JP6828110B2 - Method for manufacturing resin composition - Google Patents
Method for manufacturing resin composition Download PDFInfo
- Publication number
- JP6828110B2 JP6828110B2 JP2019165674A JP2019165674A JP6828110B2 JP 6828110 B2 JP6828110 B2 JP 6828110B2 JP 2019165674 A JP2019165674 A JP 2019165674A JP 2019165674 A JP2019165674 A JP 2019165674A JP 6828110 B2 JP6828110 B2 JP 6828110B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- fullerene
- resin composition
- mixture
- additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011342 resin composition Substances 0.000 title claims description 52
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 238000000034 method Methods 0.000 title claims description 17
- 229920005989 resin Polymers 0.000 claims description 99
- 239000011347 resin Substances 0.000 claims description 99
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 95
- 239000000203 mixture Substances 0.000 claims description 41
- 239000000654 additive Substances 0.000 claims description 39
- 230000000996 additive effect Effects 0.000 claims description 39
- 239000002904 solvent Substances 0.000 claims description 25
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 claims description 24
- 239000002994 raw material Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 8
- 239000003960 organic solvent Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 229920005992 thermoplastic resin Polymers 0.000 claims description 6
- 230000000379 polymerizing effect Effects 0.000 claims description 4
- 229910003472 fullerene Inorganic materials 0.000 description 41
- 239000000047 product Substances 0.000 description 19
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 18
- 238000005259 measurement Methods 0.000 description 18
- 125000001424 substituent group Chemical group 0.000 description 14
- 238000005979 thermal decomposition reaction Methods 0.000 description 14
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 150000003254 radicals Chemical class 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000010526 radical polymerization reaction Methods 0.000 description 5
- 238000007792 addition Methods 0.000 description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 229920001225 polyester resin Polymers 0.000 description 4
- 239000004645 polyester resin Substances 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical group C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 125000003827 glycol group Chemical group 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 2
- 238000007348 radical reaction Methods 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- 101100223811 Caenorhabditis elegans dsc-1 gene Proteins 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000011481 absorbance measurement Methods 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 238000012690 ionic polymerization Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920002189 poly(glycerol 1-O-monomethacrylate) polymer Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- -1 polyphenylensulfide Polymers 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C13/00—Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
- C07C13/28—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
- C07C13/32—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
- C07C13/62—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
- C07C13/64—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings with a bridged ring system
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/01—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Description
樹脂添加剤及びそれを用いた樹脂組成物及び該樹脂組成物の製造方法に関する。
本願は、2014年10月24日に、日本に出願された特願2014−217341号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a resin additive, a resin composition using the resin additive, and a method for producing the resin composition.
The present application claims priority based on Japanese Patent Application No. 2014-217341 filed in Japan on October 24, 2014, the contents of which are incorporated herein by reference.
樹脂にフラーレンを十分分散して添加した際の効果として、物理的、熱的強度が向上することが知られている。特許文献1には、フラーレン類をポリエステル系樹脂中に均一に分散させる方法として、フラーレン類を溶液としてポリエステル系樹脂に混合する方法、及び、フラーレン類溶液中で重縮合反応を行いポリエステル系樹脂を得る方法が開示されている。 It is known that the physical and thermal strength is improved as an effect when fullerene is sufficiently dispersed and added to the resin. Patent Document 1 describes a method of uniformly dispersing fullerenes in a polyester resin, a method of mixing the fullerenes as a solution with the polyester resin, and a polycondensation reaction in the fullerene solution to obtain a polyester resin. The method of obtaining is disclosed.
しかし、フラーレン類を溶解させ、かつ、前記混合または前記重合に使用できる溶剤は、ベンゼンやトルエンなどの一部の芳香族系溶媒に限られる。また、フラーレン類を溶解させて混合できる樹脂もポリエステル系樹脂に限定されている。 However, the solvent that can dissolve fullerenes and can be used for the mixing or the polymerization is limited to some aromatic solvents such as benzene and toluene. Further, the resin that can dissolve and mix fullerenes is also limited to the polyester resin.
また、フラーレンはラジカルをトラップし、ラジカル反応を抑制することが知られている。したがって、特許文献1のようにフラーレン存在下で重合反応ができるのは、ラジカル反応を用いない重合反応に限られる。 Fullerenes are also known to trap radicals and suppress radical reactions. Therefore, the polymerization reaction that can be carried out in the presence of fullerenes as in Patent Document 1 is limited to the polymerization reaction that does not use a radical reaction.
特許文献2では、フラーレンより多くの溶媒に溶解しやすい水酸化フラーレンを用いることで、分散性を向上させることができることが開示されている。しかし、水酸化フラーレンなどのフラーレン誘導体では、通常、フラーレンよりもラジカルをトラップする効果が少なく、物理的、熱的強度の向上は限定的となってしまう。 Patent Document 2 discloses that dispersibility can be improved by using fullerene hydroxide, which is easily dissolved in more solvents than fullerene. However, a fullerene derivative such as fullerene hydroxide usually has less effect of trapping radicals than fullerene, and the improvement of physical and thermal strength is limited.
フラーレンを溶液として、樹脂またはその重合原料に混合することで、得られる樹脂中にフラーレンを均一に分散できるが、この方法を適用できる溶媒や樹脂は限られていた。 By mixing fullerene as a solution with the resin or its polymerization raw material, fullerene can be uniformly dispersed in the obtained resin, but the solvents and resins to which this method can be applied are limited.
