JP6823522B2 - Water content evaluation method for construction materials - Google Patents

Water content evaluation method for construction materials Download PDF

Info

Publication number
JP6823522B2
JP6823522B2 JP2017066610A JP2017066610A JP6823522B2 JP 6823522 B2 JP6823522 B2 JP 6823522B2 JP 2017066610 A JP2017066610 A JP 2017066610A JP 2017066610 A JP2017066610 A JP 2017066610A JP 6823522 B2 JP6823522 B2 JP 6823522B2
Authority
JP
Japan
Prior art keywords
water content
particle size
soil particles
construction material
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017066610A
Other languages
Japanese (ja)
Other versions
JP2018169282A (en
Inventor
麻穂 田中
麻穂 田中
聡 國井
聡 國井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2017066610A priority Critical patent/JP6823522B2/en
Publication of JP2018169282A publication Critical patent/JP2018169282A/en
Application granted granted Critical
Publication of JP6823522B2 publication Critical patent/JP6823522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、建設材料の含水比評価方法に関するものであり、詳しくは、評価対象となる建設材料を均一に分散して流下させ、流下する建設材料を撮像して画像処理を行うことにより土粒子の形状を評価し、特定の粒径区分に含まれる土粒子について、その形状に基づき含水比を評価する方法に関するものである。 The present invention relates to a method for evaluating the water content of a construction material. Specifically, the construction material to be evaluated is uniformly dispersed and flowed down, and the flowing down construction material is imaged and image-processed to perform image processing. The present invention relates to a method of evaluating the shape of soil particles contained in a specific particle size category and evaluating the water content ratio based on the shape of the soil particles.

一般的な建設工事はもちろんのこと、特にCSG(Cemented Sand and Gravel)ダムやコンクリートダム工事等では、施工品質を向上させるために、使用する建設材料の含水比を適切に把握することが重要である。一般的に実施されている含水比の評価方法には、測定環境に適した種々の方法が用いられている。例えば、乾燥炉や電子レンジを使用して水分を含んだ試料を乾燥させ、乾燥前と乾燥後の重量の差分に基づいて試料の水分量を求める方法や、水分計(RI水分計、マイクロ波水分計、近赤外線水分計等)を用いて水分量を求める方法である。 In addition to general construction work, especially in CSG (Cemented Sand and Gravel) dam and concrete dam construction, it is important to properly grasp the water content ratio of the construction materials used in order to improve the construction quality. is there. Various methods suitable for the measurement environment are used as the commonly used evaluation method of the water content ratio. For example, a method of drying a sample containing water using a drying furnace or a microwave oven and determining the water content of the sample based on the difference in weight between before and after drying, or a moisture meter (RI moisture meter, microwave). This is a method of determining the amount of water using a moisture meter, a near-infrared moisture meter, etc.).

しかし、乾燥炉を用いて水分量を計測する方法では、試料の乾燥に長時間(例えば24時間)を要するため、結果が判明するまでに時間を要するという問題があった。また、電子レンジを用いて試料を乾燥させる方法では、炉乾燥による計測方法と比較して短時間で結果が出るという利点があるが、人手による作業であるため、労力が必要であるという問題があった。 However, in the method of measuring the water content using a drying furnace, it takes a long time (for example, 24 hours) to dry the sample, so that there is a problem that it takes time until the result is known. In addition, the method of drying the sample using a microwave oven has the advantage that the result can be obtained in a shorter time than the measurement method by furnace drying, but there is a problem that labor is required because it is a manual work. there were.

また、水分計を用いて水分量を計測する方法では、試料の表面に存在する水分しか検知できず、計測時における試料の密度に計測結果が影響を受けるという問題があった。さらに、粒度が均一でない試料の場合には、分級(篩い分け)しない状態の試料に対して、水分計を用いて水分量を計測したとしても、分級毎の水分量を把握することはできなかった。そこで、建設材料の含水比を評価するための技術が種々提案されている(特許文献1〜特許文献4参照)。 Further, the method of measuring the amount of water using a moisture meter has a problem that only the moisture existing on the surface of the sample can be detected, and the measurement result is affected by the density of the sample at the time of measurement. Furthermore, in the case of a sample with non-uniform particle size, even if the water content is measured using a moisture meter for the sample in the unclassified (sieving) state, the water content for each classification cannot be grasped. It was. Therefore, various techniques for evaluating the water content of construction materials have been proposed (see Patent Documents 1 to 4).

特許文献1に記載された技術は、地盤材料の表面水量をリアルタイムで管理する方法及びシステムに関するものであり、工事現場に継続的に供給される様々な粒径の混在する地盤材料の含水比を連続的に計測し、供給される地盤材料の一部を所定時間おきに抜き取って粒度分布を検出し、地盤材料の含水比から粒度分布に応じて所定粒径別の含水比を算出し、その粒径別の含水比に基づき地盤材料の表面水量をリアルタイムで推定するようになっている。この技術において、地盤材料の含水比は、地盤材料に近赤外光を照射したときの所定波長の反射率または透過率に基づいて計測する。 The technique described in Patent Document 1 relates to a method and a system for controlling the surface water content of the ground material in real time, and determines the water content ratio of the ground material having various particle sizes continuously supplied to the construction site. Continuous measurement is performed, a part of the supplied ground material is extracted at predetermined time intervals to detect the particle size distribution, and the water content ratio for each predetermined particle size is calculated from the water content ratio of the ground material according to the particle size distribution. The surface water content of the ground material is estimated in real time based on the water content ratio for each particle size. In this technique, the water content of the ground material is measured based on the reflectance or transmittance of a predetermined wavelength when the ground material is irradiated with near-infrared light.

