JP6821570B2 - Polycondensation product containing a phenolic copolymer and a dispersant for a hydraulic composition containing the same. - Google Patents

Polycondensation product containing a phenolic copolymer and a dispersant for a hydraulic composition containing the same. Download PDF

Info

Publication number
JP6821570B2
JP6821570B2 JP2017533125A JP2017533125A JP6821570B2 JP 6821570 B2 JP6821570 B2 JP 6821570B2 JP 2017533125 A JP2017533125 A JP 2017533125A JP 2017533125 A JP2017533125 A JP 2017533125A JP 6821570 B2 JP6821570 B2 JP 6821570B2
Authority
JP
Japan
Prior art keywords
compound
group
carbon atoms
acid
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017533125A
Other languages
Japanese (ja)
Other versions
JPWO2017022831A1 (en
Inventor
彰 菅
彰 菅
勝俊 佐藤
勝俊 佐藤
朋久 岡田
朋久 岡田
大郎 對馬
大郎 對馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Chemical Industry Co Ltd
Original Assignee
Toho Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Chemical Industry Co Ltd filed Critical Toho Chemical Industry Co Ltd
Publication of JPWO2017022831A1 publication Critical patent/JPWO2017022831A1/en
Application granted granted Critical
Publication of JP6821570B2 publication Critical patent/JP6821570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/20Sulfonated aromatic compounds
    • C04B24/22Condensation or polymerisation products thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/20Sulfonated aromatic compounds
    • C04B24/22Condensation or polymerisation products thereof
    • C04B24/226Sulfonated naphtalene-formaldehyde condensation products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/243Phosphorus-containing polymers
    • C04B24/246Phosphorus-containing polymers containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/30Condensation polymers of aldehydes or ketones
    • C04B24/302Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/32Polyethers, e.g. alkylphenol polyglycolether
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Polyethers (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Combustion & Propulsion (AREA)

Description

本発明は新規なフェノール系共重合体を含有する重縮合生成物に関する。より詳しくは、ヒドロキシエチルフェノールのアルキレンオキサイド付加物とフェノールのアルキレンオキサイド付加物の誘導体及びアルデヒド類を含む単量体混合物を共重合させて得られる重縮合生成物に関する。 The present invention relates to a polycondensation product containing a novel phenolic copolymer. More specifically, the present invention relates to a polycondensation product obtained by copolymerizing a monomer mixture containing an alkylene oxide adduct of hydroxyethylphenol, a derivative of the alkylene oxide adduct of phenol, and aldehydes.

近年、コンクリート用材料としての骨材は、たとえば川砂等の良質な細骨材の枯渇に伴い、従来積極的には使用されていなかった低品質の骨材が使用される機会が増えてきている。そのような低品質の細骨材を用いた水硬性組成物は、一般的な水粉体比(W/B)であってもフレッシュ時の粘性が高くなり、作業性が低下する傾向にある。このような問題は、特に骨材中に含まれる不純物(例:粘土等)の量が多い場合に発生し易い。
また、水硬性組成物用材料として使用される骨材は、天然物であるがゆえに不純物の含有量が変動する。そのため、従来のポリカルボン酸系分散剤を使用した場合、一定の流動性を得るために必要とされる分散剤の使用量が使用骨材の種類やその由来等によって種々変動することから、水硬性組成物の実際の製造においては分散剤の使用量をその都度調節する必要があり、様々に作業が煩雑となる。また、上述の低品質な骨材を多く使用する場合、一定の流動性を確保するために分散剤の添加量を増大することが必要とされる場合が多く、これは製造コストの上昇を引き起こす。
In recent years, as aggregates as concrete materials, there are increasing opportunities to use low-quality aggregates that have not been actively used in the past due to the depletion of high-quality fine aggregates such as river sand. .. A hydraulic composition using such a low-quality fine aggregate tends to have a high viscosity at the time of freshness and a decrease in workability even at a general water powder ratio (W / B). .. Such a problem is likely to occur especially when the amount of impurities (eg, clay, etc.) contained in the aggregate is large.
Further, since the aggregate used as a material for a hydraulic composition is a natural product, the content of impurities varies. Therefore, when a conventional polycarboxylic acid-based dispersant is used, the amount of the dispersant required to obtain a certain fluidity varies depending on the type of aggregate used and its origin, and thus water. In the actual production of the rigid composition, it is necessary to adjust the amount of the dispersant used each time, which makes various operations complicated. In addition, when a large amount of the above-mentioned low-quality aggregate is used, it is often necessary to increase the amount of the dispersant added in order to secure a certain fluidity, which causes an increase in manufacturing cost. ..

このような問題に対しては、従来のポリカルボン酸系の分散剤とその他の成分を併用する方法や、あるいはポリカルボン酸系分散剤自体の構造を最適化する方法などで流動性を改善し、ポリカルボン酸系減水剤としての有効性を高めんとするいくつかの先行技術例が開示されている。
上述の他の成分の併用による例としては、膨潤性粘土(例えばスメクタイト、モンモリロナイト等)を含む低品質な骨材を使用する際に、粘土活性変更物質として、無機カチオンを含んでなる物質(例えば硝酸カルシウム等)、有機カチオンを含んでなる物質(例えば臭化テトラブチルアンモニウム等)、極性有機分子(例えばポリエチレングリコール、ヘキサメタリン酸ナトリウム等)をEO/PO可塑剤(すなわちポリカルボン酸系減水剤)と併用することで、ポリカルボン酸系減水剤の有効性の改善を図った提案がある(特許文献1)。また、品質の高くない細骨材を用いる際、第4級窒素を含むカチオン性ポリマー(例えばポリ(ジアリルジメチルアンモニウム)塩等)を高性能減水剤又は高性能AE減水剤(ポリカルボン酸系減水剤)と併用することで、コンクリート粘性や流動保持性などのフレッシュ状態の改善を図った提案(特許文献2)、粘土含有骨材を使用する場合、ポリ−カチオン性化合物(例えばポリジアリルジメチルアンモニウムクロライド等)及び、ポリ−ヒドロキシルもしくはヒドロキシルカルボキシレート成分(例えばグルコン酸ナトリウム等)をポリカルボキシレート系分散剤と併用することで、該分散剤がセメントモルタル中で示す用量効率の維持に関して改善を経った提案(特許文献3)がある。
さらに、ポリカルボン酸系分散剤自体の構造を改良した提案としては、主炭化水素鎖と、カルボキシ基及びポリオキシアルキレン基に加えgem−ビスホスホネート基を含む側鎖とを含む櫛型コポリマーを鉱物粒子の懸濁物の流動化剤として採用することにより、該懸濁物の流動性の改善を経った提案(特許文献4)などがある。
To solve such problems, the fluidity is improved by a method of using a conventional polycarboxylic acid-based dispersant in combination with other components, or a method of optimizing the structure of the polycarboxylic acid-based dispersant itself. , Several prior art examples are disclosed that enhance the effectiveness as a polycarboxylic acid-based water reducing agent.
As an example of the combined use of the above-mentioned other components, when using a low-quality aggregate containing a swellable clay (for example, smectite, montmorillonite, etc.), a substance containing an inorganic cation as a clay activity-altering substance (for example, for example). EO / PO plasticizers (ie, polycarboxylic acid-based water reducing agents) for substances containing organic cations (eg, tetrabutylammonium bromide, etc.) and polar organic molecules (eg, polyethylene glycol, sodium hexametaphosphate, etc.) There is a proposal to improve the effectiveness of a polycarboxylic acid-based water reducing agent by using it in combination with (Patent Document 1). In addition, when using fine aggregates of low quality, a cationic polymer containing quaternary nitrogen (for example, poly (diallyldimethylammonium) salt, etc.) is used as a high-performance water reducing agent or a high-performance AE water reducing agent (polycarboxylic acid-based water reducing agent). A proposal to improve the fresh state such as concrete viscosity and flow retention by using it in combination with an agent (Patent Document 2). When a clay-containing aggregate is used, a poly-cationic compound (for example, polydiallyldimethylammonium) By using a poly-hydroxyl or hydroxyl carboxylate component (for example, sodium gluconate, etc.) in combination with a polycarboxylate-based dispersant, the dispersant has undergone improvement in maintaining the dose efficiency exhibited in cement mortar. There is a proposal (Patent Document 3).
Furthermore, as a proposal to improve the structure of the polycarboxylic acid-based dispersant itself, a comb-shaped copolymer containing a main hydrocarbon chain and a side chain containing a gem-bisphosphonate group in addition to a carboxy group and a polyoxyalkylene group is used as mineral particles. There is a proposal (Patent Document 4) that has improved the fluidity of the suspension by adopting it as a fluidizing agent for the suspension.

特許第4491078号公報Japanese Patent No. 4491078 特許第4381923号公報Japanese Patent No. 4381923 特開2011−136844号公報Japanese Unexamined Patent Publication No. 2011-136844 特許第5623672号公報Japanese Patent No. 5623672

しかし、これまでの提案では、使用骨材の種類や不純物量に大きく影響されずに満足な流動性を達成するには至っていない。
そこで、今、使用骨材の変遷に伴い、骨材品質の良否によらず、添加量をほぼ変えることなく、一定の流動性を発現できる新たな水硬性組成物用分散剤が求められている。
一方、これまでにヒドロキシエチルフェノールのアルキレンオキサイド付加物を水硬性組成物用添加剤の原料として用いたとする提案はない。
However, the proposals so far have not achieved satisfactory fluidity without being significantly affected by the type of aggregate used and the amount of impurities.
Therefore, with the transition of aggregates used, there is a demand for a new dispersant for hydraulic compositions that can exhibit a certain fluidity with almost no change in the amount of aggregate added, regardless of the quality of the aggregates. ..
On the other hand, there has been no proposal to use an alkylene oxide adduct of hydroxyethylphenol as a raw material for an additive for a hydraulic composition.

本発明はかかる従来の技術背景の下、水硬性組成物用分散剤の性能を改良すべくなされたものであって、骨材中の不純物の含有量によらず安定した分散性を有し、骨材の種類によって添加量を実質変えなくとも所定の流動性が得られる水硬性組成物用分散剤、並びに斯様な水硬性組成物用分散剤として有用な新規なフェノール系共重合体を含有する重縮合生成物を提供することを課題とする。 The present invention has been made to improve the performance of a dispersant for a hydraulic composition under the background of the prior art, and has stable dispersibility regardless of the content of impurities in the aggregate. Contains a dispersant for hydraulic compositions that can obtain a predetermined fluidity without substantially changing the amount added depending on the type of aggregate, and a novel phenolic copolymer useful as a dispersant for such hydraulic compositions. It is an object of the present invention to provide a polycondensation product.

本発明者等は鋭意検討した結果、これまで水硬性組成物用添加剤の材料として検討がなされてこなかったヒドロキシエチルフェノールのアルキレンオキサイド付加物をフェノール系共重合体を含む重縮合生成物のモノマー成分として用いることにより、即ち、ヒドロキシエチルフェノールのアルキレンオキサイド付加物由来の構造単位を共重合体の構造中に組み入れ、該共重合体又はそれを含む重縮合生成物を水硬性組成物用の添加剤として用いることにより、骨材に含まれ得る粘土等の不純物の種類及び量の多少によらず、所望の流動性を有する水硬性組成物を提供できることを見出し、本発明を完成させた。 As a result of diligent studies by the present inventors, the alkylene oxide adduct of hydroxyethylphenol, which has not been studied as a material for additives for water-hard composition, is used as a monomer of a polycondensation product containing a phenol-based copolymer. By using as a component, i.e., structural units derived from the alkylene oxide adduct of hydroxyethylphenol are incorporated into the structure of the copolymer, and the copolymer or polycondensation product containing it is added for a water-hard composition. We have found that by using it as an agent, it is possible to provide a water-hard composition having a desired fluidity regardless of the type and amount of impurities such as clay that can be contained in the aggregate, and completed the present invention.

すなわち本発明は、下記式(A)で表される化合物A、式(B)で表される化合物B、式(C)で表される化合物C並びに式(D)で表される一種以上のアルデヒド化合物Dを含む単量体混合物を重縮合させた共重合体を含む、重縮合生成物に関する。

Figure 0006821570









(式中、
O及びAOは、それぞれ独立して炭素原子数2乃至4のアルキレンオキサイド基を表し、
m及びnは、アルキレンオキサイドの平均付加モル数であって、それぞれ独立して0乃至300の数を表し且つm+n≧1であり、
Oは炭素原子数2乃至4のアルキレンオキサイド基を表し、
pはアルキレンオキサイドの平均付加モル数であって1乃至300の数を表し、
Xは水素原子、炭素原子数1乃至10のアルキル基、又は炭素原子数2乃至24のアシル基を表し、
Oは炭素原子数2乃至4のアルキレンオキサイド基を表し、
qはアルキレンオキサイドの平均付加モル数であって1乃至300の数を表し、
は水素原子、炭素原子数1乃至24のアルキル基、又は炭素原子数2乃至24のアルケニル基を表し、
は水素原子、炭素原子数1乃至24のアルキル基、又は炭素原子数2乃至24のアルケニル基を表し、
及びYはそれぞれ独立して水素原子、リン酸エステル基又は硫酸エステル基を表し、
はリン酸エステル基又は硫酸エステル基を表し、
は水素原子、カルボキシル基、炭素原子数1乃至10のアルキル基、炭素原子数2乃至10のアルケニル基、フェニル基、ナフチル基又はヘテロ環式基を表し、
rは1乃至100の数を表す。)That is, the present invention includes compound A represented by the following formula (A), compound B represented by the formula (B), compound C represented by the formula (C), and one or more kinds represented by the formula (D). The present invention relates to a polycondensation product, which comprises a copolymer obtained by polycondensing a monomer mixture containing an aldehyde compound D.
Figure 0006821570









(During the ceremony,
A 1 O and A 2 O each independently represent an alkylene oxide group having 2 to 4 carbon atoms.
m and n are the average number of moles of alkylene oxide added, and each independently represents a number of 0 to 300, and m + n ≧ 1.
A 3 O represents an alkylene oxide group having 2 to 4 carbon atoms.
p is the average number of moles of alkylene oxide added and represents a number from 1 to 300.
X represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an acyl group having 2 to 24 carbon atoms.
A 4 O represents an alkylene oxide group having 2 to 4 carbon atoms,
q is the average number of moles of alkylene oxide added and represents a number from 1 to 300.
R 0 represents a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, or an alkenyl group having 2 to 24 carbon atoms.
R 1 represents a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, or an alkenyl group having 2 to 24 carbon atoms.
Y 1 and Y 2 independently represent a hydrogen atom, a phosphate ester group or a sulfate ester group, respectively.
Y 3 represents a phosphoric acid ester group or a sulfuric acid ester group,
R 2 represents a hydrogen atom, a carboxyl group, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, a phenyl group, a naphthyl group or a heterocyclic group,
r represents a number from 1 to 100. )

上記重縮合生成物は、前記単量体混合物において、前記化合物A、化合物B及び化合物Cをモル比にて、化合物A:化合物B:化合物C=0.1〜2:0.1〜2:0.1〜4の割合にて含み、且つ、前記化合物A、化合物B及び化合物Cの合計モル量に対して、化合物Dをモル比にて、(化合物A+化合物B+化合物C):化合物D=1〜10:10〜1の割合にて含むことが好ましい。
また上記重縮合生成物は、前記単量体混合物において、二種以上の式(B)で表される化合物Bを含んでいてもよく、さらに、二種以上の式(C)で表される化合物Cを含んでいてもよい。
In the monomer mixture, the polycondensation product contains the compound A, the compound B and the compound C in a molar ratio of compound A: compound B: compound C = 0.1 to 2: 0.1 to 2: 1. Compound D is contained in a ratio of 0.1 to 4 and compound D is contained in a molar ratio with respect to the total molar amount of the compound A, the compound B and the compound C (Compound A + Compound B + Compound C): Compound D = It is preferably contained in a ratio of 1 to 10: 10 to 1.
Further, the polycondensation product may contain a compound B represented by two or more kinds of formulas (B) in the monomer mixture, and further represented by two or more kinds of formulas (C). It may contain compound C.

さらに本発明は、前述の重縮合生成物又は共重合体を含有する、水硬性組成物用分散剤にも関する。 Furthermore, the present invention also relates to a dispersant for a hydraulic composition containing the above-mentioned polycondensation product or copolymer.

