JP6821419B2 - Composite members, aluminum alloy members for joining and their manufacturing methods - Google Patents

Composite members, aluminum alloy members for joining and their manufacturing methods Download PDF

Info

Publication number
JP6821419B2
JP6821419B2 JP2016244876A JP2016244876A JP6821419B2 JP 6821419 B2 JP6821419 B2 JP 6821419B2 JP 2016244876 A JP2016244876 A JP 2016244876A JP 2016244876 A JP2016244876 A JP 2016244876A JP 6821419 B2 JP6821419 B2 JP 6821419B2
Authority
JP
Japan
Prior art keywords
joining
aluminum alloy
alloy member
joined
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016244876A
Other languages
Japanese (ja)
Other versions
JP2018094621A (en
Inventor
加瑞馬 日比
加瑞馬 日比
岩田 靖
靖 岩田
川原 博
博 川原
盾 八百川
盾 八百川
隆 中道
隆 中道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2016244876A priority Critical patent/JP6821419B2/en
Publication of JP2018094621A publication Critical patent/JP2018094621A/en
Application granted granted Critical
Publication of JP6821419B2 publication Critical patent/JP6821419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、アルミニウム合金の鋳物に被接合部材を接合してできた複合部材、その鋳物からなる接合用アルミニウム合金部材およびその製造方法に関する。 The present invention relates to a composite member formed by joining a member to be joined to an aluminum alloy casting, an aluminum alloy member for joining made of the casting, and a method for manufacturing the same.

部材の複雑化、大型化、多機能化、軽量化等に対応するため、形状、材質、機能等の異なる複数の部材を接合した複合部材が用いられる。接合は、複合部材の要求仕様等に応じて、接着、溶接、締結、結合等によりなされるが、強固な接合を比較的容易に行える機械的な接合が多用されている。例えば、着脱が必要な部材はネジ(ボルト・ナット等)で締結され、着脱が不要な部材はリベットで結合される。 A composite member in which a plurality of members having different shapes, materials, functions, etc. are joined is used in order to cope with the complexity, size, multifunction, weight reduction, and the like of the members. Joining is performed by bonding, welding, fastening, joining, etc. according to the required specifications of the composite member, etc., but mechanical joining is often used because strong joining can be performed relatively easily. For example, members that need to be attached / detached are fastened with screws (bolts, nuts, etc.), and members that do not need to be attached / detached are joined with rivets.

リベットを用いると、溶接等ができない異種材間等でも容易に接合できる。また最近では、穿孔作業が不要(つまり自己穿孔式)で、強固な結合が可能なセルフピアシングリベット(Self Piercing Rivet/単に「SPR」という。)を用いた接合が注目されている。例えば、Al―Si系合金からなるダイカスト部材へSPRを打鋲して、別な薄板を接合する場合について下記の特許文献に記載がある([0029]、図3等)。 By using rivets, it is possible to easily join different materials that cannot be welded. Recently, attention has been paid to joining using a self piercing rivet (Self Piercing Rivet / simply referred to as "SPR"), which does not require drilling work (that is, self-drilling type) and enables strong bonding. For example, there is a description in the following patent document regarding a case where SPR is struck on a die-cast member made of an Al—Si alloy to join another thin plate ([0029], FIG. 3, etc.).

特開2010−90459号公報Japanese Unexamined Patent Publication No. 2010-90459

特許文献1は、成分組成を調整したAl―Si系合金からなるダイカスト部材に熱処理(溶体化処理、時効処理)を施して延性を高めることにより、SPRの打鋲時に生じる割れを抑止することを提案している。 Patent Document 1 states that a die-casting member made of an Al—Si alloy having an adjusted component composition is heat-treated (solution treatment, aging treatment) to improve ductility, thereby suppressing cracking that occurs when the SPR is struck. is suggesting.

しかし、特許文献1では、接合部以外の部分は熱処理しなくても十分な特性を満たすにも拘わらず、SPRを打鋲したときの局所変形に伴う割れを防止するためだけに熱処理をしている。しかも、ダイカスト部材の熱処理時に生じるブリスタ(高圧ガス巣の膨張)を防止するために、特殊な高真空ダイカストも行っている。このような手法は、ダイカスト部材の高コスト化を招き、好ましくない。 However, in Patent Document 1, although the portion other than the joint portion satisfies sufficient characteristics without heat treatment, the heat treatment is performed only to prevent cracking due to local deformation when the SPR is struck. There is. Moreover, in order to prevent blister (expansion of high pressure gas nest) that occurs during heat treatment of the die casting member, a special high vacuum die casting is also performed. Such a method leads to high cost of the die casting member and is not preferable.

本発明はこのような事情に鑑みて為されたものであり、従来とは異なる手法により、耐割れ性に優れた接合部を有する接合用アルミニウム合金部材とその製造方法を提供することを目的とする。また、その接合用アルミニウム合金部材と被接合部材をリベット接合した複合部材も合わせて提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an aluminum alloy member for joining having a joint portion having excellent crack resistance and a method for manufacturing the same by a method different from the conventional method. To do. Another object of the present invention is to provide a composite member in which the aluminum alloy member for joining and the member to be joined are riveted.

本発明者はこの課題を解決すべく鋭意研究した結果、局所変形により割れを生じ易い接合部に高延性な初晶アルミニウムを多く晶出させることにより接合部の耐割れ性を高めることを着想し、その効果を実際に確認した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of diligent research to solve this problem, the present inventor has conceived to improve the crack resistance of the joint by crystallizing a large amount of highly ductile primary aluminum in the joint where cracks are likely to occur due to local deformation. , I actually confirmed the effect. By developing this result, the present invention described below has been completed.

《接合用アルミニウム合金部材》
(1)本発明の接合用アルミニウム合金部材は、アルミニウム合金の鋳物からなり、塑性変形して機械的に接合される接合部と、接合に関与しない非接合部とを備える接合用アルミニウム合金部材であって、前記アルミニウム合金は、全体を100質量%(単に「%」という。)としてSiを6〜12%含み、前記接合部は、初晶アルミニウムの存在割合である初晶率が前記非接合部よりも大きい。
<< Aluminum alloy member for joining >>
(1) The aluminum alloy member for joining of the present invention is an aluminum alloy member for joining, which is made of a cast aluminum alloy and includes a joining portion that is plastically deformed and mechanically joined, and a non-joining portion that is not involved in joining. The aluminum alloy contains 6 to 12% of Si with 100% by mass (simply referred to as "%") as a whole, and the junction has a primary crystal ratio, which is the abundance ratio of primary aluminum, which is the non-junction. Larger than the department.

(2)本発明の接合用アルミニウム合金部材(単に「Al合金部材」ともいう。)によれば、熱処理等を施すまでもなく、割れ等を抑止しつつ、安定した品質でSPR等による機械的な接合を行うことができる。この理由は次のように考えられる。 (2) According to the aluminum alloy member for joining (also simply referred to as "Al alloy member") of the present invention, it is not necessary to perform heat treatment or the like, and while suppressing cracks or the like, the mechanical quality is stable by SPR or the like. Can be joined. The reason for this can be considered as follows.