特許文献2に記載された技術は、多様な粒径の粒状材が混在する地盤材料の粒度を計測するためのものであり、地盤材料の所定量を蓋なし容器内に積載し、当該容器を加振して地盤材料の所定量を容器の底面全体に分散させ、容器の上方から容器内の地盤材料の分散画像を撮像する。そして、撮像した分散画像から地盤材料の粒度を測定するようになっている。 The technique described in Patent Document 2 is for measuring the particle size of a ground material in which granular materials having various particle sizes are mixed, and a predetermined amount of the ground material is loaded in a container without a lid and the container is loaded. The vibration is applied to disperse a predetermined amount of the ground material over the entire bottom surface of the container, and a dispersed image of the ground material in the container is taken from above the container. Then, the particle size of the ground material is measured from the captured dispersed image.

特許文献3に記載された技術は、粒状材料の画像から各粒状材の全体に対する含有率を把握して粒度を管理するためのものであり、所定採取場で採取して継続的に供給される粒状材料の粒度品質を管理するために、粒状材料の撒き出し画像を入力する入力手段と、撒き出し画像中の粒状材の輪郭を検出する検出手段と、各粒状材の輪郭からその粒状材の面積を求め、かつ撒き出し画像の対象材料全体の面積に対する所定粒径以上の粒状材の面積割合を粒度インデックスとして算出する算出手段と、粒状材料の最粗粒試料及び最細粒試料の粒度インデックスを記憶する記憶手段と、継続的に供給される粒状材料の粒度インデックスと最粗粒試料及び最細粒試料の粒度インデックスとを比較して供給材料の粒度品質を判定する判定手段とを備えている。 The technique described in Patent Document 3 is for grasping the content ratio of each granular material with respect to the whole from an image of the granular material and controlling the particle size, and is continuously supplied by collecting at a predetermined sampling site. In order to control the particle size quality of the granular material, an input means for inputting a sprinkled image of the granular material, a detection means for detecting the contour of the granular material in the sprinkled image, and a means for detecting the contour of the granular material from the contour of each granular material. A calculation means for calculating the area and calculating the area ratio of the granular material having a predetermined particle size or more to the total area of the target material of the sprinkled image as the particle size index, and the particle size index of the coarsest grain sample and the finest grain sample of the granular material. A storage means for storing the data and a determination means for determining the particle size quality of the supplied material by comparing the particle size index of the continuously supplied granular material with the particle size indexes of the coarsest grain sample and the finest grain sample. There is.

特許文献4に記載された技術は、多様な寸法、形状を呈してなる粒状材料が混在した試料において、その粒度を特定するための粒状材料の粒度特定方法であり、試料を光学系手段にて撮像し、入力画像を作成するステップと、入力画像に対してラプラシアンガウシアン関数を適用してウェーブレット変換を実施し、ウェーブレット画像を作成するステップと、ウェーブレット画像に対して予め設定されている閾値を適用して二値化処理を実施し、二値化画像を作成するステップと、二値化画像を使用して、少なくとも粒状材料の寸法および形状からなる粒状材料情報を算出するステップと、粒状材料情報を使用して、試料の粒度分布曲線を作成するステップとからなる。 The technique described in Patent Document 4 is a method for specifying the particle size of a granular material in which granular materials having various sizes and shapes are mixed, and the sample is subjected to an optical system means. A step of imaging and creating an input image, a step of applying a Laplacian Gaussian function to the input image to perform a wavelet transform and creating a wavelet image, and a step of applying a preset threshold to the wavelet image. And the step of performing the binarization process to create a binarized image, the step of calculating the granular material information consisting of at least the dimensions and shape of the granular material using the binarized image, and the granular material information. Consists of the steps to create a sample particle size distribution curve using.

特開2015−105898号公報JP-A-2015-105988 特開2015−179044号公報Japanese Unexamined Patent Publication No. 2015-179044 特開2010−249553号公報Japanese Unexamined Patent Publication No. 2010-249553 特開2011−106923号公報Japanese Unexamined Patent Publication No. 2011-106923

ところで、土粒子を分級して含まれる水の割合(以下、含水比というが、本発明では含水比と含水率とを明確に区別していない)を測定する場合に、特に細粒分において、含まれる水の割合が少なければ、土粒子同士が均一にばらけるので、上述した画像処理を用いた技術であっても、適切に含水量を求めることができる。しかし、含まれる水の割合が多い細粒分の場合には、土粒子同士がくっついて団粒化が生じる可能性が高く、正確な含水比を求めることができない場合がある。 By the way, when measuring the ratio of water contained by classifying soil particles (hereinafter referred to as the water content ratio, but the water content ratio and the water content are not clearly distinguished in the present invention), especially in the case of fine particles. If the proportion of water contained is small, the soil particles will be evenly dispersed, so that even with the technique using the image processing described above, the water content can be appropriately determined. However, in the case of fine particles containing a large proportion of water, there is a high possibility that soil particles will stick to each other to cause agglomeration, and it may not be possible to obtain an accurate water content ratio.

特に、コンクリートの単位水量を求める際に、実機プラントまたは現場における粒度測定結果に基づく補正を行っていないのが現状である。このため、例えばダム工事などの現場において、細粒分を多く含む材料の場合には、単位水量のばらつきが大きくなり、施工品質が低下するおそれがある。 In particular, when determining the unit water content of concrete, the current situation is that no correction is made based on the particle size measurement results at the actual plant or site. For this reason, in the case of a material containing a large amount of fine particles at a site such as dam construction, the unit water amount varies widely, and the construction quality may deteriorate.