そして本発明は、前記式(A)で表される化合物A、前記式(B)で表される化合物B、前記式(C)で表される化合物C並びに前記式(D)で表される一種以上のアルデヒド化合物Dを含む単量体混合物を重縮合させて得られる共重合体も対象とするものである。 The present invention is represented by the compound A represented by the formula (A), the compound B represented by the formula (B), the compound C represented by the formula (C), and the compound C represented by the formula (D). Copolymers obtained by polycondensing a monomer mixture containing one or more aldehyde compounds D are also targeted.

本発明により、骨材中の不純物の種類及びその含有量の多少によらず添加量を大きく変えることなく、水硬性組成物に対して優れた分散安定性を発現することができ、それだけでなく、減水性が高く、水硬性組成物を流動状態とするまでの練り混ぜ時間を短縮でき、経時安定性が良好で、コンクリート粘性が低く、かつ凝結遅延性も少ないといった施工性も良好である水硬性組成物用分散剤並びに該分散剤として好適に用いるフェノール系共重合体及びそれを含む重縮合生成物を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, excellent dispersion stability can be exhibited with respect to a hydraulic composition without significantly changing the addition amount regardless of the type of impurities in the aggregate and the amount thereof, and not only that. Water with high water reduction, shortening of kneading time until the hydraulic composition is put into a fluid state, good stability over time, low concrete viscosity, and low setting delay. It is possible to provide a dispersant for a rigid composition, a phenolic copolymer preferably used as the dispersant, and a polycondensation product containing the same.

また本発明の上記共重合体を含む重縮合生成物は、水硬性組成物において、それに含まれる炭素分、典型的には未燃炭素の存在によって引き起こされ得る好ましくない影響をも低減することができるという効果を奏する。すなわち本発明の重縮合生成物又は共重合体は、これを水硬性組成物用分散剤としてフライアッシュ(FA)配合のコンクリート組成物に配合した場合においても減水性を高い状態に保つことができ、特にFA配合組成物の硬化体において未燃炭素がコンクリートの表面に浮上することにより引き起こされる表面の黒ずみ発生を抑制でき、外観に優れる硬化体を提供できるという効果を奏する。 The polycondensation product containing the above-mentioned copolymer of the present invention can also reduce the unfavorable influence that can be caused by the presence of carbon content, typically unburned carbon, contained therein in the hydraulic composition. It has the effect of being able to do it. That is, the polycondensation product or copolymer of the present invention can maintain a high water-reducing state even when it is blended in a concrete composition containing fly ash (FA) as a dispersant for a hydraulic composition. In particular, in the cured product of the FA compound composition, it is possible to suppress the generation of darkening of the surface caused by the floating of unburned carbon on the surface of concrete, and it is possible to provide a cured product having an excellent appearance.

本発明の重縮合生成物又は共重合体は、前述したとおり、粘土やベントナイト等のクレイといった不純物が存在した場合に懸念される水硬性組成物の流動性の悪化を抑制できる、水硬性組成物用添加剤として有用な重縮合生成物又は共重合体である。
本発明の重縮合生成物又は共重合体が適用される水硬性組成物において、不純物とは、粘土及びクレイなどが挙げられる。
本明細書において、粘土とは、JIS Z 8801−1で規定される呼び寸法75μm金属製ふるい通過分として定義される採集微粒分を指す。
また本明細書において、クレイとは、層状構造を有する粘土鉱物の他、イモゴライトやアロフェン等の層状構造を有しない粘土鉱物も含むものとする。層状構造を有する粘土鉱物としては、スメクタイト、バーミキュライト、モンモリロナイト、ベントナイト、イライト、ヘクトライト、ハロイサイト、雲母、脆雲母等の膨潤性鉱物;カオリン鉱物(カオリナイト)、サーペンティン、パイロフィライト、タルク、クロライト等の非膨潤性鉱物が挙げられる。
As described above, the polycondensation product or copolymer of the present invention is a water-hard composition capable of suppressing deterioration of the fluidity of the water-hard composition, which is a concern when impurities such as clay such as clay and bentonite are present. A polycondensation product or copolymer useful as an additive for use.
In the hydraulic composition to which the polycondensation product or copolymer of the present invention is applied, impurities include clay and clay.
In the present specification, clay refers to collected fine particles defined as a metal sieve having a nominal size of 75 μm defined by JIS Z 8801-1.
Further, in the present specification, clay includes not only clay minerals having a layered structure but also clay minerals having no layered structure such as imogolite and allophane. Clay minerals with a layered structure include swelling minerals such as smectite, vermiculite, montmorillonite, bentonite, illite, hectrite, halloysite, mica, and brittle mica; kaolin mineral (kaolinite), serpentine, pyrophyllite, talc, and black. Examples include non-swelling minerals such as light.

また本発明の重縮合生成物又は共重合体は、水硬性組成物用添加剤として水硬性組成物において好適に使用され、特にフライアッシュを始め、シンダアッシュ、クリンカアッシュ、ボトムアッシュ等の石炭灰、シリカフューム、シリカダスト、溶融シリカ微粉末、高炉スラグ、火山灰、珪酸白土、珪藻土、メタカオリン、シリカゾル、沈降シリカ等のポゾラン質微粉末を含有する水硬性組成物に対しても好適に使用される。 Further, the polycondensation product or copolymer of the present invention is suitably used in hydraulic compositions as an additive for hydraulic compositions, and in particular, coal ash such as fly ash, cinder ash, slag ash, and bottom ash. , Silica fume, silica dust, molten silica fine powder, blast furnace slag, volcanic ash, silicic acid white clay, diatomaceous soil, metacaolin, silica sol, precipitated silica and other pozzolanic fine powders are also suitably used for hydraulic compositions.

<重縮合生成物及び共重合体>
本発明は、ヒドロキシエチルフェノールのアルキレンオキサイド付加物又はその誘導体(化合物A)、フェノールのアルキレンオキサイド付加物又はその誘導体(化合物B)、フェノールのアルキレンオキサイド付加物のリン酸エステル又は硫酸エステル誘導体(化合物C)、並びにアルデヒド類(化合物D)を含む単量体混合物を共重合させて得られる共重合体を含む重縮合生成物、並びに前記共重合体を対象とする。
なお本発明において、「単量体混合物を重縮合させた共重合体を含む、重縮合生成物」とは、
(1)前記単量体混合物の全ての成分、即ち化合物A乃至化合物Dの全てが重縮合した共重合体(共重合体1)を含む態様、
(2)前記単量体混合物のうち、化合物A乃至化合物Cのうちの一種又は二種と、化合物Dとが重縮合した共重合体(共重合体2)を含む態様、
(3)前記(1)及び(2)の二種の共重合体(共重合体1及び共重合体2)を含む態様、さらに
(4)前記(1)及び/又は(2)の共重合体(共重合体1及び/又は共重合体2)に加え、未反応の化合物A〜Dのうちの少なくとも一種を含む態様、
のいずれをも包含するとともに、一般に、各々の重合工程、各成分(化合物A乃至化合物D)の調製工程、例えばアルキレンオキサイド付加工程等で発生した未反応成分、副反応物も含めた成分も包含されている。
以下、単量体混合物に含まれる化合物A乃至化合物Dについて詳述する。
<Polycondensation product and copolymer>
The present invention relates to an alkylene oxide adduct of hydroxyethylphenol or a derivative thereof (Compound A), an alkylene oxide adduct of phenol or a derivative thereof (Compound B), a phosphoric acid ester or a sulfuric acid ester derivative of the alkylene oxide adduct of phenol (Compound A). C), a polycondensation product containing a copolymer obtained by copolymerizing a monomer mixture containing aldehydes (Compound D), and the copolymer are targeted.
In the present invention, the term "polycondensation product containing a copolymer obtained by polycondensing a monomer mixture" is used.
(1) An embodiment containing a copolymer (copolymer 1) in which all the components of the monomer mixture, that is, all of the compounds A to D are polycondensed.
(2) An embodiment comprising a copolymer (copolymer 2) in which one or two of compounds A to C and compound D are polycondensed in the monomer mixture.
(3) An embodiment containing the two types of copolymers (copolymer 1 and copolymer 2) of the above (1) and (2), and (4) the common weight of the above (1) and / or (2). A mode in which at least one of unreacted compounds A to D is contained in addition to the coalescence (copolymer 1 and / or copolymer 2).
In addition to including any of the above, in general, unreacted components generated in each polymerization step and each component (compound A to D) preparation step, for example, an alkylene oxide addition step, and components including side reactants are also included. Has been done.
Hereinafter, the compounds A to D contained in the monomer mixture will be described in detail.

[式(A)で表される化合物A]
化合物Aは、ヒドロキシエチルフェノールのアルキレンオキサイド付加物又はその誘導体であって、下記式(A)で表される構造を有する。

Figure 0006821570









式中、AO及びAOは、それぞれ独立して炭素原子数2乃至4のアルキレンオキサイド基を表し、m及びnはアルキレンオキサイドの平均付加モル数であって、それぞれ独立して0乃至300の数を表し且つm+n≧1である。
またY及びYはそれぞれ独立して水素原子、リン酸エステル基又は硫酸エステル基を表す。[Compound A represented by the formula (A)]
Compound A is an alkylene oxide adduct of hydroxyethylphenol or a derivative thereof, and has a structure represented by the following formula (A).
Figure 0006821570









In the formula, A 1 O and A 2 O each independently represent an alkylene oxide group having 2 to 4 carbon atoms, and m and n are the average number of moles of alkylene oxide added, respectively, and 0 to 0 to n respectively. It represents a number of 300 and m + n ≧ 1.
Further, Y 1 and Y 2 independently represent a hydrogen atom, a phosphate ester group or a sulfate ester group, respectively.

上記化合物Aは、ヒドロキシエチルフェノールに対して、詳細にはヒドロキシエチル基或いはフェノール性ヒドロキシ基の少なくとも一方、或いは双方において、炭素原子数2乃至4のアルキレンオキサイドが付加した化合物であり、また該アルキレンオキサイド付加物の誘導体(リン酸エステル又は硫酸エステル)も化合物Aに包含される。
前記ヒドロキシエチルフェノールは、o−ヒドロキシエチル−フェノール、m−ヒドロキシエチル−フェノール、p−ヒドロキシエチル−フェノールのいずれであってもよい。化合物Aは、好ましくは、o−ヒドロキシエチル−フェノールに炭素原子数2乃至4のアルキレンオキサイドが付加した化合物(及びそのエステル誘導体)である。
上記炭素原子数2乃至4のアルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド及びブチレンオキサイドが挙げられ、これらアルキレンオキサイドは単独付加又は混合付加することができ、二種以上のアルキレンオキサイドを用いる場合にはブロック付加、ランダム付加何れの形態であってもよい。
The compound A is a compound in which an alkylene oxide having 2 to 4 carbon atoms is added to at least one or both of a hydroxyethyl group and a phenolic hydroxy group with respect to hydroxyethylphenol, and the alkylene Derivatives of the oxide adduct (phosphate or sulfate) are also included in Compound A.
The hydroxyethylphenol may be any of o-hydroxyethyl-phenol, m-hydroxyethyl-phenol, and p-hydroxyethyl-phenol. Compound A is preferably a compound (and an ester derivative thereof) in which alkylene oxide having 2 to 4 carbon atoms is added to o-hydroxyethyl-phenol.
Examples of the alkylene oxide having 2 to 4 carbon atoms include ethylene oxide, propylene oxide and butylene oxide, and these alkylene oxides can be added alone or mixed, and when two or more kinds of alkylene oxides are used, they can be added. Either block addition or random addition may be used.

すなわち上記AO及びAOにおける炭素原子数2乃至4のアルキレンオキサイド基としては、エチレンオキサイド基、プロピレンオキサイド基及びブチレンオキサイド基が挙げられる。AO及びAOは、エチレンオキサイド基、プロピレンオキサイド基又はブチレンオキサイド基のみから構成されていてもよいし、これら二種以上の基を含んでいてもよい。二種以上の基を含む場合、それらの付加形態はランダム付加、ブロック付加のいずれであってもよい。
またm及びnはアルキレンオキサイドの平均付加モル数であって、それぞれ独立して0乃至300、好ましくは0乃至60の数を表し且つm+n≧1である。AOの付加モル数を大きくすることにより、減水性の向上が期待できる。
That is, examples of the alkylene oxide group having 2 to 4 carbon atoms in A 1 O and A 2 O include an ethylene oxide group, a propylene oxide group and a butylene oxide group. A 1 O and A 2 O may be composed of only an ethylene oxide group, a propylene oxide group or a butylene oxide group, or may contain two or more of these groups. When two or more groups are contained, the addition form thereof may be either random addition or block addition.
Further, m and n are the average number of moles of alkylene oxide added, and each independently represents a number of 0 to 300, preferably 0 to 60, and m + n ≧ 1. By increasing the number of moles of A 1 O and A 2 O added, improvement in water reduction can be expected.

またY、Yがリン酸エステル基を表す場合、それらはリン酸モノエステル及び/又はその塩、リン酸ジエステル及び/又はその塩、若しくはリン酸トリエステル、又はその混合物であり、またY、Yが硫酸エステル基を表す場合、それらは硫酸モノエステル及び/又はその塩、若しくは硫酸ジエステル、又はその混合物である。
またリン酸エステル塩又は硫酸エステル塩としては、ナトリウム、カリウム等のアルカリ金属塩;カルシウム又はマグネシウム等の第2族金属塩;アンモニウム塩;アルキルアンモニウム又はアルカノールアンモニウム等の有機アンモニウム塩等が挙げられる。
化合物Aの末端をアニオン化させる、すなわち、リン酸エステル又は硫酸エステル誘導体とすることにより、水硬性組成物に添加した際、モルタルの練混ぜ時間を短縮できる。
When Y 1 and Y 2 represent a phosphoric acid ester group, they are a phosphoric acid monoester and / or a salt thereof, a phosphoric acid diester and / or a salt thereof, or a phosphoric acid triester, or a mixture thereof. When 1 , Y 2 represents a sulfate ester group, they are a sulfate monoester and / or a salt thereof, or a sulfate diester, or a mixture thereof.
Examples of the phosphate ester salt or sulfate ester salt include alkali metal salts such as sodium and potassium; Group 2 metal salts such as calcium and magnesium; ammonium salts; and organic ammonium salts such as alkylammonium and alkanolammonium.
By anionizing the terminal of compound A, that is, by making it a phosphate ester or a sulfate ester derivative, the kneading time of the mortar can be shortened when added to the hydraulic composition.

上記式(A)で表される化合物Aは、一種を単独で、また二種以上を組み合わせて使用できる。 The compound A represented by the above formula (A) can be used alone or in combination of two or more.

[式(B)で表される化合物B]
化合物Bはフェノールのアルキレンオキサイド付加物又はその誘導体であって、下記式(B)で表される構造を有する。

Figure 0006821570









上記式中、AOは炭素原子数2乃至4のアルキレンオキサイド基を表し、pはアルキレンオキサイドの平均付加モル数であって1乃至300の数を表し、Rは水素原子、炭素原子数1乃至24のアルキル基、又は炭素原子数2乃至24のアルケニル基を表し、Xは水素原子、炭素原子数1乃至10のアルキル基、又は炭素原子数2乃至24のアシル基を表す。[Compound B represented by the formula (B)]
Compound B is an alkylene oxide adduct of phenol or a derivative thereof, and has a structure represented by the following formula (B).
Figure 0006821570









In the above formula, A 3 O represents an alkylene oxide group having 2 to 4 carbon atoms, p is a number from 1 to 300 an average molar number of addition of alkylene oxide, R 0 is a hydrogen atom, the number of carbon atoms It represents an alkyl group of 1 to 24 or an alkenyl group having 2 to 24 carbon atoms, and X represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an acyl group having 2 to 24 carbon atoms.