Siを比較的多く含む鋳物は延性が必ずしも十分ではない。しかし、本発明に係る接合部は、接合部以外の部分(非接合部)よりも初晶アルミニウム(適宜、「α―Al」という。)が多くなっており、高延性となっている。このため本発明に係る接合部は、接合時にSPRが打鋲等されて局所的に大きな変形が生じるとしても、割れ難く、優れた耐割れ性を発揮する。 Castings containing a relatively large amount of Si do not always have sufficient ductility. However, the joint portion according to the present invention has more primary aluminum (appropriately referred to as "α-Al") than the portion other than the joint portion (non-joint portion), and has high ductility. Therefore, the joint portion according to the present invention is hard to crack and exhibits excellent crack resistance even if SPR is studded at the time of joining and a large deformation occurs locally.

なお、本発明のAl合金部材の大部分を占める非接合部は、全体的な合金組成と冷却速度(凝固速度)に応じた通常の金属組織(鋳造組織)からなるため、予定された本来の機械的特性等を発揮する。従って、α―Al量が相対的に多い接合部が点在していても、本発明のAl合金部材の機械的特性(強度等)が大きく劣化等することはない。 Since the non-joint portion, which occupies most of the Al alloy member of the present invention, has a normal metal structure (casting structure) according to the overall alloy composition and cooling rate (solidification rate), the original planned structure is formed. Demonstrate mechanical properties, etc. Therefore, even if the joints having a relatively large amount of α-Al are scattered, the mechanical properties (strength, etc.) of the Al alloy member of the present invention are not significantly deteriorated.

《接合用アルミニウム合金部材の製造方法》
本発明は接合用アルミニウム合金部材の製造方法としても把握できる。つまり本発明は、アルミニウム合金の鋳物からなり、塑性変形することにより機械的に接合される接合部と接合に関与しない非接合部とを備える接合用アルミニウム合金部材の製造方法であって、全体を100%としてSiを6〜12%含むアルミニウム合金の溶湯を鋳型へ注湯する注湯工程と、該鋳型内へ注湯された溶湯を冷却して凝固させる冷却工程とを備え、さらに、該冷却工程中に、初晶アルミニウムが晶出して固液共存状態となっている該溶湯を、前記接合部に対応する領域で局部的に加圧する局部加圧工程を備える接合用アルミニウム合金部材の製造方法でもよい。
<< Manufacturing method of aluminum alloy member for joining >>
The present invention can also be grasped as a method for manufacturing an aluminum alloy member for joining. That is, the present invention is a method for manufacturing an aluminum alloy member for joining, which is composed of an aluminum alloy casting and includes a joint portion that is mechanically joined by plastic deformation and a non-joint portion that is not involved in the joining. It is provided with a pouring step of pouring a molten aluminum alloy containing 6 to 12% of Si as 100% into a mold, and a cooling step of cooling and solidifying the molten metal poured into the mold, and further, the cooling. A method for manufacturing an aluminum alloy member for joining, which comprises a local pressurizing step of locally pressurizing the molten metal in which primary crystal aluminum is crystallized and is in a solid-liquid coexisting state in a region corresponding to the joining portion during the process. It may be.

《複合部材》
さらに本発明は、上述したAl合金部材と他の部材とを接合した複合部材としても把握できる。つまり本発明は、上述した接合用アルミニウム合金部材と、該接合用アルミニウム合金部材に接合される少なくとも1以上の被接合部材と、該被接合部材側を貫通した先端部が前記接合用アルミニウム合金部材の接合部内で塑性変形して該接合用アルミニウム合金部材と該被接合部材を接合する接合具と、を備える複合部材でもよい。
<< Composite member >>
Further, the present invention can be grasped as a composite member in which the above-mentioned Al alloy member and another member are joined. That is, in the present invention, the above-mentioned aluminum alloy member for joining, at least one member to be joined to be joined to the aluminum alloy member for joining, and the tip portion penetrating the side of the aluminum alloy member for joining are the aluminum alloy member for joining. It may be a composite member including an aluminum alloy member for joining and a joining tool for joining the member to be joined by plastically deforming in the joining portion of the above.

《その他》
(1)本発明に係る初晶率は、該当部位を光学顕微鏡で観察して得られた金属組織写真(観察領域:20×5mm)を画像処理して求まるα―Alの面積率により算出する。接合部の初晶率は、基本的に、接合部の中央域にある金属組織を観察する。但し、接合後で塑性変形が生じている接合部については、塑性変形が生じていない領域または塑性変形量が最も少ない領域の金属組織を観察する。非接合部については、接合部の影響が及んでいない領域(例えば、接合部端から少なくとも10mm離間した領域)の金属組織を観察して、その初晶率を算出すればよい。
《Others》
(1) The primary crystal ratio according to the present invention is calculated from the area ratio of α-Al obtained by image processing a metallographic photograph (observation area: 20 × 5 mm) obtained by observing the relevant portion with an optical microscope. .. For the primary crystal ratio of the joint, basically, the metallographic structure in the central region of the joint is observed. However, for the joint where plastic deformation occurs after joining, observe the metal structure in the region where plastic deformation does not occur or the region where the amount of plastic deformation is the smallest. For the non-joint portion, the primary crystal ratio may be calculated by observing the metallographic structure of a region not affected by the joint portion (for example, a region separated by at least 10 mm from the end of the joint portion).

接合部の大きさや形状は、接合方法または接合具の形態により、適宜調整される。例えば、SPRを用いる場合なら、その脚部(軸部)の塑性変形域よりも一回り大きく接合部を設定すると好ましい。通常、SPRの脚部の塑性変形域と頭部の占有域はほぼ同程度の大きさであるため、接合部の面積は、例えば、SPRの頭部の面積の1〜2倍さらには1.2〜1.6倍としてもよい。SPRの頭部が円形状なら、接合部は、例えば、SPRの頭部径の1〜1.5倍さらには1.1〜1.3倍の直径を有する円形状としてもよい。 The size and shape of the joint portion are appropriately adjusted depending on the joining method or the form of the joining tool. For example, when SPR is used, it is preferable to set the joint portion one size larger than the plastic deformation region of the leg portion (shaft portion). Normally, the plastic deformation area of the leg of the SPR and the occupied area of the head are about the same size, so that the area of the joint is, for example, 1 to 2 times the area of the head of the SPR, or even 1. It may be 2 to 1.6 times. If the head of the SPR is circular, the joint may have, for example, a circular shape having a diameter of 1 to 1.5 times or even 1.1 to 1.3 times the diameter of the head of the SPR.

非接合部は、接合に関与しない領域であるが、換言すると、接合部以外の領域、または接合時に塑性変形しない領域といい得る。なお、接合部と非接合部の境界を明確にする必要があるときは、初晶率に基づいて判断してもよい。例えば、接合部から十分に離れた非接合部の初晶率の1.1倍付近を、両者間の境界としてもよい。 The non-joining portion is a region not involved in joining, but in other words, it can be said to be a region other than the joining portion or a region that is not plastically deformed at the time of joining. When it is necessary to clarify the boundary between the bonded portion and the non-joined portion, the determination may be made based on the primary crystal ratio. For example, the boundary between the two may be around 1.1 times the primary crystal ratio of the non-joint portion sufficiently separated from the junction.

