JP6829090B2 - Shielded metal arc welding rod - Google Patents

Shielded metal arc welding rod Download PDF

Info

Publication number
JP6829090B2
JP6829090B2 JP2017015797A JP2017015797A JP6829090B2 JP 6829090 B2 JP6829090 B2 JP 6829090B2 JP 2017015797 A JP2017015797 A JP 2017015797A JP 2017015797 A JP2017015797 A JP 2017015797A JP 6829090 B2 JP6829090 B2 JP 6829090B2
Authority
JP
Japan
Prior art keywords
amount
less
arc welding
welding rod
weld metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017015797A
Other languages
Japanese (ja)
Other versions
JP2018122329A (en
Inventor
泰隆 坂野
泰隆 坂野
英亮 高内
英亮 高内
哲直 池田
哲直 池田
秀徳 名古
秀徳 名古
難波 茂信
茂信 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017015797A priority Critical patent/JP6829090B2/en
Priority to CN201810076271.3A priority patent/CN108372372A/en
Priority to KR1020180011122A priority patent/KR102084932B1/en
Publication of JP2018122329A publication Critical patent/JP2018122329A/en
Application granted granted Critical
Publication of JP6829090B2 publication Critical patent/JP6829090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0272Rods, electrodes, wires with more than one layer of coating or sheathing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

本発明は、被覆アーク溶接棒に関する。 The present invention relates to a shielded metal arc welding rod.

火力発電設備におけるボイラーや熱交換器等の構造物には、耐熱性や耐圧性等の特性が要求され、火力発電の蒸気温度および蒸気圧は、熱効率向上の観点から近年益々高まっている。例えば、超々臨界圧石炭火力発電での蒸気温度は、約500〜600℃である。上記構造物は、長時間に亘って高温、高圧で保持されるため、応力が加わり、時間の経過と共に歪みが増大するクリープ現象が起こる。 Structures such as boilers and heat exchangers in thermal power generation facilities are required to have characteristics such as heat resistance and pressure resistance, and the steam temperature and vapor pressure of thermal power generation have been increasing more and more in recent years from the viewpoint of improving thermal efficiency. For example, the steam temperature in ultra-supercritical coal-fired power generation is about 500 to 600 ° C. Since the structure is held at high temperature and high pressure for a long time, stress is applied and a creep phenomenon occurs in which strain increases with the passage of time.

上記構造物の素材には、耐熱性や耐圧性等の特性を備えるため、Crを比較的多く含む耐熱鋼が用いられる。また、上記素材には、高温、高圧で長時間曝されても破断しないクリープ破断特性に優れていることが要求され、靭性に優れていることも求められる。 As the material of the structure, heat-resistant steel containing a relatively large amount of Cr is used because it has characteristics such as heat resistance and pressure resistance. Further, the above-mentioned material is required to have excellent creep rupture characteristics that do not break even when exposed to high temperature and high pressure for a long time, and is also required to have excellent toughness.

上記構造物は、素材となる高Cr鋼をアーク溶接して構築されるのが一般的であり、高Cr鋼を溶接して形成される溶接金属においてもクリープ破断特性および靭性に優れていることが求められる。また、アーク溶接して形成された溶接金属は、通常、残留応力を除去するために溶接後熱処理(Post Weld Heat Treatment;PWHT)が施される。 The above structure is generally constructed by arc welding high Cr steel as a material, and even a weld metal formed by welding high Cr steel has excellent creep breaking characteristics and toughness. Is required. Further, the weld metal formed by arc welding is usually subjected to post-weld heat treatment (PWHT) in order to remove residual stress.

ところで、Crは、フェライトを安定化する作用を有するため、高Cr鋼を溶接すると、溶接時にδフェライトが生成し、溶接完了後の溶接金属に残存することがある。δフェライトは、溶接後熱処理を施す前の溶接ままの溶接金属に観察される粗大組織であり、溶接後熱処理しても消失せず、溶接後熱処理後の溶接金属のクリープ破断特性や靭性に悪影響を及ぼすことが知られている。 By the way, since Cr has an action of stabilizing ferrite, when high Cr steel is welded, δ ferrite may be generated at the time of welding and may remain in the weld metal after welding is completed. δ-ferrite is a coarse structure observed in the weld metal as it is welded before the post-weld heat treatment, and does not disappear even after the post-weld heat treatment, which adversely affects the creep break characteristics and toughness of the weld metal after the post-weld heat treatment. Is known to exert.

溶接金属のクリープ破断特性や靭性は、一般に、溶接金属の特定の部位から採取された試験片を用いて評価されるため、試験片を採取した部位にδフェライトがたまたま含まれていない場合は、良好な特性が示される。しかし、実際に施工される溶接金属では、一部にでもδフェライトが生成すると、破壊や破断が生じる虞があるため、安全を期するには、溶接金属の全領域においてδフェライトの生成が抑制される必要がある。 The creep rupture characteristics and toughness of a weld metal are generally evaluated using a test piece taken from a specific part of the weld metal, so if the part where the test piece was taken does not happen to contain δ ferrite, Good properties are shown. However, in the weld metal actually constructed, if δ ferrite is generated even in a part, there is a risk of breakage or breakage. Therefore, for safety, the formation of δ ferrite is suppressed in the entire area of the weld metal. Need to be done.

溶接時にδフェライトの生成を抑制する技術として、例えば、特許文献1〜3が知られている。特許文献1〜3は、いずれも溶接時に用いる溶接材料に関する。 For example, Patent Documents 1 to 3 are known as a technique for suppressing the formation of δ ferrite during welding. Patent Documents 1 to 3 relate to welding materials used at the time of welding.

特許文献1には、Niは靭性を改善するために有効な元素であるが、その反面、炭化物、酸化物を凝集促進させてしまい高温長時間でのクリープ強度を低下させることが記載されている。そして、この文献には、鋼心線または被覆剤中に靭性改善に有効とされるNiの代わりにCo、Cuの両方または一方を添加することによって、δフェライトの生成が抑制され、溶接金属の靭性を確保しつつクリープ強度を改善することが記載されている。 Patent Document 1 describes that Ni is an effective element for improving toughness, but on the other hand, it promotes aggregation of carbides and oxides and lowers creep strength at high temperature for a long time. .. Then, in this document, the formation of δ ferrite is suppressed by adding Co, Cu, or one of them instead of Ni, which is effective for improving toughness, in the steel core wire or the coating agent. It is described to improve creep strength while ensuring toughness.

特許文献2には、溶接ワイヤ中に適正量のC、Si、Mn、Cr、Ni、Co、Cu、Mo、W、V、Nb、およびNを添加することによって、高温クリープ強度、靭性、および耐割れ性を確保できること、Cr、W、およびMoのフェライト生成元素と、Ni、Coのフェライト生成を抑制する元素とを適正な含有量の関係で添加することによって、溶接金属中のδフェライトの生成を抑制しクリープ強度と靭性をさらに向上できること、Mo量を低く抑えることによって、高温保持後のσ相への変態を抑制することが記載されている。 Patent Document 2 describes high temperature creep strength, toughness, and high temperature creep strength by adding appropriate amounts of C, Si, Mn, Cr, Ni, Co, Cu, Mo, W, V, Nb, and N to the welding wire. Crack resistance can be ensured, and by adding the ferrite-forming elements of Cr, W, and Mo and the elements that suppress the ferrite formation of Ni and Co in an appropriate content relationship, δ-ferrite in the weld metal It is described that the formation can be suppressed and the creep strength and toughness can be further improved, and that the transformation to the σ phase after holding at a high temperature is suppressed by suppressing the amount of Mo.

特許文献3には、溶接金属のクリープ強度は、MX(炭窒化物)の析出物の量の増加に伴って向上すること、靭性はδフェライトの析出量とAe1変態点に大きく依存することが記載されている。 According to Patent Document 3, the creep strength of the weld metal is improved as the amount of MX (carbonitride) precipitates increases, and the toughness largely depends on the amount of δ-ferrite precipitates and the Ae1 transformation point. Have been described.

また、特許文献4には、溶接ワイヤ中に適正量のC、Si、Mn、Cu、Ni、Co、Cr、Mo、V、Nb、W、Nを添加することにより、溶接部の高温クリープ強度と靱性の両方に優れた高Crフェライト系耐熱鋼用溶接ワイヤを提供できることが記載されている。 Further, in Patent Document 4, by adding an appropriate amount of C, Si, Mn, Cu, Ni, Co, Cr, Mo, V, Nb, W and N to the weld wire, the high temperature creep strength of the welded portion is obtained. It is described that a welding wire for high Cr ferrite-based heat-resistant steel having excellent both toughness and toughness can be provided.

特開平7−268562号公報Japanese Unexamined Patent Publication No. 7-268562 特開平8−187592号公報Japanese Unexamined Patent Publication No. 8-187592 特開平11−170087号公報Japanese Unexamined Patent Publication No. 11-17807 特開2004−42116号公報Japanese Unexamined Patent Publication No. 2004-42116

上記特許文献1〜4には、溶接時に用いる溶接材料や、該溶接材料を用いて溶接金属を形成することについて記載されている。しかし、溶接金属の全領域においてδフェライトの生成が抑制されているか不明である。 The above-mentioned Patent Documents 1 to 4 describe a welding material used at the time of welding and the formation of a welding metal using the welding material. However, it is unclear whether the formation of δ ferrite is suppressed in the entire region of the weld metal.