上記化合物Bは、フェノール又はその置換体に対して炭素原子数2乃至4のアルキレンオキサイドが付加した化合物であり、また該アルキレンオキサイド付加物の誘導体(アルキルエステル又は脂肪酸エステル)も化合物Bに包含される。
上記炭素原子数2乃至4のアルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド及びブチレンオキサイドが挙げられ、これらアルキレンオキサイドは単独付加又は混合付加することができ、二種以上のアルキレンオキサイドを用いる場合にはブロック付加、ランダム付加何れの形態であってもよい。
The compound B is a compound in which an alkylene oxide having 2 to 4 carbon atoms is added to phenol or a substitute thereof, and a derivative (alkyl ester or fatty acid ester) of the alkylene oxide adduct is also included in the compound B. Ru.
Examples of the alkylene oxide having 2 to 4 carbon atoms include ethylene oxide, propylene oxide and butylene oxide, and these alkylene oxides can be added alone or mixed, and when two or more kinds of alkylene oxides are used, they can be added. Either block addition or random addition may be used.

すなわち上記AOにおける炭素原子数2乃至4のアルキレンオキサイド基としては、エチレンオキサイド基、プロピレンオキサイド基及びブチレンオキサイド基が挙げられる。AOは、エチレンオキサイド基、プロピレンオキサイド基又はブチレンオキサイド基のみから構成されていてもよいし、これら二種以上の基を含んでいてもよい。二種以上の基を含む場合、それらの付加形態はランダム付加、ブロック付加のいずれであってもよい。
またpはアルキレンオキサイドの平均付加モル数であって、1乃至300、好ましくは1乃至150の数を表し、AOの付加モル数を大きくすることにより、減水性の向上が期待できる。
That is, as the alkylene oxide group of the A 3 carbon atoms in the O 2 to 4, ethylene oxide groups, propylene oxide groups, and butylene oxide groups. A 3 O is an ethylene oxide group, may be composed of only propylene oxide groups or butylene oxide groups, may contain two or more of them in groups. When two or more groups are contained, the addition form thereof may be either random addition or block addition.
The p is an average molar number of addition of alkylene oxide, 1 to 300, preferably a number from 1 to 150, by increasing the addition number of moles of A 3 O, it can be expected to improve the water-reducing properties.

上記Rにおける炭素原子数1乃至24のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、ネオペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、n−オクチル基、n−デシル基、1−アダマンチル基、ドデシル基(ラウリル基)、テトラデシル基(ミルスチル基)、ヘキサデシル基(パルミチル基)、オクタデシル基(ステアリル基)、イコシル基、ドコシル基(ベヘニル基)、テトラコシル基等が挙げられ、これらは分岐構造、環状構造を有していてもよい。
さらに、上記炭素原子数2乃至24のアルケニル基としては、上記炭素原子数1乃至24のアルキル基において、炭素―炭素二重結合を一個持つ基が挙げられる。具体的には、エテニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ドデセニル基、テトラデセニル基、ヘキサデセニル基、オクタデセニル基、エイコセニル基、ドコセニル基、テトラコセニル基等が挙げられ、これらは分岐構造、環状構造を有していてもよい。
なお、化合物Bにおいて、Rを炭素原子数1乃至24のアルキル基とする(アルキル置換体とする)ことにより、水硬性組成物に水硬性粉体としてフライアッシュ(FA)を配合した場合における流動性が向上し、FA配合水硬性組成物より得られる硬化体の表面の黒ずみ発生を抑制でき、さらにRの炭素鎖を長くすることにより、FA配合水硬性組成物より得られる硬化体の外観をより良好なものとすることが期待できる。
Examples of the alkyl group having 1 to 24 carbon atoms in R 0 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl. Group, n-pentyl group, neopentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, n-octyl group, n-decyl group, 1-adamantyl group, dodecyl group (lauryl group), tetradecyl group (milstyl group), Examples thereof include a hexadecyl group (palmityl group), an octadecyl group (stearyl group), an icosyl group, a docosyl group (behenyl group), a tetracosyl group, and the like, which may have a branched structure or a cyclic structure.
Further, examples of the alkenyl group having 2 to 24 carbon atoms include a group having one carbon-carbon double bond in the alkyl group having 1 to 24 carbon atoms. Specifically, ethenyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, dodecenyl group, tetradecenyl group, hexadecenyl group, octadecenyl group, eicosenyl group, docosenyl group, Examples thereof include a tetracosenyl group, which may have a branched structure or a cyclic structure.
In compound B, when R 0 is an alkyl group having 1 to 24 carbon atoms (an alkyl substituent is used), fly ash (FA) is blended as a hydraulic powder in the hydraulic composition. The fluidity is improved, the occurrence of darkening on the surface of the cured product obtained from the FA-blended hydraulic composition can be suppressed, and by further lengthening the carbon chain of R0 , the cured product obtained from the FA-blended hydraulic composition can be suppressed. It can be expected that the appearance will be better.

上記Xにおける炭素原子数1乃至10のアルキル基としては、分岐構造、環状構造を有していてもよく、具体的には上記Rにおける炭素原子数1乃至24のアルキル基の具体例として挙げた基のうち、炭素原子数1乃至10のアルキル基が挙げられる。
また炭素原子数2乃至24のアシル基としては、飽和又は不飽和のアシル基(R’(CO)−基、R’は炭素原子数1乃至23の炭化水素基)が挙げられる。例えば炭素原子数2乃至24の、飽和のアシル基としては、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸(カプロン酸)、ヘプタン酸、オクタン酸(カプリル酸)、ノナン酸、デカン酸(カプリン酸)、ドデカン酸(ラウリン酸)、テトラデカン産(ミリスチン酸)、ペンタデカン酸(ペンタデシル酸)、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸(マルガリン酸)、オクタデカン酸(ステアリン酸)、ノナデカン酸、エイコサン酸(アラキジン酸)、ドコサン酸(ベヘン酸)及びテトラコサン酸(リグノセリン酸)等のカルボン酸及び脂肪酸由来のアシル基が、モノ不飽和のアシル基としては、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、バクセン酸、ガドレイン酸、エイコセン酸、エルカ酸、ネルボン酸等のモノ不飽和脂肪酸由来のアシル基が、ジ不飽和のアシル基としては、リノール酸、エイコサジエン酸、ドコサジエン酸等のジ不飽和脂肪酸由来のアシル基が、そして、トリ不飽和のアシル基としては、リノレン酸、ピノレン酸、エレオステアリン酸、ミード酸、ジホモ−γ−リノレン酸、エイコサトリエン酸等のトリ不飽和脂肪酸由来のアシル基が挙げられる。
また好ましいXとしては、水素原子及びアセチル基が挙げられる。
The alkyl group having 1 to 10 carbon atoms in X may have a branched structure or a cyclic structure, and specific examples thereof include an alkyl group having 1 to 24 carbon atoms in R 0 . Among the groups, alkyl groups having 1 to 10 carbon atoms can be mentioned.
Examples of the acyl group having 2 to 24 carbon atoms include a saturated or unsaturated acyl group (R'(CO) -group, R'is a hydrocarbon group having 1 to 23 carbon atoms). For example, saturated acyl groups having 2 to 24 carbon atoms include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid (caproic acid), heptanic acid, octanoic acid (capric acid), nonanoic acid and decanoic acid ( Capric acid), dodecanoic acid (lauric acid), tetradecanoic (myristic acid), pentadecanoic acid (pentadecic acid), hexadecanoic acid (palmitic acid), heptadecanoic acid (margaric acid), octadecanoic acid (stearic acid), nonadecan acid, eikosan Acrylic groups derived from carboxylic acids and fatty acids such as acids (arachidic acid), docosanoic acid (bechenic acid) and tetracosanoic acid (lignoseric acid), and monounsaturated acyl groups include myristoleic acid, palmitenic acid, oleic acid, Acrylic groups derived from monounsaturated fatty acids such as ellaic acid, baxenoic acid, gadrainic acid, eicosenoic acid, erucic acid, and nervonic acid are diunsaturated acyl groups, and diunsaturated acyl groups include linoleic acid, eikosazienoic acid, and docosazienoic acid. Acrylic groups derived from saturated fatty acids, and as triunsaturated acyl groups, triunsaturated fatty acids such as linolenic acid, pinolenic acid, eleostearic acid, meadic acid, dihomo-γ-linolenic acid, and eikosatrienic acid. Examples include the derived acyl group.
Further, preferable X includes a hydrogen atom and an acetyl group.

上記式(B)で表される化合物Bは、一種を単独で、また二種以上を組み合わせて使用できる。後述する単量体混合物において、化合物Bとして二種以上の化合物を組み合わせて使用することにより、モルタルフローの保持率が向上する効果が期待できる。 The compound B represented by the above formula (B) can be used alone or in combination of two or more. By using two or more kinds of compounds as compound B in combination in the monomer mixture described later, the effect of improving the retention rate of mortar flow can be expected.

[式(C)で表される化合物C]
化合物Cはフェノールのアルキレンオキサイド付加物のリン酸エステル又は硫酸エステル誘導体であって、下記式(C)で表される構造を有する。

Figure 0006821570









式中、AOは炭素原子数2乃至4のアルキレンオキサイド基を表し、qはアルキレンオキサイドの平均付加モル数であって1乃至300の数を表し、Rは水素原子、炭素原子数1乃至24のアルキル基、又は炭素原子数2乃至24のアルケニル基を表し、Yはリン酸エステル基又は硫酸エステル基を表す。[Compound C represented by the formula (C)]
Compound C is a phosphoric acid ester or sulfate ester derivative of an alkylene oxide adduct of phenol, and has a structure represented by the following formula (C).
Figure 0006821570









In the formula, A 4 O represents an alkylene oxide group having 2 to 4 carbon atoms, q represents the average number of moles of alkylene oxide added and represents 1 to 300, and R 1 is a hydrogen atom and 1 carbon atom. or an alkyl group, or an alkenyl group having a carbon number of 2 to 24 24, Y 3 represents a phosphoric acid ester group or a sulfuric acid ester group.

上記化合物Cは、フェノール又はその置換体に対して炭素原子数2乃至4のアルキレンオキサイドが付加した化合物のリン酸エステル又は硫酸エステル誘導体である。
上記炭素原子数2乃至4のアルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド及びブチレンオキサイドが挙げられ、これらアルキレンオキサイドは単独付加又は混合付加することができ、二種以上のアルキレンオキサイドを用いる場合にはブロック付加、ランダム付加何れの形態であってもよい。
The compound C is a phosphate ester or sulfate ester derivative of a compound in which an alkylene oxide having 2 to 4 carbon atoms is added to phenol or a substitute thereof.
Examples of the alkylene oxide having 2 to 4 carbon atoms include ethylene oxide, propylene oxide and butylene oxide, and these alkylene oxides can be added alone or mixed, and when two or more kinds of alkylene oxides are used, they can be added. Either block addition or random addition may be used.

すなわち上記AOにおける炭素原子数2乃至4のアルキレンオキサイド基としては、エチレンオキサイド基、プロピレンオキサイド基及びブチレンオキサイド基が挙げられる。AOは、エチレンオキサイド基、プロピレンオキサイド基又はブチレンオキサイド基のみから構成されていてもよいし、これら二種以上の基を含んでいてもよい。二種以上の基を含む場合、それらの付加形態はランダム付加、ブロック付加のいずれであってもよい。
またqはアルキレンオキサイドの平均付加モル数であって、1乃至300、好ましくは1乃至40の数を表す。
That is, as the alkylene oxide group of the A 4 carbon atoms in the O 2 to 4, ethylene oxide groups, propylene oxide groups, and butylene oxide groups. A 4 O is an ethylene oxide group, may be composed of only propylene oxide groups or butylene oxide groups, may contain two or more of them in groups. When two or more groups are contained, the addition form thereof may be either random addition or block addition.
Further, q is the average number of moles of alkylene oxide added, and represents a number of 1 to 300, preferably 1 to 40.

上記Rにおける炭素原子数1乃至24のアルキル基及び炭素原子数2乃至24のアルケニル基の具体例としては、上記化合物Bの説明におけるRの具体例が挙げられる。
なお、化合物Cにおいても、Rを炭素原子数1乃至24のアルキル基とする(アルキル置換体とする)ことにより、水硬性組成物に水硬性粉体としてフライアッシュ(FA)を配合した場合における流動性が向上し、FA配合水硬性組成物より得られる硬化体の表面の黒ずみ発生を抑制でき、さらにRの炭素鎖を長くすることにより、FA配合水硬性組成物より得られる硬化体の外観をより良好なものとすることが期待できる。
Specific examples of the alkenyl groups of the alkyl group and the carbon atoms 2 to 24 carbon atoms having 1 to 24 in the R 1, specific examples of R 0 in the description of the compounds B and the like.
In addition, also in the case of compound C, when fly ash (FA) is blended as a hydraulic powder in a hydraulic composition by using R 1 as an alkyl group having 1 to 24 carbon atoms (as an alkyl substituent). The fluidity in the FA-blended hydraulic composition is improved, the occurrence of darkening on the surface of the cured product obtained from the FA-blended hydraulic composition can be suppressed, and by further lengthening the carbon chain of R 1 , the cured product obtained from the FA-blended hydraulic composition can be suppressed. It can be expected that the appearance of the product will be improved.

またYがリン酸エステル基を表す場合、それらはリン酸モノエステル及び/又はその塩、リン酸ジエステル及び/又はその塩、若しくはリン酸トリエステル、又はその混合物であり、またYが硫酸エステル基を表す場合、それらは硫酸モノエステル及び/又はその塩、若しくは硫酸ジエステル、又はその混合物である。
またリン酸エステル塩又は硫酸エステル塩としては、ナトリウム、カリウム等のアルカリ金属塩;カルシウム又はマグネシウム等の第2族金属塩;アンモニウム塩;アルキルアンモニウム又はアルカノールアンモニウム等の有機アンモニウム塩等が挙げられる。
If Y 3 represents a phosphate ester group, they are a phosphate monoester and / or a salt thereof, a phosphate diester and / or a salt thereof, or a phosphate triester, or a mixture thereof, and Y 3 is a sulfate. When representing ester groups, they are sulfate monoesters and / or salts thereof, or sulfate diesters, or mixtures thereof.
Examples of the phosphate ester salt or sulfate ester salt include alkali metal salts such as sodium and potassium; Group 2 metal salts such as calcium and magnesium; ammonium salts; and organic ammonium salts such as alkylammonium and alkanolammonium.

上記式(C)で表される化合物Cは、以下の式で表される化合物を挙げることができる。
なお式中、R、AO、qは上記式(C)の定義されたものと同じものを表し、Phはフェニレン基を表す。またMは、水素原子;ナトリウム又はカリウム等のアルカリ金属原子;カルシウム又はマグネシウム等のアルカリ土類金属原子;アンモニウム基;アルキルアンモニウム基又はアルカノールアンモニウム基等の有機アンモニウム基を表す。
またZは、式:R”−O−(A’O)s−で表されるポリオキシアルキレンアルキルエーテル残基(式中、R”は炭素原子数1乃至24のアルキル基を表し、A’Oは炭素原子数2乃至3のオキシアルキレン基を表し、すなわちオキシエチレン基又はオキシプロピレン基を表し、sはオキシアルキレン基A’Oの平均付加モル数であって1乃至100を表す。)を表し、Zが複数存在する場合、互いに同じ基であっても異なる基であってもよい。
・リン酸モノエステル及びその塩
−Ph−O−[AO]q−P(=O)(−OM)
・リン酸ジエステル及びその塩
[R−Ph−O−[AO]q−]P(=O)(−OM)
[R−Ph−O−[AO]q−](Z−)P(=O)(−OM)
・リン酸トリエステル
[R−Ph−O−[AO]q−]P(=O)
[R−Ph−O−[AO]q−](Z−)P(=O)
[R−Ph−O−[AO]q−](Z−)P(=O)
・硫酸モノエステル及びその塩
−Ph−O−[AO]q−S(=O)(−OM)
・硫酸ジエステル
[R−Ph−O−[AO]q−]S(=O)
[R−Ph−O−[AO]q−](Z−)S(=O)
As the compound C represented by the above formula (C), a compound represented by the following formula can be mentioned.
In the formula, R 1 , A 4 O, and q represent the same as those defined in the above formula (C), and Ph represents a phenylene group. Further, M represents a hydrogen atom; an alkali metal atom such as sodium or potassium; an alkaline earth metal atom such as calcium or magnesium; an ammonium group; an organic ammonium group such as an alkylammonium group or an alkanolammonium group.
Further, Z represents a polyoxyalkylene alkyl ether residue represented by the formula: R "-O- (A'O) s- (in the formula, R" represents an alkyl group having 1 to 24 carbon atoms, and A'. O represents an oxyalkylene group having 2 to 3 carbon atoms, that is, an oxyethylene group or an oxypropylene group, and s is the average number of moles of the oxyalkylene group A'O, which represents 1 to 100). Representing, when a plurality of Z's are present, they may be the same group or different groups.
-Phosphoric acid monoester and its salt R 1- Ph-O- [A 4 O] q-P (= O) (-OM) 2
-Phosphoric acid diester and its salt [R 1- Ph-O- [A 4 O] q-] 2 P (= O) (-OM)
[R 1- Ph-O- [A 4 O] q-] (Z-) P (= O) (-OM)
-Phosphate triester [R 1- Ph-O- [A 4 O] q-] 3 P (= O)
[R 1- Ph-O- [A 4 O] q-] 2 (Z-) P (= O)
[R 1- Ph-O- [A 4 O] q-] (Z-) 2 P (= O)
-Sulfuric acid monoester and its salt R 1- Ph-O- [A 4 O] q-S (= O) 2 (-OM)
-Sulfuric acid diester [R 1- Ph-O- [A 4 O] q-] 2 S (= O) 2
[R 1- Ph-O- [A 4 O] q-] (Z-) S (= O) 2

上記式(C)で表される化合物Cは、一種を単独で、また二種以上を組み合わせて使用できる。 The compound C represented by the above formula (C) can be used alone or in combination of two or more.