(2)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (2) Unless otherwise specified, "x to y" in the present specification includes a lower limit value x and an upper limit value y. A range such as "ab" may be newly established with any numerical value included in the various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

局部加圧工程の様子を模式的に示す説明図である。It is explanatory drawing which shows the state of the local pressurization process schematically. 鋳造に用いた金型(要部)と製作した鋳物の概観図である。It is an overview view of the mold (main part) used for casting and the manufactured casting. 比較試料に係るSPR接合部材を示す概観図である。It is a schematic diagram which shows the SPR bonding member which concerns on a comparative sample. 各試料に係るSPR接合部の断面を示すX線CT写真である。It is an X-ray CT photograph which shows the cross section of the SPR joint part which concerns on each sample. 各試料に係る接合部分の金属組織写真である。It is a metallographic photograph of the joint portion related to each sample. 各試料に係る機械的特性を示す棒グラフである。It is a bar graph which shows the mechanical property which concerns on each sample. 加圧開始時(固相率)を変化させたときの各金属組織を示す写真である。It is a photograph which shows each metal structure at the time of changing the pressurization start (solid phase ratio). 試料の製作に用いたAl合金溶湯の凝固曲線である。It is a solidification curve of the molten Al alloy used for producing a sample. 加圧開始時の固相率とSPR接合時に生じた割れの数との相関図である。It is a correlation diagram between the solid phase ratio at the start of pressurization and the number of cracks generated at the time of SPR joining. 鋳物に含まれるSi量とその機械的特性との相関図である。It is a correlation diagram between the amount of Si contained in a casting and its mechanical properties. 金型の材質(冷却速度)と鋳物のたわみまたは曲げ強度との関係を示す分散図である。It is a dispersion figure which shows the relationship between the material (cooling rate) of a mold, and the bending or bending strength of a casting. 金型の材質(冷却速度)と初晶Al中に固溶しているSi量またはMg量との関係を示す分散図である。It is a dispersion figure which shows the relationship between the material (cooling rate) of a mold, and the amount of Si or Mg which is solid solution in primary crystal Al.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明のAl合金部材のみならず、その製造方法やAl合金部材を用いた複合部材にも適宜該当する。また方法的な構成要素であっても、一定の場合、物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components arbitrarily selected from the present specification may be added to the components of the present invention described above. The contents described in the present specification appropriately apply not only to the Al alloy member of the present invention, but also to the manufacturing method thereof and the composite member using the Al alloy member. Moreover, even a methodical component can be a component related to an object in a certain case. Whether or not which embodiment is the best depends on the target, required performance, and the like.

《接合部》
本発明に係る接合部は、非接合部よりも初晶率が高く、例えば、非接合部の初晶率に対する接合部の初晶率の比率(初晶比)が1.2以上、1.25以上さらには1.3以上であると好ましい。なお、接合部と非接合部の特性バランスを図る観点から、敢えていうと、初晶比の上限値は2以下さらには1.5以下であると好ましい。
《Joint part》
The bonded portion according to the present invention has a higher primary crystal ratio than the non-joined portion. For example, the ratio of the primary crystal ratio of the bonded portion to the primary crystal ratio of the non-joined portion (primary crystal ratio) is 1.2 or more. It is preferably 25 or more, more preferably 1.3 or more. From the viewpoint of balancing the characteristics of the bonded portion and the non-joined portion, it is preferable that the upper limit of the primary crystal ratio is 2 or less, more preferably 1.5 or less.

接合部は周囲(非接合部)よりも初晶率が高くて相対的に高延性であるが、α―Al中に含まれる合金元素(Si等)が増加すると、接合部の延性が低下し得る。そこで、接合部は、初晶アルミニウムに含まれる合金元素の固溶量が非接合部よりも少ないと好ましい。 The joint has a higher primary crystallinity than the surroundings (non-join) and has relatively high ductility, but as the alloying elements (Si, etc.) contained in α-Al increase, the ductility of the joint decreases. obtain. Therefore, it is preferable that the solid solution amount of the alloying element contained in the primary crystal aluminum is smaller in the joint portion than in the non-junction portion.

合金元素の固溶量は、合金組成(元素の種類、その含有量)、冷却速度等により異なるため、一概に規定し難い。そこで、例えば、α―Alに固溶している合金元素の合計量が、非接合部よりも接合部で、0.05%以上、0.1%以上さらには0.15%以上少ないと好ましい。 Since the solid solution amount of an alloy element differs depending on the alloy composition (type of element, its content), cooling rate, etc., it is difficult to unconditionally specify it. Therefore, for example, it is preferable that the total amount of alloying elements dissolved in α-Al is 0.05% or more, 0.1% or more, and further 0.15% or more less in the bonded portion than in the non-bonded portion. ..

また、本発明のAl合金部材(鋳物)は、熱処理をしなくても、初晶率の高い接合部が高い耐割れ性を発揮する。このような熱処理されていない鋳物では、非接合部が鋳造組織のままとなっており、共晶ネットワーク組織を有することが多い。逆にいえば、熱処理されている場合、その共晶ネットワーク組織が崩れて、粒状のα―Alや共晶等が分散した組織となっている。なお、共晶ネットワーク組織とは、α―Alを取り囲むように共晶(Al―Si系)が連なってできている組織である。 Further, in the Al alloy member (casting) of the present invention, the joint portion having a high primary crystal ratio exhibits high crack resistance even without heat treatment. In such unheated castings, the non-joint remains in the cast structure and often has a eutectic network structure. Conversely, when heat-treated, the eutectic network structure collapses, resulting in a structure in which granular α-Al and eutectic crystals are dispersed. The eutectic network structure is a structure in which eutectic (Al—Si system) are connected so as to surround α—Al.

ちなみに、本発明に係る接合部は、接合方法(接合具)にも依るが、例えば、直径または一辺が、3〜15mmさらには4〜10mm程度の円形状または方形状をしている。接合部自体は、大きくないため、Al合金部材中に複数配設されていても、Al合金部材の特性(強度等)には殆ど影響しない。 Incidentally, the joint portion according to the present invention has, for example, a circular shape or a square shape having a diameter or one side of about 3 to 15 mm and further about 4 to 10 mm, although it depends on the joining method (joining tool). Since the joint portion itself is not large, even if a plurality of joint portions are arranged in the Al alloy member, the characteristics (strength, etc.) of the Al alloy member are hardly affected.

《Al合金》
本発明のAl合金部材は、鋳造用のAl―Si系合金からなり、少なくともSiを6〜12%、7〜11%さらには8〜10.5%含むと好ましい。Siが過少では鋳造性が低下して、引け量が大きくなり、鋳物内部に鋳造欠陥が発生し易くなる。Siが過多になると、鋳物の機械的特性(特に伸び)が低下し易くなり、接合部における耐割れ性も低下し得る。なお、本明細書でいう合金組成は、特に断らない限り、接合部と非接合部の両方を含む全体を100質量%(単に「%」という。)として示した質量割合である。
《Al alloy》
The Al alloy member of the present invention is made of an Al—Si based alloy for casting, and preferably contains at least 6 to 12%, 7 to 11%, and further 8 to 10.5% of Si. If the amount of Si is too small, the castability is lowered, the shrinkage amount is increased, and casting defects are likely to occur inside the casting. When the amount of Si is excessive, the mechanical properties (particularly elongation) of the casting are likely to be deteriorated, and the crack resistance at the joint may also be lowered. Unless otherwise specified, the alloy composition referred to in the present specification is a mass ratio shown as 100% by mass (simply referred to as "%") including both the bonded portion and the non-joined portion.