この点、上述した各特許文献に記載した技術では、正確な含水比を測定できるとは言い難かった。近赤外光等を用いて含水比を連続的に計測する技術では、測定物の表面から数百マイクロメートル以下の含水比しか測定できず、また、測定物の色彩が変化すると、その色彩変化により測定結果が影響を受けることが多々あり、表面水量推定の精度が低下する。 In this respect, it has been difficult to say that the techniques described in the above-mentioned patent documents can accurately measure the water content ratio. With the technology for continuously measuring the water content ratio using near-infrared light, etc., only the water content ratio of several hundred micrometers or less can be measured from the surface of the object to be measured, and when the color of the object to be measured changes, the color changes. This often affects the measurement results and reduces the accuracy of surface water volume estimation.

また、粒度測定の対象となる材料を加振して、容器底面に均質に分散させる手法により撮像すると、表面に存在する材料のみしか撮像できない。さらに、材料の含水状態によっては、粒子同士が付着して近接するため、土粒子の輪郭を把握することが難しくなり、画像処理の精度が低下する。この場合にも、測定対象となる材料の粒度分布を正確に把握できないため、施工品質が低下するおそれがある。 Further, when the material to be measured for particle size is vibrated and imaged by a method of uniformly dispersing it on the bottom surface of the container, only the material existing on the surface can be imaged. Further, depending on the water content of the material, the particles adhere to each other and come close to each other, which makes it difficult to grasp the contour of the soil particles and lowers the accuracy of image processing. In this case as well, since the particle size distribution of the material to be measured cannot be accurately grasped, the construction quality may deteriorate.

本発明に係る建設材料の含水比評価方法は、上述した事情に鑑み提案されたもので、評価対象となる建設材料を均一に分散して流下させ、流下する建設材料を撮像して画像処理を行うことにより土粒子の形状を評価し、粒径区分毎に含水比を評価することを前提として、特に含水状態が表面水量等に大きな影響を与える粒径区分において、正確かつ容易に含水比を評価することが可能な建設材料の含水比評価方法を提供することを目的とする。 The method for evaluating the water content of a construction material according to the present invention has been proposed in view of the above circumstances. The construction material to be evaluated is uniformly dispersed and flowed down, and the flowing down construction material is imaged for image processing. On the premise that the shape of soil particles is evaluated and the water content ratio is evaluated for each particle size category, the water content ratio can be accurately and easily determined especially in the particle size category in which the water content has a great influence on the surface water content. It is an object of the present invention to provide a method for evaluating the water content of a construction material that can be evaluated.

本発明に係る建設材料の含水比評価方法は、上述した目的を達成するため、以下の特徴点を有している。すなわち、本発明に係る建設材料の含水比評価方法は、評価対象となる建設材料を均一に分散して流下させ、流下する建設材料を撮像して画像処理を行うことにより粒径を測定し、土粒子の粒径区分に基づいて含水比を評価することを前提として、以下の手順により含水比を評価する。 The method for evaluating the water content of a construction material according to the present invention has the following features in order to achieve the above-mentioned object. That is, in the method for evaluating the water content ratio of a construction material according to the present invention, the construction material to be evaluated is uniformly dispersed and flowed down, and the flowing down construction material is imaged and image processing is performed to measure the particle size. On the premise that the water content ratio is evaluated based on the particle size classification of soil particles, the water content ratio is evaluated by the following procedure.

含水比の評価に先立ち、建設材料に含まれる土粒子に対して、特定の粒径区分における形状に関するパラメータと含水比との関係とを事前に取得する。そして、評価対象となる建設材料を均一に拡散した状態で流下させ、均一に拡散した状態で流下する建設材料を撮像し、撮像した画像データを画像解析することにより、特定の粒径区分の土粒子1粒の形状に関するパラメータを算出し、形状に関するパラメータと含水比との関係に基づいて、評価対象となる建設材料における特定の粒径区分における含水比を評価する。 Prior to the evaluation of the water content ratio, the relationship between the parameter related to the shape in a specific particle size category and the water content ratio is obtained in advance for the soil particles contained in the construction material. Then, the construction material to be evaluated is allowed to flow down in a uniformly diffused state, the construction material flowing down in a uniformly diffused state is imaged, and the image data obtained is image-analyzed to analyze the soil of a specific particle size category. A parameter related to the shape of one particle is calculated, and the water content ratio in a specific particle size category in the building material to be evaluated is evaluated based on the relationship between the parameter related to the shape and the water content ratio .

そして、特定の粒径区分における形状に関するパラメータは、土粒子の平均面積、土粒子の長径、土粒子の短径、土粒子の数のうちの少なくとも一つであることを特徴とするものである。 The parameter relating to the shape in a specific particle size classification is characterized by being at least one of the average area of soil particles, the major axis of soil particles, the minor axis of soil particles, and the number of soil particles. ..

また、特定の粒径区分は、5mm未満の土粒子とすることが可能である。 In addition, the specific particle size classification can be soil particles of less than 5 mm.

本発明に係る建設材料の含水比評価方法によれば、評価対象となる建設材料を均一に分散して流下させ、流下する建設材料を撮像して画像処理を行うことにより土粒子の形状を評価し、粒径区分毎に含水比を評価することを前提としているため、建設材料が重なり合うことを防止して、粒度解析の精度を高めることが可能となる。 According to the method for evaluating the water content of a construction material according to the present invention, the shape of soil particles is evaluated by uniformly dispersing and flowing down the construction material to be evaluated, imaging the flowing construction material, and performing image processing. However, since it is premised that the water content ratio is evaluated for each particle size category, it is possible to prevent the construction materials from overlapping and improve the accuracy of the particle size analysis.