[式(D)で表されるアルデヒド化合物D]
化合物Dはアルデヒド類であって、下記式(D)で表される構造を有する。

Figure 0006821570









上記式中、Rは水素原子、カルボキシル基、炭素原子数1乃至10のアルキル基、炭素原子数2乃至10のアルケニル基、フェニル基、ナフチル基又はヘテロ環式基を表し、rは1乃至100の数を表す。
なおこれらアルキル基、アルケニル基、フェニル基、ナフチル基及びヘテロ環式基は、炭素原子数1乃至10のアルキル基;フェニル基、ナフチル基等のアリール基;塩素原子、臭素原子等のハロゲン原子;スルホ基、スルホン酸塩基等のスルホン酸官能基;アセチル基等のアシル基;ヒドロキシ基;アミノ基;カルボキシル基等の任意の置換基で置換されていてもよい。[Aldehyde compound D represented by the formula (D)]
Compound D is an aldehyde and has a structure represented by the following formula (D).
Figure 0006821570









In the above formula, R 2 represents a hydrogen atom, a carboxyl group, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, a phenyl group, a naphthyl group or a heterocyclic group, and r is 1 to 1 to Represents a number of 100.
The alkyl group, alkenyl group, phenyl group, naphthyl group and heterocyclic group are alkyl groups having 1 to 10 carbon atoms; aryl groups such as phenyl group and naphthyl group; halogen atoms such as chlorine atom and bromine atom; It may be substituted with an arbitrary substituent such as a sulfonic acid functional group such as a sulfo group or a sulfonic acid base; an acyl group such as an acetyl group; a hydroxy group; an amino group; or a carboxyl group.

上記Rにおける炭素原子数1乃至10のアルキル基としては、分岐構造、環状構造を有していてもよく、具体的にはメチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、ネオペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、n−オクチル基、n−デシル基、1−アダマンチル基等が挙げられる。
また炭素原子数2乃至10のアルケニル基としては、分岐構造、環状構造を有していてもよく、具体的にはビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、ノネニル基、デセネル基等が挙げられる。
さらに、ヘテロ環式基としては、フリル基、チエニル基、ピリジル基、ピペリジル基、モルホリノ基等が挙げられる。
またrは、好ましくは2乃至100の数を表す。
The alkyl group having 1 to 10 carbon atoms in R 2 may have a branched structure or a cyclic structure, and specifically, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, or a cyclopropyl group. , N-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, n-octyl group, n-decyl group, 1- Examples include adamantyl groups.
The alkenyl group having 2 to 10 carbon atoms may have a branched structure or a cyclic structure, and specifically, a vinyl group, a propenyl group, a butenyl group, a pentanyl group, a hexenyl group, a heptenyl group, a nonenyl group. , Desenel group and the like.
Further, examples of the heterocyclic group include a frill group, a thienyl group, a pyridyl group, a piperidyl group, a morpholino group and the like.
Further, r preferably represents a number of 2 to 100.

化合物Dは、例えばホルムアルデヒド、パラホルムアルデヒド、トリオキサン、グリオキシル酸、アセトアルデヒド、トリクロロアセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、バレルアルデヒド、ヘキシルアルデヒド、ヘプタナール、オクチルアルデヒド、ノニルアルデヒド、イソノニルアルデヒド、デシルアルデヒド、ドデカナール、アクロレイン、クロトンアルデヒド、ペンテナール、ヘキセナール、ヘプテナール、オクテナール、シンナムアルデヒド、ベンズアルデヒド、ベンズアルデヒドスルホン酸、ベンズアルデヒドジスルホン酸、アニスアルデヒド、サリチルアルデヒド、ベンジルアルデヒド[(CC(OH)−CHO]、ナフトアルデヒド、フルフラール等が挙げられるが、中でも、ホルムアルデヒド、パラホルムアルデヒド、ベンズアルデヒド又はそれらの二種以上の任意の混合物からなる群より選択され得る。
化合物Dは純粋な結晶若しくは粉状物質、又はそれらの水和物としての使用も可能であり、またホルマリン等の水溶液の形態でも使用され得、この場合、成分の計量又は混合を簡素化させることができる。
Compound D includes, for example, formaldehyde, paraformaldehyde, trioxane, glyoxylic acid, acetaldehyde, trichloroacetaldehyde, propionaldehyde, butylaldehyde, isobutylaldehyde, barrelaldehyde, hexylaldehyde, heptanal, octylaldehyde, nonylaldehyde, isononylaldehyde, decylaldehyde, Dodecanal, achlorein, crotonaldehyde, pentenal, hexenal, heptenal, octenal, cinnamaldehyde, benzaldehyde, benzaldehyde sulfonic acid, benzaldehyde disulfonic acid, anisaldehyde, salicylaldehyde, benzylaldehyde [(C 6 H 5 ) 2 C (OH) -CHO ], Naftaldehyde, furfural, etc., among which can be selected from the group consisting of formaldehyde, paraformaldehyde, benzaldehyde or any mixture of two or more thereof.
Compound D can be used as a pure crystalline or powdery substance, or as a hydrate thereof, and can also be used in the form of an aqueous solution such as formalin, in which case the metering or mixing of the components is simplified. Can be done.

上記式(D)で表される化合物Dは、一種を単独で、また二種以上を組み合わせて使用できる。 The compound D represented by the above formula (D) can be used alone or in combination of two or more.

[単量体混合物]
本発明の重縮合生成物に用いる上記化合物A乃至化合物Dを含む単量体混合物において、その混合割合は特に限定されないが、好ましくは、前記化合物A、化合物B及び化合物Cをモル比にて、化合物A:化合物B:化合物C=0.1〜2:0.1〜2:0.1〜4の割合にて含み、且つ、前記化合物A、化合物B及び化合物Cの合計モル量に対して、化合物Dをモル比にて、(化合物A+化合物B+化合物C):化合物D=1〜10:10〜1の割合にて含む、ことが望ましい。
より好ましくは、化合物A:化合物B:化合物C=0.1〜1.0:0.5〜1.5:0.5〜3.5(モル比)であり、(化合物A+化合物B+化合物C):化合物D=2〜6:10〜1(モル比)である。
単量体混合物において、化合物Aの配合割合を増加させると、水硬性組成物において粘土等の不純物が混在した場合においても流動性を確保でき、凝結時間短縮も期待できる。また化合物Cの配合割合を調整することで、水硬性組成物減水性と保持性を調節できる。
[Monomer mixture]
In the monomer mixture containing the above compounds A to D used in the polycondensation product of the present invention, the mixing ratio thereof is not particularly limited, but preferably, the above compounds A, B and C are mixed in molar ratio. Compound A: Compound B: Compound C = 0.1 to 2: 0.1 to 2: 0.1 to 4 and with respect to the total molar amount of Compound A, Compound B and Compound C. , Compound D is preferably contained in a molar ratio of (Compound A + Compound B + Compound C): Compound D = 1 to 10: 10 to 1.
More preferably, Compound A: Compound B: Compound C = 0.1 to 1.0: 0.5 to 1.5: 0.5 to 3.5 (molar ratio), and (Compound A + Compound B + Compound C). ): Compound D = 2 to 6: 10 to 1 (molar ratio).
When the compounding ratio of compound A is increased in the monomer mixture, fluidity can be ensured even when impurities such as clay are mixed in the hydraulic composition, and the setting time can be expected to be shortened. Further, by adjusting the blending ratio of compound C, the water reduction and retention of the hydraulic composition can be adjusted.

[共重合体及び重縮合生成物]
本発明の重縮合生成物は、上記化合物A乃至化合物Dを含む単量体混合物を重縮合させて得られる共重合体を含みてなる。
上記共重合体を得るにあたり、化合物A乃至化合物Dの製造方法、及び共重合体を得る重合方法は特に限定されない。
また重縮合に際し、上記化合物A、化合物B、化合物C及び化合物Dの添加順序や添加方法についても特に限定されず、例えば、重縮合反応前に化合物A〜化合物Dの全量を一括添加する、重縮合反応前に化合物A〜化合物Dのうち一部を添加し、その後残りを滴下により分割添加する、或いは、重縮合反応前に化合物A〜化合物Dのうち一部を添加し、一定の反応時間経過後の残りを追加添加する、など何れであってよい。
[Copolymer and polycondensation product]
The polycondensation product of the present invention comprises a copolymer obtained by polycondensing a monomer mixture containing the above compounds A to D.
In obtaining the above-mentioned copolymer, the method for producing the compounds A to D and the polymerization method for obtaining the copolymer are not particularly limited.
Further, in the case of polycondensation, the order of addition and the method of addition of the above compounds A, B, C and D are not particularly limited. For example, the total amount of compounds A to D is collectively added before the polycondensation reaction. A part of Compound A to Compound D is added before the condensation reaction, and then the rest is divided and added by dropping, or a part of Compound A to Compound D is added before the polycondensation reaction, and the reaction time is constant. The rest after the lapse may be additionally added, or the like.

重縮合生成物は、例えば化合物A、化合物B、化合物C及び化合物Dを脱水触媒の存在下にて、無溶媒下或いは溶媒下で、反応温度:80℃〜150℃、常圧〜加圧下、例えば0.001〜1MPaにて重縮合させることにより得られる。
上記脱水触媒としては、塩酸、過塩素酸、硝酸、ギ酸、メタンスルホン酸、オクチルスルホン酸、ドデシルスルホン酸、ビニルスルホン酸、アリルスルホン酸、フェノールスルホン酸、酢酸、硫酸、硫酸ジエチル、硫酸ジメチル、リン酸、シュウ酸、ホウ酸、安息香酸、フタル酸、サリチル酸、ピルビン酸、マレイン酸、マロン酸、ニトロ安息香酸、ニトロサリチル酸、パラトルエンスルホン酸、ベンゼンスルホン酸、ドデシルベンゼンスルホン酸、トリフルオロメタンスルホン酸、フルオロ酢酸、チオグリコール酸、メルカプトプロピオン酸、活性白土等が挙げられ、これら脱水触媒は1種を単独でまたは2種以上を組み合わせて使用することができる
また溶媒下で重縮合反応を実施する場合、該溶媒としては水、プロピレングリコールモノメチルエーテル(PGME)等のグリコールエーテル系化合物、トルエン、キシレン等の芳香族化合物、メチルシクロヘキサン等の環式脂肪族化合物等を用いることができ、更に上記脱水触媒(酸触媒)として適用可能なもの、例えば酢酸を溶媒として用いることも可能である。
反応温度は、好ましくは95℃〜130℃の温度下で実施され得、また3〜25時間反応させることにより重縮合反応を完結させることができる。
重縮合反応は酸性条件にて実施することが好ましく、好ましくは反応系のpHを4以下とすることが望ましい。
The polycondensation product comprises, for example, compound A, compound B, compound C and compound D in the presence of a dehydration catalyst, in the presence of a dehydration catalyst, in the absence of a solvent or in a solvent, at a reaction temperature of 80 ° C. to 150 ° C., under normal pressure to pressure. For example, it is obtained by polycondensing at 0.001 to 1 MPa.
Examples of the dehydration catalyst include hydrochloric acid, perchloric acid, nitrate, formic acid, methanesulfonic acid, octylsulfonic acid, dodecylsulfonic acid, vinylsulfonic acid, allylsulfonic acid, phenolsulfonic acid, acetic acid, sulfuric acid, diethyl sulfate, and dimethyl sulfate. Phosic acid, oxalic acid, boric acid, benzoic acid, phthalic acid, salicylic acid, pyruvate, maleic acid, malonic acid, nitrobenzoic acid, nitrosalicylic acid, paratoluenesulfonic acid, benzenesulfonic acid, dodecylbenzenesulfonic acid, trifluoromethanesulfon Examples thereof include acids, fluoroacetic acids, thioglycolic acids, mercaptopropionic acids, active white clay, etc. These dehydration catalysts can be used alone or in combination of two or more, and a polycondensation reaction is carried out under a solvent. In this case, water, a glycol ether compound such as propylene glycol monomethyl ether (PGME), an aromatic compound such as toluene or xylene, a cyclic aliphatic compound such as methylcyclohexane, or the like can be used as the solvent. Applicable as a dehydration catalyst (acid catalyst), for example, acetic acid can also be used as a solvent.
The reaction temperature can be preferably carried out at a temperature of 95 ° C. to 130 ° C., and the polycondensation reaction can be completed by reacting for 3 to 25 hours.
The polycondensation reaction is preferably carried out under acidic conditions, and the pH of the reaction system is preferably 4 or less.

また化合物A、化合物B、化合物C及び化合物Dに加え、本発明の効果を損なわない範囲において、これら化合物と重縮合可能なその他単量体を単量体混合物に配合してもよい。
その他単量体としては、クレゾール、カテコール、レソルシノール、ノニルフェノール、メトキシフェノール、ナフトール、メチルナフトール、ブチルナフトール、ビスフェノールA、アニリン、メチルアニリン、ヒドロキシアニリン、メトキシアニリン及び/又はサリチル酸と、1〜300molのアルキレンオキシドとの付加物、フェノール、フェノキシ酢酸、メトキシフェノール、レソルシノール、クレゾール、ビスフェノールA、ノニルフェノール、アニリン、メチルアニリン、N−フェニルジエタノールアミン、N,N−ジ(カルボキシエチル)アニリン、N,N−ジ(カルボキシメチル)アニリン、フェノールスルホン酸及びアントラニル酸等を挙げることができる。
Further, in addition to Compound A, Compound B, Compound C and Compound D, other monomers that can be polycondensed with these compounds may be added to the monomer mixture as long as the effects of the present invention are not impaired.
Other monomers include cresol, catechol, resorcinol, nonylphenol, methoxyphenol, naphthol, methylnaphthol, butylnaphthol, bisphenol A, aniline, methylaniline, hydroxyaniline, methoxyaniline and / or salicylic acid, and 1 to 300 mol of alkylene. Additives with oxides, phenol, phenoxyacetic acid, methoxyphenol, resorcinol, cresol, bisphenol A, nonylphenol, aniline, methylaniline, N-phenyldiethanolamine, N, N-di (carboxyethyl) aniline, N, N-di ( Carboxymethyl) aniline, phenol sulfonic acid, anthranyl acid and the like can be mentioned.