本発明は、多種の樹脂にフラーレンを分散して含有させることができる樹脂添加剤組成物及びそれを用いた樹脂組成物及び該樹脂組成物の製造方法を提供する。 The present invention provides a resin additive composition capable of dispersing fullerene in various resins, a resin composition using the same, and a method for producing the resin composition.
すなわち、本発明は以下の発明を含む。 That is, the present invention includes the following inventions.
樹脂と樹脂添加剤との混合物からなる樹脂混合物を得る工程と、前記樹脂混合物から溶媒を除去する工程と、を有する樹脂組成物の製造方法。
[1] 置換基を有してもよいインデンがフラーレン骨格に付加しているフラーレン誘導体の有機溶媒溶液からなる樹脂添加剤。
[2] 前記有機溶媒が、N−メチル−2−ピロリドン、酢酸エチル、酢酸ブチル、メチルエチルケトン、プロピレングリコールモノメチルエーテルアセテート及びシクロヘキサノンから選ばれる、1種の溶媒または複数種の混合溶媒である前項[1]に記載の樹脂添加剤。
[3] 前記フラーレン誘導体が下記式(1)で表される前項[1]または[2]に記載の樹脂添加剤。
[4] 置換基を有してもよいインデンがフラーレン骨格に複数付加している前項[1]〜[3]のいずれかに記載の樹脂添加剤。
[5] 前記インデンの付加数が1つである前記フラーレン誘導体と2つである前記フラーレン誘導体と3つである前記フラーレン誘導体とを何れも含むの樹脂添加剤との混合物(以下「樹脂混合物」という。)を得る工程および前記樹脂混合物から溶媒を除去する工程を有する樹脂組成物の製造方法。
[6] 前記樹脂混合物を得る工程が、重合して樹脂となる材料と前記樹脂添加剤との混合物(以下「原料混合物」という。)を得る工程および前記原料混合物中の前記材料を重合する工程を有する前項[5]に記載の樹脂組成物の製造方法。
[7] さらに、前記樹脂混合物を120〜350℃で1〜100時間加熱する工程を有する前項[5]または[6]に記載の樹脂組成物の製造方法。
[8] 前記樹脂が熱可塑性樹脂である前項[7]に記載の樹脂組成物の製造方法。
[9] 置換基を有してもよいインデンがフラーレン骨格に付加しているフラーレン誘導体の熱分解物及び樹脂を含む樹脂組成物。
[10] 前記熱分解物が、置換基を有してもよいインデンとフラーレンである前項[9]に記載の樹脂組成物。
[11] 前記樹脂組成物が、ポリオレフィン、ポリスチレン、ポリイミド、ポリアミド、ポリフェニレンスルファイド、ポリメタクリル酸メチル及びポリカーボネートから選ばれる少なくとも1種を含む前項[9]〜[10]に記載の樹脂組成物。
[12] 置換基を有してもよいインデンがフラーレン骨格に付加しているフラーレン誘導体及び樹脂を含むフラレーン誘導体含有樹脂組成物。
[13] [6]〜[9]に記載の製造方法で得られる樹脂組成物。
A method for producing a resin composition, comprising a step of obtaining a resin mixture composed of a mixture of a resin and a resin additive, and a step of removing a solvent from the resin mixture.
[1] A resin additive comprising an organic solvent solution of a fullerene derivative in which indene, which may have a substituent, is added to the fullerene skeleton.
[2] The organic solvent is one solvent or a mixed solvent selected from N-methyl-2-pyrrolidone, ethyl acetate, butyl acetate, methyl ethyl ketone, propylene glycol monomethyl ether acetate and cyclohexanone [1]. ] The resin additive described in.
[3] The resin additive according to the preceding item [1] or [2], wherein the fullerene derivative is represented by the following formula (1).
[4] The resin additive according to any one of the above items [1] to [3], wherein a plurality of indens which may have a substituent are added to the fullerene skeleton.
[5] A mixture of the fullerene derivative having one additional number of indens, the fullerene derivative having two, and a resin additive containing all three fullerene derivatives (hereinafter, "resin mixture"). A method for producing a resin composition, which comprises a step of obtaining (referred to as) and a step of removing a solvent from the resin mixture.
[6] The step of obtaining the resin mixture is a step of obtaining a mixture of the material to be polymerized and the resin additive (hereinafter referred to as "raw material mixture") and a step of polymerizing the material in the raw material mixture. The method for producing a resin composition according to the preceding item [5].
[7] The method for producing a resin composition according to the preceding item [5] or [6], further comprising a step of heating the resin mixture at 120 to 350 ° C. for 1 to 100 hours.
[8] The method for producing a resin composition according to the previous item [7], wherein the resin is a thermoplastic resin.
[9] A resin composition containing a thermal decomposition product and a resin of a fullerene derivative in which indene, which may have a substituent, is added to the fullerene skeleton.
[10] The resin composition according to the preceding item [9], wherein the pyrolyzed product is indene and fullerene which may have a substituent.
[11] The resin composition according to the preceding items [9] to [10], wherein the resin composition contains at least one selected from polyolefin, polystyrene, polyimide, polyamide, polyphenylene sulfide, polymethyl methacrylate and polycarbonate.
[12] A fullerene derivative-containing resin composition containing a fullerene derivative and a resin in which indene, which may have a substituent, is added to the fullerene skeleton.
[13] The resin composition obtained by the production method according to [6] to [9].
本発明の樹脂添加剤、または、本発明の樹脂組成物の製造方法を用いることにより、多種の樹脂にフラーレンを分散して含有させることができる。 By using the resin additive of the present invention or the method for producing the resin composition of the present invention, fullerenes can be dispersed and contained in various resins.
