JP6827354B2 - Wireless power supply - Google Patents

Wireless power supply Download PDF

Info

Publication number
JP6827354B2
JP6827354B2 JP2017067731A JP2017067731A JP6827354B2 JP 6827354 B2 JP6827354 B2 JP 6827354B2 JP 2017067731 A JP2017067731 A JP 2017067731A JP 2017067731 A JP2017067731 A JP 2017067731A JP 6827354 B2 JP6827354 B2 JP 6827354B2
Authority
JP
Japan
Prior art keywords
power
power receiving
coil
power transmission
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017067731A
Other languages
Japanese (ja)
Other versions
JP2018170900A (en
Inventor
井戸 寛
寛 井戸
義弘 戸高
義弘 戸高
淳史 田中
淳史 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Priority to JP2017067731A priority Critical patent/JP6827354B2/en
Publication of JP2018170900A publication Critical patent/JP2018170900A/en
Application granted granted Critical
Publication of JP6827354B2 publication Critical patent/JP6827354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

本発明は、送電装置と受電装置の間の電力伝送を非接触(無線)で行う無線給電装置に関し、受電装置が移動可能な無線給電装置に関する。 The present invention relates to a wireless power feeding device that performs non-contact (wireless) power transmission between a power transmitting device and a power receiving device, and relates to a wireless power feeding device in which the power receiving device can be moved.

非接触で電力を伝送(以下、無線給電という)する方法として、電磁誘導による電磁誘導方式、電界または磁界共鳴を介した共鳴給電方式、電波によるマイクロ波送電方式などが知られている。この中で既に製品化され一般に多く見られるのは、電磁誘導方式である。この方式は簡易的な設計で高効率の無線給電が可能であるが、送電距離が短いという課題もある。そこで、共振を利用して電力を数m先まで伝送する共鳴給電方式が提案され、この技術を利用した製品開発が、電機メーカー、自動車メーカーを中心に進められている。 As a method of transmitting electric power in a non-contact manner (hereinafter referred to as wireless power feeding), an electromagnetic induction method using electromagnetic induction, a resonance power feeding method via electric field or magnetic field resonance, a microwave power transmission method using radio waves, and the like are known. Of these, the electromagnetic induction method has already been commercialized and is commonly seen. Although this method has a simple design and enables highly efficient wireless power supply, it also has a problem that the transmission distance is short. Therefore, a resonance feeding method has been proposed in which electric power is transmitted up to several meters by using resonance, and product development using this technology is being promoted mainly by electric appliance makers and automobile makers.

共鳴給電方式では、送電装置内の送電コイルと、受電装置の受電コイルの電磁気的な結合により電力伝送が行われる。両コイル間の結合係数k値が小さい一方で、Q値を高めることにより無線給電を行うが、電磁誘導方式と比較すると伝送距離は長くできるものの、電力伝送効率が低くなってしまう。 In the resonance power feeding method, power transmission is performed by electromagnetically coupling the power transmission coil in the power transmission device and the power reception coil of the power reception device. While the coupling coefficient k value between the two coils is small, wireless power supply is performed by increasing the Q value, but the transmission distance can be lengthened as compared with the electromagnetic induction method, but the power transmission efficiency is low.

伝送距離が長くできることはメリットであることに違いないが、一方でリスクも発生する。例えば、送電装置と受電装置間に人・もの(本来の受電対象と異なるもの)が近づいたり更には入ったりするなど安全に対する懸念が増す。すなわち、実用運用上において、人体や精密電子機器類などに対する電磁暴露を注意する必要性が増し、更には金属異物が間に挟まれた場合の対策が重要となる。 It must be an advantage to be able to increase the transmission distance, but it also poses a risk. For example, there is an increasing concern about safety, such as people / things (things different from the original power receiving target) approaching or even entering between the power transmission device and the power receiving device. That is, in practical operation, it becomes necessary to pay attention to electromagnetic exposure to the human body and precision electronic devices, and further, it is important to take measures when a metallic foreign substance is sandwiched between them.

例えば特許文献1に開示された無線給電装置においては、ユーザーと給電装置の位置を検知・報知し、給電装置の稼働状態を制御する。この方法によれば、ユーザー(人)が存在する場合には給電パワーを小さくするなどして、ユーザーが受ける電磁暴露量を低減する。 For example, in the wireless power supply device disclosed in Patent Document 1, the positions of the user and the power supply device are detected and notified, and the operating state of the power supply device is controlled. According to this method, when a user (person) exists, the amount of electromagnetic exposure received by the user is reduced by reducing the power supply power.

特開2014−60822号公報Japanese Unexamined Patent Publication No. 2014-60822

特許文献1では、ユーザーと給電装置の位置関係によって給電量を制御する。しかし、ユーザーと給電装置の位置関係を検知して報知する装置が別途必要になるなど装置規模が大きくなり、その結果、コストも高くなる。 In Patent Document 1, the amount of power supplied is controlled by the positional relationship between the user and the power supply device. However, the scale of the device becomes large, such as the need for a separate device that detects and notifies the positional relationship between the user and the power feeding device, and as a result, the cost also increases.

また、展示物やショーウィンドなどのように、本質的に人に見せることを目的とし、更には人を呼び込むための形態に対して無線給電を適用する場合、そもそも人が近づいたら給電量を抑制するということはできない。 In addition, when applying wireless power supply to a form that is essentially intended to be shown to people, such as exhibits and show windows, and to attract people, the amount of power supply is suppressed when a person approaches in the first place. You can't do that.

