aを設けた構造であり、回転動力の向上と、風の整流とを図る。その他は、前述の(ハ)等に準ずる。この例は、羽根車21に受入れ傾斜板23aを設け、この受入れ傾斜板23aは、整流片14dに連繋する構造である。また、(へ)、(へ´)は、実施の形態5を簡略化した、実施の形態6に係るものである。
Each of the figures (e) and (e') shown in FIG. 10 and (he) and (he') show the wind converging portion 14, and / or the constricted portion 14a and the impeller 21. Each figure will be described below. (E) and (e') are related to the fifth embodiment, and have a structure in which a receiving inclined plate 23a is provided on the radial outer side of each inclined plate 23 of the impeller 21 to improve rotational power. Aim to rectify the wind. Others are the same as (c) above. In this example, the impeller 21 is provided with a receiving inclined plate 23a, and the receiving inclined plate 23a has a structure connected to the rectifying piece 14d. Further, (he) and (he') relate to the sixth embodiment, which is a simplification of the fifth embodiment.

図12、図13は、人工風を発生する仕組みの一例を示した、図3の例における実施の形態1を採用した風力発電装置であり、導管11に繋ぐ、風力導入第一風路100の適所に、発電機40とか、熱風生成手段のヒータ、ガス等の熱交換部41を付設し、人工風を生成するハイブリッドAを示す。自然風(自然気流)の補助・代替と、共働とを可能とする。また、図13は、図12に準ずるが、導管11に繋ぐ、風力導入第一風路100の適所に、熱交換部41を付設し、人工風を生成するハイブリッドAを示す。自然風の補助等と、共働とを可能とする。この人工風は、一例である。また、図16は、人工風を生成する仕組みの一例であり、単独型と並設型と、上下位置との選択の自由度を示している。そして、図12、図13の想像線により、上位置の場所を示す。 12 and 13 are wind power generators adopting the first embodiment in the example of FIG. 3, which shows an example of a mechanism for generating artificial wind, and is a wind power introduction first air passage 100 connected to a conduit 11. A hybrid A in which a generator 40, a heater of a hot air generating means, a heat exchange unit 41 for gas, etc. is attached at an appropriate place to generate artificial air is shown. It enables the assistance / substitution of natural wind (natural airflow) and cooperation. Further, FIG. 13 is similar to FIG. 12, but shows a hybrid A in which a heat exchange unit 41 is attached to an appropriate position of the wind power introduction first air passage 100 connected to the conduit 11 to generate artificial wind. It enables natural-style assistance and cooperation. This artificial wind is an example. Further, FIG. 16 is an example of a mechanism for generating artificial wind, and shows a degree of freedom in selection between a stand-alone type, a parallel type, and a vertical position. Then, the location of the upper position is shown by the imaginary lines of FIGS. 12 and 13.

尚、ハイブリッドAは、図示しない内外空気の吸込み口と、風力導入第一風路100に繋がる風路42等を備える。
The hybrid A includes a suction port for internal and external air (not shown), an air passage 42 connected to the first wind power introduction air passage 100, and the like.

図中Bは、風力導入第一風路100の中心を示す。
In the figure, B shows the center of the wind power introduction first air passage 100.

以上説明したように、本実施の形態1〜6においては、導管11の直径と羽根車21の幅とが同一であるが、異なっていてもよい。
本実施の形態1〜6においては、風力発電装置1の導管11及び羽根車21はプラスチック製であるが、材質はこれに限られず、例えば、アルミニウム、木製等の素材であってもよく、複合材料であってもよい。
また、平板22、傾斜板23、スポーク27、周方向支持部材28の数は、上述したものに限られず、適宜変更されてもよい。
As described above, in the first to sixth embodiments, the diameter of the conduit 11 and the width of the impeller 21 are the same, but may be different.
In the first to sixth embodiments, the conduit 11 and the impeller 21 of the wind power generator 1 are made of plastic, but the material is not limited to this, and for example, a material such as aluminum or wood may be used, and the composite material may be used. It may be a material.
Further, the number of the flat plate 22, the inclined plate 23, the spokes 27, and the circumferential support member 28 is not limited to those described above, and may be changed as appropriate.