重縮合反応の完結後、反応系中の未反応アルデヒド成分(化合物D)の含有量を低減させるため、従来公知種々の方法を採用することができる。例えば、反応系のpHをアルカリ性とし、60〜140℃に加熱処理を行う方法、反応系を減圧とし(−0.1〜−0.001MPa)アルデヒド成分を揮発除去する方法、更には少量の亜硫酸水素ナトリウム、エチレン尿素および/またはポリエチレンイミンを添加する方法などが挙げられる。
反応に用いた前記脱水触媒は、反応完結後に中和し、塩の形態としてろ過により除去することもできるが、触媒を除去しない態様であっても、後述する本発明の水硬性組成物用分散剤としての性能が損なわれるものではない。触媒除去の方法は、上記ろ過以外にも、相分離、透析、限外ろ過、イオン交換体の使用などが挙げられる。
なお反応物を中和および水等により希釈することで、後述する水硬性組成物用分散剤としての使用における計量等の作業性が向上する。この際、中和に用いる塩基性化合物としては、水酸化ナトリウム、水酸化カリウム等のアルカリ水酸化物、水酸化カルシウム等のアルカリ土類水酸化物、アンモニア、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等の有機アミン類が挙げられ、このうちの1種または2種以上の併用などが採用される。
After the completion of the polycondensation reaction, various conventionally known methods can be adopted in order to reduce the content of the unreacted aldehyde component (Compound D) in the reaction system. For example, a method in which the pH of the reaction system is alkaline and heat treatment is performed at 60 to 140 ° C., a method in which the reaction system is reduced in pressure (-0.1 to -0.001 MPa) to volatilize and remove the aldehyde component, and a small amount of sulfite. Examples thereof include a method of adding sodium hydrogen hydrogen, ethylene urea and / or polyethyleneimine.
The dehydration catalyst used in the reaction can be neutralized after the reaction is completed and removed by filtration in the form of a salt, but even in the embodiment in which the catalyst is not removed, the dispersion for the water-hard composition of the present invention described later will be described. The performance as an agent is not impaired. In addition to the above filtration, methods for removing the catalyst include phase separation, dialysis, ultrafiltration, and the use of an ion exchanger.
By neutralizing the reaction product and diluting it with water or the like, workability such as weighing in use as a dispersant for a hydraulic composition described later is improved. At this time, the basic compounds used for neutralization include alkaline hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth hydroxides such as calcium hydroxide, ammonia, monoethanolamine, diethanolamine, and triethanolamine. Organic amines such as, etc. are mentioned, and one or a combination of two or more of them is adopted.

最終的に得られる本発明の上記共重合体は、重量平均分子量(ゲルパーミエーションクロマトグラフィー法(以下「GPC法」と呼ぶ)、ポリエチレングリコール換算)で5,000〜100,000の範囲が適当であり、より好ましくは、重量平均分子量が10,000〜80,000の範囲、特に15,000〜35,000の範囲であることが、優れた分散性能を発現するため望ましい。
なお前述したように本発明における「重縮合生成物」とは、化合物A乃至化合物Dを含む単量体混合物を重縮合させて得られる共重合体のみからなるものでもよいが、一般に、各々の重合工程、アルキレンオキサイド付加工程等で発生した未反応成分、副反応物も含めた成分も包含されている。
The finally obtained copolymer of the present invention in the range of 5,000 to 100,000 in terms of weight average molecular weight (gel permeation chromatography method (hereinafter referred to as "GPC method"), polyethylene glycol equivalent) is suitable. More preferably, the weight average molecular weight is in the range of 10,000 to 80,000, particularly preferably in the range of 15,000 to 35,000 in order to exhibit excellent dispersion performance.
As described above, the "polycondensation product" in the present invention may consist only of a copolymer obtained by polycondensing a monomer mixture containing compounds A to D, but in general, each of them may be used. Unreacted components generated in the polymerization step, alkylene oxide addition step, etc., and components including by-reactants are also included.

<重縮合生成物及び共重合体の用途>
本発明の重縮合生成物及び共重合体は、各種固形粉体の水性分散液における分散剤として、広くその性能を発揮することができる。また、本発明の重縮合生成物及び共重合体は、そのまま(何も添加することなく)上述の分散剤として用いることができ、また、各種用途に応じて、公知公用の添加剤を適宜採用して組合せた混和剤の形態にて用いることもできる。
<Use of polycondensation products and copolymers>
The polycondensation product and copolymer of the present invention can widely exhibit their performance as a dispersant in an aqueous dispersion of various solid powders. Further, the polycondensation product and the copolymer of the present invention can be used as they are (without adding anything) as the above-mentioned dispersant, and publicly known and publicly available additives are appropriately adopted depending on various uses. It can also be used in the form of an admixture combined with the above.

<水硬性組成物用分散剤>
上記用途の中でも、特に上記重縮合生成物又は共重合体を含有する水硬性組成物用分散剤の形態として好適に用いることができる。
なお上記水硬性組成物とは、水和反応により硬化する物性を有する粉体(水硬性粉体)、例えばセメント、石膏、フライアッシュ等を含有する組成物を指す。なお、水硬性粉体がセメントである場合、水硬性組成物をセメント組成物ともいう。
<Dispersant for hydraulic composition>
Among the above applications, it can be particularly preferably used as a form of a dispersant for a hydraulic composition containing the above polycondensation product or copolymer.
The hydraulic composition refers to a composition containing a powder having physical properties that hardens by a hydration reaction (hydraulic powder), such as cement, gypsum, and fly ash. When the hydraulic powder is cement, the hydraulic composition is also referred to as a cement composition.

本発明の水硬性組成物用分散剤には、各種用途に応じて、公知公用の水硬性組成物用の添加剤を適宜採用して組合せた混和剤の形態にて用いることもできる。具体的には、従来公知のセメント分散剤、高性能AE減水剤、高性能減水剤、AE減水剤、減水剤、空気連行剤(AE剤)、起泡剤、消泡剤、凝結遅延剤、凝結促進剤、分離低減剤、増粘剤、収縮低減剤、養生剤、撥水剤等からなる群から選択される少なくとも一種の他の添加剤を配合することができる。
なお、本発明の重縮合生成物又は共重合体を含む水硬性組成物用分散剤とは、上述の本発明の重縮合生成物又は共重合体からなる形態、本発明の重縮合生成物又は共重合体及びそれ以外の公知公用の混和剤を配合し水硬性組成物用混和剤とした形態、又はコンクリート等の水硬性組成物の製造時に上述の重縮合生成物又は共重合体と公知公用の混和剤が別々に添加され最終的に水硬性組成物中で混合される形態の何れをも含む。
The dispersant for a hydraulic composition of the present invention can also be used in the form of an admixture in which a known and publicly available additive for a hydraulic composition is appropriately adopted and combined according to various uses. Specifically, conventionally known cement dispersants, high-performance AE water reducing agents, high-performance water reducing agents, AE water reducing agents, water reducing agents, air entraining agents (AE agents), foaming agents, defoaming agents, coagulation delaying agents, At least one other additive selected from the group consisting of a coagulation accelerator, a separation reducing agent, a thickening agent, a shrinkage reducing agent, a curing agent, a water repellent and the like can be blended.
The dispersant for a water-hard composition containing the polycondensation product or copolymer of the present invention is a form composed of the polycondensation product or copolymer of the present invention described above, or the polycondensation product of the present invention or the copolymer. A form in which a copolymer and other publicly known admixtures are blended to form an admixture for a water-hard composition, or when a water-hard composition such as concrete is produced, the above-mentioned polycondensation product or copolymer is publicly used. Includes any of the forms in which the admixtures of are added separately and finally mixed in the water-hard composition.

一般にセメント分散剤は、コンクリートの製造条件及び性能要求等に応じて、適宜組み合わされ使用される。本発明のセメント分散剤の場合も同様であり、セメント分散剤として単独、あるいは主剤として使用されるものであるが、スランプロスの大きいセメント分散剤の改質助剤として、或いは、初期減水性が高いセメント分散剤として併用して使用され得るものである。
公知のセメント分散剤としては、特公昭59−18338号公報、特許第2628486号公報、特許第2774445号公報等に記載のポリカルボン酸系共重合体の塩があり、またナフタレンスルホン酸ホルマリン縮合物の塩、メラミンスルホン酸ホルマリン縮合物の塩、リグニンスルホン酸塩、グルコン酸ソーダ、糖アルコールも挙げられる。本発明の重縮合生成物又は共重合体と公知のセメント分散剤との配合割合は、例えば1:99〜99:1質量%である。
Generally, cement dispersants are appropriately combined and used according to concrete production conditions, performance requirements, and the like. The same applies to the cement dispersant of the present invention, which is used alone or as a main agent as a cement dispersant, but as a reforming aid for a cement dispersant having a large slump loss or as an initial water reducing agent. It can be used in combination as a high cement dispersant.
Known cement dispersants include salts of polycarboxylic acid-based copolymers described in Japanese Patent Publication No. 59-18338, Japanese Patent No. 2628486, Japanese Patent No. 2774445, etc., and naphthalene sulfonic acid formarin condensates. Salt, salt of melamine sulfonic acid formalin condensate, lignin sulfonate, sodium gluconate, sugar alcohol can also be mentioned. The compounding ratio of the polycondensation product or copolymer of the present invention to the known cement dispersant is, for example, 1:99 to 99: 1% by mass.

空気連行剤を具体的に例示すると、アニオン系空気連行剤、ノニオン系空気連行剤、及び両性系空気連行剤が挙げられる。
凝結遅延剤を例示すると、無機質系凝結遅延剤、有機質系凝結遅延剤が挙げられる。
促進剤としては、無機系促進剤、有機系促進剤が挙げられる。
増粘剤・分離低減剤を例示すると、セルロース系水溶性高分子、ポリアクリルアミド系水溶性高分子、バイオポリマー、非イオン系増粘剤などが挙げられる。
消泡剤を例示すると非イオン系消泡剤類、シリコーン系消泡剤類、高級アルコール類、これらを主成分とした混合物などが挙げられる。
Specific examples of the air entraining agent include anionic air entraining agent, nonionic air entraining agent, and amphoteric air entraining agent.
Examples of the setting retarder include an inorganic setting retarder and an organic setting retarder.
Examples of the accelerator include an inorganic accelerator and an organic accelerator.
Examples of thickeners / separation reducing agents include cellulose-based water-soluble polymers, polyacrylamide-based water-soluble polymers, biopolymers, and nonionic thickeners.
Examples of defoaming agents include nonionic defoaming agents, silicone-based defoaming agents, higher alcohols, and mixtures containing these as main components.

本発明の水硬性組成物用分散剤が、例えばセメント組成物に適用される場合、該セメント組成物を構成する成分は、従来慣用のコンクリート用成分であり、セメント(例えば普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、低熱・中庸熱ポルトランドセメント又は高炉セメント等)、骨材(すなわち細骨材及び粗骨材)、混和材(例えばシリカフューム、炭酸カルシウム粉末、高炉スラグ微粉末、フライアッシュ等)、膨張材及び水を挙げることができる。
また本発明の水硬性組成物用分散剤以外の混和剤で調合時に別に添加できる混和剤としては、前記の公知公用の空気連行剤、凝結遅延剤、促進剤、分離低減剤、増粘剤、消泡剤、収縮低減剤等があり、これらも適宜配合し得る。それら各成分の配合割合は選択された成分の種類や使用目的に応じて適宜決定され得る。
When the dispersant for a water-hardening composition of the present invention is applied to, for example, a cement composition, the components constituting the cement composition are conventionally conventional components for concrete, and cement (for example, ordinary Portland cement, early strength) is used. Portland cement, ultra-fast-strength Portland cement, low-heat / moderate-heat Portland cement or blast furnace cement, etc.), aggregates (ie, fine aggregate and coarse aggregate), admixtures (eg silica fume, calcium carbonate powder, blast furnace slag fine powder, frying) (Ash, etc.), expansion material and water can be mentioned.
Further, as an admixture other than the dispersant for the hydraulic composition of the present invention, which can be added separately at the time of preparation, the above-mentioned publicly known air entraining agent, coagulation retarder, accelerator, separation reducing agent, thickener, etc. There are antifoaming agents, shrinkage reducing agents and the like, and these can also be appropriately blended. The blending ratio of each of these components can be appropriately determined according to the type of selected component and the purpose of use.

本発明の水硬性組成物用分散剤は上述のコンクリートの材料を含めた配合条件によりその添加量が変わるが、セメント質量に対して、又はフライアッシュ等のポゾラン質微粉末を併用する場合にはセメントとフライアッシュの合計質量に対して、固形分換算で通常0.05〜5.0質量%程度添加される。減水性、スランプフロー保持性を得るためには添加量が多いほどよいが、多過ぎると凝結遅延を起こし、場合によっては硬化不良を引き起こし得る。
使用方法は一般のセメント分散剤の場合と同様であり、コンクリート混練時に原液添加するか、予め混練水に希釈して添加する。あるいはコンクリート又はモルタルを練り混ぜた後に添加し、再度均一に混練してもよい。
The amount of the dispersant for a hydraulic composition of the present invention varies depending on the compounding conditions including the above-mentioned concrete material, but when the amount of the cement is increased or when a fine powder of pozzolanate such as fly ash is used in combination. About 0.05 to 5.0% by mass is usually added in terms of solid content with respect to the total mass of cement and fly ash. In order to obtain water reduction and slump flow retention, it is better to add a large amount, but if it is too large, condensation delay may occur, and in some cases, curing failure may occur.
The method of use is the same as that of a general cement dispersant, and the undiluted solution is added at the time of concrete kneading, or it is diluted in advance with kneading water and added. Alternatively, concrete or mortar may be kneaded and then added, and then uniformly kneaded again.

以下実施例により本発明を説明する。ただし本発明は、これらの実施例及び比較例によって何ら制限されるものではない。 The present invention will be described below with reference to Examples. However, the present invention is not limited to these Examples and Comparative Examples.

なお、実施例において、試料の物性測定は、下記の条件のもとで下記の装置を使用して行った。
(1)GPC(ゲル浸透クロマトグラフィー)
<ゲルパーミエーションクロマトグラフィー(GPC)測定条件>
カラム:OHpak SB−802.5HQ、OHpak SB−803HQ、OHpak SB−804HQ(昭和電工(株)製)
溶離液:50mM硝酸ナトリウム水溶液とアセトニトリルの混合液(体積比80/20)
検出器:示差屈折計、検量線:ポリエチレングリコール
In the examples, the physical properties of the sample were measured using the following devices under the following conditions.
(1) GPC (Gel Permeation Chromatography)
<Gel permeation chromatography (GPC) measurement conditions>
Columns: OHpak SB-802.5HQ, OHpak SB-803HQ, OHpak SB-804HQ (manufactured by Showa Denko KK)
Eluent: A mixture of 50 mM sodium nitrate aqueous solution and acetonitrile (volume ratio 80/20)
Detector: differential refractometer, calibration curve: polyethylene glycol