上記課題を解決するために、本発明の無線給電装置は、送電コイル及び共振容量により構成された送電共振器を有する送電装置と、受電コイル及び共振容量により構成された受電共振器を有する受電装置とを備え、前記送電コイルと前記受電コイルの間の作用を介して前記送電装置から前記受電装置へ非接触で電力を伝送し、前記受電装置は透明または半透明な仕切りを介して、外部から視認可能であるものの、人や受電対象物以外のものが送電装置と受電装置の近傍には近づかないようにする。上記送電コイルと受電コイルは無線での電力伝送がより効率良く行われるように配置し、また上記仕切りの位置関係を適正にして受電装置が送電装置の一定の範囲内で動作するようにする。 In order to solve the above problems, the wireless power feeding device of the present invention includes a power transmission device having a power transmission resonator composed of a power transmission coil and a resonance capacitance, and a power reception device having a power reception resonator composed of a power reception coil and a resonance capacitance. And, the power is transmitted from the power transmitting device to the power receiving device in a non-contact manner through the action between the power transmitting coil and the power receiving coil, and the power receiving device is transmitted from the outside through a transparent or translucent partition. Although it is visible, keep people and objects other than the power receiving object away from the power transmission device and the vicinity of the power receiving device. The power transmission coil and the power reception coil are arranged so that wireless power transmission can be performed more efficiently, and the positional relationship of the partitions is properly adjusted so that the power reception device operates within a certain range of the power transmission device.

ここで、特に展示物やショーウィンドを考えた場合、外部からの内部への視認性が最重要課題である。このため、上記仕切りはできるだけ透明度の高いガラスやプラスチックとし、更には展示物が入る展示スペースやショーウィンドはできるだけ大きくしたい。しかし、発明者らの検証の結果、誘電体である上記ガラスやプラスチックでは無線給電で発生する不要な漏えい磁場(即ち展示物外やショーウィンド外に漏れてきて、それ以外の人やものに影響を及ぼす磁場)はほとんど防げず、スパッタリング等により導電性が比較的高い金属薄膜を形成した時に低減されることが分かった。但し、金属膜を形成し、更にそれが不要な漏えい磁場を低減するまで厚みを増加させると、上記視認性にとって重要な透明度が落ちることになり本来の目的を十分に果たすことが出来ない。 Here, especially when considering exhibits and show windows, visibility from the outside to the inside is the most important issue. For this reason, the above partitions should be made of glass or plastic with as high transparency as possible, and the exhibition space and show window where the exhibits will be placed should be as large as possible. However, as a result of the verification by the inventors, in the above-mentioned glass and plastic which are dielectrics, an unnecessary leaking magnetic field generated by wireless power supply (that is, it leaks to the outside of the exhibit or the show window and affects other people and things. It was found that the magnetic field that exerts a force) can hardly be prevented and is reduced when a metal thin film having a relatively high conductivity is formed by sputtering or the like. However, if a metal film is formed and the thickness is increased until the unnecessary leakage magnetic field is reduced, the transparency, which is important for the visibility, is lowered, and the original purpose cannot be sufficiently achieved.

また、展示スペースやショーウィンドを大きくして無線給電による電源供給が出来る空間を広く取るには、必然的に無線給電投入電力を増やす必要が有る。発明者らの検証によると上記のように無線給電を広い空間で行うようにすると、展示スペースやショーウィンドの外への漏えい磁場がより増加し、また無線給電性能自体も十分な効率で行うことが困難になることが分かった。 In addition, in order to increase the exhibition space and show window to provide a large space for power supply by wireless power supply, it is inevitably necessary to increase the wireless power supply input power. According to the verification by the inventors, if the wireless power supply is performed in a wide space as described above, the magnetic field leaking to the outside of the exhibition space or the show window will increase, and the wireless power supply performance itself will be performed with sufficient efficiency. Turned out to be difficult.

そこで発明者らは、電磁界シミュレーションと試作を繰り返し行い、無線給電性能と漏えい磁場の検証を鋭意継続して行った結果、送電装置内のコイルから発生する磁場分布と受電装置内のコイルで受け取れる磁場方向に技術課題があることが分かった。発明者らはこの技術課題を解決するため、送電コイルをスパイラル状に作製して送電装置を形成する金属筐体内に収め、受電コイルをスパイラル若しくはソレノイド状に作製して受電装置内に配置した。また、できるだけ透明なガラス製若しくはプラスチック製の仕切りを用意し、この仕切りの内側外側に対して、上記スパイラル送電コイルの概ね内径外径に相当するそれぞれの位置に配置した。これにより、内側の仕切りにて受電装置が配置される位置若しくは移動できる範囲を限定し、外側の仕切りにて人やものが近づける領域を安全な領域に限定した。 Therefore, the inventors repeated electromagnetic field simulations and trial production, and as a result of diligently and continuously verifying the wireless power feeding performance and the leaked magnetic field, the magnetic field distribution generated from the coil in the power transmission device and the coil in the power receiving device can receive it. It turned out that there is a technical problem in the direction of the magnetic field. In order to solve this technical problem, the inventors have prepared a power transmission coil in a spiral shape and housed it in a metal housing forming a power transmission device, and made a power reception coil in a spiral or solenoid shape and arranged it in the power reception device. Further, a partition made of glass or plastic as transparent as possible was prepared, and the partition was arranged at each position corresponding to the inner diameter and outer diameter of the spiral power transmission coil with respect to the inside and outside of the partition. As a result, the position where the power receiving device is placed or the range in which the power receiving device can be moved is limited by the inner partition, and the area where people and things can approach is limited to the safe area by the outer partition.

ここで受電装置が移動体の場合、上記のような仕切りが有る場合には移動が仕切りによって制限されるのであるが、更にはその仕切りに沿って移動する時間帯(滞在時間)が増す。すなわち、仕切り近傍にてその周囲より無線給電性能を高めれば、より効率良く受電装置に電力を供給することができる。特に受電装置内のコイルと送電装置内のコイルとが概ね対向するようにすれば、送電コイルからの磁束がより効率よく受電コイルと錯交するようになる。 Here, when the power receiving device is a mobile body, if there is a partition as described above, the movement is restricted by the partition, but the time zone (stay time) for moving along the partition is further increased. That is, if the wireless power supply performance is improved in the vicinity of the partition from the surroundings, the power can be supplied to the power receiving device more efficiently. In particular, if the coil in the power receiving device and the coil in the power transmission device are made to face each other, the magnetic flux from the power transmitting coil will more efficiently intersect with the power receiving coil.