本発明は上記の様な事情に着目してなされたものであって、その目的は、クリープ破断特性および靭性に優れた溶接金属を得ることができる被覆アーク溶接棒を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a shielded metal arc welding rod capable of obtaining a weld metal having excellent creep rupture characteristics and toughness.

本発明者らは前記目的を達成するために、溶接時のδフェライト生成の抑制と、溶接金属のクリープ破断特性の向上を高いレベルで両立できる手段を検討した結果、被覆アーク溶接棒の合金組成を適切に制御することにより当該目的を達成できることを見出し、本発明を完成するに至った。 In order to achieve the above object, the present inventors have investigated means for suppressing the formation of δ-ferrite during welding and improving the creep breaking characteristics of the weld metal at a high level. As a result, the alloy composition of the shielded metal arc welding rod It has been found that the object can be achieved by appropriately controlling the above, and the present invention has been completed.

すなわち、本発明は、
被覆剤を鋼心線外周に被覆してなる被覆アーク溶接棒であって、
前記被覆剤および前記鋼心線の一方又は双方の中に、前記被覆アーク溶接棒全質量当たり、合金成分として、質量%で、
C :0.05〜0.20%、
Si:0.3〜1.0%、
Mn:0.1〜1.1%、
Ni:0%以上、0.5%以下、
Cr:3〜12%、
Mo:0.05〜0.55%、
V :0.02〜0.50%、
Nb:0.01〜0.09%、
Co:0.55〜2.20%、
W :0.4〜2.0%、
N :0.01〜0.10%、
B :0.001〜0.100%を含有し、
残部がガス発生剤、スラグ形成剤、アーク安定剤、鉄および不可避不純物からなる被覆アーク溶接棒に関する。
That is, the present invention
A shielded metal arc welding rod in which a coating agent is coated on the outer circumference of a steel core wire.
In one or both of the coating agent and the steel core wire, in mass% as an alloy component, per the total mass of the shielded metal arc welding rod.
C: 0.05 to 0.20%,
Si: 0.3-1.0%,
Mn: 0.1-1.1%,
Ni: 0% or more, 0.5% or less,
Cr: 3-12%,
Mo: 0.05-0.55%,
V: 0.02 to 0.50%,
Nb: 0.01-0.09%,
Co: 0.55 to 2.20%,
W: 0.4 to 2.0%,
N: 0.01 to 0.10%,
B: Contains 0.001 to 0.100%,
The balance relates to a shielded metal arc welding rod consisting of a gas generator, a slag forming agent, an arc stabilizer, iron and unavoidable impurities.

上記被覆アーク溶接棒は、被覆剤および鋼心線の一方又は双方の中に、被覆アーク溶接棒全質量当たり、合金成分として、質量%で、Ti:0%超、0.03%以下をさらに含有してもよい。 The shielded metal arc welding rod further contains Ti: more than 0% and 0.03% or less in mass% as an alloy component per total mass of the shielded metal arc welding rod in one or both of the coating agent and the steel core wire. It may be contained.

また、上記被覆アーク溶接棒は、被覆剤および鋼心線の一方又は双方の中に、被覆アーク溶接棒全質量当たり、合金成分として、質量%で、Cu:0%超、0.25%以下をさらに含有してもよい。 Further, the shielded metal arc welding rod has Cu: more than 0% and 0.25% or less in mass% as an alloy component per total mass of the shielded metal arc welding rod in one or both of the coating agent and the steel core wire. May be further contained.

また、上記被覆アーク溶接棒は、被覆剤および鋼心線の一方又は双方の中に、被覆アーク溶接棒全質量当たり、合金成分として、質量%で、Al:0%超、1.5%以下をさらに含有してもよい。 Further, the shielded metal arc welding rod has Al: more than 0% and 1.5% or less as an alloy component per total mass of the shielded metal arc welding rod in one or both of the coating agent and the steel core wire. May be further contained.

本発明の被覆アーク溶接棒によれば、クリープ破断特性および靭性に優れた溶接金属を得ることができる。 According to the shielded metal arc welding rod of the present invention, a weld metal having excellent creep rupture characteristics and toughness can be obtained.

図1は、ある溶接金属の試験片におけるC原子及びCr原子の原子マップ(なお、1点1点が原子を表している)である。FIG. 1 is an atomic map of C and Cr atoms in a test piece of a certain weld metal (note that each point represents an atom). 図2は、ある溶接金属の試験片について、マトリクス粒界に存在する偏析Bの面密度(BGB)を測定する際に設定される、粒界面に垂直かつ粒界面を貫通する円柱状の分析領域を示す図である。FIG. 2 is an analysis of a columnar shape perpendicular to the grain interface and penetrating the grain interface, which is set when measuring the surface density ( BGB ) of segregation B existing at the matrix grain boundary for a certain weld metal test piece. It is a figure which shows the area. 図3は、図2に示される円柱状の分析領域について解析方向に沿って原子濃度を測定した際のプロファイルを示す図である。FIG. 3 is a diagram showing a profile when the atomic concentration of the columnar analysis region shown in FIG. 2 is measured along the analysis direction. 図4は、本発明の実施例においてクリープ破断特性の評価に用いた試験片の採取位置を示す模式図である。FIG. 4 is a schematic view showing the sampling position of the test piece used for evaluating the creep rupture characteristics in the embodiment of the present invention. 図5は、本発明の実施例において靭性の評価に用いた試験片の採取位置を示す模式図である。FIG. 5 is a schematic view showing a sampling position of a test piece used for evaluation of toughness in an example of the present invention.

以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。また、本明細書において、質量を基準とする百分率(質量%)は、重量を基準とする百分率(重量%)と同義である。 Hereinafter, embodiments for carrying out the present invention will be described in detail. The present invention is not limited to the embodiments described below. Further, in the present specification, the percentage based on mass (mass%) is synonymous with the percentage based on weight (% by weight).

本発明の被覆アーク溶接棒は、被覆剤を鋼心線外周に被覆してなる被覆アーク溶接棒であって、前記被覆剤および前記鋼心線の一方又は双方の中に、前記被覆アーク溶接棒全質量当たり、合金成分として、質量%で、C:0.05〜0.20%、Si:0.3〜1.0%、Mn:0.1〜1.1%、Ni:0%以上、0.5%以下、Cr:3〜12%、Mo:0.05〜0.55%、V:0.02〜0.50%、Nb:0.01〜0.09%、Co:0.55〜2.20%、W:0.4〜2.0%、N:0.01〜0.10%、B:0.001〜0.100%を含有し、残部がガス発生剤、スラグ形成剤、アーク安定剤、鉄および不可避不純物からなる被覆アーク溶接棒である。 The shielded metal arc welding rod of the present invention is a shielded metal arc welding rod in which a coating agent is coated on the outer periphery of the steel core wire, and the shielded metal arc welding rod is contained in one or both of the coating agent and the steel core wire. C: 0.05 to 0.20%, Si: 0.3 to 1.0%, Mn: 0.1 to 1.1%, Ni: 0% or more in terms of mass% as an alloy component per total mass. , 0.5% or less, Cr: 3 to 12%, Mo: 0.05 to 0.55%, V: 0.02 to 0.50%, Nb: 0.01 to 0.09%, Co: 0 .55-2.20%, W: 0.4-2.0%, N: 0.01-0.10%, B: 0.001-0.100%, the balance is a gas generator, A shielded metal arc welding rod composed of a slag forming agent, an arc stabilizer, iron and unavoidable impurities.

Bは、一般にM23で表される炭化物粒子(以下、単に「M23粒子」ともいう)に溶け込むことで、クリープ破断試験中のM23粒子を安定化させ、これら粒子が転位移動を阻害することでクリープ破断特性を改善するとされている。
そこで、本発明者らは、この効果を最大限に活用すべく、BによるM23粒子の安定化メカニズムを検討した。
B stabilizes the M 23 C 6 particles under the creep rupture test by dissolving in carbide particles generally represented by M 23 C 6 (hereinafter, also simply referred to as “M 23 C 6 particles”), and these particles. Is said to improve creep rupture characteristics by inhibiting dislocation movement.
Therefore, the present inventors investigated the stabilization mechanism of M 23 C 6 particles by B in order to make the best use of this effect.

クリープ破断試験のような高温環境下で、M23粒子は、オストワルド成長により急激に総粒子数が減少する。ここで、オストワルド成長とは、熱処理したときに、粒径の小さい粒子が消滅する一方で、大きい粒子が成長を続ける現象である。本発明者らは、M23粒子のオストワルド成長がBの拡散に律速されることを見出した。
すなわち、M23粒子のオストワルド成長の過程においては、M23粒子の粗大化に対し、周囲のマトリクスからBが供給される必要がある。このとき、マトリクス粒界あるいは粒内に存在するBを一定値以下に減少させることで、M23粒子のオストワルド成長が抑制されるようになる。
その結果、高温でのM23粒子の減少速度が低下し、溶接金属のクリープ破断特性を改善することができる。
In high temperature environments, such as creep rupture test, M 23 C 6 particles, rapidly total particle number decreases by Ostwald growth. Here, Ostwald growth is a phenomenon in which particles having a small particle size disappear when heat-treated, while particles having a large particle size continue to grow. The present inventors have found that the Ostwald growth of M 23 C 6 particles is rate-determined by the diffusion of B.
That is, in the course of Ostwald growth of M 23 C 6 particles, to coarsening of M 23 C 6 particles, it is necessary to have B from the surrounding matrix is supplied. At this time, by reducing the B present at the matrix grain boundaries or in the grains to a certain value or less, the Ostwald growth of the M 23 C 6 particles is suppressed.
As a result, the rate of decrease of M 23 C 6 particles at high temperature is reduced, and the creep rupture characteristics of the weld metal can be improved.

