JP6826926B2 - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP6826926B2
JP6826926B2 JP2017058746A JP2017058746A JP6826926B2 JP 6826926 B2 JP6826926 B2 JP 6826926B2 JP 2017058746 A JP2017058746 A JP 2017058746A JP 2017058746 A JP2017058746 A JP 2017058746A JP 6826926 B2 JP6826926 B2 JP 6826926B2
Authority
JP
Japan
Prior art keywords
wastewater treatment
temperature
treatment agent
treatment method
pollutants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017058746A
Other languages
Japanese (ja)
Other versions
JP2018161596A (en
Inventor
村上 賢治
賢治 村上
高広 雄鹿
高広 雄鹿
彩乃 中村
彩乃 中村
春介 中島
春介 中島
茂久 森
茂久 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Sanwa Tekki Corp
Original Assignee
Akita University NUC
Sanwa Tekki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC, Sanwa Tekki Corp filed Critical Akita University NUC
Priority to JP2017058746A priority Critical patent/JP6826926B2/en
Publication of JP2018161596A publication Critical patent/JP2018161596A/en
Application granted granted Critical
Publication of JP6826926B2 publication Critical patent/JP6826926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、汚濁物質又は汚染物質(以下汚濁物質等という)を含有する工場廃水などから汚染物質等を分離回収して、これらを除去する廃水処理方法に関するものである。 The present invention relates to a wastewater treatment method for separating and recovering pollutants and the like from factory wastewater and the like containing pollutants or pollutants (hereinafter referred to as pollutants and the like) and removing them.

従来、図14に示すように、廃水処理システム1は、廃水D1を貯留する原水槽2を備える。原水槽2の廃水D1は造粒槽3に移され、薬剤供給機4から凝集剤が投入され、攪拌して混合される。造粒槽3の混合液D2は凝集槽5に移され、混合液D2中に凝集物D3が沈殿する。凝集槽5の上澄み液C1は放流槽6に受けて放流される一方、凝集物D3はポンプPで抜き取られて、フィルタプレスやベルトプレスなどの圧搾機7で脱水され、減容化する。脱水汚泥D4は貯泥槽9に貯留され処分される一方、圧搾機7による濾過水C2は濾過水槽8に貯留され、その性状を確認の上、再利用又は排出される。凝集剤は、廃水中の汚濁物質を凝集沈殿させる。この凝集剤には、硫酸バンド、硫酸第一鉄、ポリ塩化アルミニウム、粘土鉱物又は高分子化合物などが用いられる。廃水中の汚染物質が重金属等である場合には、凝集剤と共に汚染物質吸着剤を添加する方法も提案されている(特許文献1,2参照)。
また、図15に示すように、凝集槽5において凝集物D3は、比重の関係で混合液D2の液面上に浮上分離する場合、ブロア5cに連結する散気管5aから放出される気泡により浮上分離し、スキマー5bで掻き取って、圧搾機7で脱水汚泥D4とする。
Conventionally, as shown in FIG. 14, the wastewater treatment system 1 includes a raw water tank 2 for storing wastewater D1. The wastewater D1 of the raw water tank 2 is transferred to the granulation tank 3, a flocculant is charged from the chemical feeder 4, and the mixture is stirred and mixed. The mixed solution D2 of the granulation tank 3 is transferred to the agglutinating tank 5, and the agglomerate D3 is precipitated in the mixed solution D2. The supernatant liquid C1 of the coagulation tank 5 is received by the discharge tank 6 and discharged, while the coagulation D3 is extracted by the pump P and dehydrated by a squeezing machine 7 such as a filter press or a belt press to reduce the volume. The dehydrated sludge D4 is stored in the mud storage tank 9 and disposed of, while the filtered water C2 by the squeezing machine 7 is stored in the filtered water tank 8 and reused or discharged after confirming its properties. The flocculant coagulates and precipitates pollutants in wastewater. As this flocculant, a sulfuric acid band, ferrous sulfate, polyaluminum chloride, clay mineral, polymer compound and the like are used. When the pollutant in the wastewater is a heavy metal or the like, a method of adding a pollutant adsorbent together with a flocculant has also been proposed (see Patent Documents 1 and 2).
Further, as shown in FIG. 15, when the agglomerate D3 floats and separates on the liquid surface of the mixed liquid D2 due to the specific gravity in the coagulation tank 5, it floats due to the bubbles released from the air diffuser tube 5a connected to the blower 5c. Separated, scraped with a skimmer 5b, and dehydrated sludge D4 with a squeezer 7.

特開平09-001131号公報Japanese Unexamined Patent Publication No. 09-001131 特開2013-083616号公報Japanese Unexamined Patent Publication No. 2013-083616

上記従来の方法においては、小規模の土木工事、地下水汚染対策工事、放射能除染工事などでの廃水処理に伴う凝集物の脱水作業に、圧搾機の十分な設置スペースを確保できないケースも生じ、また、コスト高になるため、工事規模に見合う方法でない。この脱水の代替手段として、凝集物を濾過用フレコンバッグに詰めて吊り下げておく自重圧搾、風乾、天日乾燥などが行われるが、乾燥までに日数を要し、現場での廃水処理で生じる凝集汚泥の簡易な脱水法が望まれている。
そこで本発明は、廃水処理で生じる凝集汚泥に含まれる残留水分を特別な設備を要することなく簡易に分離回収する廃水処理方法を提供する。
In the above-mentioned conventional method, there are cases where sufficient installation space for the squeezer cannot be secured for dewatering agglomerates associated with wastewater treatment in small-scale civil engineering work, groundwater pollution countermeasure work, radioactive decontamination work, etc. Also, because of the high cost, it is not a method that is commensurate with the scale of construction. As an alternative to this dehydration, self-weight squeezing, air-drying, sun-drying, etc., in which agglomerates are packed in a flexible container bag for filtration and hung, are performed, but it takes days to dry and is generated by wastewater treatment at the site. A simple dewatering method for coagulated sludge is desired.
Therefore, the present invention provides a wastewater treatment method for easily separating and recovering residual water contained in coagulated sludge generated in wastewater treatment without requiring special equipment.