なお、上記構成は送電装置が1個と受電装置が1個の場合に限定されない。例えば受電装置と送電装置を複数配置することもでき、または送電装置を2つ用意し、その間に1つ若しくは複数の受電装置を配置することもできる。また、送電装置を2つ用意する代わりに、磁気シールド装置により受電装置を挟んで送電装置と対向位置に配置することにより、上記構成とほぼ同様な効果が得られる。 The above configuration is not limited to the case where there is one power transmitting device and one power receiving device. For example, a plurality of power receiving devices and a power transmitting device can be arranged, or two power transmitting devices can be prepared and one or a plurality of power receiving devices can be arranged between them. Further, instead of preparing two power transmission devices, by arranging the power transmission device at a position facing the power transmission device with the power receiving device sandwiched by the magnetic shield device, almost the same effect as the above configuration can be obtained.

仕切り板は透明の板材や円筒材を加工して組み立てる事により、上記のようなコイルとの相対関係を保つように配置することが可能であり、例えばサイズの異なる大小2つ以上の仕切り板を用い、その間に展示用の種々の装飾品を入れることも可能である。 The partition plate can be arranged so as to maintain the relative relationship with the coil as described above by processing and assembling a transparent plate material or a cylindrical material. For example, two or more partition plates of different sizes can be arranged. It is also possible to use and put various ornaments for exhibition in the meantime.

上記の構成を行うことにより、展示の視認性と人やモノが漏えい磁場の大きい近傍に近づくことを防ぐことの両立、更には無線給電性能を十分に維持することができるようになったため、中身の視認性が高くかつ安全な無線給電装置を提供することができた。 By performing the above configuration, it has become possible to achieve both the visibility of the exhibition and the prevention of people and objects from approaching the vicinity of a large leakage magnetic field, and it has become possible to sufficiently maintain the wireless power supply performance. We were able to provide a wireless power supply device with high visibility and safety.

本発明の無線給電装置の送電装置(様態1)の概要を示す図である。It is a figure which shows the outline of the power transmission device (mode 1) of the wireless power supply device of this invention. 本発明の無線給電装置の送電装置(様態2)の概要を示す図である。It is a figure which shows the outline of the power transmission device (mode 2) of the wireless power supply device of this invention. 本発明の無線給電装置の送電装置(様態1)から発生される磁界の方向に関するシミュレーション結果を示す図である。It is a figure which shows the simulation result about the direction of the magnetic field generated from the power transmission device (mode 1) of the wireless power feeding device of this invention. 本発明の無線給電装置の送電装置(様態2)から発生される磁界の方向に関するシミュレーション結果を示す図である。It is a figure which shows the simulation result about the direction of the magnetic field generated from the power transmission device (mode 2) of the wireless power feeding device of this invention. 本発明の無線給電装置の送電装置(様態1)から発生される磁界の大きさに関するシミュレーション結果を示す図である。It is a figure which shows the simulation result about the magnitude of the magnetic field generated from the power transmission device (mode 1) of the wireless power feeding device of this invention. 本発明の無線給電装置の送電装置(様態2)から発生される磁界の大きさに関するシミュレーション結果を示す図である。It is a figure which shows the simulation result about the magnitude of the magnetic field generated from the power transmission device (mode 2) of the wireless power feeding device of this invention. 受電装置の配置及び移動を制限する仕切りの例を示した図である。It is a figure which showed the example of the partition which restricts the arrangement and movement of a power receiving device. 受電装置の配置及び移動を制限する仕切りの内、特に本発明の2重の仕切りを設けた例を示した図である。It is a figure which showed the example which provided the double partition of this invention in particular among the partitions which restrict the arrangement and movement of a power receiving device. 本発明の無線給電装置の内、送電装置を仕切りを介して2つ搭載した例を示した図である。It is a figure which showed the example which mounted two power transmission devices through a partition among the wireless power supply devices of this invention. 本発明を魚型ロボットに応用した例を示した図である。It is a figure which showed the example which applied this invention to a fish type robot.

本発明の無線給電装置は、送電コイル及び共振容量により構成された送電共振器を有する送電装置と、受電コイル及び共振容量により構成された受電共振器を有する受電装置とを備え、送電コイルと受電コイルの間の電磁気的な作用により送電装置から受電装置へ非接触で電力の伝送を行う。 The wireless power feeding device of the present invention includes a power transmission device having a power transmission resonator composed of a power transmission coil and a resonance capacitance, and a power reception device having a power reception resonator composed of a power reception coil and a resonance capacity, and includes a power transmission coil and a power reception device. Electric power is transmitted from the power transmitting device to the power receiving device in a non-contact manner by the electromagnetic action between the coils.

上記送電装置の上空に配置される受電装置は、その配置される空間が透明な材料で仕切り、その位置がある一定領域に制限されるようにする。これにより無線給電可能な位置に受電装置を閉じ込め、また外部からの受電装置の視認を高くできる。一方で、人やものが法規やガイドライン以上の漏えい磁場を受けないように、ある範囲の送電装置近傍領域に近づくことができないようにする。 In the power receiving device arranged above the power transmission device, the space in which the power receiving device is arranged is partitioned by a transparent material so that the position is limited to a certain area. As a result, the power receiving device can be confined in a position where wireless power can be supplied, and the visibility of the power receiving device from the outside can be enhanced. On the other hand, to prevent people and things from receiving a leakage magnetic field that exceeds the regulations and guidelines, it is necessary to prevent people and things from approaching a certain range of areas near the power transmission device.