本発明においては、上記知見に基づき、溶接により得られる溶接金属中にBが適切な形態で存在しうるように、また、溶接時のδフェライト生成を抑制するために、被覆アーク溶接棒の合金成分量を以下のように規定することとした。なお、これらの合金成分は、鋼心線及び被覆剤の一方に添加してもよく、あるいは両方に添加してもよい。また、以下における被覆アーク溶接棒中の各合金成分量(%)は、被覆アーク溶接棒全質量あたりの含有量(質量%)である。 In the present invention, based on the above findings, an alloy of a shielded metal arc welding rod is used so that B can be present in an appropriate form in the welding metal obtained by welding and in order to suppress the formation of δ ferrite during welding. It was decided to specify the amount of ingredients as follows. These alloy components may be added to one of the steel core wire and the coating agent, or may be added to both. Further, the amount of each alloy component (%) in the shielded metal arc welding rod below is the content (mass%) per the total mass of the shielded metal arc welding rod.

(C:0.05〜0.20質量%)
Cは、炭化物を形成し、溶接金属のクリープ破断特性を改善するのに寄与する元素である。こうした効果を発揮させるために、本発明では、C量は0.05%以上とする。C量は、好ましくは0.07%以上、より好ましくは0.09%以上である。しかしCを過剰に含有すると、炭化物が粗大化しすぎて溶接金属の靭性が低下することがある。従って本発明では、C量は0.20%以下とする。C量は、好ましくは0.18%以下、より好ましくは0.16%以下である。なお、Cは、被覆剤から添加する場合は他の金属原料に含有させて添加することができる。
(C: 0.05 to 0.20% by mass)
C is an element that forms carbides and contributes to improving the creep rupture properties of the weld metal. In order to exert such an effect, the amount of C is set to 0.05% or more in the present invention. The amount of C is preferably 0.07% or more, more preferably 0.09% or more. However, if C is excessively contained, the carbide may become too coarse and the toughness of the weld metal may decrease. Therefore, in the present invention, the amount of C is 0.20% or less. The amount of C is preferably 0.18% or less, more preferably 0.16% or less. When C is added from a coating agent, it can be added by being contained in another metal raw material.

(Si:0.3〜1.0質量%)
Siは、脱酸剤として機能して溶接金属の強度及び靱性を向上させる。また、Siは、溶接時の作業性向上に寄与する元素であり、Si量が0.3%を下回ると溶接作業性が劣化する。したがって本発明では、Si量は0.3%以上とする。Si量は、好ましくは0.4%以上、より好ましくは0.5%以上である。しかしSiを過剰に含有すると、溶接金属の過剰な強度上昇が生じ、靭性の劣化を招く。したがって本発明では、Si量は1.0%以下とする。Si量は、好ましくは0.8%以下、より好ましくは0.7%以下である。なお、Siは、被覆剤から添加する場合はFe−Si等により添加することができる。
(Si: 0.3 to 1.0% by mass)
Si functions as a deoxidizer and improves the strength and toughness of the weld metal. Further, Si is an element that contributes to the improvement of workability during welding, and if the amount of Si is less than 0.3%, the welding workability deteriorates. Therefore, in the present invention, the amount of Si is 0.3% or more. The amount of Si is preferably 0.4% or more, more preferably 0.5% or more. However, if Si is excessively contained, the strength of the weld metal is excessively increased, resulting in deterioration of toughness. Therefore, in the present invention, the amount of Si is 1.0% or less. The amount of Si is preferably 0.8% or less, more preferably 0.7% or less. When Si is added from a coating agent, it can be added by Fe-Si or the like.

(Mn:0.1〜1.1質量%)
Mnは、脱酸剤として機能して溶接金属の強度及び靱性を向上させる。また、Mnは、溶接時にδフェライトの生成を抑制する作用を有する元素である。Mn量が0.1%を下回ると、溶接時にδフェライトが生成しやすくなり、生成したδフェライトは溶接後熱処理を施しても消失しないため、溶接時にδフェライトが生成した場合は、δフェライトが溶接金属のクリープ破断特性および靭性に悪影響をおよぼす可能性がある。したがって本発明では、Mn量は0.1%以上とする。Mn量は、好ましくは0.2%以上、より好ましくは0.3%以上である。しかし、Mnを過剰に含有すると、炭化物粒子のオストワルド成長が促進され過ぎて溶接金属のクリープ破断特性が劣化する。したがって本発明では、Mn量は1.1%以下とする。Mn量は、好ましくは0.8%以下、より好ましくは0.7%以下である。なお、Mnは、被覆剤から添加する場合はFe−Mn等により添加することができる。
(Mn: 0.1 to 1.1% by mass)
Mn functions as a deoxidizer to improve the strength and toughness of the weld metal. Further, Mn is an element having an action of suppressing the formation of δ ferrite during welding. If the amount of Mn is less than 0.1%, δ ferrite is likely to be generated during welding, and the generated δ ferrite does not disappear even after heat treatment after welding. Therefore, if δ ferrite is generated during welding, δ ferrite is generated. It can adversely affect the creep rupture properties and toughness of weld metal. Therefore, in the present invention, the amount of Mn is 0.1% or more. The amount of Mn is preferably 0.2% or more, more preferably 0.3% or more. However, if Mn is excessively contained, the Ostwald growth of the carbide particles is excessively promoted, and the creep rupture characteristics of the weld metal deteriorate. Therefore, in the present invention, the amount of Mn is set to 1.1% or less. The amount of Mn is preferably 0.8% or less, more preferably 0.7% or less. When Mn is added from a coating agent, it can be added by Fe-Mn or the like.

(Ni:0質量%以上、0.5質量%以下)
Niは、マトリクス中の合金元素の拡散を促進する元素である。ただし、Niを過剰に添加すると、Bの拡散が助長され、M23粒子のオストワルド成長が進行しやすくなり、溶接金属のクリープ破断特性が劣化する。したがって本発明では、Ni量は0.5%以下とする。Ni量は、好ましくは0.4%以下、さらに好ましくは0.3%以下である。なお、Niは、被覆剤から添加する場合はFe−Ni等により添加することができる。
(Ni: 0% by mass or more, 0.5% by mass or less)
Ni is an element that promotes the diffusion of alloying elements in the matrix. However, if Ni is added excessively, the diffusion of B is promoted, the Ostwald growth of the M 23 C 6 particles is likely to proceed, and the creep rupture characteristics of the weld metal are deteriorated. Therefore, in the present invention, the amount of Ni is 0.5% or less. The amount of Ni is preferably 0.4% or less, more preferably 0.3% or less. When Ni is added from a coating agent, it can be added by Fe-Ni or the like.

(Cr:3〜12質量%)
Crは、CrやFe、Mo等の金属元素をMと表記したとき、M23粒子を形成し、溶接金属のクリープ破断特性を改善する元素である。こうした効果を発揮させるために、本発明ではCr量を3%以上とする。Cr量は、好ましくは4%以上、より好ましくは5%以上である。しかしCrを過剰に含有すると、溶接時にδフェライトが生成しやすくなり、生成したδフェライトは溶接後熱処理を施しても消失しないため、溶接時にδフェライトが生成した場合は、δフェライトが溶接金属のクリープ破断特性および靭性の改善に悪影響をおよぼす可能性がある。したがって本発明では、Cr量は12%以下とする。Cr量は、好ましくは11%以下、より好ましくは10%以下である。なお、Crは、被覆剤から添加する場合はFe−Cr等により添加することができる。
(Cr: 3 to 12% by mass)
Cr is an element that forms M 23 C 6 particles and improves the creep rupture characteristics of the weld metal when a metal element such as Cr, Fe, or Mo is expressed as M. In order to exert such an effect, the amount of Cr is set to 3% or more in the present invention. The amount of Cr is preferably 4% or more, more preferably 5% or more. However, if Cr is excessively contained, δ ferrite is likely to be generated during welding, and the generated δ ferrite does not disappear even after heat treatment after welding. Therefore, when δ ferrite is generated during welding, δ ferrite is a weld metal. It can adversely affect the improvement of creep rupture properties and toughness. Therefore, in the present invention, the amount of Cr is set to 12% or less. The amount of Cr is preferably 11% or less, more preferably 10% or less. When Cr is added from a coating agent, it can be added by Fe-Cr or the like.