本発明に係るAl合金は、Si以外に、Mg、Ti、Zr、Cu、Fe等の合金元素またはSr、Na、Sb等の改質元素を含んでもよい。具体的には次の通りである。 The Al alloy according to the present invention may contain alloying elements such as Mg, Ti, Zr, Cu and Fe or modifying elements such as Sr, Na and Sb in addition to Si. Specifically, it is as follows.

Mgは、Al基地を強化し、0.1〜1%さらには0.2〜0.7%含まれると好ましい。Mgが過少では、その効果が十分に得られず、Mgが過多になると、MgSi等が晶出して延性や靭性を低下させ得る。 Mg strengthens the Al matrix and is preferably contained in an amount of 0.1 to 1%, more preferably 0.2 to 0.7%. If the amount of Mg is too small, the effect cannot be sufficiently obtained, and if the amount of Mg is too large, Mg 2 Si and the like may crystallize to reduce ductility and toughness.

TiとZrは、結晶粒を微細化させると共にAl基地を強化させ、それぞれ0.05〜0.3%さらには0.07〜0.2%、合計で0.06〜0.4%さらには0.08〜0.3%含まれると好ましい。Tiおよび/またはZrが過少ではその効果が乏しく、それらが過多では、鋳造組織中に粗大なTi化合物またはZr化合物が晶出するようになり、却って、鋳物の機械的特性(特に延性)が低下し得る。 Ti and Zr refine the crystal grains and strengthen the Al matrix, 0.05 to 0.3% and 0.07 to 0.2%, respectively, for a total of 0.06 to 0.4% and further. It is preferably contained in an amount of 0.08 to 0.3%. If Ti and / or Zr is too low, the effect is poor, and if they are too high, coarse Ti or Zr compounds will crystallize in the cast structure, which in turn reduces the mechanical properties (especially ductility) of the casting. Can be done.

Sr、NaまたはSbは、共晶Siを微細化させて、鋳物(主に非接合部)の機械的特性(特に延性または靱性)を向上させ得る。これらの改質元素は微量で十分であり、例えば、含有合計量を0.003〜0.05%さらには0.01〜0.03%とするとよい。 Sr, Na or Sb can refine eutectic Si to improve the mechanical properties (particularly ductility or toughness) of castings (mainly non-joints). A small amount of these modifying elements is sufficient, and for example, the total content may be 0.003 to 0.05% and further 0.01 to 0.03%.

《接合用アルミニウム合金部材の製造方法》
鋳物からなるAl合金部材は、上述したAl合金の溶湯を鋳型へ注湯する注湯工程と、その溶湯を鋳型内で冷却して凝固させる冷却工程とを経て得られる。そして本発明に係る接合部は、その冷却工程中に、α―Alが晶出して固液共存状態となっている溶湯を、接合部に対応する領域で局部的に加圧する局部加圧工程により形成される。この局部加圧工程により、初晶率の高い接合部が形成される様子を図1に模式的に示した。なお、このような局部加圧を的確に行うために、本発明の製造方法は、金型のキャビティへ溶湯を加圧しつつ注湯するダイカスト鋳造によりなされると好ましい。
<< Manufacturing method of aluminum alloy member for joining >>
The Al alloy member made of a casting is obtained through a pouring step of pouring the above-mentioned molten Al alloy into a mold and a cooling step of cooling the molten metal in the mold to solidify it. Then, the joint portion according to the present invention is subjected to a local pressurization step of locally pressurizing the molten metal in which α-Al crystallizes and is in a solid-liquid coexisting state in the region corresponding to the joint portion during the cooling step. It is formed. FIG. 1 schematically shows how a joint having a high primary crystallinity is formed by this local pressurization step. In order to accurately perform such local pressurization, the manufacturing method of the present invention is preferably performed by die casting in which molten metal is poured into the cavity of the mold while being pressurized.

局部加圧の少なくともその一部は、溶湯の固相率が0.25〜0.95、0.3〜0.8さらには0.4〜0.7のときになされると好ましい。固相率の過小なときに局部加圧がなされると、初晶が少なく接合部の初晶率が高まらない。固相率の過大なときに局部加圧がなされると、溶湯の流動性が低いため、高い初晶率が望めない。なお、詳細は後述するが、本発明に係る固相率は、凝固曲線と実測した冷却曲線とに基づいて定める。 At least a part of the local pressurization is preferably performed when the solid phase ratio of the molten metal is 0.25 to 0.95, 0.3 to 0.8, and even 0.4 to 0.7. If local pressurization is applied when the solid phase ratio is too small, there are few primary crystals and the primary crystal ratio at the junction does not increase. If local pressurization is performed when the solid phase ratio is excessive, a high primary crystal ratio cannot be expected because the fluidity of the molten metal is low. Although details will be described later, the solid phase ratio according to the present invention is determined based on the solidification curve and the measured cooling curve.

本発明に係る冷却工程は、750℃/s以下さらには700℃/s以下の冷却速度でなされると好ましい。冷却速度が過大では、Si等の合金元素がα―Al中に多く固溶して、接合部の延性が低下し得る。 The cooling step according to the present invention is preferably performed at a cooling rate of 750 ° C./s or less, more preferably 700 ° C./s or less. If the cooling rate is excessive, a large amount of alloying elements such as Si may be dissolved in α—Al, and the ductility of the joint may decrease.

冷却工程を通じた最大の冷却速度が上記の範囲内であれば良い。通常、溶湯の注湯直後に冷却速度が最大となり、合金元素の固溶量はα―Alが晶出する初期にほぼ定まる。従って、本発明に係る冷却速度は、注湯工程完了後または冷却工程開始時の冷却速度と考えてもよい。なお、冷却速度は、接合部またはその近傍で測定された温度の時間変化により求められたものであるほど好ましい。 The maximum cooling rate through the cooling process may be within the above range. Normally, the cooling rate is maximized immediately after pouring the molten metal, and the solid solution amount of the alloying element is almost fixed at the initial stage when α-Al crystallizes. Therefore, the cooling rate according to the present invention may be considered as the cooling rate after the completion of the pouring process or the start of the cooling process. The cooling rate is preferably determined by the time change of the temperature measured at or near the joint.

《複合部材》
本発明のAl合金部材は、形状、材質等が異なる別な被接合部材と接合され得る。接合方法は種々あり得るが、接合部の高延性または高耐割れ性を利用して、リベット(特にSPR)により接合されると好ましい。
<< Composite member >>
The Al alloy member of the present invention can be joined to another member to be joined having a different shape, material and the like. Although there are various joining methods, it is preferable to join by rivets (particularly SPR) by utilizing the high ductility or high crack resistance of the joined portion.