特に、含水状態が表面水量等に大きな影響を与える特定の粒径区分に対して、形状に関するパラメータと含水比との関係とを事前に取得しておき、当該パラメータと含水比との関係に基づいて、評価対象となる建設材料における特定の粒径区分における含水比を評価することにより、建設材料の含水比を正確に評価することができる。そして、このように建設材料の含水状態を正確に評価することにより、施工品質を向上させることができる。 In particular, for a specific particle size category in which the water content has a large effect on the surface water content, etc., the relationship between the shape parameter and the water content ratio is acquired in advance, and based on the relationship between the parameter and the water content ratio. Therefore, by evaluating the water content ratio of the construction material to be evaluated in a specific particle size category, the water content ratio of the construction material can be accurately evaluated. Then, by accurately evaluating the water content of the construction material in this way, the construction quality can be improved.

含水比評価装置のブロック図。The block diagram of the water content ratio evaluation device. 建設材料を拡散流下させて撮像するための装置群の概略構成を示す模式図。The schematic diagram which shows the schematic structure of the device group for diffusing and flowing down a construction material and image. 土粒子の含水比と団粒化との関係を示す説明図。Explanatory drawing which shows the relationship between the water content ratio of soil particles and agglomeration. 土粒子の平均面積と含水比の相関関係を示すグラフ。A graph showing the correlation between the average area of soil particles and the water content ratio.

以下、図面を参照して、本発明に係る建設材料の含水比評価方法の実施形態を説明する。図1〜図4は、本発明の実施形態に係る建設材料の含水比評価方法を説明するもので、図1は含水比評価装置のブロック図、図2は建設材料を拡散流下させて撮像するための装置群の概略構成を示す模式図、図3は土粒子の含水比と団粒化との関係を示す説明図、図4は土粒子の平均面積と含水比の相関関係を示すグラフである。 Hereinafter, embodiments of the water content evaluation method for construction materials according to the present invention will be described with reference to the drawings. 1 to 4 show a method for evaluating a water content ratio of a construction material according to an embodiment of the present invention. FIG. 1 is a block diagram of a water content ratio evaluation device, and FIG. 2 is an image taken by diffusing and flowing down a construction material. A schematic diagram showing the schematic configuration of the device group for the purpose, FIG. 3 is an explanatory diagram showing the relationship between the water content ratio of soil particles and agglomeration, and FIG. 4 is a graph showing the correlation between the average area of soil particles and the water content ratio. is there.

<建設材料の含水比評価方法の概要>
本発明の実施形態に係る建設材料の含水比評価方法は、評価対象となる建設材料を均一に分散して流下させ、流下する建設材料を撮像して画像処理を行うことにより土粒子の形状を評価し、粒径区分毎に含水比を評価することを前提として、例えば、団粒化が懸念される特定の粒径区分に対して、団粒化を考慮して含水比を評価するものである。すなわち、図3に示すように、土粒子の含水比が小さければ土粒子は分散しており、土粒子の含水比が高ければ土粒子は団粒化する傾向にある。なお、図3(a)は含水比が低い場合、図3(b)は含水比が高い場合の土粒子の状態を示している。
<Outline of water content evaluation method for construction materials>
In the method for evaluating the water content of a construction material according to the embodiment of the present invention, the construction material to be evaluated is uniformly dispersed and flowed down, and the flowing construction material is imaged and image-processed to obtain the shape of soil particles. On the premise of evaluating and evaluating the water content ratio for each particle size category, for example, the water content ratio is evaluated in consideration of agglomeration for a specific particle size category in which agglomeration is a concern. is there. That is, as shown in FIG. 3, if the water content of the soil particles is small, the soil particles are dispersed, and if the water content of the soil particles is high, the soil particles tend to agglomerate. Note that FIG. 3A shows the state of soil particles when the water content is low, and FIG. 3B shows the state of soil particles when the water content is high.

<含水比評価装置>
含水比評価装置100は、建設材料の含水比を測定するとともに、当該建設材料を均一に分散して鉛直方向に流下させ、当該流下する建設材料を撮像することにより土粒子の形状を評価するための装置であって、図1に示すように、供給手段10と、拡散流下手段20と、撮像手段30と、粒径区分解析手段40と、特定粒径区分含水比評価手段50とを備えている。
<Water content evaluation device>
The water content ratio evaluation device 100 measures the water content ratio of the construction material, uniformly disperses the construction material and causes it to flow down in the vertical direction, and evaluates the shape of the soil particles by imaging the flowing down construction material. As shown in FIG. 1, the apparatus includes a supply means 10, a diffusion flow means 20, an imaging means 30, a particle size classification analysis means 40, and a specific particle size classification water content ratio evaluation means 50. There is.

なお、各手段は、それぞれの機能を発揮するための単一または複数の部材、あるいはCPU等のハードウェアで実行されることにより、その機能を発揮するソフトウェアまたは同等の機能を有する論理回路から構成される。 Each means is composed of software that exerts its function or a logic circuit having an equivalent function by being executed by a single or a plurality of members for exerting each function, or hardware such as a CPU. Will be done.