(Mo:0.05〜0.55質量%)
Moは、固溶強化により溶接金属のクリープ破断特性を改善する元素である。こうした効果を発揮させるために、本発明ではMo量を0.05%以上とする。Mo量は、好ましくは0.10%以上、より好ましくは0.15%以上である。しかしMoを過剰に含有すると、溶接時にδフェライトが生成しやすくなり、生成したδフェライトは溶接後熱処理を施しても消失しないため、溶接時にδフェライトが生成した場合は、δフェライトが溶接金属のクリープ破断特性および靭性の改善に悪影響をおよぼす可能性がある。したがって本発明では、Mo量は0.55%以下とする。Mo量は、好ましくは0.50%以下、より好ましくは0.45%以下である。なお、Moは、被覆剤から添加する場合はFe−Mo等により添加することができる。
(Mo: 0.05 to 0.55% by mass)
Mo is an element that improves the creep rupture characteristics of weld metals by strengthening solid solution. In order to exert such an effect, the amount of Mo is set to 0.05% or more in the present invention. The amount of Mo is preferably 0.10% or more, more preferably 0.15% or more. However, if Mo is excessively contained, δ ferrite is likely to be generated during welding, and the generated δ ferrite does not disappear even after heat treatment after welding. Therefore, when δ ferrite is generated during welding, δ ferrite is a weld metal. It can adversely affect the improvement of creep rupture properties and toughness. Therefore, in the present invention, the amount of Mo is 0.55% or less. The amount of Mo is preferably 0.50% or less, more preferably 0.45% or less. When Mo is added from a coating agent, it can be added by Fe-Mo or the like.

(V:0.02〜0.50質量%)
Vは、MX(炭窒化物)を形成して溶接金属のクリープ破断特性を改善する元素である。また、MXとしてNを固定することで、BNとして生成するB量を減らす効果があり、M23粒子に溶け込むB量を増加させることで、M23粒子のオストワルド成長を抑制する。こうした効果を発揮させるために、本発明ではV量を0.02%以上とする。V量は、好ましくは0.05%以上、さらに好ましくは0.10%以上である。しかしVを過剰に含有すると、溶接時にδフェライトが生成する。また、高温でのMX(炭窒化物)のオストワルド成長を招く。その結果、溶接金属のクリープ破断特性および靭性が劣化する。従って本発明では、V量は0.50%以下とする。V量は、好ましくは0.40%以下、より好ましくは0.30%以下である。なお、Vは、被覆剤から添加する場合は他の金属原料に含有させて添加することができる。
(V: 0.02 to 0.50% by mass)
V is an element that forms MX (carbonitride) and improves the creep rupture characteristics of the weld metal. Further, by fixing N as MX, it has the effect of reducing the amount of B to generate a BN, by increasing the amount of B to blend into M 23 C 6 particles, inhibit Ostwald ripening of the M 23 C 6 particles. In order to exert such an effect, the amount of V is set to 0.02% or more in the present invention. The amount of V is preferably 0.05% or more, more preferably 0.10% or more. However, if V is excessively contained, δ ferrite is formed during welding. It also causes Ostwald growth of MX (carbonitride) at high temperatures. As a result, the creep rupture properties and toughness of the weld metal deteriorate. Therefore, in the present invention, the amount of V is 0.50% or less. The amount of V is preferably 0.40% or less, more preferably 0.30% or less. When V is added from a coating agent, it can be added by being contained in another metal raw material.

(Nb:0.01〜0.09質量%)
Nbは、MX(炭窒化物)を形成して溶接金属のクリープ破断特性を改善する元素である。こうした効果を発揮させるために、本発明ではNb量を0.010%以上とする。Nb量は、好ましくは0.015%以上、より好ましくは0.020%以上である。しかし、Nbを過剰に含有すると溶接金属の強度の過大な上昇を招き、靭性を劣化させる。従って本発明では、Nb量は0.090%以下とする。Nb量は、好ましくは0.075%以下、より好ましくは0070%以下である。なお、Nbは、被覆剤から添加する場合は他の金属原料に含有させて添加することができる。
(Nb: 0.01 to 0.09% by mass)
Nb is an element that forms MX (carbonitride) and improves the creep rupture characteristics of the weld metal. In order to exert such an effect, the amount of Nb is set to 0.010% or more in the present invention. The amount of Nb is preferably 0.015% or more, more preferably 0.020% or more. However, if Nb is excessively contained, the strength of the weld metal is excessively increased and the toughness is deteriorated. Therefore, in the present invention, the amount of Nb is 0.090% or less. The amount of Nb is preferably 0.075% or less, more preferably 0070% or less. When Nb is added from a coating agent, it can be added by being contained in another metal raw material.

(Co:0.55〜2.20質量%)
Coは、溶接時にδフェライトが生成するのを抑制し、溶接金属のクリープ破断特性および靭性を改善する元素である。こうした効果を発揮させるために、本発明ではCo量を0.55%以上とする。Co量は、好ましくは0.65%以上、より好ましくは0.75%以上である。しかし、Coを過剰に含有すると溶接金属の強度の過大な上昇を招き、靭性を劣化させる。したがって本発明では、Co量は2.20%以下とする。Co量は、好ましくは2.00%以下、より好ましくは1.80%以下である。なお、Coは、被覆剤から添加する場合はFe−Co等により添加することができる。
(Co: 0.55 to 2.20% by mass)
Co is an element that suppresses the formation of δ ferrite during welding and improves the creep rupture characteristics and toughness of the weld metal. In order to exert such an effect, the amount of Co is set to 0.55% or more in the present invention. The amount of Co is preferably 0.65% or more, more preferably 0.75% or more. However, if Co is excessively contained, the strength of the weld metal is excessively increased and the toughness is deteriorated. Therefore, in the present invention, the amount of Co is 2.20% or less. The amount of Co is preferably 2.00% or less, more preferably 1.80% or less. When Co is added from a coating agent, it can be added by Fe-Co or the like.

(W:0.4〜2.0質量%)
Wは、Moと同様、固溶強化元素として溶接金属のクリープ破断特性を改善するのに加え、高温でLaves相として粒界に析出し、粒界におけるB拡散を妨げることで、M23粒子のオストワルド成長を抑制する作用が期待される。こうした効果を発揮させるために、本発明ではW量を0.4%以上とする。W量は、好ましくは0.6%以上、さらに好ましくは0.8%以上である。しかしWを過剰に含有すると、溶接時にδフェライトが生成しやすくなり、生成したδフェライトは溶接後熱処理を施しても消失しないため、溶接時にδフェライトが生成した場合は、δフェライトが溶接金属のクリープ破断特性および靭性の改善に悪影響をおよぼす可能性がある。したがって本発明では、W量は2.0%以下とする。W量は、好ましくは1.8%以下、より好ましくは1.6%以下である。なお、Wは、被覆剤から添加する場合はFe−W等により添加することができる。
(W: 0.4 to 2.0% by mass)
Like Mo, W improves the creep rupture characteristics of the weld metal as a solid solution strengthening element, and also precipitates at the grain boundaries as the Laves phase at high temperatures, hindering B diffusion at the grain boundaries, so that M 23 C 6 It is expected to have the effect of suppressing the Ostwald growth of particles. In order to exert such an effect, the W amount is set to 0.4% or more in the present invention. The amount of W is preferably 0.6% or more, more preferably 0.8% or more. However, if W is excessively contained, δ ferrite is likely to be generated during welding, and the generated δ ferrite does not disappear even after heat treatment after welding. Therefore, when δ ferrite is generated during welding, δ ferrite is a weld metal. It can adversely affect the improvement of creep rupture properties and toughness. Therefore, in the present invention, the amount of W is set to 2.0% or less. The amount of W is preferably 1.8% or less, more preferably 1.6% or less. When W is added from the coating agent, it can be added by Fe-W or the like.

(N:0.01〜0.10質量%)
Nは、Nbと同様、MX(炭窒化物)を形成して溶接金属のクリープ破断特性を改善する元素である。こうした効果を発揮させるために、本発明ではN量を0.010%以上とする。N量は、好ましくは0.015%以上、より好ましくは0.020%以上である。しかし、Nを過剰に含有すると溶接金属の強度の過大な上昇を招き、靭性を劣化させる。したがって本発明では、N量は0.10%以下とする。N量は、好ましくは0.09%以下、より好ましくは0.08%以下である。なお、Nは、被覆剤から添加する場合は他の金属原料に含有させて添加することができる。
(N: 0.01 to 0.10% by mass)
Like Nb, N is an element that forms MX (carbonitride) and improves the creep rupture characteristics of the weld metal. In order to exert such an effect, the amount of N is set to 0.010% or more in the present invention. The amount of N is preferably 0.015% or more, more preferably 0.020% or more. However, if N is excessively contained, the strength of the weld metal is excessively increased and the toughness is deteriorated. Therefore, in the present invention, the amount of N is 0.10% or less. The amount of N is preferably 0.09% or less, more preferably 0.08% or less. When N is added from a coating agent, it can be added by being contained in another metal raw material.