被接合部材は、Fe系部材(特に鋼板)、Al系部材、Mg系部材、Ti系部材等の金属部材の他、樹脂部材、さらには各種FRPのような複合部材等でもよい。なお、「X系部材」とは、純X部材、X合金部材またはXを含む複合部材を意味する。また、被接合部材の少なくともリベット接合部は、リベットが貫通する(薄)板状であると好ましい。 The member to be joined may be a metal member such as an Fe-based member (particularly a steel plate), an Al-based member, an Mg-based member, or a Ti-based member, a resin member, or a composite member such as various FRPs. The "X-based member" means a pure X member, an X alloy member, or a composite member containing X. Further, at least the rivet joint portion of the member to be joined preferably has a (thin) plate shape through which the rivet penetrates.

様々な試料(Al合金部材)を製作し、それらの機械的特性や耐割れ性の評価、金属組織の観察等を行った。このような具体例を挙げつつ、本発明をさらに詳しく説明する。 Various samples (Al alloy members) were produced, their mechanical properties and crack resistance were evaluated, and the metallographic structure was observed. The present invention will be described in more detail with reference to such specific examples.

[実施例1]
《試料の製造》
(1)図2に示すような加圧ピンを備えた金型(鋳型)を用いて、同図に示すようなAl合金からなる鋳物(Al合金部材)をダイカスト鋳造した(鋳造工程)。具体的にいうと、下部から所望組成に調製したAl合金の溶湯を図下方にあるプランジャー(図略)で加圧して、ランナ、ゲートを通して矩形状のキャビティ(70mm×50mm×5mm)へ射出した(注湯工程)。この際、プランジャの移動速度:0.4m/sとし、鋳造圧力:65MPaとした。なお、特に断らない限り、金型には工具鋼(JIS SKD61)を用いた。
[Example 1]
<< Production of sample >>
(1) Using a mold (mold) equipped with a pressure pin as shown in FIG. 2, a casting (Al alloy member) made of an Al alloy as shown in the figure was die-cast (casting step). Specifically, the molten Al alloy prepared to the desired composition from the bottom is pressurized with a plunger (not shown) at the bottom of the figure, and injected into a rectangular cavity (70 mm x 50 mm x 5 mm) through a runner and a gate. (Pouring process). At this time, the moving speed of the plunger was set to 0.4 m / s, and the casting pressure was set to 65 MPa. Unless otherwise specified, tool steel (JIS SKD61) was used for the mold.

溶湯の注湯(射出)完了後の所定時期(加圧開始時/射出開始から0.1〜2.1秒後)で、キャビティの中央部(接合部に相当する領域)に設置しておいた加圧ピン(φ17mm)を作動させた。具体的にいうと、予めキャビティの内壁面より7.2mm外側に後退させておいた加圧ピンを271MPaで押圧した。これにより、キャビティ内で初晶(α―Al)が晶出して固液共存状態となっている溶湯の一部を局部的に加圧した。 It is installed in the center of the cavity (the area corresponding to the joint) at a predetermined time (at the start of pressurization / 0.1 to 2.1 seconds after the start of injection) after the completion of pouring (injection) of the molten metal. The pressure pin (φ17 mm) that had been used was activated. Specifically, the pressure pin, which had been retracted 7.2 mm outward from the inner wall surface of the cavity in advance, was pressed at 271 MPa. As a result, a part of the molten metal in which primary crystals (α-Al) were crystallized in the cavity and was in a solid-liquid coexisting state was locally pressurized.

こうして、Si量の異なる次の3種のAl合金組成からなる板状の鋳物(試料)を得た。いずれの合金組成もAl合金(溶湯)全体を100質量%とした質量割合である。なお、後述する実施例3を除き、合金1からなる鋳物について、以下に示す測定、観察、評価を行った。
合金1:Al―7%Si―0.3%Mg―0.1%Ti
合金2:Al―8.5%Si―0.3%Mg―0.1%Ti
合金3:Al―10%Si―0.3%Mg―0.1%Ti
(2)比較試料として、上述した局部加圧を行わない鋳物も併せて製作した。
In this way, a plate-shaped casting (sample) having the following three types of Al alloy compositions having different amounts of Si was obtained. Each alloy composition is a mass ratio with the entire Al alloy (molten metal) as 100% by mass. In addition, except for Example 3 described later, the following measurements, observations and evaluations were carried out on the casting made of the alloy 1.
Alloy 1: Al-7% Si-0.3% Mg-0.1% Ti
Alloy 2: Al-8.5% Si-0.3% Mg-0.1% Ti
Alloy 3: Al-10% Si-0.3% Mg-0.1% Ti
(2) As a comparative sample, a casting not subjected to the above-mentioned local pressurization was also produced.

(3)SPR接合用に、上述した各鋳物を平面切削した肉厚5mmの試験片を用意した。SPRは、ボロン鋼製、頭部(円盤状部);φ8mm、脚部(円筒部):φ5.3mm×長さ6mm×肉厚1mmを用いた。被接合部材は、70mm×50mm×1mmの鋼板を用いた。 (3) For SPR joining, a test piece having a wall thickness of 5 mm was prepared by flat-cutting each of the above-mentioned castings. As the SPR, a boron steel head (disk-shaped portion); φ8 mm, legs (cylindrical portion): φ5.3 mm × length 6 mm × wall thickness 1 mm were used. As the member to be joined, a steel plate having a size of 70 mm × 50 mm × 1 mm was used.

接合は、加圧ピンを配置した領域に対応する試験片の部分(接合部)に、被接合部材を重ねて配置し、被接合部材側からSPRをPOP JOISPND 油圧システムを用いて荷重56kN、速度100mm/sで打鋲した。 For joining, the members to be joined are placed on top of the test piece (joint) corresponding to the area where the pressure pins are placed, and SPR is applied from the member to be joined using the POP JOISPND hydraulic system with a load of 56 kN and a speed. It was studded at 100 mm / s.

《観察》
(1)先ず、比較試料(試料C1/合金1)を用いてSPR接合した様子を図3に示した。図3から明らかなように、局部加圧を行わない領域にSPR接合すると、局所変形の大きな箇所で割れが発生した。
《Observation》
(1) First, FIG. 3 shows a state in which SPR bonding was performed using a comparative sample (sample C1 / alloy 1). As is clear from FIG. 3, when SPR bonding was performed in a region where local pressurization was not performed, cracks occurred at locations where local deformation was large.

次に、その試料C1と、局部加圧を行った試料(試料11/合金1/加圧開始時:0.6s/固相率:0.5)とについて、SPR接合部を、二つの断面位置で撮影したX線CT写真を図4に示した。図4から明らかなように、局部加圧を行った試料11では、試料C1と異なり、局所変形の大きな箇所にも割れが発生しないことが確認できた。 Next, with respect to the sample C1 and the locally pressurized sample (sample 11 / alloy 1 / at the start of pressurization: 0.6 s / solid phase ratio: 0.5), the SPR junction is formed into two cross sections. An X-ray CT photograph taken at the position is shown in FIG. As is clear from FIG. 4, it was confirmed that, unlike the sample C1, the sample 11 subjected to the local pressurization did not crack even in the portion where the local deformation was large.