上記課題を解決するため本発明は、汚濁物質等を含有する廃水D1に、廃水処理剤を混合し、汚濁物質等を廃水処理剤で凝集する凝集工程と、この混合液D2から凝集物D3を分離する固液分離工程と、分離された凝集物D3の残留水分を低減して脱水汚泥D4を生成する脱水工程とを含む廃水処理方法を採用する。廃水処理剤には、温度応答性高分子材を含み、廃水に混合した混合液D2を温度応答性高分子材の下限臨界溶液温度を境とする高温側又は上限臨界溶液温度を境とする低温側に温度調整することにより、温度応答性高分子の疎水性を強め、廃水処理剤により汚染物質又は汚濁物質の凝集を促進する。 In order to solve the above problems, the present invention comprises a coagulation step of mixing a wastewater treatment agent with wastewater D1 containing a pollutant or the like and aggregating the pollutant or the like with the wastewater treatment agent, and a coagulation D3 from the mixed solution D2. A wastewater treatment method including a solid-liquid separation step of separation and a dehydration step of reducing the residual water content of the separated agglomerates D3 to generate dehydrated sludge D4 is adopted. The wastewater treatment agent contains a temperature-responsive polymer material, and the mixed solution D2 mixed with the waste water is placed on the high temperature side of the temperature-responsive polymer material at the lower limit critical solution temperature or at a low temperature of the upper limit critical solution temperature. By adjusting the temperature to the side, the hydrophobicity of the temperature-responsive polymer is strengthened, and the agglomeration of pollutants or pollutants is promoted by the wastewater treatment agent.

本発明においては、簡単な温度調整により温度応答性高分子の疎水性を強め、温度応答性高分子を含む廃水処理剤に汚濁物質等を凝集させ、その凝集汚泥の脱水減容化を促進でき、大掛かりな脱水設備を必要とすることなく、廃水から短時間で簡易的に汚濁物質等を除去できるという効果を有する。 In the present invention, the hydrophobicity of the temperature-responsive polymer can be strengthened by simple temperature adjustment, pollutants and the like can be aggregated in the wastewater treatment agent containing the temperature-responsive polymer, and the dehydration and volume reduction of the aggregated sludge can be promoted. It has the effect that pollutants and the like can be easily removed from wastewater in a short time without requiring a large-scale dehydration facility.

本発明の第1の実施形態に係る廃水処理システムの概略的構成図である。It is a schematic block diagram of the wastewater treatment system which concerns on 1st Embodiment of this invention. 第1の実施形態に係る廃水処理システムの凝集工程を行う設備の概略的構成図である。It is a schematic block diagram of the equipment which performs the agglutination process of the wastewater treatment system which concerns on 1st Embodiment. 第1の実施形態に係る廃水処理システムの脱水工程を行う設備の概略的構成図である。It is a schematic block diagram of the equipment which performs the dehydration process of the wastewater treatment system which concerns on 1st Embodiment. 本発明に係る廃水処理システムの凝集工程及び脱水工程に使用する廃水処理剤の化学的構造の説明図である。It is explanatory drawing of the chemical structure of the wastewater treatment agent used in the coagulation step and the dehydration step of the wastewater treatment system which concerns on this invention. 脱水工程の加熱状態を示すタイムチャートである。It is a time chart which shows the heating state of a dehydration process. 卓上試験における凝集物の沈降体積の時間変化を示すグラフである。It is a graph which shows the time change of the sedimentation volume of agglomerates in a tabletop test. 脱水工程において周期的な温度変化を加えた場合の凝集汚泥の沈降体積の時間変化を示すグラフである。It is a graph which shows the time change of the sedimentation volume of agglutinating sludge when a periodic temperature change is applied in a dehydration step. 第2の実施形態に係る廃水処理システムの概略的構成図である。It is a schematic block diagram of the wastewater treatment system which concerns on 2nd Embodiment. 他の廃水処理剤の説明図である。It is explanatory drawing of other wastewater treatment agents. さらに他の廃水処理剤の説明図である。It is explanatory drawing of the other wastewater treatment agent. 第3の実施形態に係る廃水処理システムの概略的構成図である。It is a schematic block diagram of the wastewater treatment system which concerns on 3rd Embodiment. 第3の実施形態に係る廃水処理システムの固液分離工程を行う設備の概略的構成図である。It is a schematic block diagram of the equipment which performs the solid-liquid separation process of the wastewater treatment system which concerns on 3rd Embodiment. 第4の実施形態に係る廃水処理システムの脱水工程を行う設備の概略的構成図である。It is a schematic block diagram of the equipment which performs the dehydration process of the wastewater treatment system which concerns on 4th Embodiment. 従来の廃水処理システムの概略的構成図である。It is a schematic block diagram of the conventional wastewater treatment system. 従来の他の廃水処理システムの概略的構成図である。It is a schematic block diagram of another conventional wastewater treatment system.

本発明の実施の形態について図面を参照して説明する。なお、以下において従来と同一の構成部分には同一の符号を付して説明を省略する。
図1において、第1の実施形態に係る廃水処理システム10は、凝集促進手段11及び脱水促進手段12を備える。
凝集促進手段11は、図2に示すように、造粒槽3の外周に装着される熱交換器13を備える。熱交換器13は熱源14に連結する。造粒槽3は、原水槽2から廃水D1が移され、薬剤供給機4から廃水処理剤が投入され、混合液D2を凝集槽5に送る。廃水処理剤は温度応答性高分子材を含み、加熱して温度を上げ、又は放熱して温度を下げると、疎水性を強め、自己収縮して、汚濁物質等を凝集物として分離するもので、その詳細は後述する。熱交換器13は温度応答性高分子材の種類に応じた混合液D2の加熱又は放熱手段である。熱交換器13が加熱手段であれば、シリコンラバーヒータなどの電熱器のほか、太陽熱温水器の温水、近隣の工場などのボイラーの排熱などを熱源14に利用できる。また、熱交換器13放熱手段であれば、冷水を循環させる冷却装置を適用できる。
Embodiments of the present invention will be described with reference to the drawings. In the following, the same components as those in the conventional case will be designated by the same reference numerals, and the description thereof will be omitted.
In FIG. 1, the wastewater treatment system 10 according to the first embodiment includes an aggregation promoting means 11 and a dehydration promoting means 12.
As shown in FIG. 2, the aggregation promoting means 11 includes a heat exchanger 13 mounted on the outer periphery of the granulation tank 3. The heat exchanger 13 is connected to the heat source 14. In the granulation tank 3, the wastewater D1 is transferred from the raw water tank 2, the wastewater treatment agent is charged from the chemical supply machine 4, and the mixed liquid D2 is sent to the coagulation tank 5. The wastewater treatment agent contains a temperature-responsive polymer material, and when it is heated to raise the temperature or dissipate heat to lower the temperature, it strengthens hydrophobicity and self-shrinks to separate pollutants and the like as agglomerates. , The details will be described later. The heat exchanger 13 is a means for heating or dissipating heat from the mixed solution D2 according to the type of the temperature-responsive polymer material. If the heat exchanger 13 is a heating means, in addition to an electric heater such as a silicon rubber heater, hot water from a solar water heater, exhaust heat from a boiler in a nearby factory, or the like can be used as the heat source 14. Further, if the heat exchanger 13 is the heat radiating means, a cooling device that circulates cold water can be applied.