(B:0.001〜0.100質量%)
Bは、M23粒子に溶け込むことで、M23粒子のオストワルド成長を抑制し、溶接金属のクリープ破断特性を改善する元素である。こうした効果を発揮させるために、本発明ではB量を0.001%以上とする。B量は、好ましくは0.003%以上、より好ましくは0.005%以上、さらに好ましくは0.011%以上である。しかしBを過剰に添加すると、溶接金属の強度が過大に上昇し、所定の靭性が確保できなくなる。したがって本発明では、B量は0.100%以下とする。B量は、好ましくは0.090%以下、より好ましくは0.080%以下である。なお、Bは、被覆剤から添加する場合は他の金属原料に含有させて添加することができる。
(B: 0.001 to 0.100% by mass)
B, by blend into M 23 C 6 particles, to suppress Ostwald ripening of the M 23 C 6 particles is an element to improve creep rupture properties of the weld metal. In order to exert such an effect, the amount of B is set to 0.001% or more in the present invention. The amount of B is preferably 0.003% or more, more preferably 0.005% or more, still more preferably 0.011% or more. However, if B is added excessively, the strength of the weld metal increases excessively, and a predetermined toughness cannot be secured. Therefore, in the present invention, the amount of B is 0.100% or less. The amount of B is preferably 0.090% or less, more preferably 0.080% or less. When B is added from a coating agent, it can be added by being contained in another metal raw material.

また、本発明の被覆アーク溶接棒は、上記合金元素に加えて、更に他の元素として、下記(a)〜(c)よりなる群から選ばれる少なくとも1種を含有してもよい。
(a)Ti:0%超、0.03%以下。
(b)Cu:0%超、0.25%以下。
(c)Al:0%超、1.5%以下。
Further, the shielded metal arc welding rod of the present invention may contain at least one selected from the group consisting of the following (a) to (c) as other elements in addition to the above alloying elements.
(A) Ti: More than 0%, 0.03% or less.
(B) Cu: More than 0%, 0.25% or less.
(C) Al: More than 0%, 1.5% or less.

Tiは必須元素ではないが、MX(炭窒化物)を形成し、溶接金属のクリープ破断特性の改善に寄与する元素である。こうした効果を有効に発揮させるには、Ti量は、好ましくは0.001%以上、より好ましくは0.002%以上、更に好ましくは0.003%以上である。しかしTiを過剰に含有すると、溶接金属の強度が過大に上昇し、靭性が劣化することがある。したがって本発明では、Ti量は0.03%以下とすることが好ましい。Ti量は、より好ましくは0.025%以下、更に好ましくは0.020%以下である。 Ti is not an essential element, but it is an element that forms MX (carbonitride) and contributes to the improvement of creep rupture characteristics of weld metal. In order to effectively exert such an effect, the amount of Ti is preferably 0.001% or more, more preferably 0.002% or more, still more preferably 0.003% or more. However, if Ti is excessively contained, the strength of the weld metal may be excessively increased and the toughness may be deteriorated. Therefore, in the present invention, the amount of Ti is preferably 0.03% or less. The amount of Ti is more preferably 0.025% or less, still more preferably 0.020% or less.

Cuは必須元素ではないが、溶接時にδフェライトの生成を抑制する作用を有する元素である。こうした効果を有効に発揮させるには、Cu量は、好ましくは0.01%以上、より好ましくは0.02%以上、更に好ましくは0.025%以上である。しかしCuを過剰に含有すると、帯状にフェライトが細長く成長した組織(フェライトバンドと呼ばれることがある。)の生成が助長され、溶接金属のクリープ破断特性や靭性が劣化することがある。したがって本発明では、Cu量は0.25%以下とすることが好ましい。Cu量は、より好ましくは0.20%以下、更に好ましくは0.15%以下である。 Cu is not an essential element, but it is an element that has the effect of suppressing the formation of δ ferrite during welding. In order to effectively exert such an effect, the amount of Cu is preferably 0.01% or more, more preferably 0.02% or more, still more preferably 0.025% or more. However, if Cu is excessively contained, the formation of a structure in which ferrite grows in a strip shape (sometimes called a ferrite band) is promoted, and the creep rupture characteristics and toughness of the weld metal may deteriorate. Therefore, in the present invention, the amount of Cu is preferably 0.25% or less. The amount of Cu is more preferably 0.20% or less, still more preferably 0.15% or less.

Alは必須元素ではないが、脱酸剤として作用する元素である。こうした効果を有効に発揮させるには、Al量は、好ましくは0.01%以上、より好ましくは0.02%以上、更に好ましくは0.025%以上である。しかし、Alを過剰に含有すると粗大な酸化物を生成し、脆性破壊の起点となって溶接金属の靭性が低下することがある。したがって本発明では、Al量は1.5%以下とすることが好ましい。Al量は、好ましくは1.3%以下、より好ましくは1.1%以下である。 Al is not an essential element, but it is an element that acts as an antacid. In order to effectively exert such an effect, the amount of Al is preferably 0.01% or more, more preferably 0.02% or more, still more preferably 0.025% or more. However, if Al is excessively contained, coarse oxides are generated, which may become a starting point of brittle fracture and reduce the toughness of the weld metal. Therefore, in the present invention, the amount of Al is preferably 1.5% or less. The amount of Al is preferably 1.3% or less, more preferably 1.1% or less.

本発明の被覆アーク溶接棒の残部は、ガス発生剤、スラグ形成剤、アーク安定剤、鉄および不可避不純物であることが好ましい。また、本発明の被覆アーク溶接棒は、ガス発生剤、スラグ形成剤およびアーク安定剤として、金属炭酸塩、金属弗化物、SiOおよびアルカリ金属酸化物を含有することが好ましい。
なお、金属炭酸塩としては、例えばCaCOなどを添加することができる。金属弗化物としては、例えばCaFなどを添加することができる。アルカリ金属酸化物としては、例えばNaO、KOなどを添加することができる。ただし、金属炭酸塩、金属弗化物およびアルカリ金属酸化物はこれら例示に何ら限定されるものではなく、ガス発生剤、スラグ形成剤またはアーク安定剤として被覆アーク溶接棒の被覆剤に通常添加されうるものであれば、本発明の効果を阻害しない限りにおいて例外なく適用できる。
The rest of the shielded metal arc welding rod of the present invention is preferably a gas generating agent, a slag forming agent, an arc stabilizer, iron and unavoidable impurities. Further, the shielded metal arc welding rod of the present invention preferably contains a metal carbonate, a metal fluoride, SiO 2 and an alkali metal oxide as a gas generator, a slag forming agent and an arc stabilizer.
As the metal carbonate, for example, CaCO 3 or the like can be added. As the metal fluoride, for example, CaF 2 or the like can be added. As the alkali metal oxide, for example, Na 2 O, K 2 O and the like can be added. However, metal carbonates, metal fluorides and alkali metal oxides are not limited to these examples, and can be usually added to the coating agent of the shielded metal arc welding rod as a gas generating agent, a slag forming agent or an arc stabilizer. If it is, it can be applied without exception as long as the effect of the present invention is not impaired.

本発明の被覆アーク溶接棒全質量当たりの金属炭酸塩の含有量は特に限定されないが、例えば、5〜22質量%である。
また、本発明の被覆アーク溶接棒全質量当たりの金属弗化物の含有量も特に限定されないが、例えば、2〜12質量%である。
また、本発明の被覆アーク溶接棒全質量当たりのSiOの含有量も特に限定されないが、例えば、5〜12質量%である。
また、本発明の被覆アーク溶接棒全質量当たりのアルカリ金属酸化物の含有量も特に限定されないが、例えば、4〜12質量%である。
The content of the metal carbonate per the total mass of the shielded metal arc welding rod of the present invention is not particularly limited, but is, for example, 5 to 22% by mass.
Further, the content of the metal fluoride per the total mass of the shielded metal arc welding rod of the present invention is not particularly limited, but is, for example, 2 to 12% by mass.
Further, the content of SiO 2 per the total mass of the shielded metal arc welding rod of the present invention is not particularly limited, but is, for example, 5 to 12% by mass.
Further, the content of the alkali metal oxide per the total mass of the shielded metal arc welding rod of the present invention is not particularly limited, but is, for example, 4 to 12% by mass.

本発明の被覆アーク溶接棒に占める被覆剤の割合は、特に限定されるものではないが、被覆アーク溶接棒全質量に対して、例えば20〜40質量%とする。 The ratio of the coating agent to the shielded metal arc welding rod of the present invention is not particularly limited, but is, for example, 20 to 40% by mass with respect to the total mass of the shielded metal arc welding rod.

また、本発明の被覆アーク溶接棒は、例えば以下のようにして製造することができる。
まず、被覆剤を珪酸ソーダ、珪酸カリで代表される水ガラス等の粘結剤により、鋼心線の周囲に通常の溶接棒塗装機により被覆塗装する。その後、水分を除去するため、例えば400〜550℃で焼成する。
Further, the shielded metal arc welding rod of the present invention can be manufactured, for example, as follows.
First, the coating agent is coated and coated around the steel core wire with a binder such as sodium silicate and water glass typified by potassium silicate by a normal welding rod coating machine. Then, in order to remove water, it is fired at, for example, 400 to 550 ° C.

本発明の被覆アーク溶接棒によれば、クリープ破断特性および靭性に優れた溶接金属を得ることができる。ここで、当該溶接金属は、以下の要件を満たしていることが好ましい。 According to the shielded metal arc welding rod of the present invention, a weld metal having excellent creep rupture characteristics and toughness can be obtained. Here, it is preferable that the weld metal satisfies the following requirements.