<供給手段>
供給手段10は、建設材料を供給するための手段である。供給手段10は、図2に示すように、搬送路(図示せず)から分流したCSG材を受け入れるホッパー11と、ホッパー11で受け入れたCSG材を搬送するベルトフィーダー12と、ベルトフィーダー12で搬送するCSG材を薄く敷き均す振動装置(図示せず)とを備えている。
<Supply means>
The supply means 10 is a means for supplying construction materials. As shown in FIG. 2, the supply means 10 is conveyed by the hopper 11 that receives the CSG material separated from the transport path (not shown), the belt feeder 12 that conveys the CSG material received by the hopper 11, and the belt feeder 12. It is equipped with a vibrating device (not shown) that spreads the CSG material thinly.

拡散流下手段20は、供給手段10から供給される建設材料を均一に拡散させて鉛直方向に流下させるための手段である。拡散流下手段20は、図2に示すように、板状のスクリーン部材21を備えている。 The diffusion flow-down means 20 is a means for uniformly diffusing the construction material supplied from the supply means 10 and causing it to flow down in the vertical direction. As shown in FIG. 2, the diffusion flow means 20 includes a plate-shaped screen member 21.

なお、拡散流下手段20は、図2に示すような部材構成に限られず、供給手段10から供給される建設材料を均一に拡散して流下させることができれば、どのような装置であってもよく、例えば、筒状の収容体及び当該収容体の内部に収容された円筒状、三角錐状、四角錐状、円錐状、あるいはこれらを組み合わせた拡散部を有する装置と、拡散部を振動させる振動装置とから構成してもよい。 The diffusion flow-down means 20 is not limited to the member configuration as shown in FIG. 2, and may be any device as long as the construction material supplied from the supply means 10 can be uniformly diffused and flowed down. For example, a device having a cylindrical container and a diffusion unit housed inside the container, a cylindrical shape, a triangular pyramid shape, a quadrangular pyramid shape, a conical shape, or a combination thereof, and a vibration that vibrates the diffusion part. It may be composed of an apparatus.

<撮像手段>
撮像手段30は、図2に示すように、拡散流下手段20により均一に拡散された建設材料を撮像するための手段である。また、図示しないが、撮像手段30は、撮像レンズ系、撮像素子、画像データの送信インターフェース等を備えたデジタルカメラにより構成する。撮像手段30の構成要素として、撮像対象となる建設材料を照明するための照明装置を含んでいてもよい。
<Imaging means>
As shown in FIG. 2, the image pickup means 30 is a means for imaging a construction material uniformly diffused by the diffusion flow means 20. Although not shown, the image pickup means 30 is composed of a digital camera provided with an image pickup lens system, an image pickup element, an image data transmission interface, and the like. As a component of the image pickup means 30, a lighting device for illuminating the construction material to be imaged may be included.

本実施形態では、拡散流下手段20を構成するスクリーン部材21を背景として撮像を行うため、デジタルカメラは、拡散流下手段20の下部近傍であって、流下する建設材料が接触(衝突)しない位置に設置してある。また、粒径区分解析の精度を上げるために、撮像手段30(デジタルカメラ)を複数箇所に設置してもよい。また、スクリーン部材21は、撮像する建設材料の色調とのコントラストが明確になる色の材料を用いることが好ましい。 In the present embodiment, since the image is taken with the screen member 21 constituting the diffusion flow means 20 as a background, the digital camera is located near the lower part of the diffusion flow means 20 at a position where the flowing construction materials do not come into contact (collision). It is installed. Further, in order to improve the accuracy of the particle size classification analysis, the imaging means 30 (digital camera) may be installed at a plurality of locations. Further, it is preferable to use a color material for the screen member 21 so that the contrast with the color tone of the construction material to be imaged becomes clear.

<粒径区分解析手段>
粒径区分解析手段40は、撮像手段30で撮像した画像データを画像解析することにより、建設材料に含まれる土粒子の形状に応じた粒径区分を解析するための手段である。例えば、粒径区分解析手段40は、パーソナルコンピュータ(PC)及び画像解析ソフトウェアからなり、パーソナルコンピュータにインストールされた画像解析ソフトウェアの機能により、撮像手段30から受信した画像データに基づいて画像解析を行って、解析対象となる建設材料に含まれる土粒子の粒径区分を解析する。
<Grain size classification analysis means>
The particle size classification analysis means 40 is a means for analyzing the particle size classification according to the shape of the soil particles contained in the construction material by performing image analysis of the image data captured by the image pickup means 30. For example, the particle size classification analysis means 40 includes a personal computer (PC) and image analysis software, and performs image analysis based on the image data received from the image pickup means 30 by the function of the image analysis software installed in the personal computer. Then, the particle size classification of soil particles contained in the construction material to be analyzed is analyzed.

<土粒子の形状の解析>
画像解析は、公知のどのような手法を用いてもよいが、基本的には、画像データに基づいて、建設材料に含まれる土粒子の輪郭認識を行って、建設材料の平均面積を解析する手法が用いられる。なお、建設材料に含まれる土粒子の形状を解析するためのパラメータとして平均面積を用いるのではなく、土粒子の長径、土粒子の短径、土粒子の数、及びこれらから算出されるパラメータを用いてもよい。建設材料に含まれる土粒子の形状を解析することにより、粒径区分を求めることができる。
<Analysis of soil particle shape>
Any known method may be used for image analysis, but basically, the contour recognition of soil particles contained in the construction material is performed based on the image data, and the average area of the construction material is analyzed. The method is used. In addition, instead of using the average area as a parameter for analyzing the shape of soil particles contained in construction materials, the major axis of soil particles, the minor axis of soil particles, the number of soil particles, and the parameters calculated from these are used. You may use it. By analyzing the shape of soil particles contained in construction materials, the particle size classification can be determined.