(樹脂添加剤)
本発明の樹脂添加剤は、置換基を有してもよいインデンがフラーレン骨格に付加しているフラーレン誘導体(以下、単に「フラーレン誘導体」と言うことがある。)の有機溶媒溶液からなる。
(Resin additive)
The resin additive of the present invention comprises an organic solvent solution of a fullerene derivative (hereinafter, may be simply referred to as “fullerene derivative”) in which an indene which may have a substituent is added to the fullerene skeleton.
(有機溶媒)
前記有機溶媒としては、前記フラーレン誘導体を溶解可能な溶媒である。より好ましい溶媒は、使用する樹脂及びフラーレン誘導体の両方を十分に溶解し得る溶媒であり、使用する樹脂及びフラーレン誘導体の組み合わせに依存する。例えば、N−メチル−2−ピロリドン(以下「NMP」ということがある。)、酢酸エチル、酢酸ブチル、メチルエチルケトン、プロピレングリコールモノメチルエーテルアセテート(以下「PGMA」ということがある。)及びシクロヘキサノンから選ばれる、1種の溶媒または複数種の混合溶媒が挙げられる。
(Organic solvent)
The organic solvent is a solvent capable of dissolving the fullerene derivative. A more preferable solvent is a solvent capable of sufficiently dissolving both the resin and the fullerene derivative used, and depends on the combination of the resin and the fullerene derivative used. For example, it is selected from N-methyl-2-pyrrolidone (hereinafter sometimes referred to as "NMP"), ethyl acetate, butyl acetate, methyl ethyl ketone, propylene glycol monomethyl ether acetate (hereinafter sometimes referred to as "PGMA") and cyclohexanone. One type of solvent or a plurality of types of mixed solvents may be mentioned.
これらの溶媒は、樹脂を製造する過程において広く使用される溶媒である。そのため、本発明の樹脂添加剤は、後述の樹脂製造方法を用いて、多種の樹脂に適用することができる。 These solvents are widely used in the process of producing resins. Therefore, the resin additive of the present invention can be applied to various resins by using the resin manufacturing method described later.
(フラーレン誘導体)
本発明の樹脂添加剤に用いるフラーレン誘導体は、置換基を有してもよいインデンがフラーレン骨格に付加している(以下「置換基を有してもよいインデン」を単に「付加基」ということもある。)。フラーレンをこのような誘導体にすることにより、多種の溶媒に溶解させることができるようになり、また、ラジカルトラップ能が抑制されるので後述するラジカル重合時に添加できるようになる。
(Fullerene derivative)
In the fullerene derivative used in the resin additive of the present invention, an indene which may have a substituent is added to the fullerene skeleton (hereinafter, "inden which may have a substituent" is simply referred to as "additional group". There is also.). By making fullerene such a derivative, it becomes possible to dissolve it in various solvents, and since the radical trapping ability is suppressed, it can be added at the time of radical polymerization described later.
前記置換基は、必須ではないが、フラーレン誘導体の前記有機溶媒への溶解性を高めるために適切に選択されることが好ましい。例えば、極性溶媒への溶解性を高めるには、ポリエチレングリコール鎖(例えば、炭素数4〜10のポリエチレングリコール鎖)などの親水性の置換基を導入すればよい。逆に、非極性溶媒への溶解性を高めるには、炭化水素鎖(例えば、炭素数1〜12の炭化水素鎖)などの疎水性の置換基を導入すればよい。 The substituent is not essential, but is preferably selected appropriately in order to increase the solubility of the fullerene derivative in the organic solvent. For example, in order to increase the solubility in a polar solvent, a hydrophilic substituent such as a polyethylene glycol chain (for example, a polyethylene glycol chain having 4 to 10 carbon atoms) may be introduced. On the contrary, in order to improve the solubility in a non-polar solvent, a hydrophobic substituent such as a hydrocarbon chain (for example, a hydrocarbon chain having 1 to 12 carbon atoms) may be introduced.
前記付加基は、その複数がフラーレン骨格に付加していることが好ましい。付加数が多い方が、フラーレン誘導体がより有機溶媒に溶解しやすくなるので使用可能な溶媒の選択肢を広げることができ、また、フラーレン誘導体のラジカルトラップ能をさらに抑えることができる。なお、付加数の上限は、フラーレン骨格の大きさが大きいほど多くなる。フラーレンはC60からC200程度まで種々の大きさのものが知られており、例えば、種々のフラーレンの中で最も小さいフラーレン骨格ではあるが入手性に優れるC60を用いた場合、前記付加数の上限は約20である。ただし、付加基の導入のしやすさから、付加数は2〜10が好ましく、2〜4がより好ましい。 It is preferable that a plurality of the additional groups are added to the fullerene skeleton. The larger the number of additions, the easier it is for the fullerene derivative to dissolve in the organic solvent, so that the choice of solvents that can be used can be expanded, and the radical trapping ability of the fullerene derivative can be further suppressed. The upper limit of the number of additions increases as the size of the fullerene skeleton increases. Fullerenes of various sizes from C 60 to C 200 are known. For example, when C 60 , which is the smallest fullerene skeleton among various fullerenes but has excellent availability, is used, the number of additions is described. The upper limit of is about 20. However, from the viewpoint of ease of introducing additional groups, the number of additions is preferably 2 to 10, and more preferably 2 to 4.