(溶接金属のマトリクス粒内に存在する固溶B濃度:0.0008質量%以下)
溶接金属のマトリクス粒内に存在する固溶B濃度(B)を0.0008質量%以下に制御することにより、高温でのM23粒子の粗大化に寄与するBの供給が抑制され、M23粒子のオストワルド成長が抑制されて、クリープ破断時間が長時間化されるため、好ましい。Bは、より好ましくは0.0005質量%以下、さらに好ましくは0.0003質量%以下である。
(Concentration of solid solution B present in the matrix grain of weld metal: 0.0008% by mass or less)
By controlling the solid solution B concentration present in the matrix grains of the weld metal (B M) below 0.0008 wt%, the supply of contributing B is suppressed in coarsening of M 23 C 6 particles at high temperatures , M 23 C 6 particles are preferable because the ostwald growth is suppressed and the creep rupture time is lengthened. B M is more preferably 0.0005 mass% or less, more preferably not more than 0.0003 mass%.

(溶接金属のマトリクス粒界に存在する偏析Bの面密度(BGB):3.0個/nm以下)
溶接金属のマトリクス粒界に存在する偏析Bの面密度(BGB)を3.0個/nm以下に制御することにより、高温でのM23粒子の粗大化に寄与するBの供給が抑制され、M23粒子のオストワルド成長が抑制されて、クリープ破断時間を長時間化されるため、好ましい。BGBは、より好ましくは2.0個/nm以下、さらに好ましくは1.0個/nm以下である。
(Area density of segregation B existing at the matrix grain boundaries of the weld metal (B GB ): 3.0 pieces / nm 2 or less)
Supply of B that contributes to the coarsening of M 23 C 6 particles at high temperature by controlling the surface density (B GB ) of segregation B existing at the matrix grain boundaries of the weld metal to 3.0 pieces / nm 2 or less. There is inhibited, since it is Ostwald growth inhibition of M 23 C 6 particles, it is prolonged creep rupture time, preferably. B GB is more preferably 2.0 pieces / nm 2 or less, still more preferably 1.0 pieces / nm 2 or less.

(溶接金属中のO量:0.080%以下)
Oは、酸化物を形成する元素であり、Oを過剰に含有すると酸化物が粗大化し、脆性破壊の起点となって靭性が低下するため、溶接金属中のO量は0.080%以下であることが好ましい。O量は、より好ましくは0.075%以下、さらに好ましくは0.070%以下である。O量が低いほど、靭性がいっそう改善されるが、通常、0.030〜0.060%程度は含有される。
(Amount of O in weld metal: 0.080% or less)
O is an element that forms an oxide, and if O is excessively contained, the oxide becomes coarse and becomes a starting point of brittle fracture and the toughness decreases. Therefore, the amount of O in the weld metal is 0.080% or less. It is preferable to have. The amount of O is more preferably 0.075% or less, still more preferably 0.070% or less. The lower the amount of O, the better the toughness, but usually about 0.030 to 0.060% is contained.

また、上記溶接金属は、下記式(1)の関係を満足することが好ましい。
([V]×[B]/[N])×100≧0.42 (1)
(式中、[V]、[B]及び[N]は、それぞれ、溶接金属中におけるV、B及びNの含有量を表す。)
Further, the weld metal preferably satisfies the relationship of the following formula (1).
([V] × [B] / [N]) × 100 ≧ 0.42 (1)
(In the formula, [V], [B] and [N] represent the contents of V, B and N in the weld metal, respectively.)

その理由は、以下のとおりである。
すなわち、Bは、M23粒子に溶けこむことで当該粒子のオストワルド成長を抑制するが、BNとして生成するBが増えると、M23粒子に溶けこむB量が十分確保できなくなる。また、Nは、まずVを含む炭窒化物として生成し、残余のNがBNを形成する。よって、M23粒子に溶けこむB量を確保するためには、Bを所定量添加したうえで、Vを含む炭窒化物を十分に析出させる必要がある。
以上の観点より、上記溶接金属においては、X=([V]×[B]/[N])×100が0.42以上であることが好ましい。Xが0.42未満であると、BNの生成量が増え、M23粒子に溶けこむBが減少する結果、当該粒子のオストワルド成長が十分に抑制できなくなる。Xは、より好ましくは0.44以上であり、さらに好ましくは0.45以上である。
The reason is as follows.
That, B inhibits Ostwald ripening of the particles in a way to push dissolved in M 23 C 6 particles, when the B to generate a BN increases, the amount of B Komu dissolved in M 23 C 6 particles can not be sufficiently secured. Further, N is first formed as a carbonitride containing V, and the remaining N forms BN. Therefore, in order to secure the amount of B that dissolves in the M 23 C 6 particles, it is necessary to add a predetermined amount of B and then sufficiently precipitate the carbonitride containing V.
From the above viewpoint, in the weld metal, X = ([V] × [B] / [N]) × 100 is preferably 0.42 or more. When X is less than 0.42, the amount of BN produced increases and the amount of B dissolved in the M 23 C 6 particles decreases, and as a result, the Ostwald growth of the particles cannot be sufficiently suppressed. X is more preferably 0.44 or more, still more preferably 0.45 or more.

以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で変更を加えて実施することが可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples, and the present invention is modified to the extent that it can be adapted to the gist of the present invention. All of which are within the technical scope of the invention.

下記表1に示す成分組成を満足し、残部が鉄および不可避不純物からなる母材を用い、また、下記表2に示す成分組成を満足する被覆アーク溶接棒を用い、後述の溶接条件にて溶接金属を作製し、各種特性を評価した Satisfy the composition shown in Table 1, using the base material balance of iron and inevitable impurities, also using a covered electrode to satisfy the compositions shown in Table 2, dissolved Te in welding conditions below Welded metal was prepared and various characteristics were evaluated .

Figure 0006829090
Figure 0006829090

Figure 0006829090
Figure 0006829090

<溶接条件>
溶接方法:被覆アーク溶接(SMAW)
母材板厚 :20mm
開先角度 :20°(V字)
ルート間隔:16mm
溶接姿勢 :下向き
溶接棒径 :φ4.0mm
入熱条件 :約2.2kJ/mm(150A−24V、8〜12cm/分)
積層方法 :1層2パス
予熱・パス間温度:200〜400℃
<Welding conditions>
Welding method: Shielded metal arc welding (SMAW)
Base material plate thickness: 20 mm
Groove angle: 20 ° (V-shaped)
Route spacing: 16mm
Welding posture: Downward Welding rod diameter: φ4.0 mm
Heat input conditions: Approximately 2.2 kJ / mm (150A-24V, 8-12 cm / min)
Laminating method: 1 layer 2 passes Preheating / inter-pass temperature: 200-400 ° C

(δフェライトの有無)
得られた溶接ままの溶接金属から、溶接方向に垂直な断面が観察できるように試験片を採取し、試験片の断面を塩化第二鉄エッチング液により腐食し、光学顕微鏡により倍率400倍で金属組織を観察した。全断面においてδフェライトが観察されなかった場合を「δフェライト無し」と判定し、合格と評価した。全断面においてδフェライトが1つでも観察された場合を「δフェライト有り」と判定し、不合格と評価した。判定結果を下記表3に示す。
(Presence or absence of δ ferrite)
From the obtained weld metal as it is welded, a test piece is collected so that a cross section perpendicular to the welding direction can be observed, the cross section of the test piece is corroded by a ferric chloride etching solution, and the metal is subjected to a magnification of 400 times by an optical microscope. The tissue was observed. When δ-ferrite was not observed in all cross sections, it was judged as “no δ-ferrite” and evaluated as acceptable. When even one δ ferrite was observed in the entire cross section, it was judged as “with δ ferrite” and evaluated as rejected. The judgment results are shown in Table 3 below.

次に、溶接して得られた溶接金属に、保持温度:700〜800℃、保持時間:2〜10hの条件で溶接後熱処理(PWHT)を行い、溶接金属の特性を評価した。結果を下記表3に示す。 Next, the weld metal obtained by welding was subjected to post-welding heat treatment (PWHT) under the conditions of a holding temperature of 700 to 800 ° C. and a holding time of 2 to 10 hours to evaluate the characteristics of the weld metal. The results are shown in Table 3 below.

(マトリクス粒内に存在する固溶B濃度及びマトリクス粒界に存在する偏析Bの面密度)
溶接後熱処理後の溶接金属から、溶接方向に垂直な面が観察できるよう試験片を採取し、試験片の断面を塩化第二鉄エッチング液により腐食し、光学顕微鏡により倍率400倍で金属組織を観察した。集束イオンビーム装置(FEI社製のHelios−600)を用いて、粒界を含む針状試験片、及び、粒界を含まない(粒内のみ)針状試験片を作製し、3次元アトムプローブ(CAMECA社製のLEAP 3000HR)により、測定温度50K、パルスフラクション15%の条件で測定を実施した。得られたデータを、解析ソフトIVASにより解析した。より詳細には、以下のようにして測定及び分析を実施した。
(Concentration of solid solution B existing in matrix grains and surface density of segregation B existing at matrix grain boundaries)
A test piece is collected from the weld metal after welding and heat treatment so that a surface perpendicular to the welding direction can be observed, the cross section of the test piece is corroded by a ferric chloride etching solution, and the metal structure is obtained by an optical microscope at a magnification of 400 times. Observed. Using a focused ion beam device (Helios-600 manufactured by FEI), a needle-shaped test piece containing a grain boundary and a needle-shaped test piece not containing a grain boundary (only in the grain) are prepared, and a three-dimensional atom probe is produced. The measurement was carried out by (LEAP 3000HR manufactured by CAMECA) under the conditions of a measurement temperature of 50 K and a pulse fraction of 15%. The obtained data was analyzed by the analysis software IVAS. More specifically, the measurements and analyzes were carried out as follows.