脱水促進手段12は、図1,図3に示すように、凝集槽5から凝集物D3を圧搾機7へ移送する途中の移送路15の外周に装着される熱交換器16を備える。熱交換器16は熱源17に連結する。熱交換器16は先の熱交換器13とほぼ同様に、温度応答性高分子材の種類に応じた凝集物D3の加熱又は放熱手段である。 As shown in FIGS. 1 and 3, the dehydration promoting means 12 includes a heat exchanger 16 mounted on the outer periphery of a transfer path 15 on the way of transferring the agglomerate D3 from the agglutinating tank 5 to the squeezing machine 7. The heat exchanger 16 is connected to the heat source 17. The heat exchanger 16 is a means for heating or dissipating heat from the agglomerates D3 according to the type of the temperature-responsive polymer material, in the same manner as the heat exchanger 13 described above.

廃水処理剤に適用する温度応答性高分子材は、特定の分子構造により、水中で所定の下限臨界溶液温度(Lower Critical Solution temperature「以下、LCSTと称す」)を境に高温側で疎水性が強まり、低温側で親水性が強まる特性を持つものと、上限臨界溶液温度(Upper Critical Solution temperature「以下、UCSTと称す」)を境に低温側で疎水性が強まり、高温側で親水性が強まる特性を持つものとがあり、温度に応じて水への溶解度が異なる相転移の挙動を可逆的に示す。温度応答性高分子材の具体例として、ポリN−イソプロピルアクリルアミド(PNIPAM)がある。PNIPAMはLCST32℃の高分子化合物であり、高温側で側鎖の疎水性部分であるイソプロピル基によって分子内及び分子間の疎水結合が強まり、脱水和反応が起こり、水と分離する不溶性を示す一方、低温側で側鎖の親水性部分のアミド結合と水分子とが結合するため、水分子が側鎖のまわりに強く付着する水和反応が起こり、水溶性を示す。この温度応答性を廃水D1の処理に利用して、PNIPAMは、高温側で廃水D1の疎水性物質である汚濁物質等を取り込み脱水和収縮し、凝集する。LCSTは、高分子化合物の共重合組成によって自由に変えることができ、しかも前後の狭い温度範囲で相転移を制御できる。PNIPAMは、高分子鎖の分子構造に強く依存するため、疎水性単量体とPNIPAMの単量体であるNIPAMを共重合させ疎水性共重合体とすることによって低温側に、また親水性単量体とNIPAMを共重合させ親水性共重合体とすることによって高温側にそれぞれシフトさせることができる。 Due to a specific molecular structure, the temperature-responsive polymer material applied to wastewater treatment agents becomes hydrophobic in water at a high temperature side with a predetermined lower critical solution temperature (hereinafter referred to as LCST) as a boundary. It has the property of becoming stronger and hydrophilicity on the low temperature side, and the hydrophobicity becomes stronger on the low temperature side and the hydrophilicity becomes stronger on the high temperature side at the upper critical solution temperature (hereinafter referred to as UCST). Some of them have characteristics, and they reversibly show the behavior of phase transition in which the solubility in water differs depending on the temperature. Specific examples of the temperature-responsive polymer material include poly N-isopropylacrylamide (PNIPAM). PNIPAM is a high-molecular compound at LCST of 32 ° C. On the high temperature side, the isopropyl group, which is the hydrophobic part of the side chain, strengthens the hydrophobic bonds in and between the molecules, causing a dehydration reaction, and is insoluble in separation from water. Since the amide bond of the hydrophilic part of the side chain and the water molecule are bonded on the low temperature side, a hydration reaction in which the water molecule strongly adheres around the side chain occurs, and the side chain exhibits water solubility. Utilizing this temperature responsiveness for the treatment of wastewater D1, PNIPAM takes in pollutants and the like which are hydrophobic substances of wastewater D1 on the high temperature side, dehydrates and shrinks, and aggregates. LCST can be freely changed depending on the copolymerization composition of the polymer compound, and the phase transition can be controlled in a narrow temperature range before and after. Since PNIPAM strongly depends on the molecular structure of the polymer chain, the hydrophobic monomer and NIPAM, which is a monomer of PNIPAM, are copolymerized to form a hydrophobic copolymer, which makes it possible to lower the temperature and to make it hydrophilic. By copolymerizing the monomer and NIPAM to form a hydrophilic copolymer, each of them can be shifted to the high temperature side.

廃水処理剤は、汚濁物質を沈殿させる場合には、温度応答性高分子材のみでもよいが、ゼオライト、層状粘土鉱物等のシリカ又はアルミナを主成分とする無機素材を基材として、その表面に温度応答性高分子材を化学的に被覆することで作製してもよい。特に、廃水処理剤の基材に、有害物質(放射性セシウム、ヒ素、鉛等の有害重金属類)、廃水の着色原因となる有機化合物又は油分等を吸着する素材を用いれば、廃水処理に一層効果的である。 When precipitating pollutants, the wastewater treatment agent may be only a temperature-responsive polymer material, but on the surface thereof, an inorganic material containing silica or alumina as a main component such as zeolite or layered clay mineral is used as a base material. It may be produced by chemically coating a temperature-responsive polymer material. In particular, if a material that adsorbs harmful substances (hazardous heavy metals such as radioactive cesium, arsenic, and lead), organic compounds that cause coloring of wastewater, oils, etc. is used as the base material of the wastewater treatment agent, it is more effective for wastewater treatment. Is the target.