<特定粒径区分含水比評価手段>
特定粒径区分含水比評価手段50は、形状に関するパラメータと含水比との関係に基づいて、評価対象となる建設材料における特定の粒径区分における含水比を評価するための手段である。すなわち、図4に示すように、特定の粒径区分(例えば5mm未満)の土粒子の含水比と、土粒子の平均面積との間には相関関係があり、相関式が成立する。特定粒径区分含水比評価手段50は、この相関式を用いて特定粒径区分の土粒子の含水比を算出(評価)する。なお、下記相関式は、特定の粒径区分(例えば5mm未満)の土粒子の含水比を算出するための相関式の一例であり、他の相関式を用いてもよい。
<Specific particle size classification water content ratio evaluation means>
The specific particle size category water content ratio evaluation means 50 is a means for evaluating the water content ratio in a specific particle size category in the construction material to be evaluated based on the relationship between the parameter related to the shape and the water content ratio. That is, as shown in FIG. 4, there is a correlation between the water content ratio of soil particles of a specific particle size category (for example, less than 5 mm) and the average area of soil particles, and a correlation equation is established. The specific particle size category water content ratio evaluation means 50 calculates (evaluates) the water content ratio of soil particles in the specific particle size category using this correlation equation. The following correlation formula is an example of a correlation formula for calculating the water content ratio of soil particles of a specific particle size category (for example, less than 5 mm), and other correlation formulas may be used.

5=A×S5+B・・・相関式
ただし、
5:5mm未満の区分の土粒子の含水比
5:5mm未満の区分の土粒子の平均面積
A,B:キャリブレーションにより算出した係数
W 5 = A × S 5 + B ・ ・ ・ Correlation formula However
W 5 : Moisture content ratio of soil particles in the category of less than 5 mm S 5 : Average area of soil particles in the category of less than 5 mm A, B: Coefficient calculated by calibration

<建設材料全体の含水比>
本発明に係る建設材料の含水比評価方法では、特定の粒径区分(例えば5mm未満)の土粒子に対して含水比を評価している。これは、当該粒径区分の土粒子では団粒化が生じる可能性があり、団粒化の影響を土粒子の形状として評価することにより、特定の粒径区分における土粒子の含水比を評価できるためである。
<Water content of all construction materials>
In the method for evaluating the water content of a construction material according to the present invention, the water content is evaluated for soil particles of a specific particle size category (for example, less than 5 mm). This is because there is a possibility that agglomeration may occur in the soil particles of the particle size category, and the water content ratio of the soil particles in a specific particle size category is evaluated by evaluating the effect of the agglomeration as the shape of the soil particles. Because it can be done.

したがって、建設材料全体の含水比を求めるには、特定の粒径区分(例えば5mm未満)の土粒子については本発明に係る含水比評価方法を用いるとともに、それ以外の粒径区分の土粒子については、適切な方法で含水比を評価すればよい。 Therefore, in order to determine the water content of the entire construction material, the water content evaluation method according to the present invention is used for soil particles of a specific particle size category (for example, less than 5 mm), and soil particles of other particle size categories are used. The water content ratio may be evaluated by an appropriate method.

<粒径区分の解析>
以下、建設材料に対する粒径区分の解析手順を説明する。粒径区分の解析は、粒径区分解析手段40の機能により実現される。具体的には、粒度分布が既知である建設材料を用いて重回帰分析を行うことにより粒径区分毎に回帰式を作成し、作成した回帰式に、解析対象となる建設材料の画像解析結果から算出される説明変数を代入して、粒径区分毎の解析対象質量率を算出し、算出した各粒度の解析対象質量率を用いて、解析対象である建設材料の粒径区分を解析する。
<Analysis of particle size classification>
The procedure for analyzing the particle size classification for construction materials will be described below. The analysis of the particle size classification is realized by the function of the particle size classification analysis means 40. Specifically, a regression equation is created for each particle size category by performing multiple regression analysis using a construction material whose particle size distribution is known, and the created regression equation is used as an image analysis result of the construction material to be analyzed. By substituting the explanatory variables calculated from, the mass ratio to be analyzed for each particle size category is calculated, and the particle size category of the construction material to be analyzed is analyzed using the calculated mass ratio to be analyzed for each particle size. ..

この粒径区分の解析は、大別して6つの工程からなる。第1工程は、粒度分布が既知である建設材料を用いて、当該建設材料における粒径区分毎の土粒子平均短径(Di)と合計投影面積(Si)とを算出する工程である。第2工程は、粒度毎の合計投影面積(Si)を、各粒度の合計投影面積(Si)の総和である全投影面積(ΣSi)で除して無次元化することにより、投影面積率(Si/ΣSi)を算出する工程である。第3工程は、粒度分布が既知である建設材料を用いて、粒径区分毎の合計質量(Mi)を、各粒径区分の合計質量(Mi)の総和である全質量(ΣMi)で除して無次元化することにより、質量率(Mi/ΣMi)を算出する工程である。第4工程は、目的変数を質量率(Mi/ΣMi)とし、説明変数を土粒子平均短径(Di)及び投影面積率(Si/ΣSi)として重回帰分析を行い、粒径区分毎に回帰式を作成する工程である。第1工程、第2工程、第3工程、第4工程により、粒径区分解析の基本となる粒径区分毎の回帰式を作成する。 The analysis of this particle size classification is roughly divided into six steps. The first step is a step of calculating the average minor axis of soil particles (Di) and the total projected area (Si) for each particle size category in the construction material using a construction material having a known particle size distribution. The second step is to make the total projected area (Si) for each particle size non-dimensional by dividing it by the total projected area (ΣSi), which is the total of the total projected area (Si) for each particle size. This is the step of calculating Si / ΣSi). In the third step, using a construction material having a known particle size distribution, the total mass (Mi) for each particle size category is divided by the total mass (ΣMi), which is the total mass (Mi) for each particle size category. This is a step of calculating the mass ratio (Mi / ΣMi) by making it dimensionless. In the fourth step, multiple regression analysis is performed with the objective variable as the mass ratio (Mi / ΣMi) and the explanatory variables as the average minor axis of soil particles (Di) and the projected area ratio (Si / ΣSi), and regression is performed for each particle size category. This is the process of creating an expression. A regression equation for each particle size classification, which is the basis of the particle size classification analysis, is created by the first step, the second step, the third step, and the fourth step.