ここで、上記仕切りは送電コイルから発生する磁場が受電コイルをより効率良く錯交するように、上記仕切りにて受電装置の配置される位置、若しくは移動可能な領域を制限する。具体的には送電コイルの内径をRin外径をRoutとした時に、コイルの中心からRin+(Rout−Rin)/3の位置より内側に上記仕切りを配置する。但し、受電コイルは受電装置内に内蔵されるため、より好ましくは受電コイルと受電装置や更には受電装置が入る無線給電対象物との位置関係も考慮する必要が有る。即ち受電コイルの外径と受電装置の最外部若しくは無線給電対象物の最外部との距離をLとする時、上記しきりの位置はコイルの中心からRin+(Rout−Rin)/3+Lとなる。また、受電装置が特に移動体の場合、仕切りの内側を自由に移動可能ではあるものの、仕切り内を移動する際には比較的仕切り位置の近接付近に滞在する時間帯が増える。このため仕切り位置付近で無線給電性能を高めることにより、より効率よく受電装置に電力を供給できる。
<実施例>
以下、本発明のより詳細な実施の形態について、具体的な例を示して、図面を参照しながら説明する。
Here, the partition limits the position where the power receiving device is arranged or the movable area in the partition so that the magnetic field generated from the power transmitting coil intersects the power receiving coil more efficiently. Specifically, when the inner diameter of the power transmission coil is Rin and the outer diameter is Rout, the partition is arranged inside the position of Rin + (Rout-Rin) / 3 from the center of the coil. However, since the power receiving coil is built in the power receiving device, it is more preferable to consider the positional relationship between the power receiving coil and the power receiving device and the wireless power supply object into which the power receiving device is inserted. That is, when the distance between the outer diameter of the power receiving coil and the outermost side of the power receiving device or the outermost side of the wireless power feeding object is L, the above-mentioned limit position is Rin + (Rout-Rin) / 3 + L from the center of the coil. Further, when the power receiving device is a moving body in particular, it can move freely inside the partition, but when moving inside the partition, the time zone for staying in the vicinity of the partition position increases relatively. Therefore, by improving the wireless power supply performance near the partition position, it is possible to supply power to the power receiving device more efficiently.
<Example>
Hereinafter, more detailed embodiments of the present invention will be described with reference to the drawings with reference to specific examples.

図1は無線給電装置の送電装置の概要を示す図である。リッツ線によって平面スパイラル状に形成されたコイル100、フェライト板101、金属製の筐体102からなる。入出力部103は後に述べるシミュレーションの都合上金属製筐体の外部に出ているが、金属製の筐体内部にて送電回路、送電コイル用共振コンデンサなどを配置することが可能である。本実施例においては20ターンのコイルとMnZn製フェライト板によりインダクタンスを400〜500μHとし、これに対して共振させるためのコンデンサ容量を決めて共振周波数、即ち本実施例にて選定した送電周波数となるように85kHzに合わせた(以下、様態1の送電装置と呼ぶ)。 FIG. 1 is a diagram showing an outline of a power transmission device of a wireless power feeding device. It is composed of a coil 100 formed in a plane spiral shape by a litz wire, a ferrite plate 101, and a metal housing 102. Although the input / output unit 103 is outside the metal housing for the convenience of simulation described later, it is possible to arrange a power transmission circuit, a resonance capacitor for a power transmission coil, and the like inside the metal housing. In this embodiment, the inductance is set to 400 to 500 μH by using a 20-turn coil and a ferrite plate made of MnZn, and the capacitance of the capacitor for resonating with this is determined to be the resonance frequency, that is, the transmission frequency selected in this embodiment. The frequency was adjusted to 85 kHz (hereinafter, referred to as mode 1 power transmission device).

図2は同様にして作製された送電装置を2つ連結した場合を示す。インダクタンス成分は約2倍となるためこれに合わせて共振用コンデンサ容量を選び、共振周波数、即ち送電周波数となる85kHzに合わせた(以下、様態2の送電装置と呼ぶ)。 FIG. 2 shows a case where two power transmission devices manufactured in the same manner are connected. Since the inductance component is about doubled, the capacitance of the resonance capacitor was selected accordingly and adjusted to the resonance frequency, that is, 85 kHz, which is the transmission frequency (hereinafter, referred to as the power transmission device of mode 2).

以降、図3から図6の説明は本発明の内容を説明するため、その主たる構成要素である上記様態1及び様態2のコイルから出力される磁界に関しての説明を行う。 Hereinafter, in order to explain the content of the present invention, the description of FIGS. 3 to 6 describes the magnetic field output from the coils of the above mode 1 and mode 2, which are the main components thereof.