より具体的なフラーレン誘導体の例としては、下記式(1)で表されるフラーレン誘導体が挙げられる。
式(1)中のFLNがC60、C70の骨格であることが好ましい。
Ar1はベンゼン環であることが好ましい。
nは1〜3の前記式(1)で表されるフラーレン誘導体をいずれか単独に含むことが好ましく、何れも含むことがより好ましい。
nは1〜3の前記式(1)で表されるフラーレン誘導体を何れも含む場合、前記フラーレン誘導体に含まれる各フラーレン誘導体の含有量が10〜60質量%であり、かつ合計量が90%〜100%であることが好ましい。
Examples of more specific fullerene derivatives include fullerene derivatives represented by the following formula (1).
It is preferable that the FLN in the formula (1) is a skeleton of C 60 and C 70 .
Ar 1 is preferably a benzene ring.
It is preferable that n contains any one of the fullerene derivatives represented by the formula (1) of 1 to 3 alone, and more preferably any of them.
When n contains any of the fullerene derivatives represented by the formula (1) of 1 to 3, the content of each fullerene derivative contained in the fullerene derivative is 10 to 60% by mass, and the total amount is 90%. It is preferably ~ 100%.
(樹脂組成物の製造方法)
本発明の樹脂組成物の製造方法は、樹脂と前記樹脂添加剤との混合物からなる樹脂混合物を得る工程および前記樹脂混合物から溶媒を除去する工程を有する。
(Manufacturing method of resin composition)
The method for producing a resin composition of the present invention includes a step of obtaining a resin mixture composed of a mixture of a resin and the resin additive, and a step of removing a solvent from the resin mixture.
(樹脂混合物を得る工程)
前記樹脂混合物を得る方法は、特に限定されないが、樹脂中のフラーレン誘導体の良好な分散性を得るために、本発明の樹脂添加剤と樹脂が液体状態で混合されることが好ましい。例えば、溶媒に溶解する樹脂であれば、前記樹脂添加剤に直接樹脂を溶解する方法、樹脂を溶解可能な溶媒に樹脂を溶液して前記樹脂添加剤と混合する方法などが挙げられる。樹脂が熱可塑性樹脂であれば、溶融している熱可塑性樹脂と前記樹脂添加剤とを混合する方法などが挙げられる。
(Step to obtain resin mixture)
The method for obtaining the resin mixture is not particularly limited, but it is preferable that the resin additive of the present invention and the resin are mixed in a liquid state in order to obtain good dispersibility of the fullerene derivative in the resin. For example, in the case of a resin that dissolves in a solvent, a method of directly dissolving the resin in the resin additive, a method of dissolving the resin in a solvent capable of dissolving the resin, and mixing with the resin additive can be mentioned. If the resin is a thermoplastic resin, a method of mixing the molten thermoplastic resin with the resin additive can be mentioned.
さらに、前記樹脂混合物を得る方法としては、重合して樹脂となる材料と前記樹脂添加剤との混合物からなる原料混合物を得て、この原料混合物中で前記材料を重合する方法などが挙げられる。重合形式は、重縮合、重付加、イオン重合、ラジカル重合が可能である。前記フラーレン誘導体はラジカルトラップ能が抑えられているので、重合形式はラジカル重合であってもよい。 Further, as a method for obtaining the resin mixture, a method of obtaining a raw material mixture composed of a mixture of a material to be polymerized to become a resin and the resin additive and polymerizing the material in the raw material mixture can be mentioned. The polymerization type can be polycondensation, polyaddition, ionic polymerization, or radical polymerization. Since the fullerene derivative has a suppressed radical trapping ability, the polymerization form may be radical polymerization.
(樹脂混合物から溶媒を除去する工程)
樹脂混合物から溶媒を除去する方法は、特に限定されないが、加熱、減圧及び/又は風乾などが挙げられる。通常、後述するフラーレン誘導体の熱分解の温度・時間の範囲内で溶媒は除去される。
樹脂混合物から溶媒を除去する後、後述の熱分解工程を行う前、フラーレン誘導体含有樹脂組成物が得られる。
(Step of removing the solvent from the resin mixture)
The method for removing the solvent from the resin mixture is not particularly limited, and examples thereof include heating, depressurization and / or air drying. Usually, the solvent is removed within the temperature and time of thermal decomposition of the fullerene derivative described later.
After removing the solvent from the resin mixture and before performing the thermal decomposition step described later, a fullerene derivative-containing resin composition is obtained.
(フラーレン誘導体の熱分解工程)
フラーレンのインデン付加体は、加熱をすると、フラーレンとインデンとに分解することが知られている。本発明では、この性質を利用して、前記樹脂混合物及び/又は前記フラーレン誘導体含有樹脂組成物中のフラーレン誘導体を熱分解し、該組成物中にフラーレンを生じさせる。なお、フラーレンはフラーレン誘導体よりラジカルトラップ能が優れる。
(Pyrolysis process of fullerene derivative)
It is known that the indene adduct of fullerene decomposes into fullerene and indene when heated. In the present invention, this property is utilized to thermally decompose the fullerene derivative in the resin mixture and / or the fullerene derivative-containing resin composition to generate fullerene in the composition. Fullerenes are superior in radical trapping ability to fullerene derivatives.
前記熱分解は、生じたフラーレンの凝集を防ぐため、前記フラーレン誘導体含有樹脂組成物中で行うのが好ましい。前記樹脂混合物を得る方法は、重合して樹脂となる材料と前記樹脂添加剤との混合物からなる原料混合物を得て、この原料混合物中で前記材料を重合する方法である場合、硬化後に行うのが好ましい。 The thermal decomposition is preferably carried out in the fullerene derivative-containing resin composition in order to prevent agglutination of the generated fullerene. The method for obtaining the resin mixture is a method of obtaining a raw material mixture composed of a mixture of a material to be polymerized and a resin and the resin additive, and polymerizing the material in the raw material mixture, after curing. Is preferable.