第5工程は、作成された回帰式に、解析対象となる建設材料の画像解析結果から算出される解析対象土粒子平均短径(Di)及び解析対象投影面積率(Si/ΣSi)を代入して、粒径区分毎の解析対象質量率(Mi/ΣMi)を算出する工程である。第6工程は、第5工程で算出した各粒度の解析対象質量率(Mi/ΣMi)を用いて、解析対象である建設材料の粒径区分を解析する工程である。この第6工程により、解析対象である建設材料の粒径区分を解析することができる。 In the fifth step, the average minor axis of soil particles to be analyzed (Di) and the projected area ratio to be analyzed (Si / ΣSi) calculated from the image analysis results of the construction material to be analyzed are substituted into the created regression equation. This is a step of calculating the analysis target mass ratio (Mi / ΣMi) for each particle size category. The sixth step is a step of analyzing the particle size classification of the construction material to be analyzed by using the analysis target mass ratio (Mi / ΣMi) of each particle size calculated in the fifth step. By this sixth step, the particle size classification of the construction material to be analyzed can be analyzed.

また、第4工程において、説明変数として投影面積絶対量の逆数(1/Si)を加えることにより、より一層正確に粒径を解析することができる。この場合、解析対象質量率(Mi/ΣMi)を算出する工程(第5工程)において、回帰式に代入する値として、解析対象となる建設材料の画像解析結果から算出される投影面積絶対量の逆数(1/Si)を加えて演算を行う。 Further, in the fourth step, the particle size can be analyzed more accurately by adding the reciprocal (1 / Si) of the absolute amount of projected area as an explanatory variable. In this case, in the step (fifth step) of calculating the analysis target mass ratio (Mi / ΣMi), the projected area absolute amount calculated from the image analysis result of the construction material to be analyzed is used as a value to be substituted in the regression equation. The reciprocal (1 / Si) is added to perform the calculation.

<粒径区分の解析アルゴリズム>
また、粒径区分の解析に用いる回帰式は、施工進捗に応じて、データ更新を行うことが好ましい。具体的な粒径解析アルゴリズムについて説明する。本実施形態で用いる回帰式は、解析対象となる建設材料の粒径区分を解析するための式であり、粒径区分毎に、それぞれ目的変数と、説明変数と、相関係数とからなる。
<Analysis algorithm for particle size classification>
Further, it is preferable to update the data of the regression equation used for the analysis of the particle size classification according to the progress of construction. A specific particle size analysis algorithm will be described. The regression equation used in the present embodiment is an equation for analyzing the particle size classification of the construction material to be analyzed, and is composed of an objective variable, an explanatory variable, and a correlation coefficient for each particle size classification.

上述したように、本実施形態で用いる回帰式の目的変数は、質量率Y=Mi/ΣMiであり、説明変数は、X1=土粒子平均短径Diと、X2=投影面積率Si/ΣSiである。また、説明変数として投影面積絶対量の逆数(1/Si)を加えてもよい。例えば、粒度D80(mm)、粒度D40(mm)、粒度D20(mm)、粒度D10(mm)、粒度D5(mm)について、それぞれ回帰式を作成して、当該回帰式に対して、解析対象となる建設材料の画像解析結果から算出される説明変数を代入することにより、解析対象である建設材料の粒径区分を解析する。なお、上述した回帰式は一例であり、変数を変更した回帰式により粒径区分を解析してもよい。 As described above, the objective variable of the regression equation used in this embodiment is mass ratio Y = Mi / ΣMi, and the explanatory variables are X1 = soil particle average minor diameter Di and X2 = projected area ratio Si / ΣSi. is there. Further, the reciprocal of the absolute amount of projected area (1 / Si) may be added as an explanatory variable. For example, regression equations are created for each of the particle size D80 (mm), particle size D40 (mm), particle size D20 (mm), particle size D10 (mm), and particle size D5 (mm), and the regression equation is analyzed. By substituting the explanatory variables calculated from the image analysis result of the construction material to be analyzed, the particle size classification of the construction material to be analyzed is analyzed. The regression equation described above is an example, and the particle size classification may be analyzed by the regression equation with the variables changed.