図3は様態1の送電装置から出力される磁界の方向に関してのシミュレーション結果を示した図である。送電装置からの磁界は85kHzの交流磁界であるが、図の矢印の方向はある時刻での磁界の方向を示す。またここでは説明の都合上、図1で示した送電装置の断面での結果を示した。ここでコイルを形成するリッツ線の束付近の状態を注目すると、そのリッツ線の束の内側端面では上空に向かって磁界が生じ、そこから比較的近傍にて向きが転じ、コイルを形成するリッツ線の束の中央上空ではほぼ真横向きになる。更にコイルを形成するリッツ線の束の外側端面では下方に向かうように周回する。一方、送電装置全体としてはその中心付近においては磁界の向きが比較的上空に向かって揃っている。なお、上記の位置の閾値としては送電コイルの内径をRin外径をRoutとした時に、コイルの中心からRin+(Rout−Rin)/3の位置が相当することが分かった。但し、受電コイルは受電装置内に内蔵されるため、より好ましくは受電コイルと受電装置や更には受電装置が入る無線給電対象物との位置関係も考慮する必要が有る。即ち受電コイルの外径と受電装置最外部乃至無線給電対象物最外部との距離をLとする時、上記しきりの位置はコイルの中心からRin+(Rout−Rin)/3+Lとなる。 FIG. 3 is a diagram showing a simulation result regarding the direction of the magnetic field output from the power transmission device of mode 1. The magnetic field from the power transmission device is an alternating magnetic field of 85 kHz, and the direction of the arrow in the figure indicates the direction of the magnetic field at a certain time. Further, for convenience of explanation, the results of the cross section of the power transmission device shown in FIG. 1 are shown here. Focusing on the state near the bundle of litz wires forming the coil, a magnetic field is generated toward the sky at the inner end face of the bundle of litz wires, and the direction is changed relatively close to the magnetic field to form the coil. Above the center of the bundle of lines, it is almost sideways. Further, the outer end face of the bundle of litz wires forming the coil orbits downward. On the other hand, as a whole, the direction of the magnetic field is relatively aligned toward the sky near the center of the power transmission device. It was found that the threshold value of the above position corresponds to the position of Rin + (Rout-Rin) / 3 from the center of the coil when the inner diameter of the power transmission coil is set to Rin and the outer diameter is set to Rout. However, since the power receiving coil is built in the power receiving device, it is more preferable to consider the positional relationship between the power receiving coil and the power receiving device and the wireless power feeding object into which the power receiving device is inserted. That is, when the distance between the outer diameter of the power receiving coil and the outermost part of the power receiving device or the outermost part of the wireless power feeding object is L, the above-mentioned limit position is Rin + (Rout-Rin) / 3 + L from the center of the coil.

以上の結果から、送電コイルを形成するリッツ線の束の端面より内側付近にて受電コイルを配置し、更に送電コイルと対向して受電コイルを対向して配置するようにすれば無線給電を効率良く行うことができることが分かった。逆に送電コイルを形成するリッツ線の束の中心の直上に受電コイルを対向して配置してしまうと、送電コイルからの磁界が受電コイルを錯交できないため、無線給電の効率が非常に悪くなることが分かった。このため受電装置が配置自由度をもって無線給電できるようにしたり、受電装置が移動する必要がある場合には上記のように受電装置が配置されたり移動する位置を制限する必要が有ることが分かった。 Based on the above results, if the power receiving coil is placed near the inside of the end face of the bundle of litz wires forming the power transmission coil, and the power receiving coil is placed facing the power transmission coil, wireless power feeding is efficient. It turns out that it can be done well. On the contrary, if the power receiving coil is arranged directly above the center of the bundle of litz wires forming the power transmission coil, the magnetic field from the power transmission coil cannot cross the power receiving coil, and the efficiency of wireless power feeding is very poor. It turned out to be. Therefore, it was found that it is necessary to enable the power receiving device to wirelessly supply power with a degree of freedom in arrangement, and to limit the position where the power receiving device is arranged or moved as described above when the power receiving device needs to be moved. ..

図4は様態2の送電コイルから出力される磁界の方向に関してのシミュレーション結果を示した図である。ここでは説明の都合上、図2で示した送電装置の断面での結果を示した。コイルを形成するリッツ線の束付近の状態や配置の工夫は上記に述べた通りである。本様態2の場合に特徴的なことは両送電コイルの中心付近及びその上空での磁界方向にあり、様態1の場合と比較して、コイル面とより垂直に上空まで磁界が発生していることが分かった。即ち様態2の送電コイルの方が、受電コイルに無線給電電力を送電するのに好適であることが分かった。 FIG. 4 is a diagram showing a simulation result regarding the direction of the magnetic field output from the power transmission coil of mode 2. Here, for convenience of explanation, the results in the cross section of the power transmission device shown in FIG. 2 are shown. The state and arrangement of the litz wires forming the coil near the bundle are as described above. What is characteristic of this mode 2 is the direction of the magnetic field near the center of both power transmission coils and above them, and compared to the case of mode 1, the magnetic field is generated up to the sky more perpendicular to the coil surface. It turned out. That is, it was found that the power transmission coil of mode 2 is more suitable for transmitting wireless power supply to the power receiving coil.

図5は様態1のコイルから出力される磁界の大きさに関してシミュレーション結果を示した図である。ここでコイルに流れる電流は0.5Aとした。図中に示した数字は磁界の大きさをマイクロテスラ(μT)で示した数字で有り、等高線にてその範囲を示している。図からコイルを形成するリッツ線の束に近いほど大きな磁場が発生していることが明らかになった。 FIG. 5 is a diagram showing simulation results regarding the magnitude of the magnetic field output from the coil of mode 1. Here, the current flowing through the coil was set to 0.5 A. The numbers shown in the figure are numbers showing the magnitude of the magnetic field in microtesla (μT), and the range is indicated by contour lines. From the figure, it became clear that a larger magnetic field was generated as it was closer to the bundle of litz wires forming the coil.

ここで27(μT)と示した数字は、国際非電離放射線委員会(ICNIRP)にて規定されたガイドライン値であり、一般に人体はこれより大きな値の磁界を受けないように指針が出ている。即ちなんらかの方法で、27と示す領域より内側に人体が入らないようにして、人体が浴びる磁界(人体への磁場の暴露)を低く抑える必要が有る。また同時に、本来の受電対象以外のもの(例えば、くぎ等の金属)が送電装置の近傍に存在する時には、送電コイルから漏れ出した磁場によって過熱することが無いようにしなければならない。 The number shown here as 27 (μT) is a guideline value specified by the International Commission on Non-Ionizing Radiation (ICNIRP), and generally a guideline is issued so that the human body does not receive a magnetic field of a larger value than this. .. That is, it is necessary to keep the magnetic field (exposure of the magnetic field to the human body) exposed to the human body low by preventing the human body from entering the region indicated by 27 by some method. At the same time, when something other than the original power receiving target (for example, a metal such as a nail) exists in the vicinity of the power transmission device, it must be prevented from being overheated by the magnetic field leaked from the power transmission coil.

