JP6826651B2 - Grease composition - Google Patents

Grease composition Download PDF

Info

Publication number
JP6826651B2
JP6826651B2 JP2019226329A JP2019226329A JP6826651B2 JP 6826651 B2 JP6826651 B2 JP 6826651B2 JP 2019226329 A JP2019226329 A JP 2019226329A JP 2019226329 A JP2019226329 A JP 2019226329A JP 6826651 B2 JP6826651 B2 JP 6826651B2
Authority
JP
Japan
Prior art keywords
base oil
lubricating oil
oil
lubricating
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019226329A
Other languages
Japanese (ja)
Other versions
JP2020041162A (en
Inventor
正和 波多野
正和 波多野
坂本 清美
清美 坂本
荒井 孝
孝 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Eneos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos Corp filed Critical Eneos Corp
Publication of JP2020041162A publication Critical patent/JP2020041162A/en
Application granted granted Critical
Publication of JP6826651B2 publication Critical patent/JP6826651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/02Mixtures of base-materials and thickeners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/106Carboxylix acids; Neutral salts thereof used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/1256Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids used as thickening agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/102Ureas; Semicarbazides; Allophanates
    • C10M2215/1026Ureas; Semicarbazides; Allophanates used as thickening material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

本発明は、グリース組成物に関する。 The present invention relates to a grease composition.

グリースは、基油に繊維状の増ちょう剤を分散させて半固体状にした潤滑剤であり、潤滑油に比べ潤滑部に付着しやすく、流出しにくい。そのため、潤滑システムを簡単な構造にすることが可能であり、主にころがり軸受やすべり軸受、ボールネジや直動ガイド、歯車などの機械要素の潤滑に用いられ、産業機械や輸送用機械システムなどに広く用いられている。 Grease is a lubricant in which a fibrous thickener is dispersed in a base oil to form a semi-solid state. Compared to lubricating oil, grease is more likely to adhere to a lubricating portion and is less likely to flow out. Therefore, it is possible to make the lubrication system a simple structure, and it is mainly used for lubrication of mechanical elements such as rolling bearings, plain bearings, ball screws, linear motion guides, and gears, and is used for industrial machinery and transportation machinery systems. Widely used.

近年、省エネルギー化が求められる中、様々な機械システムのエネルギー損失の低減も急務な課題となっている。自動車用エンジン油などの場合は、省燃費を確保するため、潤滑油基油を可能な限り低粘度化し、潤滑油の粘性抵抗によるエネルギー損失を低減し、かつ摺動部の摩擦抵抗を低減するため、摩擦低減剤などの様々な添加剤を最適処方するのが有効とされている(特許文献1)。 In recent years, with the demand for energy saving, reduction of energy loss of various mechanical systems has become an urgent issue. In the case of automobile engine oil, etc., in order to ensure fuel efficiency, the viscosity of the lubricating oil base oil is reduced as much as possible, energy loss due to the viscous resistance of the lubricating oil is reduced, and frictional resistance of sliding parts is reduced. Therefore, it is effective to optimally prescribe various additives such as a friction reducing agent (Patent Document 1).

一方、非ニュートン流体であるグリースの場合の粘性抵抗は、基油粘度のみでなく、基油中に分散した繊維状増ちょう剤に起因した構造粘性も含めた見かけ粘性を考慮する必要がある。見かけ粘性は、簡易的にはいわゆるちょう度で整理することができ、ちょう度が高い(軟質)と粘性抵抗が低いことが知られている(非特許文献1)。 On the other hand, in the case of grease which is a non-Newtonian fluid, it is necessary to consider not only the viscosity of the base oil but also the apparent viscosity including the structural viscosity caused by the fibrous thickener dispersed in the base oil. The apparent viscosity can be easily arranged by so-called consistency, and it is known that the higher the consistency (soft), the lower the viscous resistance (Non-Patent Document 1).

特開2012−102281号公報Japanese Unexamined Patent Publication No. 2012-102281

潤滑グリースの基礎と応用、49〜89頁、日本トライボロジー学会グリース研究会編、養賢堂、2007年Basics and Applications of Lubricating Grease, pp. 49-89, edited by Japan Tribology Society Grease Study Group, Yokendo, 2007

しかしながら、粘性抵抗を低めつつ、機械システムに適用する場合の適正なちょう度を確保することは必ずしも容易ではない。つまり、グリースとして軟らか過ぎると、回転運動にともなう遠心力で飛散したり、あるいは機械要素から流出したりする。一方、硬すぎると、摺動抵抗となって所望の動きが妨げられる。つまり、従来のグリースの場合、基油組成、増ちょう剤量のバランスを図りつつ、最適処方を実践するしかなかった。 However, it is not always easy to secure an appropriate consistency when applied to a mechanical system while reducing the viscous resistance. That is, if the grease is too soft, it may scatter due to centrifugal force due to the rotational movement, or may flow out from the mechanical element. On the other hand, if it is too hard, it becomes sliding resistance and hinders the desired movement. In other words, in the case of conventional grease, there was no choice but to practice the optimum formulation while balancing the base oil composition and the amount of thickener.

本発明が解決しようとする課題は、摺動抵抗が低く、機械要素の消費電力、特には軸受回転時の消費電力を大幅に低減しうるグリース組成物を提供することにある。 An object to be solved by the present invention is to provide a grease composition having low sliding resistance and capable of significantly reducing the power consumption of mechanical elements, particularly the power consumption during bearing rotation.

本発明者らは、上記課題を解決するために鋭意研究を進めた結果、グリースの基油として、性状の異なる特定の基油を所定量混合することにより、それぞれの基油を単独で用いたグリースに比べ、軸受回転時の消費電力を大幅に低減することができることを見出した。 As a result of diligent research to solve the above problems, the present inventors have used each base oil independently by mixing a predetermined amount of specific base oils having different properties as the base oil of grease. It was found that the power consumption during bearing rotation can be significantly reduced as compared with grease.

なお、軸受を回転させる際に必要となるエネルギーを低減し省エネルギー化を図るには、軸受転動体(玉、ころ)と軌道輪(内輪及び外輪)間の転がり抵抗及びすべり抵抗を極力低めることが重要であり、一般的には潤滑油剤(潤滑油やグリース)の基油を低粘度化すること、摩擦低減効果のある油性剤を添加剤として配合することなどが有用と考えられている。しかし、グリースの場合、増ちょう剤を製造する過程で基油を高温条件に曝す必要があり、基油の蒸発、安全性の面で低粘度化には限界があった。さらに、摩擦を低減する添加剤は、使用時間とともにその効果が低減するという課題があった。一方、本発明者らは、軸受摺動部の油膜形成能、潤滑油基油の温度による粘度変化に着目し、軸受転動体と軌道輪間に十分な油膜を形成してこれらの直接接触によるエネルギー損失を低減するためには、基油の成分に立体構造の大きな分子、具体的には芳香族を含む成分(n−d−M環分析による%C)を含有させること、及び温度上昇にともなう粘度低下を避けるため粘度指数の高いパラフィン成分(n−d−M環分析による%C)をバランスよく含有させることが有効であることを見出した。 In order to reduce the energy required to rotate the bearing and save energy, it is necessary to reduce the rolling resistance and slip resistance between the bearing rolling element (ball, roller) and the raceway ring (inner ring and outer ring) as much as possible. It is important, and it is generally considered useful to reduce the viscosity of the base oil of a lubricating oil (lubricating oil or grease), or to add an oily agent having a friction reducing effect as an additive. However, in the case of grease, it is necessary to expose the base oil to high temperature conditions in the process of producing the thickener, and there is a limit to reducing the viscosity in terms of evaporation and safety of the base oil. Further, an additive that reduces friction has a problem that its effect is reduced with time of use. On the other hand, the present inventors have focused on the oil film forming ability of the bearing sliding portion and the viscosity change due to the temperature of the lubricating oil base oil, and formed a sufficient oil film between the bearing rolling element and the raceway ring by direct contact between them. to reduce energy loss, large molecular conformation to the components of the base oil, specifically be contained components (n-d-M ring analysis% C a) containing an aromatic, and the temperature rise causing a high paraffin component viscosity index (n-d-M ring analysis% C P) in order to avoid the viscosity reduction associated with contained good balance is found to be effective.

本発明は、上記の知見に基づいてなされたものであり、下記[1]〜[9]に記載のグリース組成物を提供する。 The present invention has been made based on the above findings, and provides the grease compositions described in the following [1] to [9].

[1]潤滑油基油と、増ちょう剤とを含有するグリース組成物であって、前記潤滑油基油は、ASTM D3238によるn−d−M環分析値の%Cが2〜8、%Cが50〜75である第1の潤滑油基油と、ASTM D3238によるn−d−M環分析値の%Cが1以下、%Cが70以上、尿素アダクト値が4質量%以下である第2の潤滑油基油と、を含有し、前記潤滑油基油全量を基準として、前記第1の潤滑油基油の含有量が5〜90質量%であり、前記第2の潤滑油基油の含有量が10〜95質量%である、グリース組成物。
[2]ちょう度が220〜300である、[1]に記載のグリース組成物。
[3]有機モリブデン化合物を更に含有する、[1]又は[2]に記載のグリース組成物。
[4]前記有機モリブデン化合物が、モリブデンジチオカーバメート及びモリブデンジチオホスフェートから選ばれる少なくとも1種を含有する、[3]に記載のグリース組成物。
[5]前記第1の潤滑油基油は、40℃における動粘度10〜700mm/s、及び粘度指数90〜120を有する、[1]〜[4]のいずれかに記載のグリース組成物。
[6]前記第2の潤滑油基油は、40℃における動粘度10〜5000mm/s、及び粘度指数が110〜150を有する、[1]〜[5]のいずれかに記載のグリース組成物。
[7]前記第2の潤滑油基油は、鉱物油及び合成炭化水素から選ばれる少なくとも1種を含有する、[1]〜[6]のいずれかに記載のグリース組成物。
[8]前記増ちょう剤は、金属石けん系化合物及びウレア化合物から選ばれる少なくとも1種を含有する、[1]〜[7]のいずれかに記載のグリース組成物。
[9]潤滑油基油と、増ちょう剤と、有機モリブデン化合物と、を含有するグリース組成物であって、前記潤滑油基油は、ASTM D3238によるn−d−M環分析値の%Cが2〜8、%Cが50〜75である第1の潤滑油基油と、ASTM D3238によるn−d−M環分析値の%Cが1以下、%Cが70以上である第2の潤滑油基油と、を含有し、前記潤滑油基油全量を基準として、前記第1の潤滑油基油の含有量が5〜90質量%であり、前記第2の潤滑油基油の含有量が10〜95質量%であり、ちょう度が220〜300である、グリース組成物。
[1] a lubricating base oil and, a grease composition comprising a thickener, wherein the lubricating oil base oil, n-d-M ring analysis value of% C A is 2-8 by ASTM D3238, % C P is the first and the lubricating oil base oil is 50~75, n-d-M ring analysis value of% C a by ASTM D3238 of not more than 1,% C P is 70 or more, the urea adduct value of 4 mass The content of the first lubricating oil base oil is 5 to 90% by mass based on the total amount of the lubricating oil base oil, and the content of the first lubricating oil base oil is 5 to 90% by mass. A grease composition having a lubricating oil base oil content of 10 to 95% by mass.
[2] The grease composition according to [1], which has a consistency of 220 to 300.
[3] The grease composition according to [1] or [2], which further contains an organic molybdenum compound.
[4] The grease composition according to [3], wherein the organic molybdenum compound contains at least one selected from molybdenum dithiocarbamate and molybdenum dithiophosphate.
[5] The grease composition according to any one of [1] to [4], wherein the first lubricating oil base oil has a kinematic viscosity of 10 to 700 mm 2 / s at 40 ° C. and a viscosity index of 90 to 120. ..
[6] The grease composition according to any one of [1] to [5], wherein the second lubricating oil base oil has a kinematic viscosity of 10 to 5000 mm 2 / s at 40 ° C. and a viscosity index of 110 to 150. Stuff.
[7] The grease composition according to any one of [1] to [6], wherein the second lubricating oil base oil contains at least one selected from mineral oils and synthetic hydrocarbons.
[8] The grease composition according to any one of [1] to [7], wherein the thickener contains at least one selected from a metallic soap-based compound and a urea compound.
[9] A grease composition containing a lubricating oil base oil, a thickener, and an organic molybdenum compound, wherein the lubricating oil base oil is% C of an nd-M ring analysis value by ASTM D3238. by a 2 to 8,% C P is the first and the lubricating oil base oil is 50~75, n-d-M ring analysis value of% C a by ASTM D3238 of not more than 1,% C P is 70 or more It contains a second lubricating oil base oil, and the content of the first lubricating oil base oil is 5 to 90% by mass based on the total amount of the lubricating oil base oil, and the second lubricating oil is contained. A grease composition having a base oil content of 10 to 95% by mass and a consistency of 220 to 300.