廃水処理剤は、無機物の基材にPNIPAMを被覆して製作する場合、図4に示すように、例えば基材にメソポーラスシリカを用い、被覆基材にアリルトリエトキシシラン(シランカップリング剤)を用いると、シランカップリング剤の末端にあるエトキシ基(-OC2H5)が容易に加水分解し、水酸基(-OH)になるので、この水酸基と基材の表面上の水酸基が脱水縮合することで、シランカップリング剤の有する官能基を固体表面上に共有結合させることができる。即ち基材の表面に被覆基材を付加し、足場とすることで、その上に温度応答性高分子鎖が伸長、展開することになる。ここでメソポーラスシリカは、表面に汚染物質等を吸着可能な微細孔を多数有しているため、廃水処理剤を凝集剤としてだけでなく、吸着剤としても機能させることができる。
磁性を付与した廃水処理剤は、図9に示すように、マグネタイト等磁性材料又は鉱物素材(ゼオライト、層状粘土鉱物等にマグネタイト等の磁性材料を付加したもの)を基材として、その表面に先と同様に温度応答性高分子材を化学的に被覆して製作する。
また図10に示すように、ゼオライト等の鉱物素材を基材とし、マグネタイト等の磁性材料を付加し、シランカップリング剤を用いて、その表面にPNIPAMを被覆して磁性を付与した廃水処理剤を製作できる。特に、ゼオライトの表面には、汚染物質等を吸着可能な微細孔が多数存在しているため、廃水処理剤は凝集剤としてだけでなく、吸着剤としても機能する。
When the waste water treatment agent is produced by coating an inorganic base material with PNIPAM, for example, mesoporous silica is used as the base material and allyltriethoxysilane (silane coupling agent) is used as the coating base material, as shown in FIG. When used, the ethoxy group (-OC2H5) at the end of the silane coupling agent is easily hydrolyzed to a hydroxyl group (-OH), and this hydroxyl group and the hydroxyl group on the surface of the substrate are dehydrated and condensed. The functional groups of the silane coupling agent can be covalently bonded on the solid surface. That is, by adding a coated base material to the surface of the base material and using it as a scaffold, a temperature-responsive polymer chain is extended and developed on the scaffold. Here, since the mesoporous silica has a large number of micropores on the surface capable of adsorbing pollutants and the like, the wastewater treatment agent can function not only as a coagulant but also as an adsorbent.
As shown in FIG. 9, the magnetic wastewater treatment agent is made of a magnetic material such as magnetite or a mineral material (zeolite, layered clay mineral, etc. with a magnetic material such as magnetite added) as a base material, and the surface thereof is first coated. It is manufactured by chemically coating a temperature-responsive polymer material in the same manner as above.
Further, as shown in FIG. 10, a wastewater treatment agent in which a mineral material such as zeolite is used as a base material, a magnetic material such as magnetite is added, and a silane coupling agent is used to coat the surface with PNIPAM to impart magnetism. Can be manufactured. In particular, since there are many fine pores capable of adsorbing pollutants and the like on the surface of zeolite, the wastewater treatment agent functions not only as a coagulant but also as an adsorbent.

この廃水処理システム10においては、造粒槽3において廃水D1に廃水処理剤を混合させた混合液D2を凝集促進手段11の熱交換器13で加熱するか又は放熱する。混合液D2がLCST以上に加温又はUCST以下に放熱されると、廃水処理剤の温度応答性高分子材の分子内及び分子間の疎水結合が強まり、汚濁物質等を吸着した廃水処理剤の凝集が促進されて、水と分離した不溶性を示す凝集度の高い凝集物D3が生成される。この凝集物D3は凝集槽5においてポンプで抜き取られ、圧搾機7に移される。凝集槽5から圧搾機7に送る途中の移送路15において、凝集物D3を脱水促進手段12の熱交換器16で加熱又は放熱する。このとき、図5に示すように、凝集物D3の加熱又は放熱操作を周期的に行い、LCST又はUCSTを境に高温、低温を交互に繰り返すことにより、凝集物D3の残留水の脱水を効果的に行うことができる。 In the wastewater treatment system 10, in the granulation tank 3, the mixed liquid D2 in which the wastewater D1 is mixed with the wastewater treatment agent is heated or dissipated by the heat exchanger 13 of the aggregation promoting means 11. When the mixed solution D2 is heated above LCST or dissipated below UCST, the intramolecular and intermolecular hydrophobic bonds of the temperature-responsive polymer material of the wastewater treatment agent are strengthened, and the wastewater treatment agent adsorbing pollutants and the like Aggregation is promoted to produce highly agglomerated D3, which is insoluble and separated from water. The agglomerate D3 is pumped out in the coagulation tank 5 and transferred to the squeezer 7. The agglomerates D3 are heated or dissipated by the heat exchanger 16 of the dehydration promoting means 12 in the transfer path 15 on the way from the agglutinating tank 5 to the squeezing machine 7. At this time, as shown in FIG. 5, the residual water of the agglomerate D3 is effectively dehydrated by periodically heating or dissipating heat of the agglomerate D3 and alternately repeating high temperature and low temperature with LCST or UCST as a boundary. Can be done

なお凝集促進手段11において使用する廃水処理剤の凝集効果を明らかにするため、温度変化の有無による凝集物D3の沈降体積の時間変化について比較試験を行った結果を図6のグラフに示す。このグラフから本発明に係る廃水処理剤を使用することにより、凝集物D3の沈降体積が温度変化によって縮小し、凝集度が高まることが分かる。 In order to clarify the agglutination effect of the wastewater treatment agent used in the agglutination promoting means 11, the graph of FIG. 6 shows the result of a comparative test on the time change of the sedimentation volume of the agglomerate D3 depending on the presence or absence of a temperature change. From this graph, it can be seen that by using the wastewater treatment agent according to the present invention, the sedimentation volume of the agglomerate D3 is reduced by the temperature change, and the degree of cohesion is increased.