図6は様態2のコイルから出力される磁界の大きさに関して同様にシミュレーションを行った結果である。ここでコイルに流れる電流は同様にして0.5Aとした。図6のように送電装置が対向して2つ配置されることにより、それ自体の構造によって間に人体が入らないようにすることができる。図からコイルを形成するリッツ線の束に近いほど大きな磁場が発生していることは様態1のコイルの場合と同様であるが、更には、送電装置間より外側に発生する磁場(以降不要漏えい磁場と呼ぶ)をあまり増やすことなく、送電装置間においても比較的強い磁界が発生する領域を効果的に作ることが出来ることが分かった。なお、送電装置を2つ用意する代わりに、送電装置の一方を磁気シールドとすることも可能である。磁気シールドは、例えばアルミニウムや銅などの導電性が高い金属を配置したり、フェライト板など透磁率が高い材料を配置することで構成する。送電装置の上に上記のような不要漏えい磁場を制限するものが配置できれば、人や受電対象以外の金属が送電装置に近付かないような効果をもたらすことが出来る。 FIG. 6 shows the result of similarly simulating the magnitude of the magnetic field output from the coil of mode 2. Here, the current flowing through the coil was set to 0.5 A in the same manner. By arranging two power transmission devices facing each other as shown in FIG. 6, it is possible to prevent a human body from intervening due to the structure of itself. From the figure, it is the same as in the case of the coil of mode 1 that a larger magnetic field is generated as it is closer to the bundle of litz wires forming the coil, but further, a magnetic field generated outside between the power transmission devices (hereinafter unnecessary leakage). It was found that a region where a relatively strong magnetic field is generated can be effectively created between power transmission devices without increasing the magnetic field (called a magnetic field). Instead of preparing two power transmission devices, one of the power transmission devices can be a magnetic shield. The magnetic shield is configured by arranging a metal having high conductivity such as aluminum or copper, or arranging a material having high magnetic permeability such as a ferrite plate. If a device that limits the unnecessary leakage magnetic field as described above can be placed on the power transmission device, it is possible to bring about an effect that a person or a metal other than the power receiving target does not approach the power transmission device.

図7は上記不要漏えい磁場による人体への磁場の暴露と無線給電性能を考察し、また外部からの視認性を保つために配置した仕切りである。図のようにガラスや透明なプラスチック材にて箱状の仕切りを作り、これを送電装置上空に配置すれば上記2つの課題は解決できる。即ち、外部からの視認性が高く受電装置が実際に無線給電を受けている状況が目視で確認できるため、例えば受電装置が展示用のマネキンやロボットである場合に特に有用となる。但し、図3及び図4の説明で述べたように、上記受電装置の受電コイルが送電コイルを形成するリッツ線の束の中央直上付近に配置されたり移動したりする状況となる場合には、無線給電性能が一気に悪化することが課題となる。 FIG. 7 is a partition arranged to consider the exposure of the magnetic field to the human body by the unnecessary leaking magnetic field and the wireless power feeding performance, and to maintain visibility from the outside. The above two problems can be solved by making a box-shaped partition from glass or a transparent plastic material as shown in the figure and arranging it above the power transmission device. That is, since the visibility from the outside is high and the situation in which the power receiving device is actually receiving wireless power supply can be visually confirmed, it is particularly useful when the power receiving device is, for example, a mannequin or a robot for exhibition. However, as described in the explanations of FIGS. 3 and 4, when the power receiving coil of the power receiving device is arranged or moved near the center of the bundle of litz wires forming the power transmission coil, The problem is that the wireless power supply performance deteriorates at once.

図8は上記課題も解決するため、送電装置からの磁界方向を考察して図7でしめした構造に追加で仕切りを設けた構成である。即ち、内側の仕切りによりその仕切り内部にて受電装置が配置され、移動できるようにした。これにより送電コイルから発生する磁場の方向を懸念する必要無く、効率良く無線給電可能とすることができる。更には外側の仕切りにより人体や受電対象以外の金属ある一定以上の磁場に晒されることが無いようにできた。なお、仕切りを透明な材料で構成できるため、上記仕切りの外からも受電装置の状態が視認できるようにすることができた。 In order to solve the above problems, FIG. 8 is a configuration in which an additional partition is provided in the structure shown in FIG. 7 in consideration of the direction of the magnetic field from the power transmission device. That is, the power receiving device is arranged inside the partition by the inner partition so that it can be moved. As a result, it is possible to efficiently supply wireless power without worrying about the direction of the magnetic field generated from the power transmission coil. Furthermore, the outer partition prevents the metal other than the human body and the object to receive power from being exposed to a certain magnetic field. Since the partition can be made of a transparent material, the state of the power receiving device can be visually recognized from outside the partition.

図9は上記した方法を合わせ、組立てを行った無線給電装置である。即ち送電装置を2つ用意し、その間に2重の仕切りを持った透明な仕切り(本例ではシミュレーション結果をもとに、送電装置より全体幅を大きくした箱)を上記説明したように適切に配置した。また、受電装置はその仕切りの内側に自由に配置することが出来、かつ移動することができるようにした。ここで本発明の効果を実証するため、本発明の装置を作製し交流磁界を実測した所、周囲の漏えい磁場は27μTにできることが分かった。 FIG. 9 shows a wireless power supply device assembled by combining the above methods. That is, two power transmission devices are prepared, and a transparent partition with a double partition between them (in this example, a box whose overall width is larger than that of the power transmission device based on the simulation result) is appropriately provided as described above. Placed. In addition, the power receiving device can be freely arranged inside the partition and can be moved. Here, in order to demonstrate the effect of the present invention, when the apparatus of the present invention was prepared and the alternating magnetic field was actually measured, it was found that the ambient magnetic field could be 27 μT.

以上により無線給電性能を落とすことなく不要漏えい磁場の影響を少なくできため、人体の磁界暴露や金属異物の過熱を心配することなく、かつ受電装置の状態を無線給電装置の外部から視認することができるようになった。 As a result, the influence of the unnecessary leaking magnetic field can be reduced without degrading the wireless power supply performance, so that the state of the power receiving device can be visually recognized from the outside of the wireless power supply device without worrying about exposure to the magnetic field of the human body or overheating of metal foreign matter. I can now do it.

ここで、一般的には磁界共鳴方式を用いると電力伝送距離が長くなるが、発明者らの検討によると特に受電コイルのサイズが小さい場合、磁界共鳴方式に依っても電力伝送距離を伸ばすことが難しくなることが分かっている。そこで、電力伝送が主に磁界によって行われとみなし、送電コイルからの出力磁界とその磁界を受け取る受電コイルとの関係を考えた結果、送電コイルは平面スパイラル状にコイル外周に比較的密に巻くことがより好ましく、受電コイルはソレノイド状に形成することが好ましかった。また送電コイルと受電コイルができるだけ対向するようにすることが好ましく、受電コイルが含まれる受電装置乃至受電対象物は上記仕切りに付近に配置するか、若しくは上記仕切り付近に滞在する時間が比較的長い場合に有効であった。 Here, in general, the power transmission distance becomes longer when the magnetic field resonance method is used, but according to the study by the inventors, the power transmission distance should be extended even by the magnetic field resonance method, especially when the size of the power receiving coil is small. Is known to be difficult. Therefore, assuming that power transmission is mainly performed by a magnetic field, and considering the relationship between the output magnetic field from the transmission coil and the power receiving coil that receives the magnetic field, the power transmission coil is wound relatively densely around the coil in a plane spiral shape. It was more preferable that the power receiving coil was formed in a solenoid shape. Further, it is preferable that the power transmitting coil and the power receiving coil face each other as much as possible, and the power receiving device or the power receiving object including the power receiving coil is arranged near the partition or stays near the partition for a relatively long time. It was effective in the case.

本発明の主要な用途において受電装置はショーウィンドに飾られるマネキンやロボット内に設置されるが、その際にも上記のような構成にすることが好ましい。図10には、例えば魚型のロボットを展示物とした場合を示した。魚型のロボットにはその内部にソレノイド状の受電コイルを備えた受電装置が組み込まれ、スパイラル状の送電コイルを備えた送電装置の電力を受けて無線にて稼働するようにしておいた。仕切りはその内部を水で満たし、魚型ロボットはその中を回遊するが、受電装置の重量バランスを適切に保つことにより送電コイルと受電コイルが常に対向するように、水槽内を回遊させることができる。また魚型ロボットはランダムに動いても、仕切り付近の送電コイルからの磁場を特に強く受ける位置で滞在する時間が、その他より比較的多くすることが出来る。 In the main application of the present invention, the power receiving device is installed in a mannequin or a robot displayed in a show window, and it is preferable to have the above configuration also in that case. FIG. 10 shows a case where, for example, a fish-shaped robot is used as an exhibit. The fish-shaped robot had a power receiving device equipped with a solenoid-shaped power receiving coil built into the robot, and was operated wirelessly by receiving the power of the power transmitting device equipped with a spiral power transmitting coil. The partition fills the inside with water, and the fish-shaped robot migrates in it, but by keeping the weight balance of the power receiving device properly, it is possible to migrate in the water tank so that the power transmitting coil and the power receiving coil always face each other. it can. Even if the fish-shaped robot moves randomly, it can spend a relatively long time in a position where it receives a particularly strong magnetic field from a power transmission coil near the partition.

従って上記記載の通り、仮に魚型ロボットが小さく、更に受電コイルが小さい場合でも水槽内を十分な電力を受けて回遊させることが出来た。 Therefore, as described above, even if the fish-shaped robot is small and the power receiving coil is small, it is possible to receive sufficient power to move around in the water tank.

本発明の無線給電装置は無線給電性能を落とすことなく実効的な不要漏えい磁場を最低限に抑えることができる。このため、展示物やショーウィンドなどのように本質的に人に見せることを目的とし、更には人を呼び込むための形態に対して無線給電を適用する場合に関して有効に利用できる。 The wireless power feeding device of the present invention can minimize an effective unnecessary leakage magnetic field without deteriorating the wireless power feeding performance. Therefore, it is essentially intended to be shown to people such as exhibits and show windows, and can be effectively used when wireless power supply is applied to a form for attracting people.

100 送電コイル
101 フェライト板
102 筐体
103 送電コイルの入出力
104 送電コイル連結線
200 送電装置
201 受電装置
202 仕切り
100 Power transmission coil 101 Ferrite plate 102 Housing 103 Power transmission coil input / output 104 Power transmission coil connection line 200 Power transmission device 201 Power receiving device 202 Partition

Claims (6)

送電コイル及び共振容量により構成された送電共振器を有する送電装置と、
受電コイル及び共振容量により構成された受電共振器を有する受電装置とを備え、
前記送電コイルと前記受電コイルの間の電気的若しくは磁気的な作用を介して前記送電装置から前記受電装置へ非接触で電力を伝送する無線給電装置であって、
透明な仕切りで囲われた受電領域を備え、
前記透明な仕切りは、内側の仕切りと、前記内側の仕切りを囲む外側の仕切りで構成され、前記受電領域は前記内側の仕切りで囲われた領域であり、
前記受電装置は前記受電領域内に配置され、前記送電装置は前記受電領域外に配置され、
前記受電装置は前記受電領域内で移動可能であることを特徴とする無線給電装置。
A power transmission device having a power transmission resonator composed of a power transmission coil and a resonance capacitance,
It is equipped with a power receiving device having a power receiving resonator composed of a power receiving coil and a resonance capacitance.
A wireless power feeding device that transmits power from the power transmitting device to the power receiving device in a non-contact manner via an electric or magnetic action between the power transmitting coil and the power receiving coil.
It has a power receiving area surrounded by a transparent partition.
The transparent partition is composed of an inner partition and an outer partition surrounding the inner partition, and the power receiving area is a region surrounded by the inner partition.
The power receiving device is arranged in the power receiving area, and the power transmitting device is arranged outside the power receiving area.
The power receiving device is a wireless power feeding device characterized in that it can be moved within the power receiving region.
前記送電コイルの内径をR i n 、外径をR o u t とするとき、前記送電コイルの重心位置からR i n + ( R o u t − R i n ) / 3 の位置より内側に前記内側の仕切りを配置することを特徴とする請求項に記載の無線給電装置。
When the inner diameter of the power transmission coil is R in and the outer diameter is R ut, the above is inside the position of R in + (R ut − R in) / 3 from the position of the center of gravity of the power transmission coil. The wireless power supply device according to claim 1 , wherein an inner partition is arranged.
前記受電コイルの外径と前記受電装置の最外部若しくは無線給電対象物の最外部との距離をL とするとき、R i n + ( R o u t − R i n ) / 3 + L より内側に前記内側の仕切りを配置することを特徴とする請求項に記載の無線給電装置
When the distance between the outer diameter of the power receiving coil and the outermost part of the power receiving device or the outermost part of the wireless power supply object is L, it is inside R in + (Rout − R in) / 3 + L. The wireless power supply device according to claim 2 , wherein the inner partition is arranged on the inside.
前記送電装置は前記透明な仕切りを介して前記受電領域の両端側に配置されることを特
徴とする請求項1乃至のいずれか1項に記載の無線給電装置。
The wireless power supply device according to any one of claims 1 to 3 , wherein the power transmission device is arranged on both ends of the power receiving region via the transparent partition.
前記送電装置が前記透明な仕切りを介して前記受電領域の一方の端面側に配置され、磁
気シールドが前記透明な仕切りを介して前記受電領域の他方の端面側に配置されることを
特徴とする請求項1乃至のいずれか1項に記載の無線給電装置。
The power transmission device is arranged on one end face side of the power receiving region via the transparent partition, and a magnetic shield is arranged on the other end face side of the power receiving region via the transparent partition. The wireless power supply device according to any one of claims 1 to 3 .
前記受電装置のバランスを保って前記受電コイルと前記送電コイルを対向させることを特徴とする請求項1乃至のいずれか1項に記載の無線給電装置。 The wireless power feeding device according to any one of claims 1 to 5 , wherein the power receiving coil and the power transmitting coil are opposed to each other while maintaining the balance of the power receiving device.
JP2017067731A 2017-03-30 2017-03-30 Wireless power supply Active JP6827354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017067731A JP6827354B2 (en) 2017-03-30 2017-03-30 Wireless power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017067731A JP6827354B2 (en) 2017-03-30 2017-03-30 Wireless power supply

Publications (2)

Publication Number Publication Date
JP2018170900A JP2018170900A (en) 2018-11-01
JP6827354B2 true JP6827354B2 (en) 2021-02-10

Family

ID=64018017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017067731A Active JP6827354B2 (en) 2017-03-30 2017-03-30 Wireless power supply

Country Status (1)

Country Link
JP (1) JP6827354B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057827A (en) * 1999-08-19 2001-03-06 Fuji Acryl Kogyo:Kk Double water tank
JP2014017921A (en) * 2012-07-06 2014-01-30 Sharp Corp Charger, control method of charger, and charging system
JP6347683B2 (en) * 2014-07-07 2018-06-27 マクセルホールディングス株式会社 Non-contact power transmission system
JP6430304B2 (en) * 2015-03-18 2018-11-28 株式会社ベルニクス Non-contact power feeding device

Also Published As

Publication number Publication date
JP2018170900A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
KR102227449B1 (en) Electromagnetic field confinement
US9672976B2 (en) Multi-mode wireless charging
CN105845404B (en) The transmitting coil structure and its winding method of a kind of high quality factor
US20130221757A1 (en) Wireless power transmission apparatus
US9876364B2 (en) Power receiving device, vehicle, and power transmission device
JP2014113021A (en) Power feeding section, power receiving section, and power supply system
KR20120019219A (en) Apparatus for reducing electric field and radiation field in magnetic resonant coupling coils or magnetic induction device for wireless energy transfer
JP7087664B2 (en) Coil device
JP6086189B2 (en) Coil device
EP3069357B1 (en) Wireless power transfer systems containing foil-type transmitter and receiver coils
CN105099005A (en) Magnetic field shielding device for wireless energy transmission system
KR102579078B1 (en) Wireless power transmission module and electronic device having the same
JP6111645B2 (en) Coil device and wireless power transmission system using the same
CN108878112B (en) Wireless charging coil
JP2008312434A (en) Coil device, and power receiving apparatus, power transmission apparatus, and electronic equipment using the coil device
CN104868569A (en) Electromagnetic assembly for wireless charging
JP6827354B2 (en) Wireless power supply
Mou et al. Research on shielding and electromagnetic exposure safety of an electric vehicle wireless charging coil
US10170945B2 (en) Yagi antenna shaped wireless power transmission apparatus
JP6156872B2 (en) Wireless power transmission system
JP6162609B2 (en) Non-contact power feeding device
Abou Houran et al. Design and analysis of coaxial cylindrical WPT coils for two-degree-of-freedom applications
Vigneau et al. Design and modeling of PCB coils for inductive power charging
WO2007030862A1 (en) An attenuation device for an antenna of an interrogator
Ota et al. Relationship between leakage magnetic field reduction and coil shape for wireless power transfer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210119

R150 Certificate of patent or registration of utility model

Ref document number: 6827354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250