本発明のグリース組成物は、軸受回転に消費される電力量が少なくて済むという格別の効果を奏するものである。 The grease composition of the present invention has a special effect that the amount of electric power consumed for bearing rotation is small.

以下、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明の実施形態に係るグリース組成物は、潤滑油基油と、増ちょう剤とを含有する。潤滑油基油は、ASTM D3238によるn−d−M環分析値の%Cが2〜8、%Cが50〜75である第1の潤滑油基油と、ASTM D3238によるn−d−M環分析値の%Cが1以下、%Cが70以上、尿素アダクト値が4質量%以下である第2の潤滑油基油と、を含有する。第1の潤滑油基油と第2の潤滑油基油との混合比は、潤滑油基油全量を基準として、第1の潤滑油基油の含有量が5〜90質量%であり、第2の潤滑油基油の含有量が10〜95質量%である。 The grease composition according to the embodiment of the present invention contains a lubricating oil base oil and a thickener. Lubricant base oil, the first and the lubricating oil base oil n-d-M ring analysis value of% C A by ASTM D3238 there is 2 to 8,% C P 50 to 75, according to ASTM D3238 n-d % of -M ring analysis value C a is 1 or less,% C P is 70 or more, containing a second lubricating base oil the urea adduct value is not more than 4 mass%, a. The mixing ratio of the first lubricating oil base oil and the second lubricating oil base oil is such that the content of the first lubricating oil base oil is 5 to 90% by mass based on the total amount of the lubricating oil base oil. The content of the lubricating oil base oil of No. 2 is 10 to 95% by mass.

本実施形態においては、軸受摺動部の油膜形成能、潤滑油基油の温度による粘度変化に着目し、軸受転動体と軌道輪間に十分な油膜を形成しこれらの直接接触によるエネルギー損失を低減するためには、軌道輪と軸受転動体の転がりに伴う“くさび効果”を利用し、基油の成分に立体構造の大きな基油構成分子、具体的には芳香族を含む成分(n−d−M環分析による%C)を含有させることが有効である、という本発明者の知見に基づき、第1の潤滑油基油が用いられる。 In this embodiment, attention is paid to the oil film forming ability of the bearing sliding portion and the change in viscosity due to the temperature of the lubricating oil base oil, and a sufficient oil film is formed between the bearing rolling element and the raceway ring to reduce energy loss due to direct contact between them. In order to reduce the amount, the "wedge effect" that accompanies the rolling of the raceway ring and the bearing rolling element is used, and the base oil component has a large three-dimensional structure, and specifically contains an aromatic component (n-). it is effective to contain C a)% by d-M ring analysis, based on the findings of the present inventors that, the first lubricating base oil is used.

ASTM D3238によるn−d−M環分析値に関して、第1の潤滑油基油の%Cは2〜8、好ましくは2〜6、より好ましくは4〜6である。%Cが2未満であるとエネルギー損失の低減効果が不十分となり、また、8を超えると相対的にパラフィン成分の含有量が少なくなりやすく、高温時の粘度低下が大きくなり、油膜形成能の点で不十分となる。 Regard n-d-M ring analysis value by ASTM D3238, the% C A of the first lubricating base oil 2-8, preferably 2-6, more preferably 4-6. % Reduction in energy loss and C A is less than 2 becomes insufficient, also tends low content of relatively paraffinic components exceeds 8, the viscosity reduction at a high temperature becomes large, the oil film forming ability Is insufficient in terms of.

第1の潤滑油基油の%Cは50〜75、好ましくは60〜70である。%Cが50未満であると高温時の粘度低下が大きく油膜形成能に劣り、また、75を超えると相対的に芳香族分を含む成分の含有量が少なくなりやすく、エネルギー損失の低減効果が不十分となる。 % C P of the first lubricating base oil is 50 to 75, preferably 60 to 70. When% CP is less than 50, the viscosity at high temperature is greatly reduced and the oil film forming ability is inferior, and when it exceeds 75, the content of components containing aromatic components tends to be relatively small, and the effect of reducing energy loss is achieved. Is insufficient.

第1の潤滑油基油の粘度指数は好ましくは90〜120、より好ましくは95〜115、更に好ましくは100〜110である。粘度指数が90以上であると温度上昇による粘度低下を抑制でき、油膜形成能が更に向上する。 The viscosity index of the first lubricating oil base oil is preferably 90 to 120, more preferably 95 to 115, and even more preferably 100 to 110. When the viscosity index is 90 or more, the decrease in viscosity due to the temperature rise can be suppressed, and the oil film forming ability is further improved.

第1の潤滑油基油の40℃の動粘度は、特に制限されないが、優れた潤滑性を有するグリースを安全に調製する点から、好ましくは10〜700mm/s、より好ましくは20〜500mm/s、更に好ましくは25〜70mm/sである。 The kinematic viscosity of the first lubricating oil base oil at 40 ° C. is not particularly limited, but is preferably 10 to 700 mm 2 / s, more preferably 20 to 500 mm from the viewpoint of safely preparing a grease having excellent lubricity. It is 2 / s, more preferably 25 to 70 mm 2 / s.

本発明における粘度指数及び40℃の動粘度は、JIS K2283に準拠して測定された粘度指数及び40℃における動粘度をそれぞれ意味する。 The viscosity index and the kinematic viscosity at 40 ° C. in the present invention mean the viscosity index measured according to JIS K2283 and the kinematic viscosity at 40 ° C., respectively.

第1の潤滑油基油としては、原油を常圧蒸留し、あるいは更に減圧蒸留して得られる留出油を各種の精製プロセスで精製した潤滑油留分であって、ASTM D3238によるn−d−M環分析値の%Cが2〜8、%Cが50〜75のものが挙げられる。精製プロセスは、水素化精製、溶剤抽出、溶剤脱ろうなどであり、これらを適宜の順序で組み合わせて処理して本実施形態の第1潤滑油基油を得ることができる。異なる原油あるいは留出油を、異なるプロセスの組合せ、順序により得られた、性状の異なる2種以上の精製油の混合物も有用である。得られる第1の潤滑油基油の性状が前述した物性を満足するように調整されていれば、いずれの方法によって得られる第1の潤滑油基油であっても好ましく使用することができる。 The first lubricating oil base oil is a lubricating oil fraction obtained by refining a distillate obtained by atmospheric distillation of crude oil or further vacuum distillation by various refining processes, and is nd according to ASTM D3238. % C a is 2 to 8,% C P of -M ring analysis value can be mentioned those 50 to 75. The refining process includes hydrorefining, solvent extraction, solvent desulfurization, and the like, and these can be combined and treated in an appropriate order to obtain the first lubricating oil base oil of the present embodiment. Mixtures of two or more refined oils with different properties obtained from different crude oils or distillates by different process combinations and sequences are also useful. As long as the properties of the obtained first lubricating oil base oil are adjusted so as to satisfy the above-mentioned physical properties, any of the first lubricating oil base oils obtained by any method can be preferably used.

本実施形態においては、弾性流体潤滑となる軸受転動体と軌道輪の最接近部位にはトラクション係数の低い鎖状の炭化水素成分、パラフィン成分を基油中に含有させることが有効である、という本発明者の知見に基づき、第2の潤滑油基油が用いられる。 In the present embodiment, it is effective to include a chain hydrocarbon component and a paraffin component having a low traction coefficient in the base oil at the closest portion between the bearing rolling element and the raceway ring, which are elastic fluid lubrication. Based on the findings of the present inventor, a second lubricating oil base oil is used.

一方、本発明者らは、潤滑油基油中のパラフィン成分が多くても、該パラフィン成分が適度な分岐を有しないと、低温域での粘度増加が大きくなり、低温での軸受起動においてトルクが高まり、実用上問題となることを熟慮し、更に検討を重ねた結果、低温での軸受起動におけるトルク上昇の原因となるパラフィン分の含有量の指標として、尿素アダクト値が有効であることを見出した。そして、本発明者らは、尿素アダクト値、%C及び%Cがそれぞれ特定条件を満たす第2の潤滑油基油を、第1の潤滑油基油に混合することによって、低温における起動トルクの急増を抑えつつ、常温から高温域にわたって軸受の低トルク化を図ることができることを見出した。 On the other hand, the present inventors have found that even if the paraffin component in the lubricating oil base oil is large, if the paraffin component does not have an appropriate branch, the viscosity increase in the low temperature range becomes large, and the bearing starts at a low temperature. As a result of further studies, it was found that the urea adduct value is effective as an index of the paraffin content that causes the torque increase when starting the bearing at low temperature. I found it. Then, the present inventors found that urea adduct value,% of C P and% C A are each satisfy specific conditions the second lubricating base oil, by mixing the first lubricating base oil, starting at low temperatures We have found that it is possible to reduce the torque of bearings from normal temperature to high temperature while suppressing the rapid increase in torque.

ASTM D3238によるn−d−M環分析値に関して、第2の潤滑油基油の%Cは、1以下、好ましくは0.8以下である。%Cが1を超えると、弾性流体潤滑となる軸受転動体と軌道輪の最接近部位にトラクション係数の低い好適なパラフィン成分を十分に供給できなくなる。 Regard n-d-M ring analysis value by ASTM D3238,% C A of the second lubricating base oil, 1 or less, preferably 0.8 or less. % C if A is greater than 1, can not be sufficiently supplied to low suitable paraffinic components of traction coefficient at the closest site of the bearing rolling elements and the bearing ring comprising an elastic fluid lubrication.

第2の潤滑油基油の%Cは、70以上、好ましくは75以上、より好ましくは80以上である。%Cが70未満であると、弾性流体潤滑となる軸受転動体と軌道輪の最接近部位におけるトラクション係数の低減効果が不十分となる。 % C P of the second lubricating base oil is 70 or more, preferably 75 or more, more preferably 80 or more. When% CP is less than 70, the effect of reducing the traction coefficient at the closest portion between the bearing rolling element and the raceway ring, which is the elastic fluid lubrication, becomes insufficient.

第2の潤滑油基油の尿素アダクト値は、低温域での粘度増加を抑制し、低温での軸受起動におけるトルク上昇を抑制する観点から、4質量%以下であり、好ましくは3.5質量%以下、より好ましくは3質量%以下である。第2の潤滑油基油の尿素アダクト値は、0質量%でもよいが、低温での軸受起動におけるトルク上昇を十分に抑制しつつ、より粘度指数の高い潤滑油基油を得ることができ、また脱ろう条件を緩和して経済性にも優れる点で、好ましくは0.1質量%以上、より好ましくは0.5質量%以上である。 The urea adduct value of the second lubricating oil base oil is 4% by mass or less, preferably 3.5% by mass, from the viewpoint of suppressing the increase in viscosity in the low temperature region and suppressing the torque increase in bearing start-up at low temperature. % Or less, more preferably 3% by mass or less. The urea adduct value of the second lubricating oil base oil may be 0% by mass, but it is possible to obtain a lubricating oil base oil having a higher viscosity index while sufficiently suppressing the torque increase when the bearing is started at a low temperature. Further, it is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, in that the dewaxing condition is relaxed and the economical efficiency is excellent.

本発明における尿素アダクト値は、以下の方法により測定される。秤量した試料油(潤滑油基油)100gを丸底フラスコに入れ、尿素200g、トルエン360ml及びメタノール40mlを加えて室温で6時間攪拌する。これにより、反応液中に尿素アダクト物として白色の粒状結晶が生成する。反応液を1ミクロンフィルターでろ過することにより、生成した白色粒状結晶を採取し、得られた結晶をトルエン50mlで6回洗浄する。回収した白色結晶をフラスコに入れ、純水300ml及びトルエン300mlを加えて80℃で1時間攪拌する。分液ロートで水相を分離除去し、トルエン相を純水300mlで3回洗浄する。トルエン相に乾燥剤(硫酸ナトリウム)を加えて脱水処理を行った後、トルエンを留去する。このようにして得られた尿素アダクト物の試料油に対する割合(質量百分率)を尿素アダクト値と定義する。 The urea adduct value in the present invention is measured by the following method. 100 g of the weighed sample oil (lubricating oil base oil) is placed in a round bottom flask, 200 g of urea, 360 ml of toluene and 40 ml of methanol are added, and the mixture is stirred at room temperature for 6 hours. As a result, white granular crystals are generated as a urea adduct in the reaction solution. The reaction solution is filtered through a 1 micron filter to collect the produced white granular crystals, and the obtained crystals are washed 6 times with 50 ml of toluene. The recovered white crystals are placed in a flask, 300 ml of pure water and 300 ml of toluene are added, and the mixture is stirred at 80 ° C. for 1 hour. The aqueous phase is separated and removed with a separating funnel, and the toluene phase is washed 3 times with 300 ml of pure water. A desiccant (sodium sulfate) is added to the toluene phase for dehydration treatment, and then toluene is distilled off. The ratio (mass percentage) of the urea adduct thus obtained to the sample oil is defined as the urea adduct value.

尿素アダクト値の測定においては、尿素アダクト物として、イソパラフィンのうち低温での軸受起動におけるトルク上昇の原因となる成分、さらには潤滑油基油中にノルマルパラフィンが残存している場合の当該ノルマルパラフィンを精度よく且つ確実に捕集することができるため、ノルマルパラフィン及び上記特定のイソパラフィンの含有割合の指標として優れている。本発明者らは、GC及びNMRを用いた分析により、尿素アダクト物の主成分が、ノルマルパラフィン及び主鎖の末端から分岐位置までの炭素数が6以上であるイソパラフィンの尿素アダクト物であることを確認している。 In the measurement of the urea adduct value, as the urea adduct, the component of isoparaffin that causes a torque increase at low temperature bearing start-up, and the normal paraffin when normal paraffin remains in the lubricating oil base oil. Is excellent as an index of the content ratio of normal paraffin and the above-mentioned specific isoparaffin because it can collect the oil accurately and surely. According to the analysis using GC and NMR, the present inventors have found that the main component of the urea adduct is normal paraffin and isoparaffin urea adduct having 6 or more carbon atoms from the end of the main chain to the branch position. Is confirmed.

第2の潤滑油基油の粘度指数は、110〜150、好ましくは115〜140、より好ましくは125〜140である。粘度指数が110以上であると、高温時の粘度低下を抑制でき、油膜形成能が更に向上する。粘度指数が150以下であると、潤滑油基油を得る際の製造コストの点で優れる。 The viscosity index of the second lubricating oil base oil is 110 to 150, preferably 115 to 140, and more preferably 125 to 140. When the viscosity index is 110 or more, the decrease in viscosity at high temperature can be suppressed, and the oil film forming ability is further improved. When the viscosity index is 150 or less, it is excellent in terms of manufacturing cost when obtaining a lubricating oil base oil.

第2の潤滑油基油の40℃の動粘度は、好ましくは10〜5000mm/s、より好ましくは20〜3000mm/s、更に好ましくは25〜70mm/sである。40℃の動粘度が10mm/s以上であると、引火点の低下を抑制でき、安全にグリースを製造できる。40℃の動粘度が5000mm/s以下であると、粘性抵抗の増大を抑制でき、省エネルギー特性の点で更に優れる。 The kinematic viscosity of 40 ° C. of the second lubricating base oil is preferably 10~5000mm 2 / s, more preferably 20~3000mm 2 / s, more preferably 25~70mm 2 / s. When the kinematic viscosity at 40 ° C. is 10 mm 2 / s or more, the decrease in flash point can be suppressed and grease can be safely produced. When the kinematic viscosity at 40 ° C. is 5000 mm 2 / s or less, the increase in viscous resistance can be suppressed, which is further excellent in terms of energy saving characteristics.

第2の潤滑油基油は、上記の性状を有する鉱物油及び合成炭化水素油から選ばれる1種以上であることが好ましい。鉱物油と合成炭化水素油とを混合した基油を第2の潤滑油基油として用いてもよい。 The second lubricating oil base oil is preferably one or more selected from mineral oils and synthetic hydrocarbon oils having the above properties. A base oil in which a mineral oil and a synthetic hydrocarbon oil are mixed may be used as the second lubricating oil base oil.

第2の潤滑油基油の鉱物油としては、原油を常圧蒸留し、あるいは更に減圧蒸留して得られる留出油を各種の精製プロセスで精製した潤滑油留分であって、ASTM D3238によるn−d−M環分析値の%Cが1以下、%Cが75以上、尿素アダクト値が4質量%以下のものが挙げられる。精製プロセスは、水素化分解、水素化精製、溶剤抽出、溶剤脱ろう、水素化脱ろうなどであり、これらを適宜の順序で組み合わせて処理して本発明の第2の潤滑油基油成分を得ることができる。異なる原油あるいは留出油を、異なるプロセスの組合せ、順序により得られた、性状の異なる2種以上の精製油の混合物も有用である。得られる第2の潤滑油基油の性状が前述した物性を満足するように調整されていれば、いずれの方法によって得られる第2の潤滑油基油であっても好ましく使用することができる。 The mineral oil of the second lubricating oil base oil is a lubricating oil distillate obtained by refining the distillate obtained by atmospheric distillation of crude oil or further reduced pressure distillation by various refining processes, according to ASTM D3238. n-d-M ring analysis value of% C a is 1 or less,% C P is 75 or more, the urea adduct value include the 4 wt% or less. The refining process includes hydrocracking, hydrorefining, solvent extraction, solvent dewaxing, hydrodesulfurization, etc., and these are combined and processed in an appropriate order to obtain the second lubricating oil base oil component of the present invention. Obtainable. Mixtures of two or more refined oils with different properties obtained from different crude oils or distillates by different process combinations and sequences are also useful. As long as the properties of the obtained second lubricating oil base oil are adjusted so as to satisfy the above-mentioned physical properties, any of the second lubricating oil base oils obtained by any method can be preferably used.

第2の潤滑油基油の合成炭化水素油としては、例えばポリ−α−オレフィン、ポリブテンや2種以上の各種オレフィンの共重合体などのポリオレフィン、アルキルベンゼン、アルキルナフタレンなどであって、ASTM D3238によるn−d−M環分析値の%Cが1以下、%Cが75以上、尿素アダクト値が4質量%以下のものが挙げられる。これらの中でも、ポリ−α−オレフィンが、入手性、コスト面、粘度特性、酸化安定性、システム部材との適合性の面で好ましい。ポリ−α−オレフィンとしては、1−ドデセンや1−デセンなどの重合物がコスト面でより好ましい。 Examples of the synthetic hydrocarbon oil of the second lubricating oil base oil include polyolefins such as poly-α-olefin, polybutene and copolymers of two or more kinds of olefins, alkylbenzene, alkylnaphthalene and the like, according to ASTM D3238. n-d-M ring analysis value of% C a is 1 or less,% C P is 75 or more, the urea adduct value include the 4 wt% or less. Among these, poly-α-olefin is preferable in terms of availability, cost, viscosity characteristics, oxidation stability, and compatibility with system members. As the poly-α-olefin, polymers such as 1-dodecene and 1-decene are more preferable in terms of cost.

本実施形態において、第2の潤滑油基油は、鉱物油及び合成炭化水素油の一方のみからなるものであってもよく、あるいは両方の混合物であってもよい。すなわち、第1の潤滑油基油と第2の潤滑油基油との好ましい組合せとしては、第1の潤滑油基油(鉱物油)と第2の潤滑油基油(鉱物油)、第1の潤滑油基油(鉱物油)と第2の潤滑油基油(合成炭化水素油)、あるいは第1の潤滑油基油(鉱物油)と第2の潤滑油基油(鉱物油と合成炭化水素との混合基油)が例示できる。第1の潤滑油基油(鉱物油)、第2の潤滑油基油(鉱物油)及び第2の潤滑油基油(合成炭化水素油)は、それぞれ1種であっても2種以上であってもよい。 In the present embodiment, the second lubricating oil base oil may consist of only one of the mineral oil and the synthetic hydrocarbon oil, or may be a mixture of both. That is, as a preferable combination of the first lubricating oil base oil and the second lubricating oil base oil, the first lubricating oil base oil (mineral oil), the second lubricating oil base oil (mineral oil), and the first Lubricating oil base oil (mineral oil) and second lubricating oil base oil (synthetic hydrocarbon oil), or first lubricating oil base oil (mineral oil) and second lubricating oil base oil (mineral oil and synthetic carbide) (Mixed base oil with hydrogen) can be exemplified. The first lubricating oil base oil (mineral oil), the second lubricating oil base oil (mineral oil), and the second lubricating oil base oil (synthetic hydrocarbon oil) may be one or more. There may be.

第1の潤滑油基油の含有量は、潤滑油基油全量を基準として、5〜90質量%、好ましくは10〜80質量%、更に好ましくは30〜60質量%である。第2の潤滑油基油の含有量は、潤滑油基油全量を基準として、10〜95質量%、好ましくは20〜90質量%、更に好ましくは40〜70質量%である。第1及び第2の潤滑油基油の含有量が上記の範囲外であると、所望の消費電力低減効果が得られなくなるおそれがある。 The content of the first lubricating oil base oil is 5 to 90% by mass, preferably 10 to 80% by mass, and more preferably 30 to 60% by mass, based on the total amount of the lubricating oil base oil. The content of the second lubricating oil base oil is 10 to 95% by mass, preferably 20 to 90% by mass, and more preferably 40 to 70% by mass, based on the total amount of the lubricating oil base oil. If the contents of the first and second lubricating oil base oils are out of the above range, the desired power consumption reduction effect may not be obtained.

潤滑油基油の含有量は、グリース組成物全量基準で、70〜98質量%であることが好ましく、80〜97質量%であることが特に好ましい。 The content of the lubricating oil base oil is preferably 70 to 98% by mass, particularly preferably 80 to 97% by mass, based on the total amount of the grease composition.

増ちょう剤は、金属石けん系化合物(「金属石けん系増ちょう剤」ともいう)及びウレア化合物(「ウレア系増ちょう剤」ともいう)から選ばれる1種以上を含有することが好ましい。 The thickener preferably contains at least one selected from a metal soap-based compound (also referred to as "metal soap-based thickener") and a urea compound (also referred to as "urea-based thickener").

金属石けん系増ちょう剤としては、単一石けんとコンプレックス石けんが挙げられる。単一石けんとは、脂肪酸又は油脂をアルカリ金属水酸化物又はアルカリ土類金属水酸化物などでケン化した金属石けんである。コンプレックス石けんとは、単一石けんで用いられている脂肪酸に加え、更に異なった分子構造の有機酸とを組み合わせて複合化したものである。脂肪酸は、ヒドロキシ基などを有する脂肪酸誘導体であってもよい。脂肪酸は、ステアリン酸などの脂肪族カルボン酸でも、テレフタル酸などの芳香族カルボン酸でもよい。脂肪酸としては、1価又は2価の脂肪族カルボン酸、例えば炭素数6〜20の脂肪族カルボン酸が用いられ、特には炭素数12〜20の1価脂肪族カルボン酸や炭素数6〜14の2価脂肪族カルボン酸が好ましく用いられる。脂肪酸としては、1個のヒドロキシル基を含む1価脂肪族カルボン酸が好ましい。コンプレックス石けんにおいて脂肪酸と組み合わせる有機酸としては、酢酸、アゼライン酸やセバシン酸などの二塩基酸、安息香酸などが好適である。 Examples of the metallic soap-based thickener include single soap and complex soap. A single soap is a metal soap obtained by saponifying fatty acids or fats and oils with alkali metal hydroxides, alkaline earth metal hydroxides, or the like. Complex soap is a complex of fatty acids used in a single soap and an organic acid having a different molecular structure. The fatty acid may be a fatty acid derivative having a hydroxy group or the like. The fatty acid may be an aliphatic carboxylic acid such as stearic acid or an aromatic carboxylic acid such as terephthalic acid. As the fatty acid, a monovalent or divalent aliphatic carboxylic acid, for example, an aliphatic carboxylic acid having 6 to 20 carbon atoms is used, and in particular, a monovalent aliphatic carboxylic acid having 12 to 20 carbon atoms or 6 to 14 carbon atoms. The divalent aliphatic carboxylic acid of No. 1 is preferably used. As the fatty acid, a monovalent aliphatic carboxylic acid containing one hydroxyl group is preferable. As the organic acid to be combined with the fatty acid in the complex soap, acetic acid, dibasic acids such as azelaic acid and sebacic acid, and benzoic acid are suitable.

金属石けん系増ちょう剤の金属としては、リチウム、ナトリウムなどのアルカリ金属、カルシウムなどのアルカリ土類金属、アルミニウムのような両性金属が用いられる。これらの中でも、アルカリ金属、特にはリチウムが好ましく用いられる。 As the metal of the metal soap-based thickener, an alkali metal such as lithium and sodium, an alkaline earth metal such as calcium, and an amphoteric metal such as aluminum are used. Among these, alkali metals, particularly lithium, are preferably used.

金属石けん系増ちょう剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。金属石けん系増ちょう剤の含有量は、例えば、グリース組成物全量基準で、好ましくは2〜30質量%、より好ましくは3〜20質量%、更に好ましくは10〜20質量%である。 As the metal soap-based thickener, one type may be used alone, or two or more types may be used in combination. The content of the metal soap-based thickener is, for example, preferably 2 to 30% by mass, more preferably 3 to 20% by mass, and further preferably 10 to 20% by mass based on the total amount of the grease composition.

ウレア系増ちょう剤としては、例えば、ジイソシアネートとモノアミンとの反応で得られるジウレア化合物や、ジイソシアネートとモノアミン、ジアミンとの反応で得られるポリウレア化合物等を用いることができる。 As the urea-based thickener, for example, a diurea compound obtained by a reaction of diisocyanate with a monoamine, a polyurea compound obtained by a reaction of diisocyanate with a monoamine, or a diamine can be used.

ジイソシアネートとしては、脂肪族ジイソシアネートや芳香族ジイソシアネートなどが挙げられる。脂肪族ジイソシアネートとしては、例えば飽和及び/又は不飽和の直鎖状、分岐状、又は脂環式の炭化水素基を有するジイソシアネートが挙げられる。例えば、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルジイソシアネート、ジフェニルメタンジイソシアネート、オクタデカンジイソシアネート、デカンジイソシアネート、ヘキサンジイソシアネー卜等が好ましい。モノアミンとしては、脂肪族モノアミンや芳香族モノアミンなどが挙げられる。脂肪族モノアミンとしては、例えば飽和及び/又は不飽和の直鎖状、分岐状、又は脂環式の炭化水素基を有するモノアミンが挙げられる。例えば、オクチルアミン、ドデシルアミン、ヘキサデシルアミン、ステアリルアミン、オレイルアミン、アニリン、p−トルイジン、シクロヘキシルアミン等が好ましい。ジアミンとしては、脂肪族ジアミンや芳香族ジアミンなどが挙げられる。脂肪族ジアミンとしては、例えば飽和及び/又は不飽和の直鎖状、分岐状、又は脂環式の炭化水素基を有するジアミンが挙げられる。例えば、エチレンジアミン、プロパンジアミン、ブタンジアミン、ヘキサンジアミン、オクタンジアミン、フェニレンジアミン、トリレンジアミン、キシレンジアミン、ジアミノジフェニルメタン等が好ましい。 Examples of the diisocyanate include aliphatic diisocyanates and aromatic diisocyanates. Aliphatic diisocyanates include, for example, saturated and / or unsaturated linear, branched, or alicyclic hydrocarbon groups. For example, phenylenediisocyanate, tolylene diisocyanate, diphenyldiisocyanate, diphenylmethane diisocyanate, octadecane diisocyanate, decandiisocyanate, hexanediisocyanate and the like are preferable. Examples of monoamines include aliphatic monoamines and aromatic monoamines. Aliphatic monoamines include, for example, saturated and / or unsaturated monoamines having linear, branched, or alicyclic hydrocarbon groups. For example, octylamine, dodecylamine, hexadecylamine, stearylamine, oleylamine, aniline, p-toluidine, cyclohexylamine and the like are preferable. Examples of the diamine include aliphatic diamines and aromatic diamines. Aliphatic diamines include, for example, diamines having saturated and / or unsaturated linear, branched, or alicyclic hydrocarbon groups. For example, ethylenediamine, propanediamine, butanediamine, hexanediamine, octanediamine, phenylenediamine, tolylenediamine, xylenediamine, diaminodiphenylmethane and the like are preferable.

ウレア系増ちょう剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。ウレア系増ちょう剤の含有量は、例えば、グリース組成物全量基準で、好ましくは2〜30質量%、より好ましくは3〜20質量%、更に好ましくは10〜20質量%である。 One type of urea-based thickener may be used alone, or two or more types may be used in combination. The content of the urea-based thickener is, for example, preferably 2 to 30% by mass, more preferably 3 to 20% by mass, and further preferably 10 to 20% by mass based on the total amount of the grease composition.

グリース組成物は、有機モリブデン化合物を含有することが好ましい。これにより、軸受の長寿命化が可能となる。有機モリブデン化合物としては、モリブデンジチオカーバメート、モリブデンジチオホスフェート、モリブデンのアミン錯体、モリブデンのコハク酸イミド錯体、有機酸のモリブデン塩、アルコールのモリブデン塩等を例示することができる。これらの中では、軸受の長寿命化の観点から、モリブデンジチオカーバメート、モリブデンジチオホスフェートが好ましい。 The grease composition preferably contains an organic molybdenum compound. This makes it possible to extend the life of the bearing. Examples of the organic molybdenum compound include molybdenum dithiocarbamate, molybdenum dithiophosphate, an amine complex of molybdenum, an imide complex of succinic acid of molybdenum, a molybdenum salt of an organic acid, and a molybdenum salt of an alcohol. Among these, molybdenum dithiocarbamate and molybdenum dithiophosphate are preferable from the viewpoint of extending the life of the bearing.

モリブデンジチオカーバメートとしては、例えば、下記一般式(1)で表される化合物を用いることができる。

Figure 0006826651
As the molybdenum dithiocarbamate, for example, a compound represented by the following general formula (1) can be used.
Figure 0006826651

式(1)中、R、R、R及びRは同一でも異なっていてもよく、それぞれ炭素数2〜24、好ましくは炭素数4〜13のアルキル基又は炭素数6〜24、好ましくは炭素数8〜15のアリール基(アルキルアリール基を含む)等の炭化水素基を表す。X、X、X及びXは同一でも異なっていてもよく、それぞれ硫黄原子又は酸素原子を表す。ここでいうアルキル基には、1級アルキル基、2級アルキル基及び3級アルキル基が含まれる。これらは、直鎖状でも分枝状でもよい。 In formula (1), R 1 , R 2 , R 3 and R 4 may be the same or different, and each has an alkyl group having 2 to 24 carbon atoms, preferably an alkyl group having 4 to 13 carbon atoms or 6 to 24 carbon atoms, respectively. It preferably represents a hydrocarbon group such as an aryl group having 8 to 15 carbon atoms (including an alkylaryl group). X 1 , X 2 , X 3 and X 4 may be the same or different and represent sulfur or oxygen atoms, respectively. The alkyl group referred to here includes a primary alkyl group, a secondary alkyl group and a tertiary alkyl group. These may be linear or branched.

アルキル基の好ましい例としては、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等が挙げられる。これらは、1級アルキル基、2級アルキル基又は3級アルキル基でもよく、また直鎖状でも分枝状でもよい。(アルキル)アリール基の好ましい例としては、フェニル基、トリル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ウンデシルフェニル基、ドデシルフェニル基等が挙げられる。(アルキル)アリール基におけるアルキル基は、1級アルキル基、2級アルキル基又は3級アルキル基でもよく、また直鎖状でも分枝状でもよい。(アルキル)アリール基には、アリール基に対するアルキル基の置換位置が異なる全ての置換異性体が含まれる。 Preferred examples of the alkyl group include ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, Hexadecyl group, heptadecyl group, octadecyl group and the like can be mentioned. These may be a primary alkyl group, a secondary alkyl group or a tertiary alkyl group, and may be linear or branched. Preferred examples of the (alkyl) aryl group include phenyl group, trill group, ethylphenyl group, propylphenyl group, butylphenyl group, pentylphenyl group, hexylphenyl group, octylphenyl group, nonylphenyl group, decylphenyl group and un. Examples thereof include a decylphenyl group and a dodecylphenyl group. The alkyl group in the (alkyl) aryl group may be a primary alkyl group, a secondary alkyl group or a tertiary alkyl group, and may be linear or branched. The (alkyl) aryl group includes all substituted isomers having different substitution positions of the alkyl group with respect to the aryl group.

より好ましいモリブデンジチオカーバメートとしては、具体的には、硫化モリブデンジエチルジチオカーバメート、硫化モリブデンジプロピルジチオカーバメート、硫化モリブデンジブチルジチオカーバメート、硫化モリブデンジペンチルジチオカーバメート、硫化モリブデンジヘキシルジチオカーバメート、硫化モリブデンジオクチルジチオカーバメート、硫化モリブデンジデシルジチオカーバメート、硫化モリブデンジドデシルジチオカーバメート、硫化モリブデンジ(ブチルフェニル)ジチオカーバメート、硫化モリブデンジ(ノニルフェニル)ジチオカーバメート、硫化オキシモリブデンジエチルジチオカーバメート、硫化オキシモリブデンジプロピルジチオカーバメート、硫化オキシモリブデンジブチルジチオカーバメート、硫化オキシモリブデンジペンチルジチオカーバメート、硫化オキシモリブデンジヘキシルジチオカーバメート、硫化オキシモリブデンジオクチルジチオカーバメート、硫化オキシモリブデンジデシルジチオカーバメート、硫化オキシモリブデンジドデシルジチオカーバメート、硫化オキシモリブデンジ(ブチルフェニル)ジチオカーバメート、硫化オキシモリブデンジ(ノニルフェニル)ジチオカーバメート、及びこれらの混合物等が例示できる。これらのモリブデンジチオカーバメート中のアルキル基は直鎖状でも分枝状でもよく、アルキルフェニル基におけるアルキル基の結合位置は任意である。これらのモリブデンジチオカーバメートとしては、1分子中に異なる炭素数及び/又は構造の炭化水素基を有する化合物も、好ましく用いることができる。 More preferable molybdenum dithiocarbamate, specifically, molybdenum sulfide diethyl dithiocarbamate, molybdenum sulfide dipropyl dithiocarbamate, molybdenum dibutyl dithiocarbamate, molybdenum sulfide dipentyl dithiocarbamate, molybdenum sulfide dihexyl dithiocarbamate, molybdenum sulfide dioctyl dithiocarbamate, sulfurization Molybdenum didecyl dithiocarbamate, molybdenum sulfide didodecyl dithiocarbamate, molybdenum sulfide di (butylphenyl) dithiocarbamate, molybdenum sulfide di (nonylphenyl) dithiocarbamate, oxymolybdenum diethyldithiocarbamate, oxymolybdenum sulfide dipropyldithiocarbamate, oxymolybdenum sulfide dibutyldithiocarbamate, Oxymolybdenum sulfide dipentyldithiocarbamate, oxymolybdenum sulfide dihexyldithiocarbamate, oxymolybdenum sulfide dioctyldithiocarbamate, oxymolybdenum sulfide didecyldithiocarbamate, oxymolybdenum sulfide didodecyldithiocarbamate, oxymolybdenum sulfide di (butylphenyl) dithiocarbamate, oxymolybdenum sulfide di (nonyl) Examples thereof include phenyl) dithiocarbamate and mixtures thereof. The alkyl group in these molybdenum dithiocarbamate may be linear or branched, and the bonding position of the alkyl group in the alkylphenyl group is arbitrary. As these molybdenum dithiocarbamates, compounds having hydrocarbon groups having different carbon numbers and / or structures in one molecule can also be preferably used.

モリブデンジチオホスフェートとしては、潤滑油添加剤として市販されているものを用いることができ、例えば下記一般式(2)で表される化合物を用いることができる。 As the molybdenum dithiophosphate, those commercially available as a lubricating oil additive can be used, and for example, a compound represented by the following general formula (2) can be used.

Figure 0006826651
Figure 0006826651

式(2)中、R及びRは、互いに同一でも異なっていてもよく、それぞれ炭素数1以上の炭化水素基を表す。X、X、X、X及びXは、互いに同一でも異なっていてもよく、それぞれ酸素原子又は硫黄原子を表す。a、b及びcは、それぞれ1〜6の整数を表す。ただし、X、X、X、X及びXの少なくとも一つは硫黄原子を表す。R及びRで表される炭化水素基としては、例えば、炭素数1〜24のアルキル基、炭素数5〜7のシクロアルキル基、炭素数6〜11のアルキルシクロアルキル基、炭素数6〜18のアリール基、炭素数7〜24のアルキルアリール基及び炭素数7〜12のアリールアルキル基が挙げられる。 In formula (2), R 5 and R 6 may be the same or different from each other, and each represents a hydrocarbon group having 1 or more carbon atoms. X 5 , X 6 , X 7 , X 8 and X 9 may be the same or different from each other and represent oxygen or sulfur atoms, respectively. a, b and c each represent an integer of 1 to 6. However, at least one of X 5 , X 6 , X 7 , X 8 and X 9 represents a sulfur atom. Examples of the hydrocarbon group represented by R 5 and R 6, for example, an alkyl group having 1 to 24 carbon atoms, cycloalkyl group having 5 to 7 carbon atoms, alkylcycloalkyl group having 6 to 11 carbon atoms, 6 carbon atoms Examples thereof include an aryl group having an amount of 18 to 18, an alkylaryl group having 7 to 24 carbon atoms, and an arylalkyl group having 7 to 12 carbon atoms.

有機モリブデン化合物の含有量は、軸受の長寿命化の観点から、グリース組成物全量基準で、モリブデン元素量換算として、好ましくは300質量ppm以上、より好ましくは500質量ppm以上、更に好ましくは600質量ppm以上、特に好ましくは700質量ppm以上である。有機モリブデン化合物の含有量は、軸受性能への添加効果及び製造コストの観点から、グリース組成物全量基準で、モリブデン元素量換算として、好ましくは50000質量ppm以下、より好ましくは40000質量ppm以下、更に好ましくは30000質量ppm以下である。また、有機モリブデン化合物の含有量は、グリース組成物全量基準で、モリブデン化合物重量として、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上である。有機モリブデン化合物の含有量は、軸受性能への添加効果及び製造コストの観点から、グリース組成物全量基準で、モリブデン化合物重量として、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。 From the viewpoint of extending the life of the bearing, the content of the organic molybdenum compound is preferably 300 mass ppm or more, more preferably 500 mass ppm or more, still more preferably 600 mass ppm or more in terms of molybdenum element amount based on the total amount of the grease composition. It is ppm or more, particularly preferably 700 mass ppm or more. The content of the organic molybdenum compound is preferably 50,000 mass ppm or less, more preferably 40,000 mass ppm or less, and further preferably 40,000 mass ppm or less in terms of the amount of molybdenum element, based on the total amount of the grease composition, from the viewpoint of the effect of addition to the bearing performance and the manufacturing cost. It is preferably 30,000 mass ppm or less. The content of the organic molybdenum compound is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass or more as the weight of the molybdenum compound based on the total amount of the grease composition. .. The content of the organic molybdenum compound is preferably 15% by mass or less, more preferably 10% by mass or less, still more preferably 10% by mass or less, based on the total amount of the grease composition, from the viewpoint of the effect of addition to the bearing performance and the manufacturing cost. Is 5% by mass or less.

グリース組成物は、上記成分に加えて、必要に応じて、一般に潤滑油やグリースに用いられている添加剤を含有することができる。かかる添加剤としては、例えば、清浄剤、分散剤、摩耗防止剤、粘度指数向上剤、酸化防止剤、極圧剤、防錆剤、腐食防止剤、金属不活性化剤、固体潤滑剤などが挙げられる。これらの添加剤の含有量は、グリース組成物全量基準で、好ましくは10質量%以下、より好ましくは5質量%以下である。 In addition to the above components, the grease composition may contain additives generally used for lubricating oils and greases, if necessary. Examples of such additives include cleaning agents, dispersants, abrasion inhibitors, viscosity index improvers, antioxidants, extreme pressure agents, rust inhibitors, corrosion inhibitors, metal deactivators, solid lubricants and the like. Can be mentioned. The content of these additives is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total amount of the grease composition.

グリース組成物のちょう度は、220〜300であることが好ましく、225〜295であることがより好ましく、230〜290であることが更に好ましく、230〜285であることが特に好ましい。グリース組成物のちょう度が上記の範囲内であると、軸受回転に消費される電力量を大幅に低減することができる。グリース組成物のちょう度を調整する方法としては、前述の第1の潤滑油基油、第2の潤滑油基油及び増ちょう剤の種類及び混合割合、並びに、後述のグリース組成物を製造する際の各成分の混合方法(例えば混合回数、加熱温度、冷却速度、ロール条件)などを調整する方法が挙げられる。 The consistency of the grease composition is preferably 220 to 300, more preferably 225 to 295, further preferably 230 to 290, and particularly preferably 230 to 285. When the consistency of the grease composition is within the above range, the amount of electric power consumed for bearing rotation can be significantly reduced. As a method for adjusting the consistency of the grease composition, the above-mentioned first lubricating oil base oil, the second lubricating oil base oil and the thickener type and mixing ratio, and the grease composition described later are produced. Examples thereof include a method of adjusting the mixing method of each component (for example, the number of times of mixing, heating temperature, cooling rate, roll condition) and the like.

本発明におけるちょう度は、JIS K2220に準拠して測定される混和ちょう度を意味する。具体的な測定条件は、以下のとおりである。ちょう度測定用つぼに試料を詰め、25℃に保持した後、規定の混和器を用いて1分間で60往復混和する。次いで、過剰の試料をへらで除き、試料の表面を平らにした後、規定の円錐を5秒間試料の中に落下させ、侵入した深さ(mm)の10倍の値を混和ちょう度とする。 Consistency in the present invention means an admixture consistency measured in accordance with JIS K2220. The specific measurement conditions are as follows. The sample is packed in a pot for measuring consistency, kept at 25 ° C., and then mixed 60 times in 1 minute using a specified mixer. Next, the excess sample is removed with a spatula, the surface of the sample is flattened, and then the specified cone is dropped into the sample for 5 seconds, and the mixing density is 10 times the depth of penetration (mm). ..

本発明の他の実施態様は、潤滑油基油と、増ちょう剤と、有機モリブデン化合物と、を含有するグリース組成物であって、前記潤滑油基油は、ASTM D3238によるn−d−M環分析値の%Cが2〜8、%Cが50〜75である第1の潤滑油基油と、ASTM D3238によるn−d−M環分析値の%Cが1以下、%Cが70以上である第2の潤滑油基油と、を含有し、前記潤滑油基油全量を基準として、前記第1の潤滑油基油の含有量が5〜90質量%であり、前記第2の潤滑油基油の含有量が10〜95質量%であり、ちょう度が220〜300である、グリース組成物である。この実施態様は、軸受回転時の消費電力の低減及び軸受の長寿命化を両立できるという格別の効果を奏する。 Another embodiment of the present invention is a grease composition containing a lubricating oil base oil, a thickener, and an organic molybdenum compound, wherein the lubricating oil base oil is nd-m according to ASTM D3238. the first and the lubricating oil base oil% C a is 2 to 8,% C P of the ring analysis value of 50~75, n-d-M ring analysis value of% C a by ASTM D3238 is 1 or less,% C P is contained, and a second lubricating base oil is 70 or more, based on the lubricating base oils the total amount, the content of the first lubricating base oil is 5 to 90 wt%, A grease composition having a content of the second lubricating oil base oil of 10 to 95% by mass and a consistency of 220 to 300. This embodiment has a special effect of reducing power consumption during rotation of the bearing and extending the life of the bearing.

本実施形態に係るグリース組成物の製造方法は、第1の潤滑油基油と、第2の潤滑油基油と、増ちょう剤と、を混合してグリース組成物を得る工程を備える。第1の潤滑油基油と第2の潤滑油基油とは、潤滑油基油全量を基準として、第1の潤滑油基油の含有量が5〜90質量%、第2の潤滑油基油の含有量が10〜95質量%となるように混合される。 The method for producing a grease composition according to the present embodiment includes a step of mixing a first lubricating oil base oil, a second lubricating oil base oil, and a thickener to obtain a grease composition. The first lubricating oil base oil and the second lubricating oil base oil have a content of the first lubricating oil base oil of 5 to 90% by mass and a second lubricating oil base based on the total amount of the lubricating oil base oil. The oils are mixed so that the oil content is 10 to 95% by mass.

本実施形態においては、予め調製した増ちょう剤を第1及び第2の潤滑油基油と混合してもよく、あるいは、第1の潤滑油基油若しくは第2の潤滑油基油又はこれらの混合基油に増ちょう剤の原料を配合し、基油中で当該原料同士を反応させて増ちょう剤を得てもよい。例えば、金属石けん系増ちょう剤を用いる場合は、金属石けんの形で潤滑油基油に配合してもよいが、カルボン酸及び金属源(金属塩、金属塩水酸化物等)を別々に潤滑油基油に配合し、グリース作製時にカルボン酸と金属源とを反応させて金属石けん増ちょう剤としてもよい。ウレア系増ちょう剤を用いる場合は、ウレア化合物の形で潤滑油基油に配合してもよいが、ジイソシアネート及びアミン(モノアミン、ジアミン等)を潤滑油基油に配合し、グリース作製時にジイソシアネートとアミンとを反応させてウレア系増ちょう剤としてもよい。 In the present embodiment, the thickener prepared in advance may be mixed with the first and second lubricating oil base oils, or the first lubricating oil base oil or the second lubricating oil base oil or these. A thickener raw material may be mixed with the mixed base oil, and the raw materials may be reacted with each other in the base oil to obtain a thickener. For example, when a metal soap-based thickener is used, it may be mixed with the lubricating oil base oil in the form of metal soap, but the carboxylic acid and the metal source (metal salt, metal salt hydroxide, etc.) are separately added to the lubricating oil. It may be blended with a base oil and reacted with a carboxylic acid and a metal source at the time of preparing grease to form a metal soap thickener. When a urea-based thickener is used, it may be blended with the lubricating oil base oil in the form of a urea compound, but diisocyanate and amines (monoamine, diamine, etc.) are blended with the lubricating oil base oil, and the grease is mixed with the diisocyanate during grease preparation. It may be used as a urea-based thickener by reacting with an amine.

第1の潤滑油基油と、第2の潤滑油基油と、増ちょう剤と、を混合して得られるグリース組成物について、必要に応じてロール又はミルによる分散処理等を行うことができる。 The grease composition obtained by mixing the first lubricating oil base oil, the second lubricating oil base oil, and the thickener can be dispersed by a roll or a mill, if necessary. ..

以下、実施例に基づいて本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to the following Examples.

[基油A]
常圧蒸留残渣を減圧蒸留した留出油を溶剤精製して得られた、以下の性状の潤滑油基油を基油Aとして用いた。
40℃における動粘度:37.6mm/s
粘度指数:107
引火点:220℃
%C:66
%C:5.2
[Base oil A]
The lubricating oil base oil having the following properties obtained by solvent refining the distillate obtained by distilling the atmospheric distillation residue under reduced pressure was used as the base oil A.
Kinematic viscosity at 40 ° C: 37.6 mm 2 / s
Viscosity index: 107
Flash point: 220 ° C
% CP : 66
% C A: 5.2

[基油B]
燃料油水素化分解装置から得られるボトム留分を潤滑油基油の原料として用い、水素化処理触媒を用いて水素化処理を行った。このとき、原料油中のノルマルパラフィンの分解率が10質量%以下となるように、反応温度及び液空間速度を調整した。さらに、水素化処理により得られた被処理物について、貴金属含有量0.1〜5質量%に調整されたゼオライト系水素化脱ろう触媒を用い、315〜325℃の温度範囲で水素化脱ろうを行い、脱ろう油を得た。さらに、この脱ろう油を、水素化精製触媒を用いて、水素化精製した。その後、蒸留により得られた下記性状の潤滑油基油を基油Bとして用いた。
40℃における動粘度:36.8mm/s
粘度指数:130
引火点:240℃
%C:79
%C:0
尿素アダクト値:2質量%
[Base oil B]
The bottom fraction obtained from the fuel oil hydrocracking apparatus was used as a raw material for the lubricating oil base oil, and hydrogenation treatment was carried out using a hydrogenation treatment catalyst. At this time, the reaction temperature and the liquid space velocity were adjusted so that the decomposition rate of normal paraffin in the raw material oil was 10% by mass or less. Further, the object to be treated obtained by the hydrogenation treatment is dehydrogenated in a temperature range of 315 to 325 ° C. using a zeolite-based hydrogenation dewaxing catalyst adjusted to have a noble metal content of 0.1 to 5% by mass. And obtained dewax oil. Further, this desulfurized oil was hydrorefined using a hydrorefining catalyst. Then, the lubricating oil base oil having the following properties obtained by distillation was used as the base oil B.
Kinematic viscosity at 40 ° C: 36.8 mm 2 / s
Viscosity index: 130
Flash point: 240 ° C
% CP : 79
% C A: 0
Urea adduct value: 2% by mass

[基油C]
以下の性状の合成炭化水素であるポリ−α−オレフィン(INEOS社製Durasyn166)を基油Cとして用いた。
40℃における動粘度:30.8mm/s
粘度指数:135
引火点:250℃
%C:91
%C:0
尿素アダクト値:0質量%
[Base oil C]
Poly-α-olefin (Durasin 166 manufactured by INEOS), which is a synthetic hydrocarbon having the following properties, was used as the base oil C.
Kinematic viscosity at 40 ° C: 30.8 mm 2 / s
Viscosity index: 135
Flash point: 250 ° C
% CP : 91
% C A: 0
Urea adduct value: 0% by mass

[基油D]
溶剤精製基油の減圧蒸留で分離した留分を、フルフラールで溶剤抽出した後で水素化処理し、次いで、メチルエチルケトン−トルエン混合溶剤で溶剤脱ろうした。溶剤脱ろうの際に除去され、スラックワックスとして得られたワックス分を、潤滑油基油の原料として用い、水素化処理を行った。このとき、反応温度及び液空間速度を調整し、水素化処理により得られた被処理物の水素化脱ろうの温度条件を300℃程度と低く調整し、得られた脱ろう油の水素化精製した。その後、蒸留により得られた下記性状、尿素アダクト値5質量%の潤滑油基油を基油Dとして用いた。
40℃における動粘度:32.0mm/s
粘度指数:130
引火点:240℃
%C:75
%C:0
尿素アダクト値:5質量%
[Base oil D]
The fraction separated by vacuum distillation of the solvent-refined base oil was solvent-extracted with furfural, hydrotreated, and then solvent-desorbed with a mixed solvent of methyl ethyl ketone and toluene. The wax component removed during solvent dewaxing and obtained as slack wax was used as a raw material for the lubricating oil base oil and subjected to hydrogenation treatment. At this time, the reaction temperature and the liquid space velocity were adjusted, and the temperature condition for hydrodesulfurization of the object to be treated obtained by the hydrogenation treatment was adjusted as low as about 300 ° C., and the obtained dehydrogenated oil was hydrorefined. did. Then, a lubricating base oil having the following properties and a urea adduct value of 5% by mass obtained by distillation was used as the base oil D.
Kinematic viscosity at 40 ° C: 32.0 mm 2 / s
Viscosity index: 130
Flash point: 240 ° C
% CP : 75
% C A: 0
Urea adduct value: 5% by mass

[供試油1−1〜1−10]
基油A、B、C及びDを表1〜2に示す配合量(質量%で示す)でステンレス製容器に入れた。増ちょう剤としてウレア系化合物を用いる場合、ウレア系化合物の原料であるアミン及びイソシアネートを容器内の潤滑油基油に加え、150℃に加熱し、マグネチックスターラーで攪拌して、アミン及びジイソシアネートを反応させた。そして、脱水後、室温に冷却することで半固体状の組成物を得た。増ちょう剤として金属石けん系化合物を用いる場合、ステアリン酸リチウムを潤滑油基油に加え、200℃に加熱し、その後冷却することで半固体状の組成物を得た。さらに、得られた各半固体状の組成物にフェノール系酸化防止剤であるジ−t−ブチル−p−クレゾールを加え、3本ロールで分散処理を行い、表1〜2に示す組成を有するグリース組成物を得た。
[Test oil 1-1-1-10]
The base oils A, B, C and D were placed in a stainless steel container in the blending amounts (indicated by mass%) shown in Tables 1 and 2. When a urea compound is used as the thickener, amine and isocyanate, which are the raw materials of the urea compound, are added to the lubricating oil base oil in the container, heated to 150 ° C., and stirred with a magnetic stirrer to remove amine and diisocyanate. It was reacted. Then, after dehydration, it was cooled to room temperature to obtain a semi-solid composition. When a metallic soap-based compound was used as the thickener, lithium stearate was added to the lubricating oil base oil, heated to 200 ° C., and then cooled to obtain a semi-solid composition. Further, di-t-butyl-p-cresol, which is a phenolic antioxidant, is added to each of the obtained semi-solid compositions, and dispersion treatment is carried out with three rolls to obtain the compositions shown in Tables 1 and 2. A grease composition was obtained.

[評価試験1]
各グリース組成物を用いた場合の軸受回転時における消費電力量を以下の手法により計測した。軸受は、NTN社製複列円すいころ軸受4T−CRI−0868を用いた。試験前に軸受内部を有機溶剤で十分洗浄した後、実験油剤(グリース組成物)を軸受のころ、軌道輪、保持器の隙間に注射器で注入した。実験は、同一油剤を充填した計4個の軸受(2軸受×2組)を用いた。軸受内輪を固定し、プーリーを介した電動機(安川電機社製、TYPE:FEQ、2.2kW)で一定方向に回転させ、電動機の消費電力量を電力計(HIOKI社製、CE3169、CLAMP ON POWER HiTESTER)で計測した。軸受回転数を1300rpm、温度を室温とし、2時間の連続回転における積算消費電力(kW)を比較した。繰り返し実験回数は3回とした。得られた結果を表1〜2に示す。なお、表1〜2中の軸受消費電力及び電力削減率(%:供試油1−6基準)は、3回の実験の平均値である。本実施例での電力削減率は、消費電力が基準より少ないときを、負の値で示している。
[Evaluation test 1]
The power consumption during bearing rotation when each grease composition was used was measured by the following method. As the bearing, NTN's double-row tapered roller bearing 4T-CRI-0868 was used. Before the test, the inside of the bearing was thoroughly washed with an organic solvent, and then an experimental oil (grease composition) was injected into the gap between the bearing, the raceway ring, and the cage with a syringe. In the experiment, a total of 4 bearings (2 bearings x 2 sets) filled with the same oil agent were used. The inner ring of the bearing is fixed and rotated in a certain direction by an electric motor (manufactured by Yasukawa Electric Co., Ltd., TYPE: FEQ, 2.2 kW) via a pulley, and the power consumption of the motor is measured by a power meter (manufactured by HIOKI Co., Ltd., CE3169, CLAMP ON POWER). It was measured by HiTESTER). The integrated power consumption (kW) in continuous rotation for 2 hours was compared with the bearing rotation speed set to 1300 rpm and the temperature set to room temperature. The number of repeated experiments was set to 3. The results obtained are shown in Tables 1 and 2. The bearing power consumption and power reduction rate (%: test oil 1-6 standard) in Tables 1 and 2 are the average values of the three experiments. The power reduction rate in this embodiment is indicated by a negative value when the power consumption is less than the standard.

Figure 0006826651
Figure 0006826651

Figure 0006826651
Figure 0006826651

[供試油2−1〜2−12]
基油A、B、C及びD、並びに増ちょう剤を表3〜5に示す配合量(質量%で示す)でステンレス製容器に入れた。増ちょう剤として金属石けん系化合物(単一石けん)を用いる場合には、ステアリン酸リチウムを潤滑油基油に加え、200℃に加熱した後に冷却することで、半固体状の組成物を得た。増ちょう剤として金属石けん系化合物(コンプレックス石けん)を用いる場合には、12−ヒドロキシステアリン酸、アゼライン酸、及び水酸化リチウムを潤滑油基油に加え、200℃に加熱し反応させコンプレックス石けんとし、冷却することで、半固体状の組成物を得た。増ちょう剤としてウレア系化合物を用いる場合には、ウレア系化合物の原料であるアミン及びイソシアネートを容器内の潤滑油基油に加え、150℃に加熱し、マグネチックスターラーで攪拌して、アミン及びジイソシアネートを反応させた。そして、脱水後、室温に冷却することで、半固体状の組成物を得た。さらに、得られた各半固体状の組成物にフェノール系酸化防止剤であるジ−t−ブチル−p−クレゾールを加え、3本ロールで分散処理を行い、表3〜5に示す組成を有するグリース組成物を得た。また、得られたグリース組成物について、JIS K2220に準拠してちょう度(混和ちょう度)を測定した。
[Test oil 2-1 to 2-12]
The base oils A, B, C and D, and the thickener were placed in a stainless steel container in the amounts shown in Tables 3 to 5 (indicated by mass%). When a metallic soap compound (single soap) is used as the thickener, lithium stearate is added to the lubricating oil base oil, and the mixture is heated to 200 ° C. and then cooled to obtain a semi-solid composition. .. When a metal soap compound (complex soap) is used as the thickener, 12-hydroxystearic acid, azelaic acid, and lithium hydroxide are added to the lubricating oil base oil and heated to 200 ° C. to react to form a complex soap. By cooling, a semi-solid composition was obtained. When a urea compound is used as the thickener, amine and isocyanate, which are the raw materials of the urea compound, are added to the lubricating oil base oil in the container, heated to 150 ° C., stirred with a magnetic stirrer, and the amine and isocyanate are added. The diisocyanate was reacted. Then, after dehydration, it was cooled to room temperature to obtain a semi-solid composition. Further, di-t-butyl-p-cresol, which is a phenolic antioxidant, is added to each of the obtained semi-solid compositions, and dispersion treatment is carried out with three rolls to have the compositions shown in Tables 3 to 5. A grease composition was obtained. In addition, the consistency (mixing consistency) of the obtained grease composition was measured according to JIS K2220.

[評価試験2−1]
各グリース組成物を用いた場合の軸受回転時における消費電力量を以下の手法により計測した。軸受は、NSK社製複列玉軸受7008A−DFを用いた。試験前に軸受内部を有機溶剤で十分洗浄した後、実験油剤(グリース組成物)を軸受の玉、軌道輪、保持器の隙間に注射器で注入した。実験は、同一油剤を充填した計4個の軸受(2軸受×2組)を用いた。軸受内輪を固定し、プーリーを介した電動機(安川電機社製、TYPE:FEQ、2.2kW)で一定方向に回転させ、電動機の消費電力量を電力計(HIOKI社製、CE3169、CLAMP ON POWER HiTESTER)で計測した。軸受回転数を1300rpm、温度を室温とし、2時間の連続回転における積算消費電力(kW)を比較した。繰り返し実験回数は3回とした。得られた結果を表3〜5に示す。なお、表3〜5中の軸受消費電力及び電力削減率(%:供試油2−11基準)は、3回の実験の平均値である。
[Evaluation test 2-1]
The power consumption during bearing rotation when each grease composition was used was measured by the following method. As the bearing, a double row ball bearing 7008A-DF manufactured by NSK Co., Ltd. was used. Before the test, the inside of the bearing was thoroughly washed with an organic solvent, and then an experimental oil (grease composition) was injected into the gap between the bearing ball, the raceway ring, and the cage with a syringe. In the experiment, a total of 4 bearings (2 bearings x 2 sets) filled with the same oil agent were used. The inner ring of the bearing is fixed and rotated in a certain direction by an electric motor (manufactured by Yasukawa Electric Co., Ltd., TYPE: FEQ, 2.2 kW) via a pulley, and the power consumption of the motor is measured by a power meter (manufactured by HIOKI Co., Ltd., CE3169, CLAMP ON POWER). It was measured by HiTESTER). The integrated power consumption (kW) in continuous rotation for 2 hours was compared with the bearing rotation speed set to 1300 rpm and the temperature set to room temperature. The number of repeated experiments was set to 3. The results obtained are shown in Tables 3-5. The bearing power consumption and power reduction rate (%: test oil 2-11 standard) in Tables 3 to 5 are average values of three experiments.

[評価試験2−2]
各グリース組成物について、評価試験1と同様の試験を実施した。得られた結果を表3〜5に示す。なお、表3〜5中の軸受消費電力及び電力削減率(%:供試油2−11基準)は、3回の実験の平均値である。
[Evaluation test 2-2]
The same test as in the evaluation test 1 was carried out for each grease composition. The results obtained are shown in Tables 3-5. The bearing power consumption and power reduction rate (%: test oil 2-11 standard) in Tables 3 to 5 are average values of three experiments.

Figure 0006826651
Figure 0006826651

Figure 0006826651
Figure 0006826651

Figure 0006826651
Figure 0006826651

[供試油3−1〜3−8]
基油A及びB、増ちょう剤、並びに有機モリブデン化合物として、モリブデンジチオカーバメート(モリブデン元素含有量が29質量%、硫黄元素含有量が28質量%)及びモリブデンジチオホスフェート(モリブデン元素含有量が8質量%、りん元素含有量が6質量%、硫黄元素含有量が12質量%)を表6〜7に示す配合量(質量%で示す。モリブデン元素量換算値も併記)でステンレス製容器に入れた。増ちょう剤として金属石けん系化合物(単一石けん)を用いる場合には、ステアリン酸リチウムを潤滑油基油に加え、200℃に加熱した後に冷却することで、半固体状の組成物を得た。増ちょう剤として金属石けん系化合物(コンプレックス石けん)を用いる場合には、12−ヒドロキシステアリン酸、アゼライン酸、及び水酸化リチウムを潤滑油基油に加え、200℃に加熱し反応させコンプレックス石けんとし、冷却することで、半固体状の組成物を得た。増ちょう剤としてウレア系化合物を用いる場合には、ウレア系化合物の原料であるアミン及びイソシアネートを容器内の潤滑油基油に加え、150℃に加熱し、マグネチックスターラーで攪拌して、アミン及びジイソシアネートを反応させた。そして、脱水後、室温に冷却することで、半固体状の組成物を得た。さらに、得られた各半固体状の組成物にその他添加剤(フェノール系酸化防止剤、腐食防止剤など)を加え、3本ロールで分散処理を行い、表6〜7に示す組成を有するグリース組成物を得た。また、得られたグリース組成物について、JIS K2220に準拠してちょう度(混和ちょう度)を測定した。
[Test oil 3-1 to 3-8]
Base oils A and B, thickeners, and organic molybdenum compounds include molybdenum dithiocarbamate (molybdenum element content 29% by mass, sulfur element content 28% by mass) and molybdenum dithiophosphate (molybdenum element content 8% by mass). %, Phosphorus element content is 6% by mass, Sulfur element content is 12% by mass) in a stainless steel container at the blending amounts shown in Tables 6 to 7 (indicated by mass%. Molybdenum element amount conversion value is also shown). .. When a metallic soap compound (single soap) is used as the thickener, lithium stearate is added to the lubricating oil base oil, and the mixture is heated to 200 ° C. and then cooled to obtain a semi-solid composition. .. When a metal soap compound (complex soap) is used as the thickener, 12-hydroxystearic acid, azelaic acid, and lithium hydroxide are added to the lubricating oil base oil and heated to 200 ° C. to react to form a complex soap. By cooling, a semi-solid composition was obtained. When a urea compound is used as the thickener, amine and isocyanate, which are the raw materials of the urea compound, are added to the lubricating oil base oil in the container, heated to 150 ° C., stirred with a magnetic stirrer, and the amine and isocyanate are added. The diisocyanate was reacted. Then, after dehydration, it was cooled to room temperature to obtain a semi-solid composition. Further, other additives (phenolic antioxidant, corrosion inhibitor, etc.) are added to each of the obtained semi-solid compositions, and dispersion treatment is performed with three rolls to carry out grease having the compositions shown in Tables 6 to 7. The composition was obtained. In addition, the consistency (mixing consistency) of the obtained grease composition was measured according to JIS K2220.

[評価試験3−1(軸受寿命)]
各グリース組成物について、高温グリース軸受寿命試験を行った。具体的には、ASTM−D3336に準拠して、軸受(6204ZZ)に試料グリースを2g充填し、温度150℃において、回転数10000rpm、スラスト荷重66Nで軸受を連続運転させ、潤滑不良に伴う異常運転に至るまでの時間を軸受寿命(hr)として記録した。
[Evaluation test 3-1 (bearing life)]
Each grease composition was subjected to a high temperature grease bearing life test. Specifically, in accordance with ASTM-D3336, the bearing (6204ZZ) is filled with 2 g of sample grease, and the bearing is continuously operated at a temperature of 150 ° C. at a rotation speed of 10000 rpm and a thrust load of 66 N, resulting in abnormal operation due to poor lubrication. The time to reach was recorded as the bearing life (hr).

[評価試験3−2(軸受消費電力)]
各グリース組成物について、評価試験2−1と同様の試験を実施した。得られた結果を表6〜7に示す。なお、表6〜7中の軸受消費電力及び電力削減率(%:供試油3−7基準)は、3回の実験の平均値である。
[Evaluation test 3-2 (bearing power consumption)]
The same test as the evaluation test 2-1 was carried out for each grease composition. The results obtained are shown in Tables 6-7. The bearing power consumption and power reduction rate (%: test oil 3-7 standard) in Tables 6 to 7 are the average values of the three experiments.

Figure 0006826651
Figure 0006826651

Figure 0006826651
Figure 0006826651

本発明のグリース組成物は、軸受回転に消費される電力量が少なくて済むという格別の効果を奏する。したがって、本発明のグリースは、ころがり軸受やすべり軸受、ボールネジや直動ガイド、歯車などの機械要素の潤滑に好適に用いることができ、産業機械や輸送用機械システムなどにおいて有用である。

The grease composition of the present invention has a special effect that the amount of electric power consumed for bearing rotation is small. Therefore, the grease of the present invention can be suitably used for lubrication of mechanical elements such as rolling bearings, slide bearings, ball screws, linear motion guides, and gears, and is useful in industrial machines, transportation machine systems, and the like.

Claims (5)

潤滑油基油と、増ちょう剤と、モリブデンジチオカーバメート及びモリブデンジチオホスフェートから選ばれる少なくとも1種を含有する有機モリブデン化合物と、を含有するグリース組成物であって、
ASTM D3238によるn−d−M環分析値の%Cが2〜8、%Cが50〜75である第1の潤滑油基油と、
ASTM D3238によるn−d−M環分析値の%Cが1以下、%Cが70以上、尿素アダクト値が4質量%以下であり、40℃における動粘度が20mm/s以上である第2の潤滑油基油と、
を含有し、
前記潤滑油基油全量を基準として、前記第1の潤滑油基油の含有量が5〜90質量%であり、前記第2の潤滑油基油の含有量が10〜95質量%であり、
前記潤滑油基油全量を基準として、前記第1の潤滑油基油と前記第2の潤滑油基油の合計含有量が70質量%以上であり、
ちょう度が220〜300である、グリース組成物。
A grease composition containing a lubricating oil base oil, a thickener, and an organic molybdenum compound containing at least one selected from molybdenum dithiocarbamate and molybdenum dithiophosphate .
The first and the lubricating oil base oil n-d-M ring analysis value of% C A by ASTM D3238 there is 2 to 8,% C P 50 to 75,
ASTM D3238 is n-d-M ring analysis value of% C A by 1 or less,% C P is 70 or more, the urea adduct value of 4% by mass or less, is kinematic viscosity at 40 ° C. is 20 mm 2 / s or more Second lubricating oil base oil and
Contains,
The basis of the lubricating base oils the total amount, the content of the first lubricating base oil is 5 to 90 wt%, the content of the second lubricating base oil Ri 10-95% by mass ,
The total content of the first lubricating oil base oil and the second lubricating oil base oil is 70% by mass or more based on the total amount of the lubricating oil base oil.
Butterfly degree of Ru der 220 to 300, the grease composition.
前記第1の潤滑油基油は、40℃における動粘度10〜700mm/s、及び粘度指数90〜120を有する、請求項1に記載のグリース組成物。 The grease composition according to claim 1, wherein the first lubricating oil base oil has a kinematic viscosity of 10 to 700 mm 2 / s at 40 ° C. and a viscosity index of 90 to 120. 前記第2の潤滑油基油は、40℃における動粘度20〜5000mm/s、及び粘度指数が110〜150を有する、請求項1又は2に記載のグリース組成物。 The grease composition according to claim 1 or 2 , wherein the second lubricating oil base oil has a kinematic viscosity of 20 to 5000 mm 2 / s at 40 ° C. and a viscosity index of 110 to 150. 前記第2の潤滑油基油は、鉱物油及び合成炭化水素から選ばれる少なくとも1種を含有する、請求項1〜のいずれか一項に記載のグリース組成物。 The grease composition according to any one of claims 1 to 3 , wherein the second lubricating oil base oil contains at least one selected from mineral oils and synthetic hydrocarbons. 前記増ちょう剤は、金属石けん系化合物及びウレア化合物から選ばれる少なくとも1種を含有する、請求項1〜のいずれか一項に記載のグリース組成物。 The grease composition according to any one of claims 1 to 4 , wherein the thickener contains at least one selected from a metallic soap-based compound and a urea compound.
JP2019226329A 2013-12-02 2019-12-16 Grease composition Active JP6826651B2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013249344 2013-12-02
JP2013249344 2013-12-02
JP2014052406 2014-03-14
JP2014052403 2014-03-14
JP2014052403 2014-03-14
JP2014052406 2014-03-14

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015551515A Division JP6682271B2 (en) 2013-12-02 2014-12-02 Grease composition

Publications (2)

Publication Number Publication Date
JP2020041162A JP2020041162A (en) 2020-03-19
JP6826651B2 true JP6826651B2 (en) 2021-02-03

Family

ID=53273457

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015551515A Active JP6682271B2 (en) 2013-12-02 2014-12-02 Grease composition
JP2019226329A Active JP6826651B2 (en) 2013-12-02 2019-12-16 Grease composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015551515A Active JP6682271B2 (en) 2013-12-02 2014-12-02 Grease composition

Country Status (5)

Country Link
JP (2) JP6682271B2 (en)
KR (1) KR102238222B1 (en)
CN (1) CN105814178A (en)
SG (2) SG10201804545UA (en)
WO (1) WO2015083695A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024096A (en) * 2015-07-17 2017-02-02 日本電産サンキョー株式会社 Industrial robot and control method for industrial robot
US20210095219A1 (en) * 2017-08-31 2021-04-01 Idemitsu Kosan Co.,Ltd. Grease composition
JP7303659B2 (en) * 2019-04-26 2023-07-05 Ntn株式会社 tapered roller bearing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4397754B4 (en) * 1992-08-05 2011-05-12 JTEKT Corp., Osaka-shi Grease for a rolling bearing and use of a grease for sealing rolling bearings
JP2692054B2 (en) * 1992-09-30 1997-12-17 昭和シェル石油株式会社 Lubricating grease composition
JP5806797B2 (en) * 2008-10-07 2015-11-10 Jx日鉱日石エネルギー株式会社 Lubricating oil base oil and method for producing the same, lubricating oil composition
WO2010041689A1 (en) * 2008-10-07 2010-04-15 新日本石油株式会社 Lubricant base oil and a process for producing the same, and lubricating oil composition
JP5815223B2 (en) 2010-11-12 2015-11-17 Jx日鉱日石エネルギー株式会社 Engine oil composition
JP5789111B2 (en) * 2011-03-25 2015-10-07 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
JP5943479B2 (en) * 2011-11-28 2016-07-05 昭和シェル石油株式会社 Grease composition
JP2014205860A (en) * 2014-08-04 2014-10-30 Jx日鉱日石エネルギー株式会社 Lubricant base oil and manufacturing method therefor, lubricant composition

Also Published As

Publication number Publication date
CN105814178A (en) 2016-07-27
KR20160093041A (en) 2016-08-05
JP6682271B2 (en) 2020-04-15
WO2015083695A1 (en) 2015-06-11
JP2020041162A (en) 2020-03-19
SG10201804545UA (en) 2018-07-30
SG11201604115WA (en) 2016-07-28
KR102238222B1 (en) 2021-04-09
JPWO2015083695A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6826651B2 (en) Grease composition
JP5646859B2 (en) Lubricating oil composition for continuously variable transmission
EP1930400B1 (en) Lubricant composition
KR102133170B1 (en) Grease composition for bearing
KR101487032B1 (en) Grease
JP5638256B2 (en) Lubricating oil composition
JP2009511728A (en) Lubricating oil composition
JP2010540719A (en) Lubricating grease composition and preparation
JP7039459B2 (en) Mineral oil-based base oil, lubricating oil composition, equipment, lubricating method, and grease composition
WO2012115141A1 (en) Grease composition
US20210324290A1 (en) Grease composition for constant velocity joint
JP5516679B2 (en) Lubricating oil composition
JPWO2020158907A1 (en) Grease composition
CN106029851A (en) Silicone grease composition
JP6511128B2 (en) Grease composition
EP3178910B1 (en) Grease composition
EP3760697B1 (en) Lubricant composition, its method of producing and use in a mechanical device
JP6448638B2 (en) Improved roll stability in grease compositions
JP2013028749A (en) Grease composition
JP6887758B2 (en) Grease composition
JP2012072300A (en) Grease composition for brake
WO2022123857A1 (en) Grease composition, and method for lubricating sliding part using said grease composition
JP6382749B2 (en) Lubricating oil composition for final reduction gear
JP2015224269A (en) Grease composition and rolling bearing
JPWO2015060399A1 (en) Grease composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210115

R150 Certificate of patent or registration of utility model

Ref document number: 6826651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250