マトリクス粒内に存在する固溶B濃度(B)については、粒界を含まない(粒内のみ)試験片の測定データを使用した。すなわち、炭素が均一に分布している領域をマトリクス粒内と判定し、検出された総原子数から、バックグラウンドノイズを除去した後、B濃度を求めた。なお、アトムプローブで測定される濃度は原子数%であるが、評価に際しては質量%に変換した。結果を下記表3に示す。 The solid solute B concentration present in the matrix grains (B M), was used measurement data that does not include the grain boundary (grain inside only) specimens. That is, the region where carbon is uniformly distributed was determined to be in the matrix grain, and the B concentration was determined after removing the background noise from the detected total number of atoms. The concentration measured by the atom probe was a few percent of atoms, but it was converted to mass% during the evaluation. The results are shown in Table 3 below.

マトリクス粒界に存在する偏析Bの面密度(BGB)については、粒界を含む試験片の測定データを使用した。図1〜図3を参照して、ある溶接金属の試験片についてのマトリクス粒界に存在する偏析Bの面密度(BGB)を測定するための手法を説明する。まず、図1に示されるような原子マップから、CやCrといった合金元素の原子濃度の高い面状領域を粒界面と判定した。そして、図2に示すように、粒界面に垂直に、粒界面を貫通するように、底面の半径が5nmの円柱状の分析領域(以下、単に「円柱」ともいう)を設定し、当該円柱の片側の端より、長軸方向に長さ0.5nmごとの領域に含まれる原子濃度を測定し、図3に示されるプロファイルを作成した。つづいて、CやCrといった合金元素濃度の高い領域内に含まれるB原子数を円柱の底面積(円の面積)で除算することで、偏析Bの面密度を算出した。結果を下記表3に示す。 For the areal density ( BGB ) of segregation B existing at the matrix grain boundaries, the measurement data of the test piece including the grain boundaries was used. With reference to FIGS. 1 to 3, a method for measuring the areal density ( BGB ) of segregation B existing at the matrix grain boundary for a test piece of a certain weld metal will be described. First, from the atomic map as shown in FIG. 1, a planar region having a high atomic concentration of alloying elements such as C and Cr was determined to be a grain interface. Then, as shown in FIG. 2, a columnar analysis region having a bottom radius of 5 nm (hereinafter, also simply referred to as “cylinder”) is set so as to penetrate the grain interface perpendicularly to the grain interface, and the column is formed. The atomic concentration contained in the region of 0.5 nm in length in the long axis direction was measured from one end of the above, and the profile shown in FIG. 3 was created. Subsequently, the surface density of segregation B was calculated by dividing the number of B atoms contained in the region having a high concentration of alloying elements such as C and Cr by the bottom area (area of a circle) of the cylinder. The results are shown in Table 3 below.

次に、溶接後熱処理を施した溶接金属の特性として、クリープ破断特性および靭性を評価した。 Next, creep rupture characteristics and toughness were evaluated as the characteristics of the weld metal that had been heat-treated after welding.

<クリープ破断特性>
溶接後熱処理を施した溶接金属の板厚中央部から、図4に基づいて溶接線方向に標点距離が30mmで、φ6.0mmのクリープ試験片を採取し、675℃で、100MPaの条件でクリープ試験を行い、試験片が破断するまでの時間を測定した。図4においてTは母材の板厚を示している。破断時間Trが400時間を超える場合をクリープ破断特性に優れると判定し、合格と評価した。
<Creep rupture characteristics>
A creep test piece with a gauge point distance of 30 mm and a φ6.0 mm in the welding line direction was collected from the central portion of the weld metal plate thickness that had been heat-treated after welding, and at 675 ° C. under the condition of 100 MPa. A creep test was performed and the time until the test piece broke was measured. In FIG. 4, T indicates the plate thickness of the base material. When the rupture time Tr exceeded 400 hours, it was judged that the creep rupture characteristics were excellent, and it was evaluated as acceptable.

<靭性>
溶接後熱処理を施した溶接金属の板厚中央部から、図5に基づいて溶接線方向に垂直にシャルピー衝撃試験片を採取し、シャルピー衝撃試験を行った。図5においてTは母材の板厚を示している。シャルピー衝撃試験片は、JIS Z3111に規定される4号Vノッチ試験片を採取した。シャルピー衝撃試験は、JIS Z2242の要領で、20℃で行い、吸収エネルギーを測定した。測定は3回行い、測定した吸収エネルギーの平均値(vE20℃)を求めた。結果を下記表3に示す。平均値(vE20℃)が41J以上となる溶接金属を靭性に優れると評価した。
<Toughness>
A Charpy impact test piece was collected perpendicular to the welding line direction from the central portion of the thickness of the weld metal that had been heat-treated after welding, and a Charpy impact test was performed. In FIG. 5, T indicates the plate thickness of the base material. For the Charpy impact test piece, a No. 4 V notch test piece specified in JIS Z3111 was taken. The Charpy impact test was carried out at 20 ° C. in the manner of JIS Z2242, and the absorbed energy was measured. The measurement was performed three times, and the average value (vE 20 ° C. ) of the measured absorbed energy was determined. The results are shown in Table 3 below. Welded metals with an average value (vE 20 ° C. ) of 41 J or more were evaluated as having excellent toughness.

Figure 0006829090
Figure 0006829090

例1〜20のうち、例1〜13は実施例であり、例14〜20は比較例である。 Of Examples 1 to 20, Examples 1 to 13 are Examples, and Examples 14 to 20 are Comparative Examples.

例14では、被覆アーク溶接棒中のV量が0.01%と低かったため、得られた溶接金属はクリープ破断特性に劣っていた。
例15では、被覆アーク溶接棒中のNi量が0.62%と高かったため、得られた溶接金属はクリープ破断特性に劣っていた。
例16では、被覆アーク溶接棒中のSi量が0.22%と低く、またMn量が0.05%と低かったため、得られた溶接金属は靱性に劣っていた。
例17では、被覆アーク溶接棒中のSi量が1.10%と高く、Nb量が0.092%と高く、またB量が0.110%と高かったため、得られた溶接金属は靱性に劣っていた。
例18では、被覆アーク溶接棒中のCr量が13.67%と高かったため、得られた溶接金属ではδフェライトが生成し、またクリープ破断特性及び靱性に劣っていた。
例19では、被覆アーク溶接棒中のW量が2.1%と高く、またBを含有していなかったため、得られた溶接金属ではδフェライトが生成し、またクリープ破断特性及び靱性に劣っていた。
例20では、被覆アーク溶接棒中のCo量が0.49%と低く、またBを含有していなかったため、得られた溶接金属ではδフェライトが生成し、またクリープ破断特性に劣っていた。
In Example 14, since the amount of V in the shielded metal arc welding rod was as low as 0.01%, the obtained weld metal was inferior in creep rupture characteristics.
In Example 15, since the amount of Ni in the shielded metal arc welding rod was as high as 0.62%, the obtained weld metal was inferior in creep rupture characteristics.
In Example 16, the amount of Si in the shielded metal arc welding rod was as low as 0.22%, and the amount of Mn was as low as 0.05%, so that the obtained weld metal was inferior in toughness.
In Example 17, the amount of Si in the shielded metal arc welding rod was as high as 1.10%, the amount of Nb was as high as 0.092%, and the amount of B was as high as 0.110%, so that the obtained weld metal became tough. It was inferior.
In Example 18, since the amount of Cr in the shielded metal arc welding rod was as high as 13.67%, δ ferrite was formed in the obtained weld metal, and the creep rupture characteristics and toughness were inferior.
In Example 19, since the amount of W in the shielded metal arc welding rod was as high as 2.1% and B was not contained, δ ferrite was generated in the obtained welding metal, and the creep rupture characteristics and toughness were inferior. It was.
In Example 20, since the amount of Co in the shielded metal arc welding rod was as low as 0.49% and B was not contained, δ ferrite was formed in the obtained weld metal, and the creep rupture characteristics were inferior.

一方、被覆アーク溶接棒が本発明の規定を満足する例1〜13では、溶接金属中にδフェライトが生成せず、またクリープ破断特性及び靭性に優れていた。 On the other hand, in Examples 1 to 13 in which the shielded metal arc welding rod satisfies the provisions of the present invention, δ ferrite was not generated in the weld metal, and the creep rupture characteristics and toughness were excellent.