1 風力発電装置
100 風力(空気)導入第一風路
101 入口
102 風力(空気)導入第二風路
2 土台
3 発電室
5 風力排気風路
500 排気口
501 風見鶏
6 シャッタ
11 導管
11a 導入風路
11b 排気風路
12 吸気端
13 排気端
14 収れん部(導管本体収れん部)
14a 狭窄部
14a1 突部
14b ガイド片
14c 抜け道
14d 整流片
15 補強材
16 部屋
21 羽根車
21a 一部
22 平板
23 傾斜板
23a 受入れ傾斜板
24 輪郭体
25 羽根
25a 風取込み部屋
27 スポーク
28 部材
29 回転軸
31 支持板
40 発電機
41 熱交換部
42 風路
A ハイブリッド
B 中心
R 建屋
R1 柱
R2 天井
R3 床下
r 直角
R4 屋根裏
X1 自然気流
1 Wind power generator 100 Wind power (air) introduction 1st air passage 101 Inlet 102 Wind power (air) introduction 2nd air passage 2 Base 3 Power generation room 5 Wind exhaust air passage 500 Exhaust port 501 Kazami chicken 6 Shutter 11 Conduit 11a Introduction air passage 11b Exhaust air passage 12 Intake end 13 Exhaust end 14 Convergence part (Conduit body converging part)
14a Narrowing part 14a1 Protruding part 14b Guide piece 14c Loop path 14d Rectifying piece 15 Reinforcing material 16 Room 21 Impeller 21a Part 22 Flat plate 23 Tilt plate 23a Receiving tilt plate 24 Contour body 25 Blade 25a Wind intake room 27 Spokes 28 31 Support plate 40 Generator 41 Heat exchange part 42 Air passage A Hybrid B Center R Building R1 Pillar R2 Ceiling R3 Underfloor r Right angle R4 Attic X1 Natural airflow

Claims (4)

建屋の土台から屋根裏に向かって備えた風路と、前記風路に介設した真直ぐな導管と、前記導管内に備えた導管本体収れん部と、この導管本体収れん部の外側と、前記導管の壁面との間に形成した部屋と、この部屋に羽根車の輪郭体の一部が陥入し、かつこの羽根車に設けた風を導入できる多数の風取込み部屋と、を備える建屋に設けた風力発電装置であって、
前記輪郭体の一部は、前記導管に形成した狭窄部に陥入し、
前記導管本体収れん部の壁面と、前記部屋の壁面、及び前記風取込み部屋の壁面、滑らかな面とし、
前記導管本体収れん部を通った風を受止め得る、この導管本体収れん部に繋がる導入風路を備える、
構成とした風力発電装置。
An air passage provided from the base of the building toward the attic, a straight conduit provided through the air passage, a conduit main body converging portion provided in the conduit , an outside of the conduit main body converging portion, and the conduit It was installed in a building equipped with a room formed between the wall surface and a large number of wind intake rooms where a part of the outline of the impeller was recessed into this room and the wind provided in this impeller could be introduced . It ’s a wind power generator,
A part of the contour body invades the constriction formed in the conduit and
The wall surface of the conduit body converging portion, the wall surface of the room , and the wall surface of the wind intake room shall be smooth surfaces.
An introduction air passage connected to the conduit body converging portion, which can receive the wind passing through the conduit body converging portion, is provided.
Wind power generation equipment configured .
前記狭窄部は、断面視して切欠き半月形状、又は眞半月形状を呈し、この狭窄部は、吸気端及び排気端を備えた前記導管に膨出形成され、かつ前記輪郭体の導入風路、及び排気風路に接触し、この接触部位に、前記導管の前記導管本体収れん部が位置する構成とした
請求項1に記載の風力発電装置。
The narrowed portion has a notched half-moon shape or a true half-moon shape when viewed in cross section, and the narrowed portion is formed to bulge in the conduit provided with an intake end and an exhaust end, and the introduction air passage of the contour body. , And the converging portion of the conduit body of the conduit is located at the contacting portion of the exhaust air passage .
The wind power generator according to claim 1.
前記輪郭体が備える平板は、前記羽根車の回転方向と垂直とする構成とした
請求項1又は2に記載の風力発電装置。
The flat plate provided by the contour body is configured to be perpendicular to the rotation direction of the impeller.
The wind power generator according to claim 1 or 2.
前記狭窄部において、前記輪郭体が備える平板の少なくとも1枚は、前記風を垂直に受け止める構成とした、
請求項1乃至3のいずれか1項に記載の風力発電装置。
In the narrowed portion, at least one flat plate the contour member comprises has a structure in which Ru receiving said wind vertically,
The wind power generator according to any one of claims 1 to 3.
JP2017089857A 2017-04-28 2017-04-28 Wind power generator Active JP6829882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017089857A JP6829882B2 (en) 2017-04-28 2017-04-28 Wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017089857A JP6829882B2 (en) 2017-04-28 2017-04-28 Wind power generator