[例1:(A)の調製]
<EO付加体:実施例1〜17、19の重縮合生成物にて使用>
温度計、撹拌機、圧力計、窒素導入管を備えたステンレス製高圧反応器にオルト−ヒドロキシエチルフェノール(Aldrich製試薬)を100部、96%水酸化カリウム0.3部を仕込み、反応容器内を窒素置換し、窒素雰囲気下で130℃まで加熱した。そして、安全圧下で130℃を保持したままエチレンオキサイド190部を4時間で反応器内に導入し、その後2時間その温度を保持してアルキレンオキサイド付加反応を完結させ、オルト−ヒドロキシエチルフェノールの合計6モルEO付加体を得た。
なお本手順に倣い、エチレンオキサイド付加モル数を種々変化させ、後述する表1に示す種々のヒドロキシエチルフェノールのEO付加物を調製した。
<リン酸エステル誘導体:実施例18の重縮合生成物にて使用>
撹拌機、温度計、窒素導入管を備えたガラス製反応容器に、オルト−ヒドロキシエチルフェノールのEO付加体(合計6モル付加体)を3モル仕込み、窒素バブリングを行いながら50℃にて1モルの無水リン酸を4時間かけて仕込み反応せしめた。その後100℃にて3時間の熟成反応を行い、リン酸エステル化反応を終結させ、オルト−ヒドロキシエチルフェノールEO付加体リン酸エステルを得た。
<硫酸エステル誘導体:実施例20の重縮合生成物にて使用>
撹拌機、温度計、窒素導入管、を備えたガラス製反応容器に、オルト−ヒドロキシエチルフェノールのEO付加体(合計6モル付加体)を1モル仕込み、窒素雰囲気下、40℃にて1モルのクロロスルホン酸を3時間かけて仕込み、硫酸化反応を行った。その後窒素バブリングにより脱塩酸処理を1時間行い、酸性化合物を得た。
前記とは別に、撹拌機、温度計を備えたガラス製反応容器を用意し、1モルの48%水酸化ナトリウム溶液及び4.5モルの水を仕込んだ。このアルカリ水溶液に、硫酸化反応により得られた前記酸性化合物全量を、40℃にて3時間かけて仕込み、中和反応を行った。この過程で、pHは7となるよう適宜48%水酸化ナトリウム溶液を添加してpH調整を行った。このようにして、オルト−ヒドロキシエチルフェノールEO付加体硫酸エステルの水溶液(有効成分(固形分濃度)28%)を得た。
[Example 1: Preparation of (A)]
<EO adduct: used in polycondensation products of Examples 1 to 17 and 19>
A stainless steel high-pressure reactor equipped with a thermometer, agitator, a pressure gauge, and a nitrogen introduction tube was charged with 100 parts of ortho-hydroxyethylphenol (Aldrich's reagent) and 0.3 parts of 96% potassium hydroxide in the reaction vessel. Was replaced with nitrogen and heated to 130 ° C. in a nitrogen atmosphere. Then, 190 parts of ethylene oxide was introduced into the reactor in 4 hours while maintaining 130 ° C. under safe pressure, and then the temperature was maintained for 2 hours to complete the alkylene oxide addition reaction, and the total amount of ortho-hydroxyethylphenol. A 6 molar EO adduct was obtained.
Following this procedure, the number of moles of ethylene oxide adduct was varied to prepare various EO adducts of hydroxyethylphenol shown in Table 1 described later.
<Phosphate ester derivative: used in the polycondensation product of Example 18>
In a glass reaction vessel equipped with a stirrer, a thermometer, and a nitrogen introduction tube, 3 mol of an EO adduct of ortho-hydroxyethylphenol (6 mol adduct in total) was charged, and 1 mol at 50 ° C. while performing nitrogen bubbling. The anhydrous phosphoric acid of No. 1 was charged and reacted over 4 hours. Then, the aging reaction was carried out at 100 ° C. for 3 hours to terminate the phosphoric acid esterification reaction, and an ortho-hydroxyethylphenol EO adduct phosphoric acid ester was obtained.
<Sulfate ester derivative: used in the polycondensation product of Example 20>
In a glass reaction vessel equipped with a stirrer, a thermometer, and a nitrogen introduction tube, 1 mol of an EO adduct of ortho-hydroxyethylphenol (6 mol adduct in total) was charged, and 1 mol at 40 ° C. under a nitrogen atmosphere. Chlorosulfuric acid was charged over 3 hours and a sulfate reaction was carried out. Then, it was dehydrochlorinated by nitrogen bubbling for 1 hour to obtain an acidic compound.
Separately from the above, a glass reaction vessel equipped with a stirrer and a thermometer was prepared, and 1 mol of 48% sodium hydroxide solution and 4.5 mol of water were charged. The entire amount of the acidic compound obtained by the sulfate reaction was charged into this alkaline aqueous solution at 40 ° C. for 3 hours to carry out a neutralization reaction. In this process, the pH was adjusted by appropriately adding a 48% sodium hydroxide solution so that the pH became 7. In this way, an aqueous solution of ortho-hydroxyethylphenol EO adduct sulfate (active ingredient (solid content concentration) 28%) was obtained.

[例2:(B)の調製]
温度計、撹拌機、圧力計、窒素導入管を備えたステンレス製高圧反応器にジエチレングリコールモノフェニルエーテル(東邦化学工業(株)製ハイソルブDPH)を80部、96%水酸化カリウム0.2部を仕込み、反応容器内を窒素置換し、窒素雰囲気下で150℃まで加熱した。そして、安全圧下で150℃を保持したままエチレンオキサイド1700部を10時間で反応器内に導入し、その後2時間その温度を保持してアルキレンオキサイド付加反応を完結させ、ポリエチレングリコールモノフェニルエーテル(EOの付加モル数=90)を得た。
なお本手順に倣い、エチレンオキサイド付加モル数を種々変化させ、後述する表1に示す種々のポリエチレングリコールモノフェニルエーテルを調製した。また、フェノールの6モルエチレンオキサイド付加物(No.15参照)は、出発原料をフェノールとした以外は、上記合成手順に倣って調製した。フェノールの1モルエチレンオキサイド付加物(No.16参照)は、東邦化学工業(株)製ハイソルブEPHを用いた。
[Example 2: Preparation of (B)]
80 parts of diethylene glycol monophenyl ether (High Solve DPH manufactured by Toho Kagaku Kogyo Co., Ltd.) and 0.2 parts of 96% potassium hydroxide in a stainless steel high-pressure reactor equipped with a thermometer, agitator, pressure gauge, and nitrogen introduction tube. The mixture was charged, the inside of the reaction vessel was replaced with nitrogen, and the mixture was heated to 150 ° C. in a nitrogen atmosphere. Then, 1700 parts of ethylene oxide was introduced into the reactor under safe pressure at 150 ° C. for 10 hours, and then the temperature was maintained for 2 hours to complete the alkylene oxide addition reaction to complete the polyethylene glycol monophenyl ether (EO). The number of added moles = 90) was obtained.
Following this procedure, the number of moles of ethylene oxide added was varied to prepare various polyethylene glycol monophenyl ethers shown in Table 1 described later. The 6 molethylene oxide adduct of phenol (see No. 15) was prepared according to the above synthesis procedure except that the starting material was phenol. As the 1 molar ethylene oxide adduct of phenol (see No. 16), High Solve EPH manufactured by Toho Chemical Industry Co., Ltd. was used.

[例3:(C)の調製]
<EO付加体の調製>
出発原料としてフェノール、p−tert−ブチルフェノール(DIC(株)製、PTBP)、またはp−オクチルフェノール(DIC(株)製、POP)を用いて、前記(A)の調製方法にならってエチレンオキサイド付加反応を行った。エチレンオキサイド付加モル数は、表1記載のqとした。
<リン酸エステル化及び硫酸エステル化>
リン酸エステル化及び硫酸エステル化は、出発原料の種類のみを変更した以外は、(A)のリン酸エステル化手順及び硫酸エステル化手順に倣って行った。
[Example 3: Preparation of (C)]
<Preparation of EO adduct>
Phenol, p-tert-butylphenol (manufactured by DIC Corporation, PTBP), or p-octylphenol (manufactured by DIC Corporation, POP) is used as a starting material, and ethylene oxide is added according to the preparation method (A) above. The reaction was carried out. The number of moles of ethylene oxide added was q as shown in Table 1.
<Phosphate esterification and sulfate esterification>
The phosphate esterification and the sulfate esterification were carried out according to the phosphoric acid esterification procedure and the sulfate esterification procedure of (A), except that only the type of starting material was changed.

[調製例1:実施例1の重縮合生成物の調製]
撹拌機、温度計、還流冷却器を備えたガラス製反応容器の中に、(A)〜(C)の各原料を表1に記載のモル比にて仕込んだ。これを70℃まで昇温し、次いで98%硫酸を(A)〜(C)の合計重量に対し、1.0wt%仕込んだ。次いで(D)原料を表1に記載のモル比にて反応容器内へ一括にて仕込み、その後105℃まで昇温させた。105℃到達時、反応物のpHは2.1(1%水溶液、20℃)であった。105℃に到達してから6時間後に反応を終了し、48%苛性ソーダを仕込み、反応物の1%水溶液のpHが5.0〜7.5の範囲となるように中和を行った。その後、反応物の固形分が40%となるように適量の水を加え、重縮合生成物の水溶液を得た。この重縮合生成物につき、GPC測定を行い、重量平均分子量を求めた。
[調製例2〜20:実施例2〜20の重縮合生成物の調製]
調製例1の手順に倣い、(A)〜(D)の原料種類およびモル比を表1記載の通りに変更し、各重縮合生成物の水溶液を得た。
[Preparation Example 1: Preparation of polycondensation product of Example 1]
Each of the raw materials (A) to (C) was charged in a glass reaction vessel equipped with a stirrer, a thermometer, and a reflux condenser at the molar ratio shown in Table 1. This was heated to 70 ° C., and then 98% sulfuric acid was charged in an amount of 1.0 wt% based on the total weight of (A) to (C). Next, the raw materials (D) were collectively charged into the reaction vessel at the molar ratio shown in Table 1, and then the temperature was raised to 105 ° C. When reaching 105 ° C, the pH of the reactants was 2.1 (1% aqueous solution, 20 ° C). The reaction was terminated 6 hours after reaching 105 ° C., 48% caustic soda was charged, and neutralization was performed so that the pH of the 1% aqueous solution of the reaction product was in the range of 5.0 to 7.5. Then, an appropriate amount of water was added so that the solid content of the reaction product was 40%, and an aqueous solution of the polycondensation product was obtained. GPC measurement was performed on this polycondensation product to determine the weight average molecular weight.
[Preparation Examples 2 to 20: Preparation of polycondensation products of Examples 2 to 20]
Following the procedure of Preparation Example 1, the raw material types and molar ratios (A) to (D) were changed as shown in Table 1 to obtain an aqueous solution of each polycondensation product.

Figure 0006821570
Figure 0006821570







[比較調製例1:比較例1の重縮合生成物の調製]
特許第5507809号明細書に開示された以下の手順(段落[0049][本発明の重縮合物の調製B.1]に従い、比較例1の重縮合生成物を調製した。
まず1モルのポリ(エチレンオキシド)モノフェニルエーテル(1000g/モル)、2モルのフェノキシエタノールホスフェート(又は、2−フェノキシエタノールジヒドロゲンホスフェートと2−フェノキシエタノールヒドロゲンホスフェートとの混合物)、16.3モルの水、及び2モルのHSOを反応容器に入れて撹拌した。37%水溶液の形態にある3モルのホルムアルデヒドを、このようにして形成した溶液に滴下した。重縮合反応を、105℃、5時間で反応は完結させた。反応の終了後に、20%のNaOH水溶液を用いて反応混合物のpHを10.5にした。105℃でさらに30分間経過の後、混合物を室温にまで冷却し、水を添加することによって固形分を約30質量%に調整した。
このようにして得られた比較例1の重縮合生成物において、ゲル浸透クロマトグラフィーによる測定による重量平均分子量Mwは22,000であった。
[Comparative Preparation Example 1: Preparation of Polycondensation Product of Comparative Example 1]
The polycondensation product of Comparative Example 1 was prepared according to the following procedure disclosed in Japanese Patent No. 5507809 (paragraph [0049] [Preparation of polycondensation product of the present invention B.1].
First, 1 mol of poly (ethylene oxide) monophenyl ether (1000 g / mol), 2 mol of phenoxyethanol phosphate (or a mixture of 2-phenoxyethanol dihydrogen phosphate and 2-phenoxyethanol hydrogen phosphate), 16.3 mol of water, And 2 mol of H 2 SO 4 was placed in a reaction vessel and stirred. 3 mol of formaldehyde in the form of a 37% aqueous solution was added dropwise to the solution thus formed. The polycondensation reaction was completed at 105 ° C. for 5 hours. After completion of the reaction, a 20% aqueous NaOH solution was used to bring the pH of the reaction mixture to 10.5. After an additional 30 minutes at 105 ° C., the mixture was cooled to room temperature and water was added to adjust the solids to about 30% by weight.
In the polycondensation product of Comparative Example 1 thus obtained, the weight average molecular weight Mw measured by gel permeation chromatography was 22,000.

[比較調製例2:比較例2の重縮合生成物の調製]
特表2014−503667号公報に開示された以下の手順(段落[0069][実施例1.1]に従い、比較例2の重縮合生成物を調製した。
まず2−フェノキシエタノール(96%、16.92g)を、70℃に設定したジャケット及び機械インペラを備えた反応器に添加した。ポリリン酸(P中で80%、9.60g)を、2−フェノキシエタノールを撹拌しながら、反応器に添加した。その混合物を80℃で30分間撹拌し、続いてポリオキシエチレンモノフェニルエーテル(96%、Mn=5000g/mol、200g)を供給した。そして、その混合物を100℃まで加熱した。濃硫酸(96%、6.10g)、ホルマリン(37%、9.36g)及びパラホルムアルデヒド(94%、1.92g)を、その混合物に添加し、そしてその混合物を110〜115℃まで加熱し、そして2時間撹拌した。その後、その混合物を60℃まで冷却させ、そして32質量%の水酸化ナトリウム水溶液を添加して、その混合物をpH9.1まで中和した。
このようにして得られた比較例2の重縮合生成物において、ゲル浸透クロマトグラフィーによる測定による重量平均分子量Mwは22,000であった。
[Comparative Preparation Example 2: Preparation of Polycondensation Product of Comparative Example 2]
The polycondensation product of Comparative Example 2 was prepared according to the following procedure (paragraph [0069] [Example 1.1]) disclosed in Japanese Patent Application Laid-Open No. 2014-503667.
First, 2-phenoxyethanol (96%, 16.92 g) was added to a reactor equipped with a jacket and mechanical impeller set at 70 ° C. Polyphosphoric acid (80% in P 2 O 5 , 9.60 g) was added to the reactor with stirring 2-phenoxyethanol. The mixture was stirred at 80 ° C. for 30 minutes, followed by the supply of polyoxyethylene monophenyl ether (96%, Mn = 5000 g / mol, 200 g). The mixture was then heated to 100 ° C. Concentrated sulfuric acid (96%, 6.10 g), formalin (37%, 9.36 g) and paraformaldehyde (94%, 1.92 g) are added to the mixture and the mixture is heated to 110-115 ° C. , And stirred for 2 hours. The mixture was then cooled to 60 ° C. and 32% by weight aqueous sodium hydroxide solution was added to neutralize the mixture to pH 9.1.
In the polycondensation product of Comparative Example 2 thus obtained, the weight average molecular weight Mw measured by gel permeation chromatography was 22,000.

[試験I:フレッシュモルタル試験]
<モルタル配合>
太平洋セメント(株)製普通ポルトランドセメント500g又は該セメント及びフライアッシュの合計で500g、細骨材1350g又は細骨材及び粘土等[粘土(採集微粒分)又はクレイ(ベントナイト、カオリナイト)]の合計で1350g、水硬性組成物用分散剤として上記重縮合生成物1〜20又は比較例の重縮合生成物1〜2[セメント質量に対して各重縮合生成物を固形分換算にて0.18質量%、0.20質量%、又は0.22質量%添加(表2参照)]を含むイオン交換水225g[水/セメント比(質量比)=0.45]を用い、後述する手順にてモルタルを調製した(表2のモルタルの配合参照)。
[Test I: Fresh mortar test]
<Mortar combination>
500 g of ordinary Portland cement manufactured by Pacific Cement Co., Ltd. or 500 g of the cement and fly ash in total, 1350 g of fine aggregate or fine aggregate and clay, etc. [Clay (collected fine particles) or clay (bentonite, kaolinite)] 1350 g, as a dispersant for a water-hard composition, the above-mentioned polycondensation products 1 to 20 or the polycondensation products 1 to 2 of the comparative example Using 225 g of ion-exchanged water [water / cement ratio (mass ratio) = 0.45] containing [mass%, 0.20 mass%, or 0.22 mass% addition (see Table 2)], the procedure described later Mortar was prepared (see Mortar Formulation in Table 2).

本試験で使用した粘土(採集微粒分)は、富津山砂より75μm以下の成分を採集した採集微粒分であり、JIS Z 8801−1で規定される呼び寸法75μm金属製ふるい通過分を粘土(採集微粒分)として用いた。
また、クレイは、次に示す市販品を使用した。
ベントナイト:試薬(和光純薬工業(株)製)
カオリナイト:RC−1(竹原化学工業(株)製)
The clay (collected fine particles) used in this test is the collected fine particles obtained by collecting components of 75 μm or less from Futtsu mountain sand, and the clay (collected fine particles) with a nominal size of 75 μm specified in JIS Z 8801-1 is used as clay (collected fine particles). Used as collected fine particles).
As clay, the following commercially available products were used.
Bentonite: Reagent (manufactured by Wako Pure Chemical Industries, Ltd.)
Kaolinite: RC-1 (manufactured by Takehara Chemical Industry Co., Ltd.)