(2)試料11と試料C1の接合部に相当する領域を光学顕微鏡で観察した金属組織写真を図5に示した。各組織写真をルーゼックス画像解析装置で処理して、初晶(白色部)と共晶(灰色部)の割合から各初晶率を求めた。試料11の初晶率は試料C1の初晶率に対して1.3倍(95%/73%)に増加していることがわかった。 (2) FIG. 5 shows a photograph of the metallographic structure of the region corresponding to the joint between the sample 11 and the sample C1 observed with an optical microscope. Each tissue photograph was processed by a Luzex image analyzer, and each primary crystal ratio was determined from the ratio of primary crystal (white part) and eutectic (gray part). It was found that the primary crystal ratio of Sample 11 increased 1.3 times (95% / 73%) with respect to the primary crystal ratio of Sample C1.

《測定》
試料11と試料C1に係る機械的特性を図6に示した。図6から明らかなように、両試料は引張強さが略同等であるにもかかわらず、試料11は試料C1に対して(破断)伸びが約1.8倍(13.7%/7.7%)にまで急増し、非常に高延性となっていることがわかった。なお、引張試験は、接合部に相当する領域が中央になるように切り出した引張試験片を用いて行った。
《Measurement》
The mechanical properties of Sample 11 and Sample C1 are shown in FIG. As is clear from FIG. 6, although the tensile strengths of both samples are substantially the same, the (breaking) elongation of sample 11 is about 1.8 times (13.7% / 7.) that of sample C1. It increased rapidly to 7%) and was found to be extremely ductile. The tensile test was carried out using a tensile test piece cut out so that the region corresponding to the joint was in the center.

以上から、キャビティへの注湯完了後に、所定タイミングで局部加圧を行うことにより、SPR接合しても割れない高延性な接合部を有する鋳物が得られることが確認できた。 From the above, it was confirmed that by performing local pressurization at a predetermined timing after the completion of pouring into the cavity, a casting having a highly ductile joint that does not crack even if SPR joint is performed can be obtained.

[実施例2]
(1)合金1からなる溶湯を用いて、局部加圧する加圧開始時を変更した種々の試料21〜24を製作した。各試料に係る加圧開始時、固相率、および金属組織(マクロ組織とミクロ組織)を図7にまとめて示した。なお、マクロ組織は、断面をそのまま観察したものであるが、ミクロ組織は光学顕微鏡で観察した200倍のものである。
[Example 2]
(1) Using the molten metal made of the alloy 1, various samples 21 to 24 in which the start of pressurization for local pressurization was changed were produced. The solid phase ratio and the metallographic structure (macrostructure and microstructure) of each sample at the start of pressurization are summarized in FIG. 7. The macrostructure is a cross-section observed as it is, but the microstructure is 200 times larger than that observed with an optical microscope.

図7に示した固相率は、図8に示した凝固曲線から求めた加圧開始時の溶湯の固相率である。図8に示した冷却曲線は、溶湯のキャビティへの射出開始時からの経過時間と、キャビティ内の溶湯の温度とを実測して求めた。図8に示した固相率は、その実測した冷却曲線に基づいて凝固解析を行い、放出した潜熱量から算出したものである。 The solid phase ratio shown in FIG. 7 is the solid phase ratio of the molten metal at the start of pressurization determined from the solidification curve shown in FIG. The cooling curve shown in FIG. 8 was obtained by actually measuring the elapsed time from the start of injection of the molten metal into the cavity and the temperature of the molten metal in the cavity. The solid phase ratio shown in FIG. 8 is calculated from the amount of latent heat released by performing solidification analysis based on the measured cooling curve.

ちなみに、加圧ピン圧力を271MPaで押圧した場合、加圧ピンは約0.05秒程度でフルストローク状態となり、その内端面はキャビティの内壁面と面一状態となる。 Incidentally, when the pressure pin pressure is pressed at 271 MPa, the pressure pin is in a full stroke state in about 0.05 seconds, and its inner end surface is flush with the inner wall surface of the cavity.

図7に示した試料21のように、固相率がほぼ0のときに局部加圧を行うと、その加圧部は、初晶Alデンドライト間に共晶ネットワークが存する金属組織となり、局部加圧を行わないときと同様な金属組織となった。 When local pressurization is performed when the solid phase ratio is almost 0 as in sample 21 shown in FIG. 7, the pressurized portion becomes a metal structure in which a eutectic network exists between primary crystal Al dendrites and is locally added. The metal structure was the same as when no pressure was applied.

一方、試料22、23のように、固相率が上昇したときに局部加圧を行うと、ほぼ全面が初晶Al相で占められた金属組織が得られた。試料24のように、固相率がかなり高いときに局部加圧を行っても、共晶(Al―Si)が出現するものの、大半が初晶Alで占められた金属組織となった。 On the other hand, as in Samples 22 and 23, when local pressurization was performed when the solid phase ratio increased, a metallographic structure in which almost the entire surface was occupied by the primary crystal Al phase was obtained. As in sample 24, even if local pressurization was performed when the solid phase ratio was considerably high, eutectic (Al—Si) appeared, but the metal structure was mostly occupied by primary crystal Al.

(2)試料21〜24に示した鋳物からなる試験片を用いて、実施例1の場合と同様なSPR接合を行った。その際、各試験片に生じる割れの個数を目視によりカウントした。こうして求めた割れの数と、図7に示した各試料の固相率との相関を図9に示した。 (2) Using the test pieces made of the castings shown in Samples 21 to 24, SPR joining was performed in the same manner as in Example 1. At that time, the number of cracks generated in each test piece was visually counted. The correlation between the number of cracks obtained in this way and the solid phase ratio of each sample shown in FIG. 7 is shown in FIG.

図9から明らかなように、固相率が0.2以下のときに局部加圧を行っても初晶率の高い金属組織が得られず、SPR接合時の割れをあまり抑制できないことがわかった。一方、固相率が0.3以上さらには0.4以上となるようなときに局部加圧を行うと、初晶率が高い金属組織が得られ、SPR接合しても割れが殆ど生じないことがわかった。 As is clear from FIG. 9, it was found that even if local pressurization was performed when the solid phase ratio was 0.2 or less, a metal structure having a high primary crystal ratio could not be obtained, and cracking during SPR bonding could not be suppressed so much. It was. On the other hand, if local pressurization is performed when the solid phase ratio is 0.3 or more and even 0.4 or more, a metal structure having a high primary crystal ratio is obtained, and cracks hardly occur even if SPR bonding is performed. I understand.

[実施例3]
実施例1に示した合金1を用いた鋳物(試料11、試料C1)と同様に、合金2を用いた鋳物(試料12、試料C2)および合金3を用いた鋳物(試料13、試料C3)も製作した。
[Example 3]
Similar to the casting using alloy 1 (sample 11, sample C1) shown in Example 1, the casting using alloy 2 (sample 12, sample C2) and the casting using alloy 3 (sample 13, sample C3). Also made.

各鋳物から切り出した引張試験片を用いて、それぞれの機械的特性(引張強さと伸び)を測定した。こうして得られた結果を、各合金中に含まれるSi量と関連付けて、図10にまとめて示した。 The mechanical properties (tensile strength and elongation) of each were measured using the tensile test pieces cut out from each casting. The results thus obtained are summarized in FIG. 10 in association with the amount of Si contained in each alloy.