100 含水比評価装置
10 供給手段
11 ホッパー
12 ベルトフィーダー
20 拡散流下手段
21 スクリーン部材
30 撮像手段
40 粒径区分解析手段
50 特定粒径区分含水比評価手段
100 Moisture content evaluation device 10 Supply means 11 Hopper 12 Belt feeder 20 Diffusion flow means 21 Screen member 30 Imaging means 40 Particle size classification analysis means 50 Specific particle size classification water content ratio evaluation means

Claims (2)

建設材料に含まれる土粒子に対して、特定の粒径区分における形状に関するパラメータと含水比との関係とを事前に取得し、
評価対象となる建設材料を均一に拡散した状態で流下させ、
均一に拡散した状態で流下する建設材料を撮像し、
撮像した画像データを画像解析することにより、特定の粒径区分の土粒子1粒の形状に関するパラメータを算出し、
前記形状に関するパラメータと含水比との関係に基づいて、前記評価対象となる建設材料における特定の粒径区分における含水比を評価する建設材料の含水比評価方法であって、
前記特定の粒径区分における形状に関するパラメータは、土粒子の平均面積、土粒子の長径、土粒子の短径、土粒子の数のうちの少なくとも一つである、
ことを特徴とする建設材料の含水比評価方法。
For soil particles contained in construction materials, the relationship between the shape parameters and water content ratio in a specific particle size category is obtained in advance.
The construction materials to be evaluated are allowed to flow down in a uniformly diffused state.
Image the construction material flowing down in a uniformly diffused state,
By image analysis of the captured image data, parameters related to the shape of one soil particle of a specific particle size category are calculated.
A method for evaluating the water content of a construction material, which evaluates the water content of the construction material to be evaluated in a specific particle size category based on the relationship between the parameters related to the shape and the water content .
The parameter relating to the shape in the specific particle size category is at least one of the average area of soil particles, the major axis of soil particles, the minor axis of soil particles, and the number of soil particles.
A method for evaluating the water content of construction materials.
前記特定の粒径区分は、5mm未満の土粒子であることを特徴とする請求項に記載の建設材料の含水比評価方法。 The method for evaluating the water content of a construction material according to claim 1 , wherein the specific particle size category is soil particles of less than 5 mm.
JP2017066610A 2017-03-30 2017-03-30 Water content evaluation method for construction materials Active JP6823522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017066610A JP6823522B2 (en) 2017-03-30 2017-03-30 Water content evaluation method for construction materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017066610A JP6823522B2 (en) 2017-03-30 2017-03-30 Water content evaluation method for construction materials

Publications (2)

Publication Number Publication Date
JP2018169282A JP2018169282A (en) 2018-11-01
JP6823522B2 true JP6823522B2 (en) 2021-02-03

Family

ID=64019458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017066610A Active JP6823522B2 (en) 2017-03-30 2017-03-30 Water content evaluation method for construction materials

Country Status (1)

Country Link
JP (1) JP6823522B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570999B1 (en) * 1998-08-17 2003-05-27 Ag-Chem Equipment Co., Inc. Soil particle and soil analysis system
JP4894833B2 (en) * 2008-09-08 2012-03-14 トヨタ自動車株式会社 Soil condition judgment method
JP5582806B2 (en) * 2010-02-06 2014-09-03 鹿島建設株式会社 Granule size measurement system and program
JP6243640B2 (en) * 2013-06-28 2017-12-06 大成建設株式会社 Particle size distribution measurement system and weight conversion coefficient calculation system
JP6173894B2 (en) * 2013-11-30 2017-08-02 鹿島建設株式会社 Surface water volume management method and system for ground material
JP6489912B2 (en) * 2015-04-14 2019-03-27 前田建設工業株式会社 Particle size distribution analysis method and quality control method for construction materials

Also Published As

Publication number Publication date
JP2018169282A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US11391662B2 (en) Raw material particle size distribution measuring apparatus, particle size distribution measuring method, and porosity measuring apparatus
US8233667B2 (en) Apparatus and method for analysis of size, form and angularity and for compositional analysis of mineral and rock particles
Kumara et al. Image analysis techniques on evaluation of particle size distribution of gravel
Al-Thyabat et al. Estimation of the size distribution of particles moving on a conveyor belt
CN104502245B (en) A kind of method that utilization image analysis technology determines sand fineness modulus
JP3769012B2 (en) Grain automatic evaluation method and apparatus
JP5582806B2 (en) Granule size measurement system and program
CN107621435A (en) A kind of aggregate on-Line Monitor Device
KR101926641B1 (en) Analysis system for screening organic and inorganic materials in construction waste and recycled aggregate production method using the same
Yang et al. Detection of size of manufactured sand particles based on digital image processing
JP6823522B2 (en) Water content evaluation method for construction materials
Pieszczek et al. Near-infrared hyperspectral imaging for polymer particle size estimation
JP6706514B2 (en) Surface water control method for construction materials
JP6489912B2 (en) Particle size distribution analysis method and quality control method for construction materials
Santamarina et al. Development and testing of a zooming technique for fragmentation measurement
JP7267056B2 (en) CSG material quality measurement and control method and quality measurement and control system
Tysmans et al. Size and shape analysis of sedimentary grains by automated dynamic image analysis
JP6725793B1 (en) Old asphalt amount estimation system, asphalt plant and old asphalt amount estimation method
JP6189059B2 (en) Soil size analysis method
JP2021107651A (en) Aggregate particle size measurement system and asphalt plant
Thurley Automated online measurement of particle size distribution using 3D range data
JP2020180835A (en) Grain degree determination method and system for ground material
Heyduk Machine vision monitoring and particle size feed analysis
Pham et al. Determination of sieve grading curves using an optical device
Makarov et al. Application of Textural Features in the Analysis of Breakstone Grading

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210108

R150 Certificate of patent or registration of utility model

Ref document number: 6823522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150