また、脱水促進手段12について、粒径75μm以下の万古土を汚濁物質として40,000mg/L含む濁水25mLを調整し、試験体とし、以下の条件で凝集した汚泥の沈降体積変化から脱水性について比較試験を行った。
試験体1:濁水に対し600mg/L(600ppm)の割合でPNIPAMを添加。
50℃(LCST以上)環境下10分静置→20℃(LCST以下)10分静置→
50℃(LCST以上)環境下10分静置→20℃(LCST以下)10分静置。
試験体2:濁水に対し100mg/L(100ppm)の割合でPNIPAMを添加。
50℃(LCST以上)環境下10分静置→20℃(LCST以下)10分静置→
50℃(LCST以上)環境下10分静置→20℃(LCST以下)10分静置。
この試験結果を図7に示す。
1)試験体1の沈降体積変化は、3.1mL(10分後)→2.4mL(20分後)→2.2mL(30分後)→2.1mL(40分後)と推移し、凝集沈降のみによる10分後の沈降体積3.1mLから温度変化サイクル2周期目完了時の40分後の沈降体積2.1mLを比較すると、前者の67.7%まで減容化した。
2)試験体2の沈降体積変化は、3.1mL(10分後)→2.6mL(20分後)→2.4mL(30分後)→2.3mL(40分後)と推移し、凝集沈降のみによる10分後の沈降体積3.1mLから温度変化サイクル2周期目完了時の40分後の沈降体積2.3mLを比較すると、前者の74.1%まで減容化した。
3)以上より、周期的温度変化が凝集沈降した汚泥の体積減少に寄与することが明らかとなり、また薬剤(廃水処理剤)添加量が多い600mg/Lの場合のほうが、100mg/L添加の場合より沈降した凝集汚泥の脱水効率が高いことが判明した。
Regarding the dehydration promoting means 12, 25 mL of turbid water containing 40,000 mg / L of Manko soil having a particle size of 75 μm or less was prepared as a test piece, and the dehydration property was compared from the change in the sedimentation volume of the sludge aggregated under the following conditions. The test was performed.
Specimen 1: Add PNIPAM at a ratio of 600 mg / L (600 ppm) to turbid water.
Stand for 10 minutes in an environment of 50 ° C (LCST or higher) → Stand for 10 minutes at 20 ° C (LCST or lower) →
Stand for 10 minutes in an environment of 50 ° C (LCST or higher) → Stand for 10 minutes at 20 ° C (LCST or lower).
Specimen 2: Add PNIPAM at a ratio of 100 mg / L (100 ppm) to turbid water.
Stand for 10 minutes in an environment of 50 ° C (LCST or higher) → Stand for 10 minutes at 20 ° C (LCST or lower) →
Stand for 10 minutes in an environment of 50 ° C (LCST or higher) → Stand for 10 minutes at 20 ° C (LCST or lower).
The test results are shown in FIG.
1) The change in sedimentation volume of Specimen 1 changes from 3.1 mL (10 minutes later) → 2.4 mL (20 minutes later) → 2.2 mL (30 minutes later) → 2.1 mL (40 minutes later), and is due to coagulation sedimentation alone. Comparing the sedimentation volume of 3.1 mL after 10 minutes with the sedimentation volume of 2.1 mL after 40 minutes at the completion of the second cycle of the temperature change cycle, the volume was reduced to 67.7% of the former.
2) The change in sedimentation volume of Specimen 2 changes from 3.1 mL (10 minutes later) → 2.6 mL (20 minutes later) → 2.4 mL (30 minutes later) → 2.3 mL (40 minutes later), and is due to coagulation sedimentation alone. Comparing the sedimentation volume of 3.1 mL after 10 minutes with the sedimentation volume of 2.3 mL after 40 minutes at the completion of the second cycle of the temperature change cycle, the volume was reduced to 74.1% of the former.
3) From the above, it is clear that the periodic temperature change contributes to the volume reduction of the sludge that has coagulated and settled, and the case where the amount of chemical (wastewater treatment agent) added is 600 mg / L is higher than the case where 100 mg / L is added. It was found that the dehydration efficiency of the more sedimented coagulated sludge was high.

第2の実施形態を図8に示す。同図の廃水処理システム18の凝集槽5においては、磁性を付与した廃水処理剤を用い、混合液D2を凝集促進手段11の熱交換器13で加熱又は放熱し、凝集槽5において懸濁又は浮上した凝集物D3を磁石部5eで磁気吸着する。所定位置に固定された磁石部5eを収納するドラムケーシング5dを回転させ、凝集物D3を磁石部5eから離れた位置でスキマー5bにより掻き取り、磁着物分離槽19に貯留する。磁着物分離槽19から圧搾機7に送る途中の移送路15において、凝集物D3を脱水促進手段12の熱交換器16で周期的に加熱又は放熱して凝集度を高める。 The second embodiment is shown in FIG. In the coagulation tank 5 of the wastewater treatment system 18 shown in the figure, a magnetic wastewater treatment agent is used to heat or dissipate the mixed solution D2 in the heat exchanger 13 of the coagulation promoting means 11, and suspend or dissipate in the coagulation tank 5. The floating aggregate D3 is magnetically attracted by the magnet portion 5e. The drum casing 5d that houses the magnet portion 5e fixed at a predetermined position is rotated, and the aggregate D3 is scraped off by the skimmer 5b at a position away from the magnet portion 5e and stored in the magnetic deposit separation tank 19. In the transfer path 15 on the way from the magnetic deposit separation tank 19 to the press 7, the agglomerates D3 are periodically heated or dissipated by the heat exchanger 16 of the dehydration promoting means 12 to increase the degree of cohesion.