Figure 0006821570
Figure 0006821570







<フレッシュモルタル試験>
JIS R 5201の規定に従い、表2に示す配合No.(1)〜(5)にそれぞれ従い調製された配合AないしEのモルタルを用いたフレッシュモルタル試験をそれぞれ実施した。
詳細には、水硬性組成物用分散剤(重縮合生成物1〜20又は比較例の重縮合生成物1〜2)を予め加えて調製した練混ぜ水(イオン交換水)を、粉体(セメント、又はセメント及びフライアッシュ)及び砂(細骨材、又は細骨材及び粘土等)に加え、ハイパワーミキサー((株)丸東製作所製)を用いて、低速で40秒間〜60秒間練り混ぜ、30秒間静置した。なお練混ぜ時間は、練り混ぜ開始からモルタルが流動状態となったことが確認できる時間として適宜選択した(配合A〜配合Eにおいて共通の練混ぜ時間とした)。静置開始から20秒間で容器の壁に付着したモルタルを掻き落とし、静置期間終了後、次いで高速で90秒練り混ぜ、試験モルタルを作製した。
なお試験に用いたモルタルは、モルタル中の気泡がモルタルの流動性に及ぼす影響を避けるために、消泡剤(東邦化学工業(株)製プロナール753W)を、セメントもしくはセメントとフライアッシュの合計質量に対して0.01wt%の量にて併用し、空気量を調整した。
<Fresh mortar test>
In accordance with the provisions of JIS R 5201, Formulation No. shown in Table 2 A fresh mortar test was carried out using the mortars of Formulations A to E prepared according to (1) to (5), respectively.
Specifically, kneading water (ion-exchanged water) prepared by adding a dispersant for a water-hard composition (polycondensation products 1 to 20 or polycondensation products 1 to 2 of Comparative Example) in advance is added to powder (ion exchange water). In addition to cement or cement and fly ash) and sand (fine aggregate, or fine aggregate and clay, etc.), knead at low speed for 40 to 60 seconds using a high power mixer (manufactured by Maruto Seisakusho Co., Ltd.). It was mixed and allowed to stand for 30 seconds. The kneading time was appropriately selected as a time during which it was confirmed that the mortar was in a fluid state from the start of kneading (the kneading time common to the formulations A to E). The mortar adhering to the wall of the container was scraped off in 20 seconds from the start of standing, and after the end of the standing period, the mixture was kneaded at high speed for 90 seconds to prepare a test mortar.
For the mortar used in the test, in order to avoid the influence of air bubbles in the mortar on the fluidity of the mortar, a defoaming agent (Pronal 753W manufactured by Toho Chemical Industry Co., Ltd.) was used, and the total mass of cement or cement and fly ash was used. The amount of air was adjusted by using the amount of 0.01 wt%.

<モルタルフローの測定及び流動性保持率並びに流動性変動率の算出>
これら練り上がり直後の試験モルタル、並びに30分間経過後の試験モルタルについて、JIS A 1171「ポリマーセメントモルタルの試験方法」に準拠したミニスランプコーン(上端内径50mm、下端内径100mm、高さ150mmの円錐筒)を用い、モルタルの広がり(フロー値)を測定した。
得られた結果を表3に示す。
<Measurement of mortar flow and calculation of liquidity retention rate and liquidity volatility>
Regarding the test mortar immediately after kneading and the test mortar after 30 minutes have passed, a mini slump cone (upper end inner diameter 50 mm, lower end inner diameter 100 mm, height 150 mm) conforming to JIS A 1171 "Test method for polymer cement mortar". ) Was used to measure the spread (flow value) of the mortar.
The results obtained are shown in Table 3.

配合A、配合C及び配合Eによる試験モルタルに関して、流動性保持率として、練り上がり直後のフロー値と30分経過後のフロー値の変化率を、以下の式にて算出した。
流動性保持率(%)=[30分経過後のフロー値/練り上がり直後のフロー値]×100
得られた結果を表3に示す。
With respect to the test mortars of Formulation A, Formulation C and Formulation E, the rate of change of the flow value immediately after kneading and the flow value after 30 minutes had passed as the fluidity retention rate was calculated by the following formula.
Liquidity retention rate (%) = [Flow value after 30 minutes / Flow value immediately after kneading] x 100
The results obtained are shown in Table 3.

また、水硬性組成物用分散剤(及びその使用量)が同一の試験モルタルに関して、流動性変動率として、粘土又はクレイを加えていないモルタル(配合Aモルタル)のフロー値に対して、粘土又はクレイを加えた場合のモルタル(配合B〜配合E)のフロー値の変化率を、以下の式にて算出した。流動性変動率(%)が100%に近いほど、粘土又またはクレイが含まれることによる流動性の変化が少ない良好な結果であると評価できる。
流動性変動率(%)=[粘土又はクレイを添加した場合のフロー値(配合B〜配合E)/粘土又はクレイ未添加の場合のフロー値(配合A)]×100
得られた結果を表3に示す。
In addition, for test mortars with the same dispersant for hydraulic composition (and the amount used thereof), clay or clay or clay or mortar without clay (blended A mortar) has a flow value as a fluidity fluctuation rate. The rate of change in the flow value of the mortar (formulation B to formulation E) when clay was added was calculated by the following formula. It can be evaluated that the closer the fluidity volatility (%) is to 100%, the better the result is that the change in fluidity due to the inclusion of clay or clay is small.
Liquidity volatility (%) = [Flow value when clay or clay is added (blending B to E) / Flow value when clay or clay is not added (blending A)] x 100
The results obtained are shown in Table 3.

<硬化性状(発熱ピーク)の測定>
配合Aにて作製した試験モルタルを、φ10cm、高さ12cmのプラスチック製容器に充填し、これをウレタンフォーム製の簡易断熱箱の中心部に入れ、(株)共和電業製K型熱電対(素線の径:0.1mm)およびNTB−201Aを用いて、モルタルの内部温度を測定した。
そしてモルタルの内部温度の履歴から、最高温度への到達時間(発熱ピーク 時間:分(h:m))を確認した。
得られた結果を表3に示す。
<Measurement of curability (exothermic peak)>
The test mortar prepared in Formulation A was filled in a plastic container having a diameter of 10 cm and a height of 12 cm, placed in the center of a simple heat insulating box made of urethane foam, and K-type thermocouple manufactured by Kyowa Electric Co., Ltd. The internal temperature of the mortar was measured using a wire diameter (0.1 mm) and NTB-201A.
Then, from the history of the internal temperature of the mortar, the time to reach the maximum temperature (heat generation peak time: minutes (h: m)) was confirmed.
The results obtained are shown in Table 3.

<モルタル硬化体外観の評価>
先の<フレッシュモルタル試験>の手順に倣い、配合Eにて作製した試験モルタルを、(株)丸東製作所製3連型枠に充填し、24時間後に脱型してモルタル硬化体を得た。
上記手順にて得られたモルタル硬化体について、打設面(4cm×16cm)について写真撮影し、該打設面(表面写真)を1マス5mm×5mmの合計256マスに分割した。該256マス中で黒ずみが発生しているマス数をカウントして黒ずみ面積率(小数点第2位を四捨五入)を算出し、以下の基準にて外観(黒ずみ)を評価した。
評価 1:硬化体の表面の黒ずみ面積率=5.0%以上
2:硬化体の表面の黒ずみ面積率=3.0〜4.9%
3:硬化体の表面の黒ずみ面積率=1.0〜2.9%
4:硬化体の表面の黒ずみ面積率=1.0%未満
得られた結果を表3に示す。
<Evaluation of the appearance of the cured mortar>
Following the procedure of the previous <Fresh mortar test>, the test mortar prepared in Formulation E was filled in a triple mold manufactured by Maruto Seisakusho Co., Ltd., and after 24 hours, it was demolded to obtain a cured mortar. ..
The cured mortar obtained by the above procedure was photographed on the casting surface (4 cm × 16 cm), and the casting surface (surface photograph) was divided into 1 square 5 mm × 5 mm, for a total of 256 squares. The blackhead area ratio (rounded to the first decimal place) was calculated by counting the number of squares in which darkening occurred among the 256 squares, and the appearance (blackening) was evaluated according to the following criteria.
Evaluation 1: Darkened area ratio on the surface of the cured product = 5.0% or more 2: Darkened area ratio on the surface of the cured product = 3.0 to 4.9%
3: Darkened area ratio on the surface of the cured product = 1.0 to 2.9%
4: Darkening area ratio on the surface of the cured product = less than 1.0% The results obtained are shown in Table 3.

Figure 0006821570
Figure 0006821570







表3に示すように、配合Aと、配合B、配合C及び配合Dとを比較すると、本発明の重縮合生成物を含む水硬性組成物分散剤は、細骨材中に粘土(配合B)、ベントナイト(配合C)又はカオリナイト(配合D)が混在する場合においても、これら粘土等を含まない配合Aと比べてモルタルフロー値の変動が少なく、高い流動性を維持できることが確認される。
また配合Eとして、ベントナイトが混在する配合において水硬性粉体としてフライアッシュを併用した場合においても、モルタルフロー値の変動が少なく、しかも30分後においてもフロー値を維持し、流動性の保持性にも優れることが確認され、さらに比較例の重縮合生成物を含む水硬性組成物分散剤と比べ、硬化体外観の黒ずみを抑制することが確認された。
一方、化合物A(ヒドロキシエチルフェノールのアルキレンオキサイド付加物)に相当する化合物を含まない単量体混合物より調製した比較例1及び比較例2の重縮合生成物を含む水硬性組成物分散剤にあっては、粘土やクレイの配合によりモルタルフロー値が大きく変動(減少)し、30分後におけるフロー値も大きく落ち込む結果となった。また、フライアッシュを併用した系にあっては、硬化体表面の黒ずみが目立つ結果となった。
As shown in Table 3, when the formulation A is compared with the formulation B, the formulation C and the formulation D, the hydraulic composition dispersant containing the polycondensation product of the present invention contains clay (formulation B) in the fine aggregate. ), Bentonite (formulation C) or kaolinite (formulation D) are mixed, and it is confirmed that the mortar flow value fluctuates less and high fluidity can be maintained as compared with the formulation A which does not contain these clays and the like. ..
Further, as the formulation E, even when fly ash is used as the hydraulic powder in the formulation in which bentonite is mixed, the fluctuation of the mortar flow value is small, and the flow value is maintained even after 30 minutes, and the fluidity is retained. It was also confirmed that it was excellent in the above, and further, it was confirmed that the darkening of the appearance of the cured product was suppressed as compared with the hydraulic composition dispersant containing the polycondensation product of the comparative example.
On the other hand, the water-hard composition dispersant containing the polycondensation products of Comparative Example 1 and Comparative Example 2 prepared from a monomer mixture containing no compound corresponding to compound A (alkylene oxide adduct of hydroxyethylphenol). As a result, the mortar flow value fluctuated (decreased) greatly due to the blending of clay and clay, and the flow value after 30 minutes also dropped significantly. In addition, in the system using fly ash together, the darkening of the surface of the cured product was conspicuous.

より詳細には、単量体混合物における化合物A(ヒドロキシエチルフェノールのアルキレンオキサイド付加物)の割合を高めることにより、特に粘土(配合B)並びにベントナイト(配合C)の場合においてもモルタルフロー値の変動を少なくできることが確認された(実施例10、実施例6、実施例11参照)。
さらに化合物Aにおいて、エチレンオキシドの平均付加モル数を上げる程に減水性が向上し、添加量を10%減じても同程度の減水性を確保できることが確認された(実施例13、実施例1、実施例14参照)。
そして化合物Aにおいて末端OHをリン酸エステル基又は硫酸エステル基によりアニオン化させたエステル誘導体とすることで、練り混ぜ時間を短縮する、すなわち、短時間でセメント、砂等の各種材料が均一な状態に混ざりあうことができること、特にリン酸エステル基が有効であることが確認された(実施例1、実施例18、実施例20参照)。
More specifically, by increasing the proportion of compound A (alkylene oxide adduct of hydroxyethylphenol) in the monomeric mixture, the mortar flow value fluctuates, especially in the case of clay (formulation B) and bentonite (formulation C). It was confirmed that the number can be reduced (see Example 10, Example 6, and Example 11).
Further, in Compound A, it was confirmed that the water reduction was improved as the average number of moles of ethylene oxide added was increased, and that the same degree of water reduction could be secured even if the addition amount was reduced by 10% (Example 13, Example 1, See Example 14).
Then, in compound A, the terminal OH is an ester derivative anionized with a phosphoric acid ester group or a sulfuric acid ester group to shorten the kneading time, that is, a uniform state of various materials such as cement and sand in a short time. It was confirmed that it can be mixed with the above, and that the phosphate ester group is particularly effective (see Example 1, Example 18, and Example 20).

また化合物B(フェノールのアルキレンオキサイド付加物又はその誘導体)においては、エチレンオキシドの平均付加モル数を上げる程に減水性が向上し、添加量を10%減じても同程度の減水性を確保できることが確認された(実施例3、実施例1、実施例2参照)。
また化合物Bは、2種以上を組み合わせて使用すると保持性が向上し、クレイ(ベントナイト/カオリナイト)に対する抵抗性が更に向上することが確認された(実施例1、実施例15、実施例16参照)。
Further, in compound B (an alkylene oxide adduct of phenol or a derivative thereof), the water reduction is improved as the average number of moles of ethylene oxide added is increased, and the same degree of water reduction can be ensured even if the addition amount is reduced by 10%. It was confirmed (see Example 3, Example 1, and Example 2).
Further, it was confirmed that when two or more kinds of compound B are used in combination, the retention property is improved and the resistance to clay (bentonite / kaolinite) is further improved (Example 1, Example 15, Example 16). reference).

さらに化合物C(フェノールのアルキレンオキサイド付加物のリン酸エステル又は硫酸エステル誘導体)においては、ベンゼン環をアルキル置換することで、FA配合時の流動性が向上するとともに、その硬化体の外観が良好となる結果が得られた。また置換アルキル基の鎖長を長いものとすることにより、更に硬化体の外観が良好となることが確認された(実施例1、実施例6、実施例9)。
また、単量体混合物における化合物Cの割合を高めることにより、フライアッシュ配合時の流動性が向上することが確認され、化合物Cの割合の調整により減水性と保持性を調節できることが確認された(実施例7、実施例6、実施例8)。
そして化合物Cの末端のアニオン化において、リン酸エステルの方が硫酸エステルよりも減水性が高く、一方、硫酸エステルは添加量を10%増加させてもリン酸エステルに及ばないという結果となった(実施例18、実施例20参照)。
Further, in compound C (phosphate ester or sulfate ester derivative of phenol alkylene oxide adduct), by alkyl-substituting the benzene ring, the fluidity at the time of FA compounding is improved and the appearance of the cured product is good. The result was obtained. Further, it was confirmed that the appearance of the cured product was further improved by increasing the chain length of the substituted alkyl group (Example 1, Example 6, Example 9).
Further, it was confirmed that the fluidity at the time of blending fly ash was improved by increasing the proportion of compound C in the monomer mixture, and it was confirmed that the water reduction and retention could be adjusted by adjusting the proportion of compound C. (Example 7, Example 6, Example 8).
Then, in the anionization of the terminal of Compound C, the phosphoric acid ester has a higher water-reducing property than the sulfate ester, while the sulfate ester does not reach the phosphoric acid ester even if the addition amount is increased by 10%. (See Example 18 and Example 20).

[試験II:コンクリート試験]
<コンクリート配合>
表4に示すコンクリートの配合No.1および配合No.2それぞれにおいて、表5及び表6に示す添加量の重縮合生成物(実施例1〜3、6,15,16,19)および減水剤を予め加えて調製した練り混ぜ水(イオン交換水)を用いて、JIS A 1138に準拠してフレッシュコンクリートを作製した。減水剤として、AE減水剤(高機能タイプ、リグニンスルホン酸塩含有)市販品および特許第2774445号明細書実施例記載の混和剤C−1を使用した。表5及び表6に示すように実施例の重縮合生成物を含まず減水剤のみを含む水硬性組成物用分散剤を含むコンクリートを比較試験に用いた。
練り混ぜ方法は、公称容量100リットルの二軸強制練りミキサを用いて、各バッチのコンクリート製造量を50リットル×1バッチとした。
まずはじめにセメント、フライアッシュ、細骨材、練り混ぜ水、粗骨材及び減水剤を投入して配合No.1では90秒間、配合No.2では120秒間練り混ぜを行った。

Figure 0006821570






[Test II: Concrete test]
<Concrete composition>
The concrete compounding No. shown in Table 4. 1 and formulation No. 2 In each of 2, the mixing water (ion-exchanged water) prepared by adding the polycondensation products (Examples 1 to 3, 6, 15, 16, 19) and the water reducing agent in the addition amounts shown in Tables 5 and 6 in advance. Was used to prepare fresh concrete in accordance with JIS A 1138. As the water reducing agent, a commercially available AE water reducing agent (high-performance type, containing lignin sulfonate) and the admixture C-1 described in Examples of Japanese Patent No. 2774445 were used. As shown in Tables 5 and 6, concrete containing a dispersant for a hydraulic composition containing only a water reducing agent without containing the polycondensation product of Examples was used for the comparative test.
As a kneading method, a biaxial forced kneading mixer having a nominal capacity of 100 liters was used, and the amount of concrete produced in each batch was 50 liters x 1 batch.
First of all, cement, fly ash, fine aggregate, mixed water, coarse aggregate and water reducing agent are added and compounded No. In No. 1, compounding No. 1 was used for 90 seconds. In No. 2, kneading was performed for 120 seconds.
Figure 0006821570






<コンクリート試験>
前記の手順にて作製した各種コンクリートについて、経時0、30分において、JIS A 1101およびJIS A 1150に準拠し、スランプ、スランプフロー、50cmフロー到達時間、フローの流動停止時間を測定した。スランプフローの測定後、試料をφ15cm×30cmのサミットモールドに採取し、60秒間テーブルバイブレーターを用いて加振したのち、試験体の上面外観を観察した。また、同じ試料を用いて、JIS A 1128に準拠し空気量を測定した。
また、JIS A 1147に準拠してコンクリートの凝結時間を測定した。上記試験に用いたフレッシュコンクリートの温度は、全て20±3℃であった。
配合No.1のコンクリートについての結果を表5に示し、配合No.2のコンクリートについての結果を表6に示す。
<Concrete test>
For various concretes produced by the above procedure, slump, slump flow, 50 cm flow arrival time, and flow stop time were measured at 0 to 30 minutes over time in accordance with JIS A 1101 and JIS A 1150. After measuring the slump flow, a sample was collected in a summit mold of φ15 cm × 30 cm, vibrated using a table vibrator for 60 seconds, and then the appearance of the upper surface of the test piece was observed. In addition, the same sample was used to measure the amount of air in accordance with JIS A 1128.
In addition, the setting time of concrete was measured according to JIS A 1147. The temperature of the fresh concrete used in the above test was 20 ± 3 ° C.
Formulation No. The results for the concrete of No. 1 are shown in Table 5, and the compounding No. Table 6 shows the results for the concrete of 2.

Figure 0006821570
Figure 0006821570






Figure 0006821570
Figure 0006821570




表5及び表6に示すように、配合No.1および配合No.2のコンクリートにおいて、本発明の水硬性組成物用分散剤((重縮合生成物1〜3、6,15,16,19)および減水剤)を含む、試験例1〜7ならびに試験例8〜14のコンクリートは、減水剤のみを含む比較試験例1および比較試験例2のコンクリートよりも、経時安定性が良好で、コンクリート粘性が低く、かつ凝結遅延性も少ないので施工性も良好である。また、フライアッシュ(FA)配合のコンクリート組成物に配合した場合においても減水性を高い状態に保つことができ、特にFA配合組成物の硬化体において未燃炭素がコンクリートの表面に浮上することにより引き起こされる表面の黒ずみ発生を抑制でき、外観に優れる硬化体を提供できる。 As shown in Tables 5 and 6, Formulation No. 1 and formulation No. Test Examples 1 to 7 and Test Examples 8 to 8 containing the dispersant for the hydraulic composition of the present invention ((polycondensation products 1-3, 6, 15, 16, 19) and water reducing agent) in the concrete of 2. The concrete of 14 has better stability over time, lower concrete viscosity, and less condensation delay than the concrete of Comparative Test Example 1 and Comparative Test Example 2 containing only a water reducing agent, so that the workability is also good. Further, the water reduction can be maintained in a high state even when it is blended with a concrete composition containing fly ash (FA), and in particular, unburned carbon floats on the surface of concrete in a cured product of the FA blended composition. It is possible to suppress the occurrence of darkening of the surface caused and provide a cured product having an excellent appearance.

Claims (6)

下記式(A)で表される化合物A、式(B)で表される化合物B、式(C)で表される化合物C並びに式(D)で表される一種以上のアルデヒド化合物Dを含む単量体混合物を重縮合させた共重合体を含む、重縮合生成物。
Figure 0006821570
(式中、
O及びAOは、それぞれ独立して炭素原子数2乃至4のアルキレンオキサイド基を表し、
、アルキレンオキサイドの平均付加モル数であって0乃至300の数を表し、nはアルキレンオキサイドの平均付加モル数であって、1乃至300の数を表し、且つm+n≧1であり、
Oは炭素原子数2乃至4のアルキレンオキサイド基を表し、
pはアルキレンオキサイドの平均付加モル数であって1乃至300の数を表し、
Xは水素原子、炭素原子数1乃至10のアルキル基、又は炭素原子数2乃至24のアシル基を表し、
Oは炭素原子数2乃至4のアルキレンオキサイド基を表し、
qはアルキレンオキサイドの平均付加モル数であって1乃至300の数を表し、
は水素原子、炭素原子数1乃至24のアルキル基、又は炭素原子数2乃至24のアルケニル基を表し、
は水素原子、炭素原子数1乃至24のアルキル基、又は炭素原子数2乃至24のアルケニル基を表し、
及びYはそれぞれ独立して水素原子、リン酸エステル基又は硫酸エステル基を表し、
はリン酸エステル基又は硫酸エステル基を表し、
は水素原子、カルボキシル基、炭素原子数1乃至10のアルキル基、炭素原子数2乃至10のアルケニル基、フェニル基、ナフチル基又はヘテロ環式基を表し、
rは1乃至100の数を表す。)
It contains compound A represented by the following formula (A), compound B represented by formula (B), compound C represented by formula (C), and one or more aldehyde compounds D represented by formula (D). A polycondensation product containing a copolymer obtained by polycondensing a monomer mixture.
Figure 0006821570
(During the ceremony,
A 1 O and A 2 O each independently represent an alkylene oxide group having 2 to 4 carbon atoms.
m is an average addition number of moles of alkylene oxide, a number from 0 to 300, n is an average addition number of moles of alkylene oxide, a number from 1 to 300, a and m + n ≧ 1,
A 3 O represents an alkylene oxide group having 2 to 4 carbon atoms.
p is the average number of moles of alkylene oxide added and represents a number from 1 to 300.
X represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an acyl group having 2 to 24 carbon atoms.
A 4 O represents an alkylene oxide group having 2 to 4 carbon atoms,
q is the average number of moles of alkylene oxide added and represents a number from 1 to 300.
R 0 represents a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, or an alkenyl group having 2 to 24 carbon atoms.
R 1 represents a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, or an alkenyl group having 2 to 24 carbon atoms.
Y 1 and Y 2 independently represent a hydrogen atom, a phosphate ester group or a sulfate ester group, respectively.
Y 3 represents a phosphoric acid ester group or a sulfuric acid ester group,
R 2 represents a hydrogen atom, a carboxyl group, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, a phenyl group, a naphthyl group or a heterocyclic group,
r represents a number from 1 to 100. )
前記単量体混合物が、
前記化合物A、化合物B及び化合物Cをモル比にて、化合物A:化合物B:化合物C=0.1〜2:0.1〜2:0.1〜4の割合にて含み、且つ、
前記化合物A、化合物B及び化合物Cの合計モル量に対して、化合物Dをモル比にて、(化合物A+化合物B+化合物C):化合物D=1〜10:10〜1の割合にて含む、
請求項1に記載の重縮合生成物。
The monomer mixture
The compound A, the compound B and the compound C are contained in a molar ratio of compound A: compound B: compound C = 0.1 to 2: 0.1 to 2: 0.1 to 4 and
Compound D is contained in a molar ratio of (Compound A + Compound B + Compound C): Compound D = 1 to 10: 10 to 1 with respect to the total molar amount of Compound A, Compound B and Compound C.
The polycondensation product according to claim 1.
前記単量体混合物が、二種以上の式(B)で表される化合物Bを含みてなる、請求項1又は請求項2に記載の重縮合生成物。 The polycondensation product according to claim 1 or 2, wherein the monomer mixture comprises two or more kinds of compounds B represented by the formula (B). 前記単量体混合物が、二種以上の式(C)で表される化合物Cを含みてなる、請求項1乃請求項3のうちいずれか一項に記載の重縮合生成物。 The polycondensation product according to any one of claims 1 to 3, wherein the monomer mixture contains two or more kinds of compounds C represented by the formula (C). 請求項1乃至請求項4のうち何れか一項に記載の重縮合生成物又は共重合体を含有する、水硬性組成物用分散剤。 A dispersant for a hydraulic composition containing the polycondensation product or copolymer according to any one of claims 1 to 4. 請求項1記載の式(A)で表される化合物A、請求項1記載の式(B)で表される化合物B、請求項1記載の式(C)で表される化合物C並びに請求項1記載の式(D)で表される一種以上のアルデヒド化合物Dを含む単量体混合物を重縮合させて得られる共重合体。 The compound A represented by the formula (A) according to claim 1, the compound B represented by the formula (B) according to claim 1, the compound C represented by the formula (C) according to claim 1, and the claim. A copolymer obtained by polycondensing a monomer mixture containing one or more aldehyde compounds D represented by the formula (D) described in 1.
JP2017533125A 2015-08-05 2016-08-04 Polycondensation product containing a phenolic copolymer and a dispersant for a hydraulic composition containing the same. Active JP6821570B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015155418 2015-08-05
JP2015155418 2015-08-05
PCT/JP2016/072963 WO2017022831A1 (en) 2015-08-05 2016-08-04 Polycondensation product containing phenolic copolymer, and hydraulic-composition dispersant containing same

Publications (2)

Publication Number Publication Date
JPWO2017022831A1 JPWO2017022831A1 (en) 2018-05-31
JP6821570B2 true JP6821570B2 (en) 2021-01-27

Family

ID=57943192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017533125A Active JP6821570B2 (en) 2015-08-05 2016-08-04 Polycondensation product containing a phenolic copolymer and a dispersant for a hydraulic composition containing the same.

Country Status (8)

Country Link
US (1) US10487170B2 (en)
EP (1) EP3333204A4 (en)
JP (1) JP6821570B2 (en)
CN (1) CN107849205B (en)
AU (1) AU2016301696B2 (en)
CA (1) CA2994794A1 (en)
TW (1) TWI714615B (en)
WO (1) WO2017022831A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11091400B2 (en) * 2017-02-08 2021-08-17 Sika Technology Ag Admixture for hydraulic composition
JP6814063B2 (en) * 2017-02-08 2021-01-13 東邦化学工業株式会社 Polycondensation product and dispersant for hydraulic composition containing it
JP7181197B2 (en) * 2017-06-16 2022-11-30 東邦化学工業株式会社 Dispersant for hydraulic composition
JP7018304B2 (en) * 2017-12-22 2022-02-10 ポゾリス ソリューションズ株式会社 Admixture for centrifugal concrete and centrifugal concrete containing it
JP7039280B2 (en) * 2017-12-22 2022-03-22 ポゾリス ソリューションズ株式会社 SCM miscible material high content admixture for concrete, and admixture-containing composition and cement composition containing this
CN109535346B (en) * 2018-12-05 2021-04-27 中科院广州化学有限公司南雄材料生产基地 Anti-clay polycarboxylate superplasticizer and preparation method and application thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845912A (en) 1981-09-14 1983-03-17 日本板硝子株式会社 Manufacture of fiber reinforced cylindrical cement product through press method
JPS6015850B2 (en) 1982-07-21 1985-04-22 高木産業株式会社 Water heater antifreeze device
JP2628486B2 (en) 1992-09-30 1997-07-09 竹本油脂株式会社 Dispersant for cement
JP2774445B2 (en) 1993-12-14 1998-07-09 花王株式会社 Concrete admixture
TR199903254T2 (en) 1997-06-25 2000-07-21 W.R. Grace & Co. Conn. Method for adding Eo/Po superplasticizer.
JP2000178330A (en) * 1998-10-05 2000-06-27 Nippon Shokubai Co Ltd Modified novolak resin and its resin composition
JP2000302838A (en) * 1999-04-20 2000-10-31 Nippon Shokubai Co Ltd Novolak epoxy resin and resin composition thereof
JP4381923B2 (en) 2004-08-05 2009-12-09 花王株式会社 Additive for hydraulic composition
DE102004050395A1 (en) * 2004-10-15 2006-04-27 Construction Research & Technology Gmbh Polycondensation product based on aromatic or heteroaromatic compounds, process for its preparation and its use
AU2005310501A1 (en) * 2004-12-02 2006-06-08 Sika Ltd. Powdery polycarboxylic-acid cement dispersant and dispersant composition containing the dispersant
JP5713524B2 (en) 2008-07-11 2015-05-07 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット Slump retention admixture for improving clay activity in concrete
CN103328538B (en) * 2011-01-26 2017-06-09 建筑研究和技术有限公司 A kind of method for preparing polycondensation product
FR2974090B1 (en) 2011-04-15 2013-05-31 Chryso COPOLYMERS WITH GEM-BISPHOSPHONE GROUPS
EP2742013B1 (en) * 2011-08-10 2016-10-26 Sika Technology AG Process for drying concrete dispersants
CA2871720C (en) * 2012-04-11 2020-07-21 Construction Research & Technology Gmbh Polycondensation product based on aromatic compounds, method for the preparation and use thereof
JP6507809B2 (en) 2015-04-10 2019-05-08 富士ゼロックス株式会社 Printing instruction device, printing system and program

Also Published As

Publication number Publication date
TW201716453A (en) 2017-05-16
AU2016301696A1 (en) 2018-03-08
WO2017022831A1 (en) 2017-02-09
TWI714615B (en) 2021-01-01
EP3333204A4 (en) 2019-03-27
CN107849205A (en) 2018-03-27
CA2994794A1 (en) 2017-02-09
US10487170B2 (en) 2019-11-26
US20180223028A1 (en) 2018-08-09
EP3333204A1 (en) 2018-06-13
AU2016301696B2 (en) 2020-10-01
JPWO2017022831A1 (en) 2018-05-31
CN107849205B (en) 2020-07-14

Similar Documents

Publication Publication Date Title
JP6821570B2 (en) Polycondensation product containing a phenolic copolymer and a dispersant for a hydraulic composition containing the same.
JP7069053B2 (en) Admixture for hydraulic composition
JP6584415B2 (en) Additives for hydraulic compositions
WO2011083839A1 (en) Shrinkage reducing agent for hydraulic material
JP5485494B2 (en) Polymer, method for producing the polymer, and cement admixture using the polymer
JP6091049B2 (en) Shrinkage reducing agent for hydraulic materials
JP5740081B2 (en) Shrinkage reducing agent composition for hydraulic material
JP6839557B2 (en) Dispersant for hydraulic composition
JP6814063B2 (en) Polycondensation product and dispersant for hydraulic composition containing it
JP5519972B2 (en) Shrinkage reducing agent for hydraulic materials
JP7181197B2 (en) Dispersant for hydraulic composition
JP5135056B2 (en) Shrinkage reducing agent for hydraulic material and shrinkage reducing agent composition for hydraulic material
JP2007099530A (en) Cement admixture and its producing method
JP5523189B2 (en) Shrinkage reducing agent composition for hydraulic material
JP2002187756A (en) Method for adjusting flowability of concrete
JP5443949B2 (en) Shrinkage reducing agent for concrete
JP7392980B2 (en) Method for producing additives for hydraulic compositions
JP6030283B2 (en) Shrinkage reducing agent used for hydraulic materials
JP2022176809A (en) Polycondensate and hydraulic composition additive
JP6603476B2 (en) Polycarboxylic acid copolymer and dispersant comprising the same
JP2011102212A (en) Concrete composition
JP2010105829A (en) Cement admixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210106

R150 Certificate of patent or registration of utility model

Ref document number: 6821570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250