前記熱分解の温度は、フラーレン誘導体が分解する温度以上で樹脂へのダメージが許容できる温度以下であることが好ましく、樹脂の種類などによるが、120℃〜350℃がより好ましく、200℃〜350℃がさらに好ましい。熱分解の時間は、大部分のフラーレン誘導体が分解する時間以上で樹脂へのダメージが許容できる時間内であることが好ましく、加熱温度や樹脂の種類などによるが、1〜100時間の範囲内がより好ましく、20〜50時間であることがさらに好ましい。なお、熱分解は連続して行う必要は無く、複数回に分けてもよい。 The temperature of the thermal decomposition is preferably higher than the temperature at which the fullerene derivative is decomposed and lower than the temperature at which damage to the resin can be tolerated, and although it depends on the type of resin, 120 ° C to 350 ° C is more preferable, and 200 ° C to 350 ℃ is more preferable. The time for thermal decomposition is preferably the time during which most of the fullerene derivatives are decomposed and the damage to the resin is acceptable, and it is within the range of 1 to 100 hours depending on the heating temperature and the type of resin. More preferably, it is 20 to 50 hours. It should be noted that the thermal decomposition does not have to be performed continuously, and may be divided into a plurality of times.
ただし、樹脂組成物が使用される環境下で上記熱分解と同様の加熱がなされるならば、該樹脂組成物の製造工程中に熱分解する工程を設ける必要は無い。 However, if the same heating as the above thermal decomposition is performed in the environment where the resin composition is used, it is not necessary to provide a step of thermal decomposition during the manufacturing process of the resin composition.
前記樹脂組成物中の樹脂が熱可塑性樹脂である場合、一般に使用される環境下で加熱されることが少ないので、前記熱分解の工程を設けることが好ましい。成形時及び/または成形前に上記熱分解と同様な加熱がなされるようにしておくとよい。 When the resin in the resin composition is a thermoplastic resin, it is rarely heated in a generally used environment, so it is preferable to provide the thermal decomposition step. It is preferable that the same heating as the above-mentioned thermal decomposition is performed at the time of molding and / or before molding.
前記熱分解工程を経た樹脂組成物は、前記フラーレン誘導体の熱分解物を含む。分解物は、通常、フラーレンと前記フラーレン誘導体に付加していた置換基を有してもよいインデンとなる。このとき、樹脂組成物中のフラーレン含有量は、好ましくは0.001質量%〜10質量%、より好ましくは0.01質量%〜1質量%、さらに好ましくは0.02質量%〜0.5質量%である。樹脂組成物中のフラーレン含有量は、熱分解条件やフラーレン誘導体と樹脂との混合比率を調整するなどして調整できる。 The resin composition that has undergone the thermal decomposition step contains a thermal decomposition product of the fullerene derivative. The decomposition product is usually an indene which may have a substituent added to the fullerene and the fullerene derivative. At this time, the fullerene content in the resin composition is preferably 0.001% by mass to 10% by mass, more preferably 0.01% by mass to 1% by mass, and further preferably 0.02% by mass to 0.5. It is mass%. The fullerene content in the resin composition can be adjusted by adjusting the thermal decomposition conditions and the mixing ratio of the fullerene derivative and the resin.
本発明の樹脂組成物中に含まれる樹脂としては、前記樹脂添加剤を利用できる樹脂であればよく、例えば、ポリオレフィン、ポリスチレン、ポリイミド、ポリアミド、ポリイミド、ポリフェニレンスルファイド、ポリメタクリル酸メチル及びポリカーボネート等が挙げられる。 The resin contained in the resin composition of the present invention may be any resin that can utilize the resin additive, for example, polyolefin, polystyrene, polyimide, polyamide, polyimide, polyphenylensulfide, polymethyl methacrylate, polycarbonate and the like. Can be mentioned.
以下に本発明の実施例を示し、本発明をより具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらによって何ら制限されるものではない。 Examples of the present invention will be shown below, and the present invention will be described in more detail. It should be noted that these are merely examples for explanation, and the present invention is not limited thereto.
実施例1:
(フラーレン誘導体の合成)
フラーレンC6010gと,インデン32gとをo−ジクロロベンゼン120mL中で20時間還流し反応させた。反応後の溶液をシリカゲルを用いてろ過した。ろ液に、攪拌しながらメタノール500mLを滴下し、固体を析出させた。析出した固体をメタノールで洗浄し、目的物1として黒色固体10gを得た。
Example 1:
(Synthesis of fullerene derivatives)
10 g of fullerene C 60 and 32 g of indene were refluxed and reacted in 120 mL of o-dichlorobenzene for 20 hours. The solution after the reaction was filtered using silica gel. 500 mL of methanol was added dropwise to the filtrate with stirring to precipitate a solid. The precipitated solid was washed with methanol to obtain 10 g of a black solid as the target product 1.
目的物1中の、フラーレン、フラーレンのインデン一付加体、同二付加体、および同三付加体以上の多付加体組成比を、HPLCにより分析した。その結果、フラーレン0.9質量%、一付加体32.7質量%、二付加体50.4質量%、三付加体以上15.9質量%の組成比であった。 The composition ratios of fullerenes, indene monoadducts of fullerenes, diadducts of fullerenes, and polyadducts of fullerenes and above in the target product 1 were analyzed by HPLC. As a result, the composition ratios were 0.9% by mass of fullerene, 32.7% by mass of the monoadduct, 50.4% by mass of the diadder, and 15.9% by mass of the triadduct or more.