磁性を付与した廃水処理剤は、図9に示すように、マグネタイト等磁性材料又は鉱物素材(ゼオライト、層状粘土鉱物等にマグネタイト等の磁性材料を付加したもの)を基材として、その表面に先と同様に温度応答性高分子材を化学的に被覆して製作する。
また図10に示すように、ゼオライト等の鉱物素材を基材とし、マグネタイト等の磁性材料を付加し、シランカップリング剤を用いて、その表面にPNIPAMを被覆して磁性を付与した廃水処理剤を製作できる。特に、ゼオライトの表面には、汚染物質等を吸着可能な微細孔が多数存在しているため、廃水処理剤は凝集剤としてだけでなく、吸着剤としても機能する。
As shown in FIG. 9, the magnetic wastewater treatment agent is made of a magnetic material such as magnetite or a mineral material (zeolite, layered clay mineral, etc. with a magnetic material such as magnetite added) as a base material, and the surface thereof is first coated. It is manufactured by chemically coating a temperature-responsive polymer material in the same manner as above.
Further, as shown in FIG. 10, a wastewater treatment agent in which a mineral material such as zeolite is used as a base material, a magnetic material such as magnetite is added, and a silane coupling agent is used to coat the surface with PNIPAM to impart magnetism. Can be manufactured. In particular, since there are many fine pores capable of adsorbing pollutants and the like on the surface of zeolite, the wastewater treatment agent functions not only as a coagulant but also as an adsorbent.

第3の実施形態を図11に示す。同図の廃水処理システム20は、磁性を付与した廃水処理剤を用いた混合液D2を固液分離工程において循環槽21に送り、集磁器22に循環させて高勾配磁気分離法を利用して坦磁等により磁性を付与された凝集物D3を磁着物分離槽19に磁気的に収集する。この集磁器22は、縦方向の長尺の流路を構成する集磁管23と、集磁管23内を長手方向へ移動可能に嵌合する磁気フィルタ24と、集磁管23の外周に対向配置されたS極とN極の一対の磁石25とを具備する。磁石25は永久磁石でも良いし、電磁石でも良い。図12に示すように、集磁器22は、集磁管23の上部の外周に磁石25が配置される磁着部23aを、下部に磁着部23aに磁気フィルタ24が位置するときに磁着捕獲された凝集物D3を磁気フィルタ24ごと移動させ磁場領域から離脱することにより消磁し、水や空気などの洗浄用流体により磁気フィルタ24から分離するための脱着部23bを備える。脱着部23bの上部には磁性を付与した廃水処理剤を混合させた廃水D1及び洗浄用流体を取り込むための入水口23cが、磁着部23aの上部には処理水を排出するための出水口23dが、脱着部23bの下部には凝集物D3を排出するための排泥口23eをそれぞれ備える。磁気フィルタ24は強磁性細線で構成され、集磁管23内の磁石25の対応位置の磁場内においてこれを通過する廃水D1に生成される凝集物を磁化させ、磁性を有する凝集粒子間の磁力で結合することにより団塊化して粒径を拡大し凝集物D3を生成し、これを磁気吸着する。 A third embodiment is shown in FIG. In the waste water treatment system 20 shown in the figure, the mixed liquid D2 using the magnetized waste water treatment agent is sent to the circulation tank 21 in the solid-liquid separation step and circulated in the magnetic collector 22 to utilize the high-gradient magnetic separation method. The agglomerates D3 to which magnetism is imparted by magnetism or the like are magnetically collected in the magnetic separation tank 19. The magnetron 22 is provided on a magnetic collector tube 23 that constitutes a long flow path in the vertical direction, a magnetic filter 24 that fits in the magnetic collector tube 23 so as to be movable in the longitudinal direction, and an outer periphery of the magnetic collector tube 23. It includes a pair of magnets 25 having S poles and N poles arranged opposite to each other. The magnet 25 may be a permanent magnet or an electromagnet. As shown in FIG. 12, the magnetic collector 22 magnetizes the magnetized portion 23a on which the magnet 25 is arranged on the outer periphery of the upper portion of the magnetic collecting tube 23, and magnetizes the magnetic filter 24 when the magnetic filter 24 is located on the magnetically attached portion 23a at the lower portion. It is provided with a detachable portion 23b for moving the captured agglomerate D3 together with the magnetic filter 24 and separating it from the magnetic field region to demagnetize it, and separating it from the magnetic filter 24 by a cleaning fluid such as water or air. A water inlet D1 mixed with a magnetic wastewater treatment agent and a water inlet 23c for taking in a cleaning fluid are above the desorption portion 23b, and a water outlet for discharging treated water is above the magnetic attachment portion 23a. The 23d is provided with a mud drain port 23e for discharging the agglomerate D3 at the lower part of the detachable portion 23b. The magnetic filter 24 is composed of ferromagnetic thin wires, magnetizes the agglomerates generated in the waste water D1 passing through the magnetic field at the corresponding position of the magnet 25 in the magnetic collecting tube 23, and magnetic force between the agglomerated particles having magnetism. By combining with, it is agglomerated and the particle size is expanded to generate agglomerates D3, which are magnetically adsorbed.

凝集物D3を吸着させた磁気フィルタ24を脱着部23bに移動させ、LCSTを境とする低温側に、又はUCSTを境とする高温側に、図示しない熱交換器等で放熱、又は加熱することにより、水溶性を高め、磁気フィルタ24から凝集物D3を洗浄離脱させて、排泥口23eより排出した後、圧搾機7に移送し、脱水工程を実施する。 The magnetic filter 24 on which the agglomerate D3 is adsorbed is moved to the desorption portion 23b and radiated or heated on the low temperature side with LCST as the boundary or on the high temperature side with UCST as the boundary with a heat exchanger (not shown). As a result, the water solubility is increased, the agglomerates D3 are washed away from the magnetic filter 24, discharged from the mud drain port 23e, and then transferred to the squeezing machine 7 to carry out the dehydration step.

なお、上記各実施形態における圧搾機7は、必要に応じて利用するものとし、脱水能力の向上に資する。 The squeezing machine 7 in each of the above embodiments shall be used as needed, and contributes to the improvement of the dehydration ability.

温度応答性高分子材の他の例として、ポリビニルメチルエーテル(PVME)がある。PVMEは、側鎖にオキシエチレン鎖を持ち、水溶液中でわずか1℃の温度差で相転移を示す高感度の応答性を示す。さらに、長鎖のアルキル基を持つ結晶性のビニルエーテルやフルオロアルキル基を有するフッ素含有ビニルエーテルは、数多くの有機溶媒中において高温側で親水性、低温側で疎水性を示す所定のUCSTを有する相転移を感度良く示す。これらの相転移温度は、先と同様に高分子の共重合組成によって自在にコントロール可能である。 Another example of a temperature responsive polymer material is polyvinyl methyl ether (PVME). PVME has an oxyethylene chain in the side chain and exhibits a highly sensitive responsiveness that shows a phase transition in an aqueous solution with a temperature difference of only 1 ° C. Furthermore, crystalline vinyl ethers with long-chain alkyl groups and fluorine-containing vinyl ethers with fluoroalkyl groups have a predetermined UCST that exhibits hydrophilicity on the high temperature side and hydrophobicity on the low temperature side in many organic solvents. Is shown with high sensitivity. These phase transition temperatures can be freely controlled by the copolymerization composition of the polymer as described above.