Claims (2)

被覆剤を鋼心線外周に被覆してなる被覆アーク溶接棒であって、
前記被覆剤および前記鋼心線の一方又は双方の中に、前記被覆アーク溶接棒全質量当たり、合金成分として、質量%で、
C :0.05〜0.20%、
Si:0.3〜1.0%、
Mn:0.1〜1.1%、
Ni:0%以上、0.5%以下、
Cr:3〜12%、
Mo:0.05〜0.55%、
V :0.02〜0.50%、
Nb:0.01〜0.09%、
Co:0.55〜2.20%、
W :0.4〜2.0%、
N :0.01〜0.10%、
B :0.001〜0.100%
Cu:0%超、0.25%以下、
Al:0%超、1.5%以下を含有し、
残部がガス発生剤、スラグ形成剤、アーク安定剤、鉄および不可避不純物からなる被覆アーク溶接棒。
A shielded metal arc welding rod in which a coating agent is coated on the outer circumference of a steel core wire.
In one or both of the coating agent and the steel core wire, in mass% as an alloy component, per the total mass of the shielded metal arc welding rod.
C: 0.05 to 0.20%,
Si: 0.3-1.0%,
Mn: 0.1-1.1%,
Ni: 0% or more, 0.5% or less,
Cr: 3-12%,
Mo: 0.05-0.55%,
V: 0.02 to 0.50%,
Nb: 0.01-0.09%,
Co: 0.55 to 2.20%,
W: 0.4 to 2.0%,
N: 0.01 to 0.10%,
B: 0.001 to 0.100% ,
Cu: Over 0%, 0.25% or less,
Al: Contains more than 0% and less than 1.5% ,
A shielded metal arc welding rod with the balance consisting of a gas generator, slag forming agent, arc stabilizer, iron and unavoidable impurities.
前記被覆剤および前記鋼心線の一方又は双方の中に、前記被覆アーク溶接棒全質量当たり、合金成分として、質量%で、
Ti:0%超、0.03%以下
をさらに含有する請求項1に記載の被覆アーク溶接棒。
In one or both of the coating agent and the steel core wire, in mass% as an alloy component, per the total mass of the shielded metal arc welding rod.
The shielded metal arc welding rod according to claim 1, further containing Ti: more than 0% and 0.03% or less.
JP2017015797A 2017-01-31 2017-01-31 Shielded metal arc welding rod Active JP6829090B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017015797A JP6829090B2 (en) 2017-01-31 2017-01-31 Shielded metal arc welding rod
CN201810076271.3A CN108372372A (en) 2017-01-31 2018-01-26 Coated electrode
KR1020180011122A KR102084932B1 (en) 2017-01-31 2018-01-30 Covered electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017015797A JP6829090B2 (en) 2017-01-31 2017-01-31 Shielded metal arc welding rod

Publications (2)

Publication Number Publication Date
JP2018122329A JP2018122329A (en) 2018-08-09
JP6829090B2 true JP6829090B2 (en) 2021-02-10

Family

ID=63016933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017015797A Active JP6829090B2 (en) 2017-01-31 2017-01-31 Shielded metal arc welding rod

Country Status (3)

Country Link
JP (1) JP6829090B2 (en)
KR (1) KR102084932B1 (en)
CN (1) CN108372372A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109440011A (en) * 2018-12-27 2019-03-08 攀钢集团江油长城特殊钢有限公司 A kind of nitrogenous welding wire steel of vacuum induction furnace smelting low-alloy and its smelting process
WO2020196431A1 (en) * 2019-03-26 2020-10-01 株式会社神戸製鋼所 COVERED ELECTRODE FOR HIGH-Cr FERRITIC HEAT-RESISTANT STEELS
CN110000490A (en) * 2019-05-17 2019-07-12 中国电建集团上海能源装备有限公司 A kind of T/P92 heat resistant steel electrode and preparation method thereof
US11772206B2 (en) * 2019-09-20 2023-10-03 Lincoln Global, Inc. High chromium creep resistant weld metal for arc welding of thin walled steel members
US11772207B2 (en) * 2019-09-20 2023-10-03 Lincoln Global, Inc. High chromium creep resistant weld metal for arc welding of thick walled steel members
KR102256609B1 (en) 2019-10-21 2021-06-23 코리아테크 주식회사 Welding rod for training used in hybrid welding machine
CN110788518A (en) * 2019-11-05 2020-02-14 上海欣冈贸易有限公司 Welding metal material
CN111421262A (en) * 2020-03-27 2020-07-17 上海大西洋焊接材料有限责任公司 Low-alloy steel argon arc welding wire for primary loop main equipment of nuclear power station
KR102352601B1 (en) * 2020-11-19 2022-01-18 주식회사 포스코 Shielded metal arc welding material

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543801B2 (en) * 1992-03-17 1996-10-16 新日本製鐵株式会社 Coated arc welding rod for high Cr ferritic heat resistant steel
JP3194207B2 (en) * 1993-02-15 2001-07-30 新日本製鐵株式会社 Covered arc welding rod for high Cr ferritic heat resistant steel
JP3184657B2 (en) * 1993-03-10 2001-07-09 新日本製鐵株式会社 Covered arc welding rod for high Cr ferritic heat resistant steel
JPH07268562A (en) * 1994-03-30 1995-10-17 Nippon Steel Corp Coated rod for arc welding used for high cr ferritic heat resistant steel
JPH08187592A (en) 1995-01-09 1996-07-23 Nippon Steel Corp Welding material for high cr ferritic heat resistant steel
JP3375868B2 (en) 1997-12-05 2003-02-10 株式会社神戸製鋼所 Low hydrogen coated arc welding rod for high Cr ferritic heat resistant steel
EP0930127B1 (en) * 1998-01-20 2003-05-21 Mitsubishi Heavy Industries, Ltd. Welding materials for high-Cr steels
JP3222113B2 (en) * 1999-03-25 2001-10-22 岡野バルブ製造株式会社 Welding material for high Cr ferritic heat resistant steel, TIG welding rod, submerged arc welding rod, welding wire and coated arc welding rod made of this material
JP2002263883A (en) * 2001-03-13 2002-09-17 Nkk Corp Coated electrode for low alloy heat resistance steel
JP3908499B2 (en) * 2001-10-05 2007-04-25 株式会社神戸製鋼所 Weld metal for high Cr ferritic heat resistant steel
JP3850764B2 (en) 2002-07-12 2006-11-29 株式会社神戸製鋼所 Welding wire for high Cr ferritic heat resistant steel
JP4476018B2 (en) * 2004-05-18 2010-06-09 株式会社神戸製鋼所 Improved welding wire for 9Cr-1Mo steel
EP1988182A4 (en) * 2006-02-06 2013-10-16 Babcock Hitachi Kk Ferritic heat-resistant steel
CN103240542B (en) * 2012-02-02 2015-04-08 东方电气集团东方锅炉股份有限公司 Ultralow-hydrogen high-toughness low-carbon tungsten-adding heat-resistant steel welding rod
CN103071946B (en) * 2013-01-13 2015-04-08 四川大西洋焊接材料股份有限公司 Supercritical ferrite and heat-resistant steel matched electrode and production method thereof
JP5928726B2 (en) * 2013-02-04 2016-06-01 株式会社神戸製鋼所 Covered arc welding rod
US10279435B2 (en) * 2014-06-11 2019-05-07 Lincoln Global, Inc. Stick electrode
JP6641084B2 (en) * 2014-12-25 2020-02-05 株式会社神戸製鋼所 Low hydrogen coated arc welding rod with excellent resistance to bar burn during welding

Also Published As

Publication number Publication date
KR20180089310A (en) 2018-08-08
KR102084932B1 (en) 2020-03-05
JP2018122329A (en) 2018-08-09
CN108372372A (en) 2018-08-07

Similar Documents

Publication Publication Date Title
JP6829090B2 (en) Shielded metal arc welding rod
JP4946242B2 (en) Austenitic stainless steel welded joint and austenitic stainless steel welded material
EP3037205B1 (en) Wire for gas shield arc welding
JP5671364B2 (en) Weld metal with excellent creep properties
JP6852809B2 (en) Austenitic heat-resistant steel Welded metal, welded joints, welding materials for austenitic heat-resistant steel, and methods for manufacturing welded joints
JP2006225718A (en) DEPOSITED METAL FOR HIGH STRENGTH Cr-Mo STEEL HAVING EXCELLENT LOW TEMPERATURE TOUGHNESS AND SR CRACK RESISTANCE
JP2010227945A (en) Weld metal having excellent strength and toughness as welded and after stress relief annealing, and weld structure joined by the weld metal
JP6235402B2 (en) Weld metal with excellent strength, toughness and SR cracking resistance
JP6084475B2 (en) Weld metal and welded structures
WO2017154754A1 (en) Welded metal and welded structure containing said welded metal
KR102658542B1 (en) Covered arc welding rod for high Cr ferritic heat-resistant steel
JPH11277292A (en) Welding metal and welding joint for high temp. high strength steel
JP5998963B2 (en) Ni-base heat-resistant alloy member
JP2016141846A (en) Weld metal and weld structure
JPWO2018066573A1 (en) Austenitic heat-resistant alloy and welded joint using the same
JP3908499B2 (en) Weld metal for high Cr ferritic heat resistant steel
JP7368722B2 (en) Austenitic heat-resistant steel weld metal, welded joints, and welding materials for austenitic heat-resistant steel
JP7295418B2 (en) welding material
JP3527640B2 (en) Weld metal for high Cr ferritic heat resistant steel
JP2020131289A (en) WELD MATERIAL FOR HIGH-Cr FERRITIC HEAT-RESISTANT STEEL
JP3460790B2 (en) Covered arc welding rod for low alloy heat resistant steel
JP6181947B2 (en) Weld metal
JP6483540B2 (en) Gas shielded arc welding wire
JP2006239733A (en) Tig welding wire for post heat treatment of high-tension steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210121

R150 Certificate of patent or registration of utility model

Ref document number: 6829090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150