(溶解度測定)
6mLのバイアル瓶に、表1に示す各溶媒2gと目的物1を20mg入れ、5時間撹拌を行った。その後、0.2μmのフィルターを用いてろ過を行った後、UV−Vis吸光度測定を行い、溶液の吸光度を測定した。その420nmの吸光度を目的物が0.1質量%溶解したトルエン溶液の吸光度と比較することで、溶解度を算出した。その結果を表1に示す。
(Measurement of solubility)
In a 6 mL vial, 2 g of each solvent shown in Table 1 and 20 mg of the target product 1 were placed and stirred for 5 hours. Then, after filtering using a 0.2 μm filter, UV-Vis absorbance measurement was performed to measure the absorbance of the solution. The solubility was calculated by comparing the absorbance at 420 nm with the absorbance of a toluene solution in which the target product was dissolved in an amount of 0.1% by mass. The results are shown in Table 1.
比較例1:
目的物1の代わりにフラーレンC60を用い、実施例1と同様に溶解度を算出した。
Comparative Example 1:
Fullerene C 60 was used instead of the target product 1, and the solubility was calculated in the same manner as in Example 1.
表1の結果によれば、目的物1は、C60が溶解しない多くの溶媒にも溶解することがわかる。 According to the results in Table 1, it can be seen that the target product 1 is also soluble in many solvents in which C 60 is insoluble.
実施例2:
(10%質量減少温度の測定)
NETZSCH社 TG−DTA2000SRを用いて、約200mgの樹脂組成物を試料として、昇温速度10℃/分、空気下で、試料の質量が10%減少した温度を取得した。
(樹脂組成物のガラス転移点(Tg)測定)
メトラー社DSC−1を用いて吸熱ピークの温度を取得した。
Example 2:
(Measurement of 10% mass reduction temperature)
Using the TG-DTA2000SR manufactured by NETZSCH, a temperature at which the mass of the sample was reduced by 10% was obtained under air at a heating rate of 10 ° C./min using a resin composition of about 200 mg as a sample.
(Measurement of glass transition point (Tg) of resin composition)
The temperature of the endothermic peak was obtained using Mettler DSC-1.
(熱硬化性樹脂)
本発明の樹脂添加剤1として、目的物1が0.1質量%溶解したNMP溶液を用意した。ポリイミド系樹脂として、ビス[4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル]メタン10gを用い、20gの樹脂添加剤1に溶解させた。この溶液を窒素下で180℃で24時間加熱し固形分を得た。得られた固形分を250℃で24時間加熱し、NMPを蒸散させ、フラーレン誘導体の熱分解を行った。その結果、樹脂組成物として透明な褐色の硬化物を得た。得られた樹脂組成物の測定結果を表2に示す。
(Thermosetting resin)
As the resin additive 1 of the present invention, an NMP solution in which the target substance 1 was dissolved in an amount of 0.1% by mass was prepared. As the polyimide resin, 10 g of bis [4- (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboxyimide) phenyl] methane was used and dissolved in 20 g of the resin additive 1. .. This solution was heated under nitrogen at 180 ° C. for 24 hours to obtain a solid content. The obtained solid content was heated at 250 ° C. for 24 hours to evaporate NMP, and the fullerene derivative was thermally decomposed. As a result, a transparent brown cured product was obtained as the resin composition. The measurement results of the obtained resin composition are shown in Table 2.
比較例2
樹脂添加剤1の代わりにNMPを用いたこと以外は、実施例2と同様の操作及び測定を行った。その結果、樹脂組成物として透明な硬化物を得た。得られた樹脂組成物の測定結果を表2に示す。
Comparative Example 2
The same operations and measurements as in Example 2 were performed except that NMP was used instead of the resin additive 1. As a result, a transparent cured product was obtained as the resin composition. The measurement results of the obtained resin composition are shown in Table 2.
比較例3
樹脂添加剤1の代わりにフラーレン(フロンティアカーボン社NM−ST−F)を0.1質量%分散させたNMP分散液を用いたこと以外は、実施例2と同様の操作及び測定を行った。その結果、樹脂組成物として濁った褐色の硬化物を得た。得られた樹脂組成物の測定結果を表2に示す。
Comparative Example 3
The same operations and measurements as in Example 2 were carried out except that an NMP dispersion in which fullerene (NM-ST-F manufactured by Frontier Carbon Co., Ltd.) was dispersed in an amount of 0.1% by mass was used instead of the resin additive 1. As a result, a turbid brown cured product was obtained as a resin composition. The measurement results of the obtained resin composition are shown in Table 2.
実施例3:
(熱可塑性樹脂)
ポリメタクリル酸メチル10gを120℃で50gの樹脂添加剤1に溶解させた。これを減圧下120℃で24時間かけて溶媒を留去し、樹脂組成物として透明な褐色の硬化物を得た。実施例2と同様の測定を行い、得られた樹脂組成物の測定結果を表3に示す。
Example 3:
(Thermoplastic resin)
10 g of polymethyl methacrylate was dissolved in 50 g of the resin additive 1 at 120 ° C. The solvent was distilled off from this under reduced pressure at 120 ° C. for 24 hours to obtain a transparent brown cured product as a resin composition. The same measurement as in Example 2 was performed, and the measurement results of the obtained resin composition are shown in Table 3.