第4の実施形態を図13に示す。同図の廃水処理システムの濾過用フレコンバッグ27には、圧搾機7に代えて脱水促進手段26が設けられる。濾過用フレコンバッグ27は、磁着物分離槽19から送られた凝集物D3を収容して吊架し、自重圧搾により脱水するものである。脱水促進手段26は、濾過用フレコンバッグ27の外周に装着される熱交換器28を備える。熱交換器28は熱源29に連結する。熱交換器28は先の熱交換器13とほぼ同様に、温度応答性高分子材の種類に応じた凝集物D3の加熱又は放熱手段である。濾過用フレコンバッグ27の濾過水C2は、濾過水槽8に貯留し、再利用又は排出する。 A fourth embodiment is shown in FIG. The flexible container bag 27 for filtration of the wastewater treatment system shown in the figure is provided with a dehydration promoting means 26 instead of the squeezing machine 7. The flexible container bag 27 for filtration accommodates and suspends the agglomerates D3 sent from the magnetic deposit separation tank 19, and dehydrates them by self-weight pressing. The dehydration promoting means 26 includes a heat exchanger 28 mounted on the outer periphery of the filtering flexible container bag 27. The heat exchanger 28 is connected to the heat source 29. The heat exchanger 28 is a means for heating or dissipating heat of the agglomerate D3 according to the type of the temperature-responsive polymer material, substantially like the heat exchanger 13 described above. The filtered water C2 of the filtering flexible container bag 27 is stored in the filtered water tank 8 and reused or discharged.

1 廃水処理システム
2 原水槽
3 造粒槽
4 薬剤供給機
5 凝集槽
5a 散気管
5b スキマー
5c ブロア
5d 磁石ドラムケーシング
5e 磁石部
6 放流槽
7 圧搾機
8 濾過水槽
9 貯泥槽
10 廃水処理システム
11 凝集促進手段
12 脱水促進手段
13 熱交換器
14 熱源
15 移送路
16 熱交換器
17 熱源
18 廃水処理システム
19 磁着物分離槽
20 廃水処理システム
21 循環槽
22 集磁器
23 集磁管
23a 磁着部
23b 脱着部
23c 入水口
23d 出水口
23e 排泥口
24 磁気フィルタ
25 磁石
26 脱水促進手段
27 濾過用フレコンバッグ
28 熱交換器
29 熱源
C1 上澄み液
C2 濾過水
C3 下澄み液
D1 廃水
D2 混合液
D3 凝集物
D4 脱水汚泥
1 Waste water treatment system 2 Raw water tank 3 Granulation tank 4 Chemical supply machine 5 Coagulation tank 5a Air diffuser 5b Skimmer 5c Blower 5d Magnet drum casing 5e Magnet part 6 Discharge tank 7 Squeezer 8 Filter water tank 9 Mud storage tank 10 Waste water treatment system 11 Coagulation promoting means 12 Dehydration promoting means 13 Heat exchanger 14 Heat source 15 Transfer path 16 Heat exchanger 17 Heat source 18 Waste water treatment system 19 Magnetic deposit separation tank 20 Waste water treatment system 21 Circulation tank 22 Magnetic collector 23 Magnetic collector tube 23a Magnetized portion 23b Detachable part 23c Water inlet 23d Water outlet 23e Mud drain 24 Magnetic filter 25 Magnet 26 Dehydration promoting means 27 Flecon bag for filtration 28 Heat exchanger 29 Heat source C1 Superfluous liquid C2 Filtered water C3 supernatant liquid D1 Waste water D2 Mixed liquid D3 Aggregates D4 dehydrated sludge

Claims (6)

汚染物質又は汚濁物質を含有する廃水に、廃水処理剤を混合し、汚染物質等を廃水処理剤に凝集する凝集工程と、
この混合液から凝集物を分離する固液分離工程と、
分離された凝集物の残留水分を低減して凝集汚泥を生成する脱水工程とを含む廃水処理方法において、
前記廃水処理剤には、温度応答性高分子材を含み、廃水に混合した混合液を温度応答性高分子材の下限臨界溶液温度を境とする高温側又は上限臨界溶液温度を境とする低温側に温度調整することにより、温度応答性高分子の疎水性を強め、廃水処理剤により汚染物質又は汚濁物質の凝集を促進し、
前記脱水工程において前記凝集汚泥を前記下限臨界溶液温度又は上限臨界溶液温度を境とする高温側と低温側へ交互に移行させるよう凝集物を間歇的に複数回加熱又は放熱することを特徴とする廃水処理方法。
A coagulation step in which a wastewater treatment agent is mixed with wastewater containing pollutants or pollutants and the pollutants and the like are aggregated into the wastewater treatment agent.
A solid-liquid separation step that separates agglomerates from this mixture,
In a wastewater treatment method including a dehydration step of reducing residual water content of separated aggregates to generate aggregated sludge.
The wastewater treatment agent contains a temperature-responsive polymer material, and the mixed solution mixed with the waste water is mixed with the temperature-responsive polymer material on the high temperature side of the lower limit critical solution temperature or the low temperature of the upper limit critical solution temperature. By adjusting the temperature to the side, the hydrophobicity of the temperature-responsive polymer is strengthened, and the agglomeration of pollutants or pollutants is promoted by the wastewater treatment agent .
In the dehydration step, the agglomerates are intermittently heated or dissipated a plurality of times so as to alternately shift the agglomerated sludge to the high temperature side and the low temperature side with the lower limit critical solution temperature or the upper limit critical solution temperature as a boundary. Wastewater treatment method.
前記廃水処理剤は、特定の有害物を吸着する性質及び又は磁性を有する基材の表面に温度応答性高分子材を被覆したものであることを特徴とする請求項1に記載の廃水処理方法。 The wastewater treatment method according to claim 1, wherein the wastewater treatment agent is a base material having a property of adsorbing a specific harmful substance and / or a magnetic base material coated with a temperature-responsive polymer material. .. 前記凝集工程及び又は脱水工程において凝集物は、電熱器又は熱交換器により加熱又は放熱されることを特徴とする請求項1または2に記載の廃水処理方法。 The wastewater treatment method according to claim 1 or 2 , wherein the agglomerates are heated or dissipated by an electric heater or a heat exchanger in the agglutination step and / or the dehydration step . 前記固液分離工程は、磁性を付与した前記廃水処理剤に付着した凝集物を磁気吸着により分離することを特徴とする請求項1ないし3のいずれかに記載の廃水処理方法。 The wastewater treatment method according to any one of claims 1 to 3, wherein the solid-liquid separation step separates agglomerates adhering to the magnetically imparted wastewater treatment agent by magnetic adsorption . 磁気吸着した前記凝集物を、温度応答性高分子材の下限臨界溶液温度を境とする低温側又は上限臨界溶液温度を境とする高温側に温度調整することにより、凝集度を下げ、凝集物を解離することにより磁気吸着を弱めることを特徴とする請求項に記載の廃水処理方法。 By adjusting the temperature of the magnetically adsorbed aggregate to the low temperature side with the lower limit critical solution temperature of the temperature-responsive polymer material as the boundary or the high temperature side with the upper limit critical solution temperature as the boundary, the degree of aggregation is lowered and the aggregate The waste water treatment method according to claim 4 , wherein the magnetic adsorption is weakened by dissociating the water. 前記凝集物をさらに圧搾して脱水することを特徴とする請求項1ないしのいずれかに記載の廃水処理方法。 The wastewater treatment method according to any one of claims 1 to 5 , wherein the agglomerates are further squeezed and dehydrated .
JP2017058746A 2017-03-24 2017-03-24 Wastewater treatment method Active JP6826926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017058746A JP6826926B2 (en) 2017-03-24 2017-03-24 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017058746A JP6826926B2 (en) 2017-03-24 2017-03-24 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2018161596A JP2018161596A (en) 2018-10-18
JP6826926B2 true JP6826926B2 (en) 2021-02-10

Family

ID=63859553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017058746A Active JP6826926B2 (en) 2017-03-24 2017-03-24 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP6826926B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3578972A1 (en) * 2018-06-06 2019-12-11 Blink AG A device for fractionating a suspension sample
CN112374967A (en) * 2020-11-06 2021-02-19 杭州新德环保科技有限公司 System and method for recovering ethanol from organic waste liquid

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237506A (en) * 1999-02-24 2000-09-05 Ebara Corp Solid-liquid separation method for suspension
JP2001232104A (en) * 2000-02-28 2001-08-28 Ebara Corp Solid/liquid separation method of suspension
JP2006328309A (en) * 2005-05-30 2006-12-07 Canon Inc Magnetic polymer particle and its manufacturing method
JP4945959B2 (en) * 2005-08-23 2012-06-06 Jnc株式会社 Thermally responsive magnetic fine particles, production method thereof, and adsorbent using the fine particles
JP5733699B2 (en) * 2011-02-21 2015-06-10 国立大学法人広島大学 Solid content separation method of suspension
EP2797081A4 (en) * 2011-12-21 2016-04-06 Jnc Corp Method for removing cesium ions in aqueous solution employing magnetic particles
EP2731114A1 (en) * 2012-11-09 2014-05-14 Shell Internationale Research Maatschappij B.V. Method for separating a fluid from a mixture of fluids using ferromagnetic nanoparticles

Also Published As

Publication number Publication date
JP2018161596A (en) 2018-10-18

Similar Documents

Publication Publication Date Title
Wang et al. Green multi-functional monomer based ion imprinted polymers for selective removal of copper ions from aqueous solution
JP6358519B1 (en) Soil purification system
Lin et al. Extraction and recycling utilization of metal ions (Cu2+, Co2+ and Ni2+) with magnetic polymer beads
JP2019103998A (en) Soil remediation system
JP6826926B2 (en) Wastewater treatment method
CA2857053C (en) Process for treating water by removing ions and filtering agglomerates through a sorbent bed
CN103910402A (en) Granular Schwertmannite and its preparation method and use
WO2014209888A1 (en) Systems and methods for removing finely dispersed particulate matter from a fluid stream
Song et al. Adsorption and regeneration characteristics of phosphorus from sludge dewatering filtrate by magnetic anion exchange resin
Li et al. Enhanced adsorptive performance of tetracycline antibiotics on lanthanum modified diatomite
JP5222808B2 (en) Flocculant, sewage purification method using flocculant, and water purifier using flocculant
Sang et al. Na@ La-modified zeolite particles for simultaneous removal of ammonia nitrogen and phosphate from rejected water: performance and mechanism
JP4274931B2 (en) Wastewater treatment equipment
JP2013173117A (en) Magnetic particle for water treatment, and water treatment method
JP2013202569A (en) Filter aid for water treatment and water treatment method
CN106861604A (en) A kind of calcium carbonate magnetic adsorbent preparation method and applications
Hang et al. Adsorption performances of naked and 3-aminopropyl triethoxysilane-modified mesoporous TiO2 hollow nanospheres for Cu2+, Cd2+, Pb2+, and Cr (VI) ions
JP2014073474A (en) Treatment method of metal ion containing water
JP5475677B2 (en) Chelating compounds poly (2-octadecyl-butanedioate) and corresponding acids, poly (2-octadecyl-butanedioate) and methods of use thereof
Mahmoud et al. Adsorptive removal of Zn (II), Co (II) and their radioactive isotopes 65Zn, 60Co on the surface of sodium nano bentonite coated with oleyl-amine
Bai et al. Selective removal of silicic acid by a gallic-acid modified resin
JP2013184099A (en) Magnetic particle for water treatment and water treatment method
CN101234806A (en) Method for processing food and drink waste water by modified magnetic material
JP2013158737A (en) Water-treating particle and water treatment method
JP5452677B2 (en) Water purifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6826926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250