図10から明らかなように、鋳物中のSi量が少なくなると、初晶Al(α―Al)が増加する一方で共晶が減少するため、(破断)伸びが増加して高延性となる。しかし、Si量が多い場合でも、局部加圧を行うことにより、引張強さを殆ど低下させることなく、十分に大きい伸びを確保できた。 As is clear from FIG. 10, when the amount of Si in the casting decreases, the primary crystal Al (α-Al) increases while the eutectic decreases, so that the (breaking) elongation increases and the ductility becomes high. However, even when the amount of Si is large, by performing local pressurization, a sufficiently large elongation can be secured with almost no decrease in tensile strength.

局部加圧した試料12(Si:8.5%)、試料13(Si:10%)に係る伸びから外挿すると、Si:12%のときでも局部加圧を行うことにより、局部加圧をせずにSPR接合時の割れを生じた試料C1(Si:7%)よりも、伸びを高くできることもわかった。従って、局部加圧を行う場合なら、少なくともSi量を12%にしても耐割れ性の確保が可能となり得る。 Extrapolated from the elongation of sample 12 (Si: 8.5%) and sample 13 (Si: 10%) that were locally pressurized, local pressurization was performed by performing local pressurization even when Si: 12%. It was also found that the elongation can be made higher than that of the sample C1 (Si: 7%) in which cracks were generated at the time of SPR joining without doing so. Therefore, when local pressurization is performed, crack resistance can be ensured even if the amount of Si is at least 12%.

[実施例4]
銅合金(Cr―Ti銅/熱伝導率:150W/mK)からなる金型を用いて、実施例1の場合と同様に鋳物(試料31)も製造した。
[Example 4]
A casting (sample 31) was also produced in the same manner as in Example 1 using a mold made of a copper alloy (Cr—Ti copper / thermal conductivity: 150 W / mK).

実施例1で用いた工具鋼(SKD61/熱伝導率:29.8W/mK)からなる金型の場合、注湯完了後の冷却速度が666℃/sであった。これは図8に示した冷却曲線で、射出開始からの時間:0.22〜0.232秒の間に溶湯温度が616℃〜608℃に変化していることからわかる。一方、銅合金からなる金型の場合、同様に冷却速度を求めると、1700℃/sであった。 In the case of the mold made of tool steel (SKD61 / thermal conductivity: 29.8 W / mK) used in Example 1, the cooling rate after the completion of pouring was 666 ° C./s. This is the cooling curve shown in FIG. 8, and can be seen from the fact that the molten metal temperature changes from 616 ° C. to 608 ° C. within the time from the start of injection: 0.22 to 0.232 seconds. On the other hand, in the case of a mold made of a copper alloy, the cooling rate was similarly determined to be 1700 ° C./s.

このように、金型の材質変更により、冷却速度を約2.5倍以上変化させた鋳物(試料11と試料31)を得ることができた。なお、各材質の熱伝導率に比例した冷却速度となっていないのは、金型の内壁面と溶湯(鋳物)の界面に存在する熱抵抗のためと考えられる。 In this way, by changing the material of the mold, it was possible to obtain castings (sample 11 and sample 31) in which the cooling rate was changed by about 2.5 times or more. It is considered that the cooling rate not proportional to the thermal conductivity of each material is due to the thermal resistance existing at the interface between the inner wall surface of the mold and the molten metal (casting).

各試料に係る鋳物から切り出した試験片を用いて、それぞれ3点曲げ試験を行い、破断するまでのたわみ量と、破断するまでの曲げ強度を測定した。この結果を図11に示した。図11から明らかなように、冷却速度を調整することにより、SPR接合時における塑性変形能の指標値となるたわみ量を増加させて、接合部における耐割れ性を高めることができることがわかった。 A three-point bending test was performed on each of the test pieces cut out from the casting of each sample, and the amount of deflection until breaking and the bending strength until breaking were measured. The result is shown in FIG. As is clear from FIG. 11, it was found that by adjusting the cooling rate, the amount of deflection, which is an index value of the plastic deformability at the time of SPR joining, can be increased and the crack resistance at the joint can be improved.

各試料に係る鋳物の初晶Al中に固溶しているSi量とMg量を、電子マイクロプローブ装置(EPMA)を用いた測定した。この結果を図12に示した。図12から明らかなように、冷却速度が相対的に小さくてたわみ量の多い鋳物(試料11)は、α―Al中におけるSiとMgの固溶量が相対的に少ないことがわかった。 The amount of Si and the amount of Mg dissolved in the primary crystal Al of the casting according to each sample were measured using an electron microprobe device (EPMA). The result is shown in FIG. As is clear from FIG. 12, it was found that the casting (Sample 11) having a relatively low cooling rate and a large amount of deflection had a relatively small amount of solid solution of Si and Mg in α-Al.

従って、冷却速度を低くすることにより、初晶Al中における合金元素の固相量が低下し、これによりSPR接合される領域(接合部)の塑性変形能ひいては耐割れ性が高まり得ることがわかった。 Therefore, it was found that by lowering the cooling rate, the solid phase amount of the alloying elements in the primary crystal Al decreases, which can increase the plastic deformation ability of the region (joint portion) to be SPR-bonded and thus the crack resistance. It was.

Claims (8)

アルミニウム合金の鋳物からなり、塑性変形して機械的に接合される接合部と、接合に関与しない非接合部とを備える接合用アルミニウム合金部材であって、
アルミニウム合金は、全体を100質量%(単に「%」という。)としてSiを6〜12%含み、
接合部は、初晶アルミニウムの存在割合である初晶率が前記非接合部よりも大きく、該非接合部の初晶率に対する該接合部の初晶率の比率である初晶比が1.2以上であり、
該接合部にセルフピアシングリベット(SPR)が打鋲され得る接合用アルミニウム合金部材。
An aluminum alloy member for joining, which is made of a cast aluminum alloy and includes a joint portion that is plastically deformed and mechanically joined, and a non-joining portion that is not involved in the joining.
The aluminum alloy contains 6 to 12% of Si with 100% by mass (simply referred to as "%") as a whole.
The junction is HatsuAkiraritsu an existing ratio of the primary crystal aluminum much larger than the said non-joined portion, a ratio of HatsuAkiraritsu of the joint portion for HatsuAkiraritsu of non joint HatsuAkirahi 1 .2 or more,
An aluminum alloy member for joining in which a self-piercing rivet (SPR) can be studded at the joint.
記初晶比は1.3以上である請求項1に記載の接合用アルミニウム合金部材。 Before SL first Akirahi the bonding aluminum alloy member according to claim 1 is 1.3 or more. 前記接合部は、前記初晶アルミニウムに含まれる合金元素の固溶量が前記非接合部よりも少ない請求項1または2に記載の接合用アルミニウム合金部材。 The aluminum alloy member for joining according to claim 1 or 2, wherein the joint portion has a solid solution amount of an alloy element contained in the primary crystal aluminum less than that of the non-join portion. 前記非接合部は、共晶ネットワーク組織を有する請求項1〜3のいずれかに記載の接合用アルミニウム合金部材。 The aluminum alloy member for joining according to any one of claims 1 to 3, wherein the non-joining portion has a eutectic network structure. アルミニウム合金の鋳物からなり、塑性変形することにより機械的に接合される接合部と接合に関与しない非接合部とを備える請求項1〜4のいずれかに記載の接合用アルミニウム合金部材の製造方法であって、
全体を100%としてSiを6〜12%含むアルミニウム合金の溶湯を鋳型へ注湯する注湯工程と、
該鋳型内へ注湯された溶湯を冷却して凝固させる冷却工程とを備え、
さらに、該冷却工程中に、初晶アルミニウムが晶出して固液共存状態となっている該溶湯を、前記接合部に対応する領域で局部的に加圧する局部加圧工程を備える接合用アルミニウム合金部材の製造方法。
The method for manufacturing an aluminum alloy member for joining according to any one of claims 1 to 4, which is made of a cast aluminum alloy and includes a joint portion that is mechanically joined by plastic deformation and a non-joining portion that does not participate in the joining. And
A pouring process in which a molten aluminum alloy containing 6 to 12% of Si is poured into a mold with the whole as 100%.
It is provided with a cooling step of cooling and solidifying the molten metal poured into the mold.
Further, a bonding aluminum alloy comprising a local pressurizing step of locally pressurizing the molten metal in a solid-liquid coexisting state in which primary aluminum is crystallized during the cooling step in a region corresponding to the joining portion. Manufacturing method of parts.
前記局部加圧工程は、前記溶湯の固相率が0.25〜0.95のときになされる請求項5に記載の接合用アルミニウム合金部材の製造方法。 The method for manufacturing an aluminum alloy member for bonding according to claim 5, wherein the local pressurization step is performed when the solid phase ratio of the molten metal is 0.25 to 0.95. 前記冷却工程は、750℃/s以下の冷却速度でなされる請求項5または6に記載の接合用アルミニウム合金部材の製造方法。 The method for manufacturing an aluminum alloy member for joining according to claim 5 or 6, wherein the cooling step is performed at a cooling rate of 750 ° C./s or less. 請求項1〜4のいずれかに記載した接合用アルミニウム合金部材と、
該接合用アルミニウム合金部材に接合される少なくとも1以上の被接合部材と、
該被接合部材側を貫通した先端部が前記接合用アルミニウム合金部材の接合部内で塑性変形して該接合用アルミニウム合金部材と該被接合部材を接合する接合具と備え
該接合具はセルフピアシングリベット(SPR)である複合部材。
The aluminum alloy member for joining according to any one of claims 1 to 4,
With at least one member to be joined to the aluminum alloy member for joining,
A tip portion penetrating the side of the member to be joined is provided with a joining tool for joining the aluminum alloy member for joining and the member to be joined by plastically deforming in the joining portion of the aluminum alloy member for joining .
該接Gogu the self-piercing rivet (SPR) Der Ru composite member.
JP2016244876A 2016-12-16 2016-12-16 Composite members, aluminum alloy members for joining and their manufacturing methods Active JP6821419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016244876A JP6821419B2 (en) 2016-12-16 2016-12-16 Composite members, aluminum alloy members for joining and their manufacturing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016244876A JP6821419B2 (en) 2016-12-16 2016-12-16 Composite members, aluminum alloy members for joining and their manufacturing methods

Publications (2)

Publication Number Publication Date
JP2018094621A JP2018094621A (en) 2018-06-21
JP6821419B2 true JP6821419B2 (en) 2021-01-27

Family

ID=62634215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016244876A Active JP6821419B2 (en) 2016-12-16 2016-12-16 Composite members, aluminum alloy members for joining and their manufacturing methods

Country Status (1)

Country Link
JP (1) JP6821419B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7200463B2 (en) 2018-05-16 2023-01-10 住友電工ハードメタル株式会社 Drill cutting inserts and drills

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256427A (en) * 1994-03-22 1995-10-09 Toyota Motor Corp Formation of half-melting alloy
JP2002346729A (en) * 2001-05-21 2002-12-04 Hitachi Metals Ltd HYPOEUTECTIC Al-Si ALLOY CASTING AND ITS PRODUCING METHOD
JP2007002281A (en) * 2005-06-22 2007-01-11 Nissan Motor Co Ltd Aluminum alloy casting for self-pierce rivet joining, and method for producing the same
JP2008267594A (en) * 2007-03-23 2008-11-06 Hitachi Metals Ltd Self-pierce rivet and joining method using this
JP6237360B2 (en) * 2014-03-13 2017-11-29 スズキ株式会社 Metal joining method

Also Published As

Publication number Publication date
JP2018094621A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
Li et al. The role of vacuum degree in the bonding of Al/Mg bimetal prepared by a compound casting process
Timelli et al. The influence of Cr content on the microstructure and mechanical properties of AlSi9Cu3 (Fe) die-casting alloys
Zamani et al. High temperature tensile deformation behavior and failure mechanisms of an Al–Si–Cu–Mg cast alloy—The microstructural scale effect
Zhang et al. Effect of pressure on microstructures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting
Liu et al. An investigation into aluminum–aluminum bimetal fabrication by squeeze casting
TWI397591B (en) Aluminium alloy
US11390937B2 (en) Self-repairing metal alloy matrix composites, methods of manufacture and use thereof and articles comprising the same
Msomi et al. Analysis of material positioning towards microstructure of the friction stir processed AA1050/AA6082 dissimilar joint
Haghdadi et al. Evaluating the mechanical properties of a thermomechanically processed unmodified A356 Al alloy employing shear punch testing method
Abolhasani et al. Microstructure and mechanical properties evolution of 6061 aluminum alloy formed by forward thixoextrusion process
JP2003064438A (en) Magnesium alloy having excellent corrosion resistance, and magnesium alloy member
Liu et al. Interfacial characteristic of multi-pass caliber-rolled Mg/Al compound castings
JP2009108409A (en) Al-Mg TYPE ALUMINUM ALLOY FOR FORGING, WITH EXCELLENT TOUGHNESS, AND CAST MEMBER COMPOSED THEREOF
Wang et al. The role of vibration time in interfacial microstructure and mechanical properties of Al/Mg bimetallic composites produced by a novel compound casting
Abdelgnei et al. Microstructure evaluation and mechanical properties of thixoformed Ai–5.7 Si–2Cu–0.3 Mg aluminum alloys
Blad et al. Manufacturing and fatigue verification of two different components made by semi-solid processing of aluminium TX630 alloy
Atabaki et al. Low-temperature partial transient liquid phase diffusion bonding of Al/Mg2Si metal matrix composite to AZ91D using Al-based interlayer
JP6821419B2 (en) Composite members, aluminum alloy members for joining and their manufacturing methods
US20090162242A1 (en) Heat resistant magnesium alloy and production process thereof
Chen et al. Effects of processing parameters on tensile properties and hardness of thixoformed ZA27 alloy
Kim et al. Mold filling ability and hot cracking susceptibility of Al-Fe-Ni alloys for high conductivity applications
WO2017058052A1 (en) High-strength alloy based on aluminium and method for producing articles therefrom
Qin et al. Microstructure and mechanical properties of friction stir welds on unmodified and P-modified Al-Mg2Si-Si alloys
Bolouri et al. Characteristics of thixoformed A356 aluminum thin plates with microchannels
Fan et al. Effects of processing technologies on mechanical properties of SiC particulate reinforced magnesium matrix composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210106

R150 Certificate of patent or registration of utility model

Ref document number: 6821419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250