比較例4:
樹脂添加剤1の代わりにNMPを用いたこと以外は、実施例3と同様の操作及び測定を行った。その結果、樹脂組成物として透明な硬化物を得た。得られた樹脂組成物の測定結果を表3に示す。
Comparative Example 4:
The same operations and measurements as in Example 3 were performed except that NMP was used instead of the resin additive 1. As a result, a transparent cured product was obtained as the resin composition. The measurement results of the obtained resin composition are shown in Table 3.
比較例5
樹脂添加剤1の代わりにフラーレン(フロンティアカーボン社NM−ST−F)を0.1質量%分散させたNMP分散液を用いたこと以外は、実施例3と同様の操作及び測定を行った。その結果、樹脂組成物として濁った褐色の硬化物を得た。得られた樹脂組成物の測定結果を表3に示す。
Comparative Example 5
The same operations and measurements as in Example 3 were carried out except that an NMP dispersion in which fullerene (NM-ST-F manufactured by Frontier Carbon Co., Ltd.) was dispersed in an amount of 0.1% by mass was used instead of the resin additive 1. As a result, a turbid brown cured product was obtained as a resin composition. The measurement results of the obtained resin composition are shown in Table 3.
実施例4
(ラジカル重合)
本発明の樹脂添加剤2として、目的物1が0.1質量%溶解したトルエン溶液を用意した。スチレンモノマー50gを50gの樹脂添加剤2と混合し、これを100℃で12時間加熱して熱ラジカル重合及び溶媒の留去を行い、次に得られた固形物を250℃で24時間加熱しフラーレン誘導体の熱分解を行った。その結果、樹脂組成物として透明な褐色の硬化物を得た。実施例2と同様の測定をした結果、得られた樹脂組成物の測定結果を表4に示す。
Example 4
(Radical polymerization)
As the resin additive 2 of the present invention, a toluene solution in which the target substance 1 was dissolved in an amount of 0.1% by mass was prepared. 50 g of styrene monomer is mixed with 50 g of resin additive 2, and this is heated at 100 ° C. for 12 hours for thermal radical polymerization and solvent distillation, and then the obtained solid is heated at 250 ° C. for 24 hours. The fullerene derivative was thermally decomposed. As a result, a transparent brown cured product was obtained as the resin composition. Table 4 shows the measurement results of the resin composition obtained as a result of the same measurement as in Example 2.
比較例6
樹脂添加剤2の代わりにフラーレン(フロンティアカーボン社 NM−ST−F)を0.1質量%溶解させたトルエン溶液を用いたこと以外は、実施例4と同様の操作を行ったが、重合が進まず、硬化物が得られなかった。
Comparative Example 6
The same operation as in Example 4 was carried out except that a toluene solution in which fullerene (NM-ST-F manufactured by Frontier Carbon Co., Ltd.) was dissolved in an amount of 0.1% by mass was used instead of the resin additive 2, but the polymerization was carried out. It did not proceed and a cured product could not be obtained.
比較例7
スチレンに樹脂添加剤2を混合しなかったこと以外は実施例4と同様に操作及び測定を行った。その結果、樹脂組成物として透明な褐色の硬化物を得た。得られた樹脂組成物の測定結果を表4に示す。
Comparative Example 7
The operation and measurement were carried out in the same manner as in Example 4 except that the resin additive 2 was not mixed with styrene. As a result, a transparent brown cured product was obtained as the resin composition. The measurement results of the obtained resin composition are shown in Table 4.
以上のように、本発明の樹脂添加剤を用いると、今までフラーレンの添加効果を得にくかった樹脂であっても、得られる樹脂組成物はTg、10%質量減少温度共に大きく上昇させることができる(各実施例)。さらに、本発明の樹脂添加剤は、樹脂原料に添加し、該原料をラジカル重合させて樹脂組成物を得ることも可能である(実施例4)。
Claims (3)
前記樹脂混合物から溶媒を除去する工程と、
前記樹脂混合物を120〜350℃,1〜100時間加熱する工程と、を有し、
前記樹脂添加剤は置換基を有してもよいインデンがフラーレン骨格に付加しているフラーレン誘導体の有機溶媒溶液からなり、
前記フラーレン誘導体の熱分解物及び樹脂を含む樹脂組成物の製造方法。 The process of obtaining a resin mixture consisting of a mixture of a resin and a resin additive, and
The step of removing the solvent from the resin mixture and
It comprises a step of heating the resin mixture at 120 to 350 ° C. for 1 to 100 hours.
The resin additive comprises an organic solvent solution of a fullerene derivative in which indene, which may have a substituent, is added to the fullerene skeleton.
A method for producing a resin composition containing a pyrolyzed product of the fullerene derivative and a resin.