Publications (2)

Publication Number Publication Date
JP2018188989A JP2018188989A (en) 2018-11-29
JP6829882B2 true JP6829882B2 (en) 2021-02-17

Family

ID=64478232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017089857A Active JP6829882B2 (en) 2017-04-28 2017-04-28 Wind power generator

Country Status (1)

Country Link
JP (1) JP6829882B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7045102B1 (en) 2020-10-28 2022-03-31 正樹 長谷川 Wind turbine
KR102506061B1 (en) * 2021-03-23 2023-03-06 우찬식 Power Generation System Using Rising Airflow Due To Temperature Difference
CN114109750B (en) * 2021-11-24 2024-06-25 西安热工研究院有限公司 Solar energy wind-force impulse turbine electricity generation all-in-one

Also Published As

Publication number Publication date
JP2018188989A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
RU2493427C2 (en) Wind-driven power plant, generator to generate power from ambient air and method to generate power from moving ambient air
JP6829882B2 (en) Wind power generator
ES2685223T3 (en) Fluid driven turbine
JP6031439B2 (en) Facility for generating electrical energy from wind
JP2011529541A (en) Power generation equipment using continuous fluid, especially wind power generation equipment
WO2010139188A1 (en) Square active-body compressed wind generating apparatus
US20120091727A1 (en) Apparatus for generating electricity from wind power
US8109732B2 (en) Horizontal-axis wind generator
US20130251506A1 (en) Wind turbine electricity generating apparatus
CN104806459B (en) Tower barrel-type wind power generation device
CN112534130A (en) Vortex accelerating wind energy tower
JP2010506095A (en) Reaction type solar turbine
JP2014190314A (en) Wind turbine generating set
JP2012514158A (en) Prime mover
JP2012107612A (en) Wind tunnel body, vertical axis wind turbine, structure, wind power generator, hydraulic device, and building
CN107091204A (en) For the built-in cylinder turbine generated electricity using external flush entrance and shovel entrance
US7364399B2 (en) Wind power plant of cyclone type and method of obtaining energy from such
JP2011169261A (en) Wind power generator
JP4488697B2 (en) Assembly type windmill
KR20140102459A (en) The case of vertical-axis wind-blades part for the use of Vertical-Axis Wind Turbine(VAWT)
JP3181959U (en) Wind power generator
KR102038017B1 (en) a combined generator using solar and wind and water power
TWM583487U (en) Wind turbine having an auxiliary power
TW202300779A (en) Wind power generation device
WO2009062376A1 (en) Parallel bundled wind power generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210108

R150 Certificate of patent or registration of utility model

Ref document number: 6829882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250