重合して樹脂となる材料と前記樹脂添加剤との混合物からなる原料混合物を得る工程と前記原料混合物中の前記材料を重合する工程と
を有する請求項1に記載の樹脂組成物の製造方法。 The step of obtaining the resin mixture is
The method for producing a resin composition according to claim 1, further comprising a step of obtaining a raw material mixture composed of a mixture of a material to be polymerized into a resin and the resin additive, and a step of polymerizing the material in the raw material mixture.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014217341 | 2014-10-24 | ||
JP2014217341 | 2014-10-24 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016555404A Division JP6596769B2 (en) | 2014-10-24 | 2015-10-23 | Resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020094181A JP2020094181A (en) | 2020-06-18 |
JP6828110B2 true JP6828110B2 (en) | 2021-02-10 |
Family
ID=55761002
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016555404A Active JP6596769B2 (en) | 2014-10-24 | 2015-10-23 | Resin composition |
JP2019165674A Active JP6828110B2 (en) | 2014-10-24 | 2019-09-11 | Method for manufacturing resin composition |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016555404A Active JP6596769B2 (en) | 2014-10-24 | 2015-10-23 | Resin composition |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP6596769B2 (en) |
WO (1) | WO2016063972A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6623503B2 (en) * | 2017-10-25 | 2019-12-25 | 昭和電工株式会社 | Lubricating oil composition and method for producing the same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103227289B (en) * | 2006-06-13 | 2016-08-17 | 索尔维美国有限公司 | Comprise the organic photovoltaic devices of fullerene and derivative thereof |
JP2010528119A (en) * | 2007-05-02 | 2010-08-19 | プレックストロニクス インコーポレーティッド | Solvent system for conjugated polymers |
JP5581212B2 (en) * | 2007-09-21 | 2014-08-27 | ソレンネ ベーヴェー | Fullerene multi-adduct composition |
US8715606B2 (en) * | 2007-12-21 | 2014-05-06 | Plextronics, Inc. | Organic photovoltaic devices comprising fullerenes and derivatives thereof and improved methods of making fullerene derivatives |
JP2013211473A (en) * | 2012-03-30 | 2013-10-10 | Jx Nippon Oil & Energy Corp | Organic thin film solar cell module and manufacturing method therefor |
JPWO2014038526A1 (en) * | 2012-09-04 | 2016-08-08 | 株式会社クラレ | Block copolymer and photoelectric conversion element using the same |
JP6044283B2 (en) * | 2012-11-14 | 2016-12-14 | 三菱商事株式会社 | Fullerene C60 derivative and resist composition for exposure to extreme ultraviolet light or electron beam |
-
2015
- 2015-10-23 WO PCT/JP2015/079950 patent/WO2016063972A1/en active Application Filing
- 2015-10-23 JP JP2016555404A patent/JP6596769B2/en active Active
-
2019
- 2019-09-11 JP JP2019165674A patent/JP6828110B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2016063972A1 (en) | 2016-04-28 |
JP6596769B2 (en) | 2019-10-30 |
JPWO2016063972A1 (en) | 2017-08-03 |
JP2020094181A (en) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Catalytic inverse vulcanization | |
Foster et al. | Ring‐opening metathesis polymerization in aqueous media using a macroinitiator approach | |
Haloi et al. | Synthesis of poly (2‐ethylhexyl acrylate)/clay nanocomposite by in situ living radical polymerization | |
CN112368308B (en) | Copolymer and positive resist composition | |
Zhang et al. | Preparation, characterization, and properties of poly (aryl ether sulfone) systems with double‐decker silsesquioxane in the main chains by reactive blending | |
JP6828110B2 (en) | Method for manufacturing resin composition | |
Busatto et al. | Reactive Polymorphic Nanoparticles: Preparation via Polymerization‐Induced Self‐Assembly and Postsynthesis Thiol–para‐Fluoro Core Modification | |
Liu et al. | Controlled ROMP Synthesis of Ferrocene‐Containing Amphiphilic Dendronized Diblock Copolymers as Redox‐Controlled Polymer Carriers | |
CN108779215B (en) | Method for producing copolymer | |
Ashok Kothapalli et al. | Thio‐bromo “Click,” post‐polymerization strategy for functionalizing ring opening metathesis polymerization (ROMP)‐derived materials | |
Alimohammadi et al. | Radical mediated thiol-ene/yne dispersion polymerizations | |
Chuo et al. | Preparation of self-healing organic–inorganic nanocomposites with the reactions between methacrylated polyhedral oligomeric silsesquioxanes and furfurylamine | |
Daugaard et al. | Novel UV initiator for functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization applied on two different grades of nanotubes | |
Gorkem Sencevik et al. | Poly (methyl methacrylate)/POSS hybrid networks by type II photoinitiated free radical polymerization | |
Cheng et al. | A facile method for the preparation of thermally remendable cross‐linked polyphosphazenes | |
Zhou et al. | Synthesis and thermal behavior of poly (ε-caprolactone) grafted on multiwalled carbon nanotubes with high grafting degrees | |
Temel et al. | Modification of multiwall carbon nanotube by thiol-ene click chemistry | |
Bunha et al. | Catenated PS–PMMA Block Copolymers via Supramolecularly Templated ATRP Initiator Approach | |
Zhao et al. | Enhanced dispersion of nanotubes in organic solvents by donor–acceptor interaction between functionalized poly (phenylacetylene) chains and carbon nanotube walls | |
Tong et al. | End‐capping double‐chain stranded polypseudorotaxanes using lengthily tunable poly (2‐hydroxyethyl methacrylate) blocks via atom transfer radical polymerization | |
Ma et al. | Construction of micelles and hollow spheres via the self-assembly behavior of poly (styrene-alt-p HPMI) copolymers with poly (4-vinylpyridine) derivatives mediated by hydrogen bonding interactions | |
JP5155051B2 (en) | Fullerene derivative precipitation prevention method, fullerene derivative solution preparation method, and fullerene derivative solution | |
Xie et al. | Preparation of reactive block copolymers and their transformation to hollowed nanostructures | |
JP5292785B2 (en) | Fullerene derivative, solution thereof and film thereof | |
Oktay et al. | Preparation and thermal properties of Alkoxy Silane functionalized polyether sulfone/well‐defined poly (trimethoxysilyl) propyl methacrylate‐based hybrid materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201020 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210120 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6828110 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |