JP6820565B2 - 病原性細菌の定着を阻害するペプチド及びそれを含む定着阻害剤 - Google Patents

病原性細菌の定着を阻害するペプチド及びそれを含む定着阻害剤 Download PDF

Info

Publication number
JP6820565B2
JP6820565B2 JP2018514605A JP2018514605A JP6820565B2 JP 6820565 B2 JP6820565 B2 JP 6820565B2 JP 2018514605 A JP2018514605 A JP 2018514605A JP 2018514605 A JP2018514605 A JP 2018514605A JP 6820565 B2 JP6820565 B2 JP 6820565B2
Authority
JP
Japan
Prior art keywords
cofj
cofb
peptide
gcn4
domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018514605A
Other languages
English (en)
Other versions
JPWO2017188215A1 (ja
Inventor
昇太 中村
昇太 中村
一樹 河原
一樹 河原
大也 沖
大也 沖
卓也 吉田
卓也 吉田
忠恭 大久保
忠恭 大久保
祐次 小林
祐次 小林
孝浩 丸野
孝浩 丸野
大祐 元岡
大祐 元岡
重輝 松田
重輝 松田
年央 児玉
年央 児玉
飯田 哲也
哲也 飯田
泰充 辻野
泰充 辻野
俊輔 深草
俊輔 深草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIKENBIOMICS CO., LTD.
Osaka University NUC
Original Assignee
BIKENBIOMICS CO., LTD.
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIKENBIOMICS CO., LTD., Osaka University NUC filed Critical BIKENBIOMICS CO., LTD.
Publication of JPWO2017188215A1 publication Critical patent/JPWO2017188215A1/ja
Application granted granted Critical
Publication of JP6820565B2 publication Critical patent/JP6820565B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/73Fusion polypeptide containing domain for protein-protein interaction containing coiled-coiled motif (leucine zippers)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本発明は、新規のペプチドに関し、特に、病原性細菌が消化器内に定着することを阻害するペプチド及びそれを含む定着阻害剤に関する。
近年、消化器の疾病の原因となる病原性細菌が数多く明らかとなっている。例えば、腸管毒性を有する病原性細菌の一種である腸管毒素原性大腸菌(Enterotoxigenic Escherichia coli :ETEC)は、水や食物を介してヒトの消化管に侵入し、コレラ様の下痢を引き起こすことが知られている。ETECによる感染症は、発展途上国で生活する人々やその地域を訪れる旅行者の間で深刻な問題となっており、世界中で年間約2億人が感染し、主に5歳以下の乳幼児を中心として約38万人が死亡すると推定されている(非特許文献1)。日本の大阪空港内検疫所で実施された統計調査から、下痢を発症した日本人旅行者の約8%がETECに感染していることが報告されている(非特許文献2)。
ETECの病原性発現の第一段階として、小腸上皮細胞へ付着した上で、そこに定着する必要があり、定着因子(Colonization Factors : CFs)がその役割を担う。これまでに定着因子抗原1(CFA/I)、大腸菌表面抗原1(CS1)、推定定着抗原071(PCF071)など少なくとも25種類のCFsが報告されている(非特許文献3)。これらの病原因子の働きにより、ETECが宿主の小腸上皮細胞上に付着すると、バイオフィルムやマイクロコロニーなどを形成してそこに定着する。その後、第二段階としてETECは、易熱性腸管毒素(LT)又は耐熱性腸管毒素(ST)を産生し、病原性を発現する。
ETECが保有するCFsは、それらのほぼ全てが線毛性の定着因子であり、構成成分のアミノ酸配列や免疫原性などの特徴から幾つかのグループに分類される(非特許文献3)。例えば、CFA/I、CS1、CS2、CS4、CS5、CS7、CS14、CS17、CS19及びPCF071などは、クラス5型に属する線毛を形成するが、CS12、CS18、CS20、CS26、CS27、及びCS28などはクラス1b型の線毛を形成する。これらに加えて、CS13、CS15、CS22、及びCS23、または、CS3及びCS6に関しては、それぞれ同様にグループ分けされる。これらのCFsの構造、性質については未だ不明な点が多いが、類似の構成成分を有しており、主に大腸菌のペリプラズム内に存在するChaperonタンパク質、線毛の主要構成サブユニット(メジャーピリン)、線毛に少数含まれるサブユニット(マイナーピリン)及び外膜Usherタンパク質から構成され、Chaperon-Usher経路により線毛が形成される(非特許文献3)。一方で、CFA/III(CS8)やLongus(CS21)は、IV型に分類される線毛を形成し、Chaperon-Usher経路とは異なる線毛構造、及び線毛形成機構を有している。その他のCFsとして、CS10、CS11が報告されているが、それらの線毛構造に関しては、未だ不明な部分が多い。
ETECが発現する非線毛性定着因子としては、ETECH10407株から同定された外膜タンパク質Tiaが知られており、当該タンパク質は宿主細胞表面上のプロテオグリカンに結合する(非特許文献4)。この他に、ETECが発現する非線毛性定着因子としては、同じくETECH10407株から同定されたEtpAが知られている。EtpAは、flagellinタンパク質の高度に保存された領域に結合し、菌体と宿主細胞表面を橋渡しする可能性が示唆されている(非特許文献5)。
一般的にETECの菌株はそれぞれ1〜3種類のCFsを保有しており、また様々な分泌性の定着因子も保有している(非特許文献6)。従って、その組み合わせの複雑さに加えて、各CFsの周囲の環境に応じた空間的かつ時間的な発現制御機構の多様性、更には表面抗原への菌株依存的な変異の導入などの理由から、ワクチン等の治療法開発が難しい。現状、ワクチン開発へ向けた候補抗原としては、ほぼすべてのETECが産生する毒素LTが考えられているが、その毒性のため経口等投与量の限界があり、近年では活性部位のアミノ酸を置換した変異体が代替抗原として検討されている。STに関しても同様の利用が考えられているが、分子サイズ(約20残基からなるペプチド)が小さく免疫応答を引き起こすことが難しいことが問題となっている(非特許文献7)。また、各定着因子を抗原としたワクチン開発も進められている。広範な免疫を引き起こす工夫が必要なため、現在最も有効なワクチンはCFA/I、CS3、CS5、CS6、そして腸管毒素LTを産生する菌株を用いた生もしくは不活化ETECワクチンである(非特許文献7及び8)。これらのワクチンは、主にChaperon-Usher経路により形成される線毛の各グループに適用可能であり、ETECの臨床株の80%に効果を示すと考えられている。
Qadri, F. et al. Clin. Microbiol. Rev.2005, 18,465-483. Abe, H. et al. J. Diar. Dis. Res. 1984, 2,83-87. Madhavan, T. V. et al. Adv. Appl.Microbiol. 2015, 90, 155-197. Fleckenstein, J. M. et al. Infect. Immun.2002, 70, 1530-1537. Roy, K. et al. Nature 2009, 457, 594-598. Mentzer,A. et al. Nat. genetics 2014, 46, 1321-1326. Sjoling,A. et al. Expert Rev. Vaccines 2015, 4, 551-560. Fleckenstein,J. M. et al. Microbes and infections 2010, 12, 89-98.
現在までに効果的なETECのワクチンは開発されていない。最も有望なワクチン候補としてはCFA/I、CS3、CS5、CS6、そして腸管毒素LTを産生する菌株を用いた生もしくは不活化ETECワクチンの研究が進んでいる。しかしながら、該ワクチンに含まれない定着因子又は毒素を含むETECの菌株に対しては効果を示さない。特に、IV型線毛を形成し、上記不活化ワクチンに含まれるCFsとは異なる線毛構造及び特徴を有するCFsを産生する菌株には適していない。特に、longus(CS21)は幅広い地域のETECから特定されており、ラテンアメリカや中東、そして北アフリカを含む地域で流行している(Isidean S. D. et al. Vaccine 2011, 29, 6167-6178.)。上記不活化ワクチンでは、この様な定着因子を保有する菌株の感染を阻止することは難しい。また、菌株の不活化により分泌性の病原因子への免疫が引き起こされないことも懸念されており、長期免疫の誘導が難しいといった問題もある。これらの問題を解決するために、広範なETECの表面に発現する保存性が高いタンパク質を特定し、該タンパク質を抗原としてワクチンを生成することも考えられているが、未だそのようなタンパク質は発見されていない。
従って、上記タンパク質の探索及び同定をするよりも、ETECの各定着因子の構造および定着機構の詳細を分子レベルで明らかにし、保存されたエピトープを同定することで、複数抗原による免疫を行うことが現実的であり、より有効であると考えられる。また、定着機構が明らかになれば定着阻害剤の開発も可能である。
本発明は、前記の問題に鑑みてなされたものであり、その目的は、定着因子を保有する細菌が消化器内に定着することを防止できるようにすることにある。
本発明者らは、鋭意検討を行った結果、細菌のうち、特にIVb型線毛を産生する病原性細菌が消化器内に定着するメカニズムを見出し、そのメカニズムに基づいて、該細菌の定着を阻害する新規のペプチドを作製することに成功した。
具体的に、本発明に係るペプチドは、IVb型線毛のマイナーピリンに結合可能なアミノ酸配列を有する第1ドメインと、該第1ドメインにリンカー配列を介して接続され、多量体化が可能なアミノ酸配列を有する第2ドメインとを含むことを特徴とする。
IVb型線毛を産生する細菌は、当該線毛のみでは消化器等の標的細胞の受容体と結合することができないものの、細菌自体が生成する分泌タンパク質が、IVb型線毛の主要構成サブユニット(メジャーピリン)の先端に位置するマイナーピリンの分泌タンパク質結合サイトに結合することにより、標的細胞に付着及び定着できるようになる。これに対して、本発明に係るペプチドは、IVb型線毛の上記マイナーピリンにおける分泌タンパク質結合サイトに結合可能なアミノ酸配列を有する第1ドメインを備えているため、IVb型線毛に結合することができる。従って、本発明に係るペプチドは、IVb型線毛に結合することにより、上記細菌の分泌タンパク質とIVb型線毛との結合を阻害し、その結果、細菌が消化器等の標的細胞に付着及び定着することを阻害することができる。また通常、IVb型線毛はホモ三量体を形成しており、これに対して本発明に係るペプチドは多量体化が可能な第2ドメインを備えているため、ホモ三量体の全ての上記結合サイトに同時に結合することが可能である。従って、上記細菌の分泌タンパク質とIVb型線毛との結合を効率良く阻害でき、その結果、細菌が消化器等の標的細胞に付着及び定着することを効率良く阻害することができる。この抗付着メカニズムは、宿主細胞上受容体に結合するのではなく病原菌に選択的に結合し、その後宿主外への排出を誘引するため宿主への影響が極めて少ない。また、抗生物質などとは異なり、病原細菌を死滅させることがないため選択圧が少なく薬剤耐性菌の出現を抑えることも可能である。この様な抗付着メカニズムに着目した阻害剤は、尿路病原性大腸菌(Uropathogenic Escherichia coli:UPEC)が保有するI型線毛やP型線毛に対するものが研究されている(Sharon, N. Biochim. Biophys. Acta 2006, 1760, 527-537.)。いずれも先端に糖鎖を認識するレクチンドメインを有する線毛であり、それらの糖鎖結合領域に特異的に結合する糖誘導体などの開発が進んでいる。ETECに関しては、ナノ粒子上に糖鎖を結合させた抗付着剤が検討されている(Ravel, Y. S. et al. Nanoscale 2015, 7, 8326-8331.)。しかしながら、その線毛を介する付着メカニズムが明らかになっていないため、これまでにIVb型線毛の付着を効率よく阻害する阻害剤は開発されていない。
本発明に係るペプチドにおいて、第1ドメインは、配列番号1〜4のいずれかの配列と70%以上の相同性を有するアミノ酸配列を有することが好ましい。
配列番号1〜4は、それぞれIVb型線毛を産生する細菌が発現するCofJ、LngJ、CfcJ及びTcpFといった分泌タンパク質にそれぞれ対応するマイナーピリン(CofB、LngB、CfcB及びTcpB)の結合サイトとの結合に関与する配列である。従って、これらと高い相同性を有する第1ドメインを含むことで上記分泌タンパク質のIVb型線毛への結合を阻害することができる。さらに、第1ドメインは、配列番号1〜4のいずれかの配列からなることが特に好ましい。
また、本発明に係るペプチドにおいて、第1ドメインは、配列番号5の配列を有することが好ましい。
配列番号5は、上記CofJのアミノ酸配列のうち、上記マイナーピリン(CofB)の結合サイトとの結合に強く関与する配列である。従って、第1ドメインが配列番号5の配列を有することで本発明に係るペプチドは、CofJとマイナーピリン(CofB)との結合を効率良く阻害することができる。また、第1ドメインを配列番号5の配列のみで構成することにより、第1ドメインをより短くできて、構造の単純化が可能となる。
また、本発明に係るペプチドにおいて、第1ドメインは、配列番号23の配列を有することが好ましい。
配列番号23は、上記配列番号5のN末端側にセリンが付加され、C末端側にリジンが付加された配列であり、第1ドメインが配列番号23の配列を有することで、本発明に係るペプチドは、上記配列番号5の場合と同様に、CofJとマイナーピリン(CofB)との結合を効率良く阻害することができる。また、第1ドメインを配列番号23の配列のみで構成することにより、第1ドメインをより短くできて、構造の単純化が可能となる。
本発明に係るペプチドにおいて、第2ドメインは、三量体化が可能なアミノ酸配列を含むことが好ましい。
IVb型線毛は、上述の通りホモ三量体を形成しているため、第2ドメインが、三量体化が可能なアミノ酸配列を含むことにより、ホモ三量体における全てのマイナーピリンにおける結合サイトに本発明のペプチドが結合できるようになる。これにより、細菌の分泌タンパク質とIVb型線毛との結合を効率良く阻害できる。
本発明に係るペプチドにおいて、第2ドメインは、配列番号6のアミノ酸配列、又は配列番号7若しくは配列番号8のアミノ酸配列を4回〜10回繰り返すアミノ酸配列を有することが好ましい。
配列番号6は、GCN4三量体コイルドコイルを形成する配列であり、配列番号7若しくは配列番号8の配列を4回〜10回繰り返すアミノ酸配列は、コラーゲン様三重らせん構造を形成する配列であり、すなわち、ペプチドの三量体化を促す配列である。従って、このようなアミノ酸配列を有する第2ドメインを備えることにより、本発明のペプチドは三量体を形成することが可能となる。従って、これらの配列を採用することにより、上述のとおり、細菌の分泌タンパク質とIVb型線毛との結合を効率良く阻害できるペプチドを得ることができる。
また、本発明に係るペプチドにおいて、リンカー配列は、配列番号9であってもよい。
本発明に係る定着阻害剤は、上記本発明に係るペプチドを含むことを特徴とする病原性細菌が消化器に定着することを阻害するものである。
本発明に係る定着阻害剤によると、上記本発明に係るペプチドを含むため、IVb型線毛と消化器の標的細胞との結合を阻害できる。その結果、IVb型線毛を産生する細菌が消化器に付着及び定着することを阻害することができる。
本発明に係るペプチド及びそれを含む定着阻害剤によると、IVb型線毛を産生する細菌が消化器に付着及び定着することを阻害することができる。
(a)及び(b)は、IVb型線毛を有する病原性細菌が消化器等を構成する細胞に付着及び定着するメカニズムを説明するためのモデル図である。 (a)及び(b)は、本発明の実施形態に係るペプチドがその付着及び定着を阻害するメカニズムを説明するためのモデル図である。 CFA/III線毛の構成成分であるCofAとCofBの立体構造を示すモデル図である。 (a)はCFA/IIIを構成する遺伝子群であるcofオペロンの構成を示す図であり、(b)はCofAとCofBからなるIV型線毛の形成を説明するための図である。 (a)はCofBの三量体構造を示す図であり、(b)はDiscoidin Iの三量体構造を示す図である。 (a)及び(b)はCofJとCofBとの結合を示す図である。 CofJ1−24ペプチドとCofBとが結合した複合体の結晶構造を示すモデル図である。 IVb型線毛についてコードする各コード領域の相同遺伝子を示し、cofオペロン、lngオペロン、Tcpオペロン及びcfcオペロンを示す図である。 CofJ、LngJ、CfcJ及びTcpFのN末端領域のアミノ酸配列を示す図である。 (a)〜(c)はCofBの構造解析結果を示すモデル図であり、(a)はその全体構造を示し、(b)は(a)の四角で囲んだ領域の拡大図であり、(c)は(b)の上面側を示す図である。 CofJ1-24-GCN4阻害ペプチドがCofBとCofJの結合を阻害可能かどうかを検討するためのプルダウンアッセイの結果を示す図である。 CofJ1-24ペプチドおよびCofJpepRがCofBとCofJの結合を阻害可能かどうかを検討するためのプルダウンアッセイの結果を示す図である。 Caco2細胞を用いてCofJ1-24-GCN4阻害ペプチドのETEC付着阻害活性を測定した結果を示すグラフである。 CofJ4-16-GCN4阻害ペプチドがCofBとCofJの結合を阻害可能かどうかを検討するためのプルダウンアッセイの結果を示す図である。 Caco2細胞を用いてCofJ4-16-GCN4阻害ペプチドのETEC付着阻害活性を測定した結果を示すグラフである。
以下、本発明を実施するための形態を説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用方法或いはその用途を制限することを意図するものではない。
本発明の実施形態に係るペプチドは、病原性細菌の線毛、特にIVb型線毛に結合することによって、病原性細菌が該線毛を介して標的細胞の受容体に結合することを防止できるペプチドである。本実施形態に係るペプチドは、IVb型線毛と結合する第1ドメインと、多量体化が可能な第2ドメインと、それらを接続するリンカー配列とを含む。
本実施形態において、病原性細菌とは、特にIVb型線毛を有する病原性細菌であり、例えば腸管毒素原性大腸菌(Enterotoxigenic Escherichia coli :ETEC)、コレラ菌(Vibrio cholerae)、シトロバクター・ローデンチウム(Citrobacterrodentium)等である。
まず、上記ETEC等のIVb型線毛を有する病原性細菌が消化器等を構成する細胞に付着及び定着するメカニズム、及び本実施形態に係るペプチドがその付着及び定着を阻害するメカニズムの概略を説明する。
上記ETEC等は、図1(a)に示すように、その表面に主要構成サブユニットであるメジャーピリンと、僅かに含まれ、メジャーピリンの先端に位置するマイナーピリンとから構成される線毛を形成している。特に、それらは多量体、例えばホモ三量体を形成している。ETEC等は、このような構成の線毛のみでは、消化器等の標的細胞に付着することができず、付着のためには、ETEC等が発現する分泌タンパク質が必要である。前記マイナーピリンには、分泌タンパク質の結合サイトが存在し、該分泌タンパク質がマイナーピリンに結合することで、図1(b)に示すように、該分泌タンパク質を介して線毛が標的細胞の受容体に結合することができる。これにより、ETECが標的細胞に付着し、その後マイクロコロニーなどを形成して定着できるようになる。
本実施形態に係るペプチドは、上述の通り、IVb型線毛と結合する第1ドメインを有しており、図2に示すようにペプチドの第1ドメインが線毛のマイナーピリンにおける分泌タンパク質結合サイトに結合するため、分泌タンパク質が該結合サイトに結合することを阻害することができる。特に、本実施形態に係るペプチドは、多量体化、特に三量体化を促す第2ドメインを有するため、三量体を形成することにより、図2(b)に示すように三量体の線毛の全ての結合サイトと結合することができる。これにより、効率良く分泌タンパク質と線毛との結合を阻害でき、その結果、ETEC等の病原性細菌が標的細胞に付着及び定着することを効率良く阻害することができる。
以下に、これらのメカニズムについてより詳細に説明する。
(IVb型線毛の形成メカニズム)
ETEC等のIVb型線毛を産生する細菌は、定着因子を発現し、該定着因子が線毛の形成を担う。菌体上にIVb型線毛を形成する定着因子としては、CFA/III(CS8)が知られ、これと遺伝子構造や構成タンパク質が極めてよく似ている他の定着因子としてLongus(CS21)が知られている。なお、IV型線毛は、その主要構成サブユニットであるメジャーピリンのN末端配列と全体の大きさからIVa型もしくはIVb型に大別されるが、CFA/III(CS8)やLongus(CS21)は、IVb型に属する。
これまでに機能解析研究から、CFA/IIIを構成する遺伝子群であるcofオペロンは、メジャーピリンをコードする遺伝子cofA、マイナーピリンをコードする遺伝子cofBなどの遺伝子を含む14種類の遺伝子群から構成されることを明らかにしている(Taniguchi, T. et al. Infect. Immun. 2001, 69, 5864-5873.)。さらに、本発明者らにより、CofAの立体構造を決定し、CFA/IIIにより形成された線毛の構造が明らかとなっている(Fukakusa, S. et al. Acta Cryst. 2012, D68, 1418-1429.)(図3)。また、図3に示すように、X線結晶構造解析法を用いた立体構造決定と超遠心分析による溶液中での会合状態の解析からCFA/IIIにより形成される線毛を構成するマイナーピリンCofBはN末端側のピリン様ドメインと中央部分及びC末端側のβシートに富んだ2つのドメインが螺旋状に絡み合った強固なホモ三量体構造を形成することが明らかとなっている。加えて、図4(a)及び(b)に示すように、当該三量体構造は、主にメジャーピリンCofAから構成されるIVb型線毛の先端に位置し、線毛形成開始を促す役割を有することについても明らかとなっている(Kawahara, K. et al. J. Mol. Biol. 2016, 428, 1209-1226.)。
このIVb型線毛の先端は、マイナーピリンCofBのC末端側に存在するβシートに富んだドメインにより束ねられているが類似ドメイン検索の結果、このドメインは、図5(a)に示すように、H型レクチン様折り畳み構造をもつことが明らかとなった。H型レクチンドメインは、ETECが保有するCFA/III線毛のほか、Dictyostelium discoideumのDiscoidin I(図5(b))やDiscoidin II、リンゴマイマイと呼ばれるカタツムリから発見されたHelixpomatia agglutinin(HPA)、また近年ではSymbiodiniumsp.のSinularia lochmodes (SLL2)が知られており(Lescar, J. et al. Glycobiology 2007, 17, 1077-1083.; Kita, A. et al.Glycobiology 2015, 25, 1016-1023.)、いずれもホモ三量体を形成する。三量体の分子境界には、3か所の等価で保存された糖鎖結合部位がある。当該結合箇所において、Discoidin IやDiscoidin II、HPA、SLL2の場合、N-acetyl-D-galactosamine(GalNac)が結合することが確認されている。いずれも糖鎖と結合することで、細胞接着や自己凝集に関わる。また、レクチンドメインによる糖鎖の認識は、I型線毛においても確認されている。
(ETECの付着及び定着メカニズム)
ETECが標的細胞に付着及び定着するメカニズムの概略は、図1を参照した上記説明の通りであるが、以下に、ETECが標的細胞に付着及び定着するメカニズムについてより詳細に説明する。
上記CofBが上記レクチンドメインを有するため、標的細胞に対する付着能の発現は、当該ドメインにより起こると想定されるが、後の実施例で詳述する細胞アッセイの結果から、大腸菌のCFA/III株は表面に産生するIVb型線毛のみでは、Caco2細胞への付着能が発揮されず、同じくcofオペロンにコードされている分泌タンパク質CofJの発現が必須であることが明らかになった。これは、本発明者らが作製したETECのCofJ欠損株が、線毛形成能を有するにも関わらず付着能を示さないことから明らかになった結果である。この結果から、CofJが線毛と腸管上皮細胞に介在することで腸管付着およびその後の定着に関与すると考えられる。
CofJは、超遠心分析等の結果から、図6(a)及び(b)に示すように線毛構成サブユニットのうち線毛先端にのみ位置するサブユニットであるCofBと相互作用することが明らかになり、さらに、CofJは、N末端の二次構造をもたない領域(1〜24)で、CofB三量体に存在する等価な3か所の結合サイトのいずれか1か所に結合することが、X線結晶構造解析等の結果から示された。
現在、CofJには様々なサブタイプが報告されており、特にCofJの球状ドメインの表面において変異が生じやすいため、CofJを用いたワクチン開発は難しい。また、線毛の主要構成サブユニットであるCofAも同様に線毛の表面部分に変異が多く生じることも報告されている(Njoroge, S. M. et al. FEMS Pathogens and Diseases 2015, 73, 1-4.)。一方で、CofJとCofBの相互作用部位のアミノ酸は高度に保存されていることも明らかになった。このことから、CofJとCofBの相互作用を阻害することにより、ETECの定着を阻害できるということが示唆され、この考えに基づいて本願発明に係るペプチドが見出された。
(ペプチドの構成)
上述の通り、本実施形態に係るペプチドは、IVb型線毛の特にマイナーピリンと結合する第1ドメインと、多量体化が可能な第2ドメインと、それらを接続するリンカー配列とを含む。
具体的に、第1ドメインは、線毛のマイナーピリンにおける分泌タンパク質の結合サイトに結合可能なアミノ酸配列を含む。例えばCofBに結合可能なCofJにおけるN末端の二次構造をもたない領域(1〜24番目)のアミノ酸配列(SPSSSEGGAFTVNMPKTSTVDDIR:配列番号1)を含み、好ましくは配列番号1の配列と少なくとも70%の相同性を有し、より好ましくは80%以上の相同性を有し、さらに好ましくは90%以上の相同性を有し、特に95%以上の相同性を有することが好ましい。
また、CofBと上記CofJにおけるN末端の二次構造をもたない領域(CofJ1−24)とが結合した複合体の結晶構造において、CofBは、図7に示すように、CofJ1−24ペプチドの5番目のセリンから15番目のプロリンまでを特に認識しており、中でも10番目のフェニルアラニンがCofBの疎水性ポケットに深く突き刺さっている。従って、CofBとの結合について、第1ドメインは少なくともアミノ酸配列(SEGGAFTVNMP:配列番号5)を含むことにより達成できる。
また、第2ドメインは、三量体構造を示すIV型線毛の先端における結合サイトの全てと結合できるように、多量体化、特に三量体化を促す配列を含む。例えば、三量体化を可能とするペプチドとしては、GCN4ロイシンジッパーを三量体化が可能となるよう改変したもの(RMKQIEDKIEEILSKIYHIENEIARIKKLI:配列番号6)(Harburyet al. Nature 1994, 371, 80-83.)、(Pro-Pro-Gly)n(配列番号7)又は(Pro-Hyp-Gly)n(配列番号8)でn=4〜10の繰り返し配列からなるコラーゲン様モデルペプチド等を用いることができる。ここでHypは、4(R)-ヒドロキシプロリンである。
リンカー配列は、リンカーとして機能する配列であれば特に限定されないが、例えばTSGGG(配列番号9)等を用いることができる。
以上では、主に定着因子CFA/IIIにより形成されるIVb型線毛について説明したが、他の定着因子としてETECが発現するLongus、コレラ菌が発現するTcp又はC.rodentiumが発現するCfc等により形成されるIVb型線毛は、上記CFA/IIIによる線毛と類似性が高いことが知られている(Mundy, R. et al. Mol. Microbiol. 2003, 48, 795-809)。上記メジャーピリンであるCofAに対応するものとして、それぞれLngA(Longus)、TcpA(Tcp)、CfcA(Cfc)が同定されており、それらのN末端側のピリン特有の疎水性領域の配列相同性は70〜75%と高い配列相同性を有する。図8に、CofA等を発現するcofオペロンと共にLngA等を発現するlngオペロン、TcpA等を発現するtcpオペロン、及びCfcA等を発現するcfcオペロンを示す。図8に示すように、CofA、LngA、TcpA及びCfcAのみならず、多くの相同遺伝子が存在している。
また、マイナーピリンであるCofBに対応するLngB(Longus)、TcpB(Tcp)、CfcB(Cfc)も同様に互いに類似性がある。これらに加えて、分泌タンパク質CofJに対応するLngJ(Longus)、TcpF(Tcp)、CfcJ(Cfc)の各N末端配列にも類似性がある。図9にそれらのN末端領域のアミノ酸配列を示す。図9において、矢印は上述したCofBとの結合に強く関与するCofJの10番目のフェニルアラニンを示し、下線は、二次構造を形成しないと考えられる配列部分を示す。下線部分は本実施形態のペプチドに係る配列番号1〜4の配列に相当し、この配列は上述の通り二次構造を形成しない部分の配列であり、すなわちマイナーピリンとの結合に有利な配列である。
なお、本実施形態のペプチドは、ペプチドの分解等を防止するために修飾されていても構わない。
本実施形態に係るペプチドの作製方法は、特に限定されず、ペプチド合成のために通常用いられ得る方法を利用でき、例えば遺伝子工学的方法や有機合成を用いた化学的方法を用いることができ、より具体的には以下の実施例において示す方法を用いることができる。
本発明の他の実施形態は、IVb型線毛を産生する細菌が消化器等の標的細胞に付着及び定着を阻害するための上記本発明に係るペプチドを含む定着阻害剤である。本実施形態に係る定着阻害剤は、上記ペプチドの他に、安定剤、緩衝剤、希釈剤、又は賦形剤等の添加剤を含んでいても構わない。また、本実施形態に係る定着阻害剤は、経口投与可能な剤形であることが好ましく、例えば錠剤、カプセル剤及び丸剤等であることが好ましいが、これらに限定されない。さらに、本実施形態に係る定着阻害剤は、以下のものに限定されないが、酢酸フタル酸セルロース(CAP)、ヒプロメースフタル酸エステル(HPMCP)及びアクリル酸系高分子等を用いた腸溶性コーティングや、エチルセルロース等を用いた徐放性コーティング等のコーティング処理がなされていてもよい。
以下に本発明の代表的な実施例として、ETECのCFA/III線毛による定着能に対する本発明に係るペプチドの効果について説明する。
(実施例1)大腸菌CFA/III産生株のCaco2細胞への付着実験
これまでの報告からCFA agarで培養したCFA/III産生野生型ETEC31−10株(ETEC 1373株)だけでなく、大腸菌HB101株(Nippon Gene)にcofオペロンを含むプラスミドpTT240を導入した菌株(HB101cof)は、同様の培養条件で野生株同様のIVb型線毛形成能をもち、またCaco2細胞に付着することが報告されている(Honda, T. et al. Infect. Immun. 1989, 57, 3452-3457.;Taniguchi, T.et al. Infect. Immun. 2001, 69, 5864-5873.)。ここで、cofオペロンを含むプラスミドpTT240の作製は以下の手順で行った。まず、cof遺伝子クラスターの塩基配列解析をおこなった結果、cof遺伝子のプロモーター配列の上流に制限酵素KpnIの切断サイト、cof遺伝子クラスターの最後の遺伝子であるcofJ遺伝子の下流に制限酵素StuIの切断サイトが存在することが明らかとなったため、cof遺伝子クラスターを含むプラスミドpSH1134を制限酵素StuIで切断後、phosphorylated KpnI linker (Takara Shuzo)をライゲーションし、制限酵素KpnIで切断処理をした。得られた13.8kbのフラグメントを0.8%のアガロースゲルで電気泳動をおこない精製後、制限酵素KpnI処理をしたプラスミドpMW119(Nippon Gene)にライゲーションをおこなった。得られたプラスミドをpTT240とした。また、Caco2細胞は、ETECの小腸上皮細胞への定着のモデル細胞と考えられている(Darfeuille-Michaud, A. et al. Infect. Immun. 1990, 58, 893-902.)。そこで、HB101cofとCaco2細胞とを用いて、以下の通り、付着実験を行った。
まず、50μg/mLゲンタマイシン、10%ウシ胎児血清(FBS:Fetal Bovine Serum)を含むダルベッコ改変イーグル培地(DMEM;Dulbecco’sModified Eagle’s Medium) を用いてCaco2細胞を分散させ、血球計算版を用いて細胞濃度を測定し、3.0×10cells/mLとなるように希釈した。6ウェルプレートに希釈液を500μLずつ加え、COインキュベータ内で5%CO、37℃において48時間静置、培養を行った。培養したCaco2細胞をPBSで2回洗浄した。洗浄後、100μg/mLアンピシリン、1%D−マンノースを含むDMEMを0.22μmフィルターに通し、ろ過をした後、各ウェルに500μLずつ加えた。
次に、HB101 cofのグリセロールストックを少量かきとり、100μg/mLアンピシリンを含むLB培地に添加し、25℃で一晩振盪培養をおこなった。培養液を適宜希釈し、濁度計を用いて、培養液のOD660を算出した。培養液を段階希釈し、CFU(colony forming unit)を測定した。測定したCFUから、OD660=1.0におけるHB101cofの濃度(cells/mL)を算出した。この算出値を後のHB101 cofの濃度決定のために用いた。
上記培養とは別に、HB101 cofのグリセロールストックを少量かきとり、100μg/mLアンピシリンを含むLB培地に添加し、25℃で一晩振盪培養をおこなった。菌体培養液を100μg/mLアンピシリンを含むLB培地で10倍希釈し、CFA agarプレート(1% Casamino Acid, 0.15% yeast extract, 0.005% MgSO4,0.0005% MnCl2, 2% アガロース)に500μL添加し、37℃で24時間静置し培養を行った。培養後の寒天培地上にPBSを3mL添加し、コンラージ棒で懸濁後、回収した。回収した培養液を100倍希釈し、OD660を測定した。測定したOD660から希釈前の培養液のOD660を算出し、前述したOD660=1.0におけるHB101cofの濃度(cells/mL)を基に、大腸菌濃度(cells/mL)を算出した。HB101 cofを1.0×10cells/mLとなるようにPBSで希釈し、定着アッセイ用サンプルとした。
6ウェルプレートのCaco2細胞に、調製したサンプルを50μL添加し、COインキュベータ内で、5%CO、37℃において3時間静置した。3時間後、PBSで3回洗浄した後、0.1%TritonX−100を含むPBSを500μL加え、5分静置した後回収した。回収した溶液を段階希釈し、CFUを測定した。測定したCFUから、Caco2細胞に定着していた細菌数を算出した。定着していた細菌数をCaco2細胞に添加した細菌数(5.0×10cells)で除し、100を乗じることでRecoveryrate(%)を計算した結果、16.9%であり、本実験系での付着能を確認した。
(実施例2)CofB欠損株及びCofJ欠損株のCaco2細胞への付着実験
上記実施例1において、HB101 cofがCaco2細胞に付着可能であることが確認できたため、次に、CofB欠損株及びCofJ欠損株を作製し、CofB及びCofJの機能について検討した。以下にその方法を説明する。
まず、プラスミドpTT240を基にしてcofJ遺伝子の欠損株(HB101-cof-ΔcofJ)を作製した。cofJ遺伝子のORF領域に2箇所、制限酵素NcoIの切断サイトが存在することに着目し、NcoIを用いて37℃で1時間インキュベートすることで切断後、精製を行った。精製した切断物をライゲーションすることで得られたプラスミドをCofJ欠損プラスミドpcof−ΔcofJとした。pcof−ΔcofJにより大腸菌株HB101を形質転換することにより得られた株をCofJ欠損株HB101-cof-ΔcofJとした。
cofJ欠損株にトランスでcofJ遺伝子を補完するために、プラスミドベクターpACYC184にcofJ遺伝子を組み込むこととした。プラスミドpTT240においてcofJ遺伝子の上流にSalI、下流にHindIIIの制限酵素サイトが存在することに着目し、制限酵素処理後、切断物末端の平滑化をおこない、精製をした。精製した切断物をEcoRV処理したプラスミドベクターpACYC184(NIPPON GENE)とライゲーションをすることで得られたプラスミドをcofJ補完プラスミドpcofJとした。pcof−ΔcofJとpcofJにより大腸菌株HB101を形質転換することにより得られた株をCofJ補完株HB101-cof-ΔcofJ+pcofJとした。
CofB欠損株HB101-cof-ΔcofB、およびCofB補完株HB101-cof-ΔcofB+pcofBの作製に関しては引用文献(Kawahara,K, et al. J. Mol. Biol, 2016, 428, 1209-1226.) に準じた。CofJ欠損株HB101-cof-ΔcofJ、CofJ補完株HB101-cof-ΔcofJ+pcofJ、CofB欠損株HB101-cof-ΔcofBおよびCofB補完株HB101-cof-ΔcofB+pcofBの付着実験は実施例1と同様の手法によりおこなった。
実験の結果、Recoveryrateは、CofJ欠損株HB101-cof-ΔcofJは0.30%、CofJ補完株HB101-cof-ΔcofJ+pcofJは2.9%、CofB欠損株HB101-cof-ΔcofBは0.79%およびCofB補完株HB101-cof-ΔcofB+pcofBは2.9%であった。
すなわち、HB101 cofと比較して、CofJ欠損株HB101-cof-ΔcofJは、0.018倍、CofB欠損株HB101-cof-ΔcofBは0.047倍しかCaco2細胞に付着しなかった。また、CofJ補完株HB101-cof-ΔcofJ+pcofJおよびCofB補完株HB101-cof-ΔcofB+pcofBはHB101 cofほどの定着能を有さなかったものの、各欠損株と比較して定着能の回復が見られた。従って、HB101cofによるCaco2細胞に対する付着には、CofBおよびCofJが関与すると認められる。
(実施例3)CofJと線毛サブユニットの相互作用解析
次に、分泌タンパク質であるCofJと、線毛構成サブユニットであるCofAおよびCofBとの相互作用について解析した。
CofJと線毛構成サブユニットCofAおよびCofBの相互作用解析には、溶解度の向上のため、CofA、CofBのN末端の疎水性領域(1〜28残基)を除いたコンストラクト(ΔN28−CofA、ΔN28−CofB)を設計して発現および精製を行った。これらの発現、精製法については過去の論文 (Fukakusa, S, et al. Acta Cryst. 2012, D68, 1418-1429.; Kawahara, K, et al. J. Mol. Biol, 2016, 428, 1209-1226.)に従って行った。
CofJの発現精製は以下の手順でおこなった。プラスミドpTT240から、Forward primer: 5’-GCGCCCGGGTCGCCATCCTCTTCAGAAGG-3’(配列番号10)とReverse primer: 5’- CAAGAATTCTTATTAATCAAGGCCACAAGCCTTC-3’(配列番号11)を使用してPCRで増幅した。制限酵素SmaIとEcoRIとにより処理した後、同様の処理を行ったpET48bベクター(Merck Biosciences)にライゲーションしたプラスミドをCofJ発現プラスミドとした。CofJ発現プラスミドを用いて大腸菌株SHuffle T7 Express lysY Competent E.coli(NewEngland Biolabs)を形質転換した菌株を、35μg/mLカナマイシンを含むLB培地で、37℃で振盪培養し前培養とした。前培養液を全量本培養液に加え37℃でOD660が0.60になるまで培養した。発現誘導は0.2mMのIPTGを加えることで行い、20℃で18時間振盪培養した。菌体は4000g、4℃、7分遠心分離で回収し、氷上でLysis buffer(50mM Tris-HCl、1M NaCl, pH8.0)に懸濁し、終濃度0.2mg/mLのリゾチーム、終濃度0.2%のTriton−X100を加え15分静置した。菌体は超音波(10秒,50秒休憩,15サイクル)により破砕し可溶性タンパク質を含む上清は24000g、4℃、1時間遠心分離をすることにより回収した。得られた上清はNi2+を結合し、上記Lysisbufferで平衡化したHiTrap Chelatingカラム(GEHealthcare Biosciences)に加えた。15mM Imidazoleを加えた上記Lysisbufferで洗浄後、Histag付きのCofJは15〜500mMのImidazoleグラジエントにより溶出した。溶出画分にTurbo3C protease(Accelagen)を30units加え、10℃で50 mM Tris-HCl、150 mM NaCl, pH8.0, 15mM Imidazoleに透析しつつ融合タグを切断した。融合タグを切断したCofJは平衡化したNiカラムを通過させることでタグと分離した。分離したCofJは20 mM Tris-HCl、150 mM NaCl, pH8.0で平衡化したゲル濾過カラムSuperdex75(GE Healthcare Biosciences)を用いて最終精製を行った。
CofJのN末端側の24残基を有さないΔN24−CofJの発現は以下のように実施した。CofJ発現用ベクターを基に、forward primer:5’- GGTTGCCCAACTTTGGAAAC -3’(配列番号12)とReverse primer: 5’- ACCCAGACCCGGGTCCCTGAAAGAG-3’(配列番号13)を使用してインバースPCRによって増幅した後、制限酵素SmaIで平滑化後、ライゲーションしたプラスミドをCofJΔ24発現プラスミドとした。CofJΔ24の発現および精製はCofJと同様の手法で行った。
以上の方法により調製したCofB、CofJ、及びΔN24−CofJを用いて相互作用解析を行った。分泌タンパク質CofJとΔN28−CofBの相互作用解析には等温滴定型熱量計Microcal iTC200(GE Healthcare社製)を用いた。滴定シリンジに0.59mMのCofJ溶液、測定セルに28.5μM(三量体換算)のΔN28−CofB溶液をそれぞれ充填し、CofJ溶液をΔN28−CofB溶液に滴下した際に生じる熱量変化を直接観測することで両者の相互作用を評価した。滴定条件は初回滴下量を1μL、2回目以降の滴下量を2μLとし、120秒毎に合計20回滴下した。測定温度は25℃とし、溶媒は20mM Tris-HCl (pH 8.0), 150mM NaClとした。CofJ溶液の滴下により発熱変化が観測され、これは滴定の進行に伴い希釈熱と同等にまで収束した。得られたデータについて解析ソフトOrigin(Microcal)を用いた解析を行った結果、CofJとΔN28−CofBの結合が観測された。両者の解離定数Kd値は0.2μMであった。
同様に、CofJとΔN28−CofAの相互作用解析に等温滴定型熱量計Microcal iTC200(GE Healthcare社製)を用いた。滴定シリンジに0.59mMのCofJ溶液、測定セルに28.5μM(三量体換算)のΔN28−CofA溶液をそれぞれ充填し、CofJ溶液をΔN28−CofA溶液に滴下した際に生じる熱量変化を直接観測することで両者の相互作用を評価した。滴定条件及び溶媒条件は分泌タンパク質CofJとΔN28−CofBの相互作用解析と同様とした。CofJ溶液の滴下による熱量変化は観測されなかった。このことからCofJとΔN28−CofAは結合しないことが示された。
次に、分泌タンパク質CofJのN末端領域(1〜24)の線毛への結合への寄与を調べるため、ΔN24−CofJとΔN28−CofBの相互作用解析を等温滴定型熱量計Microcal iTC200(GE Healthcare社製)を用いて実施した。滴定シリンジに0.59mMのΔN24−CofJ溶液、測定セルに28.5μM(三量体換算)のΔN28−CofB溶液をそれぞれ充填し、ΔN24−CofJ溶液をΔN28−CofB溶液に滴下した際に生じる熱量変化を直接観測することで両者の相互作用を評価した。ΔN24−CofJ溶液の滴下による熱量変化は観測されなかった。このことからΔN24−CofJとΔN28−CofBは結合しないことが示された。
さらに、分泌タンパク質CofJのN末端領域(1〜24)の線毛への結合への寄与を調べるため、株式会社スクラムから購入したCofJのN末端の24アミノ酸残基からなる合成ペプチド(CofJ1−24ペプチド)とΔN28−CofBの相互作用解析を、上記と同様に等温滴定型熱量計Microcal iTC200(GE Healthcare社製)を用いて実施した。滴定シリンジに2mMのCofJ1−24ペプチド溶液、測定セルに33.9μM(三量体換算)のΔN28−CofB溶液をそれぞれ充填し、CofJ1−24ペプチド溶液をΔN28−CofB溶液に滴下した際に生じる熱量変化を直接観測することで両者の相互作用を評価した。CofJ1−24ペプチド溶液の滴下により発熱変化が観測され、これは滴定の進行に伴い希釈熱と同等にまで収束した。得られたデータについて解析ソフトOriginを用いた解析を行った結果、CofJ1−24ペプチドとΔN28−CofBの結合が観測された。両者の解離定数Kd値は4μMであった。
次に、CofJ1−24ペプチドの結合特異性を調べるため、株式会社スクラムから購入した合成ランダムペプチド(CofJpepR)とΔN28−CofBの相互作用解析を等温滴定型熱量計Microcal iTC200(GE Healthcare社製)を用いて実施した。滴定シリンジに2mMのランダムペプチド溶液、測定セルに28.5μM(三量体換算)のΔN28−CofB溶液をそれぞれ充填し、ΔN24−CofJ溶液をΔN28−CofB溶液に滴下した際に生じる熱量変化を直接観測することで両者の相互作用を評価した。ランダムペプチド溶液の滴下による熱量変化は観測されなかった。このことからランダムペプチドとΔN28−CofBは結合しないことが示された。
以上から、CofAとCofJは結合しないが、CofBとCofJとが結合し、特にCofJのN末端の1〜24のアミノ酸残基が関与することが示唆された。
(実施例4)CofJとΔN28−CofBの超遠心分析による会合比の決定
次に、CofJとΔN28−CofBとの会合比について検討した。それらの会合比の決定には分析用超遠心機Optima XL-I(Beckman Coulter社製)を用いた。測定セルのウィンドウにはクォーツを選択し、センターピースにはセル長1.2cmのチャコールエポン製6穴センターピースを用いた。測定温度は20℃とし、溶媒は20mM Tris-HCl (pH 8.0), 150mM NaClとした。ローター回転数は5000,8000,10000rpmに設定し、各回転数において設定回転数到達後2時間毎にセル中の濃度勾配をUV検出器にてモニターした。スキャン毎に観測される吸光度のrmsd値が0.01以下になった時点を沈降平衡とし、平衡到達を確認した後、297nmにて沈降平衡における濃度勾配を評価した。積算回数は4回とした。このようにして得られた濃度勾配と、それに基づき算出された見かけの分子量から、1分子のCofJと1分子の三量体ΔN28−CofBが会合していることが確認された。
(実施例5)CofJ1−24ペプチドとCofBとの複合体構造の決定
次に、上記CofJ1−24ペプチドとCofBとからなる複合体の構造を決定するために、その複合体の結晶の作製を試みた。
そのために、まず、ペプチド合成により得られたCofJ1−24ペプチドを物質量比で2倍となるようにΔN28−CofBと混合し、結晶化サンプルとした。初期スクリーニングは20℃でシッティングドロップ蒸気拡散法により、スクリーニングキットWizard ScreenI,II(Emerald Biosystems)を用いておこなった。各ドロップには、CofBとして濃度が10、5、2.5mg/mLとなるように調製した上記混合ペプチド(ΔN28-CofB/CofJ1-24ペプチド)1μLと結晶化溶液1μLを混合し静置した。スクリーニングの結果、WizardII-39(100 mM CAPS pH10.5, 20% PEG 8000, 200 mM NaCl)の条件において初期結晶が得られた。条件の最適化後、結晶化溶液40μLをリザーバーとして濃度5mg/mLのΔN28-CofB/CofJ1-24ペプチドと結晶化溶液を等量混合した3〜4μLのドロップを形成し、20℃で3日間静置することで、針状の結晶を得ることに成功した。
得られたΔN28-CofB/CofJ1-24ペプチド複合体結晶については大型放射光施設SPring-8 BL26B1で回折測定を実施した。ナイロンループを用いてドロップから複合体結晶を回収後、−173℃の窒素気流下で急速凍結をおこない、回折データを収集した。複合体結晶からの回折像は最高分解能3.85Åの回折能を示した。プログラムHKL2000を用いて、強度積分、スケーリング処理をおこなった。複合体結晶は空間群P65に属し、格子定数はa=157.76Å、b=157.76Å、c=118.53Å、α=β=90.0°、γ=120.0°であった。初期位相の決定は、プログラムPhaserを使用した分子置換法により行った。分子置換適用の際の初期探索モデルの座標データは、ΔN28-CofB(PDBID:5AX6)の座標データを使用し、可動性の高いドメイン1とドメイン2間のリンカーの存在を考慮し、ドメイン1フラグメントとそれ以外(ドメイン2及び3からなる三量体フラグメント)の2つのフラグメントに分解したものを初期探索モデルとして採用し、分子置換による初期位相の解を求めた。その結果、初期検索モデルとして採用したドメイン1単量体フラグメントが3つ、ドメイン2及び3からなる三量体フラグメントを1つ含む解が1つ見つかった。分子置換法の結果得られたフラグメントを分子モデリング支援プログラムCootによってそれぞれを繋ぎ合わせた後、構造精密化用プログラムPHENIX.refineによる初期構造の精密化を行ったところ、図10に示すように、ΔN28−CofB三量体のH型レクチンドメインの分子境界部にCofJ1−24ペプチドの電子密度が3箇所観測された。
この結果から、CofB三量体のH型レクチンドメインにおいて、3つのCofJペプチドが結合可能であることが示唆された。
(実施例6)GCN4融合型阻害ペプチドの設計
次に、上記CofB三量体のそれぞれのH型レクチンドメインに結合可能な三量体ペプチドを作製するために、三量体化ドメインを有するGCN4を用い、これとCofJペプチドとがリンカーを介して結合したペプチドの作製を試みた。
そのために、まず、CofJ1−24ペプチドとリンカー(TSGGG)を用いてGCN4を融合させた阻害ペプチド(CofJ1-24-GCN4と呼ぶ)の発現プラスミドを以下の通り構築した。PCR反応によってオリゴ核酸を連結しCofJ1-24-GCN4遺伝子を合成した。CJN-T-1,6(表1)が終濃度0.6μM、CJN-T-2,3,4,5(表1)が終濃度0.03μMとなるように調製し、PCRを20サイクルおこなった。得られた増幅産物を制限酵素NdeI/XhoIで切断、精製し、同様の処理をしたpET30aベクター(Merck Biosciences)にライゲーションし、プラスミドを得た。しかし、このプラスミドではCofJ1-24-GCN4が発現しなかったため、N末端にGSTタグを付加したベクターにより発現させることとした。プライマーとしてCJN-T-7、8、テンプレートに前述したプラスミドを用い、PCRを35サイクルおこなった。得られた増幅産物を制限酵素BamHI/XhoIで切断、精製し、同様の処理をしたpGEX6P-1ベクター(GE Healthcare Biosciences)にライゲーションし、CofJ1-24-GCN4発現プラスミドを得た。
次に、CofJ1-24-GCN4発現用プラスミドを用いて大腸菌株BL21(DE3)(NIPPON GENE)を形質転換した。コロニーを拾い、アンピシリンを100μg/mL含むLB培地に加え、37℃で一晩振盪培養した。翌朝、当該培養液を本培養培地に全量加えてスケールアップし、37℃で振盪培養した。OD660=0.6に達したときに、IPTGを終濃度1mMとなるように加え、25℃で18時間振盪し、発現誘導を行った。発現誘導した菌体を4000g、7分、4℃で遠心回収した。得られた菌体を氷上においてlysis buffer (20 mM Tris-HCl, 1M NaCl, pH8.0)で溶解した後、リゾチームを20 μg/mL、TritonX-100を0.2%となるように加え15分放置した後、15秒間超音波破砕、1分休憩のサイクルを15回繰り返した。超音波破砕液を20000g、4℃で1時間遠心し、遠心上清を0.8 μmフィルターでろ過した。ろ過したサンプルをlysis bufferで平衡化したGSTカラム(GlutathioneSepharose 4 Fast Flow:GE Healthcare Biosciences)にアプライした。GSTカラムをlysis bufferで洗浄した後、elution buffer (20 mMTris-HCl, 20 mM GSH, pH8.0 )で溶出した。溶出サンプルを30unitsのTurbo 3C protease(Accelagen)で酵素処理をしながら、透析buffer(20 mM Tris-HCl, pH8.0)で透析をおこない、GSTタグとCofJ1-24-GCN4を切断した。切断後のサンプルをGSTカラムにアプライし、GSTタグとCofJ1-24-GCN4を分離した。回収したサンプルを透析bufferで平衡化したHitrapDEAEカラム(GE Healthcare Biosciences)にアプライし、NaClの濃度を0から2Mまでグラジエントをかけることで、溶出をおこなった。得られたサンプルをゲル濾過buffer(20 mM Tris-HCl, 150 mM NaCl, pH8.0)で平衡化したSuperdex75(26/60)カラム(GE HealthcareBiosciences)にアプライし、最終精製物とした。
得られた最終精製物は、N末端側から、ベクター由来配列4残基(GPLG)、CofJN末領域由来24残基(CofJ1-24配列)(SPSSSEGGAFTVNMPKTSTVDDIR:配列番号1)、リンカー配列5残基(TSGGG:配列番号9)、GCN4配列30残基(RMKQIEDKIEEILSKIYHIENEIARIKKLI)から構成される(配列番号6)。これをCofJ1-24-GCN4阻害ペプチドとする。
(実施例7)GCN4融合型阻害ペプチドとΔN28−CofBとのITCによる相互作用解析
実施例6で得られたCofJ1-24-GCN4阻害ペプチドの線毛への結合の寄与を調べるため、CofJ1-24-GCN4阻害ペプチドとΔN28−CofBの相互作用解析を等温滴定型熱量計Microcal iTC200(GE Healthcare社製)を用いて実施した。滴定シリンジに0.59mMのCofJ1-24-GCN4阻害ペプチド溶液、測定セルに28.5μM(三量体換算)のΔN28−CofB溶液をそれぞれ充填し、CofJ1-24-GCN4阻害ペプチド溶液をΔN28−CofB溶液に滴下した際に生じる熱量変化を直接観測することで両者の相互作用を評価した。CofJ1-24-GCN4阻害ペプチド溶液の滴下により発熱変化が観測され、これは滴定の進行に伴い希釈熱と同等にまで収束した。得られたデータについて解析ソフトOriginを用いた解析を行った結果、CofJ1-24-GCN4阻害ペプチドとΔN28−CofBとの結合が観測された。両者の解離定数Kd値は0.04μMであった。
解析の結果得られたCofJ1-24-GCN4阻害ペプチドとΔN28−CofBとの結合親和性は、CofJとΔN28−CofBの結合親和性に比べて5倍程度強いことが示され、GCN4融合型阻害ペプチドがCofJとΔN28−CofBとの相互作用を効率良く阻害することが明らかとなった。
(実施例8)プルダウンアッセイによる阻害ペプチドのCofB/CofJ相互作用の阻害
CofJ1-24-GCN4阻害ペプチドがCofBとCofJの結合を阻害可能かどうか調べるために、Niカラムを用いたプルダウンアッセイによりin vitroの実験系で確かめた。実験には、チオレドキシンタグ(Trx)、Hisタグ(His)が付加したΔN28-CofB(Trx-His−ΔN28-CofB)、CofJ、CofJ1-24-GCN4、CofJ1-24ペプチド、CofJ1-24ペプチドのアミノ酸配列をランダム化したペプチド(CofJpepR)を使用した。なお、CofJpepRの配列は、NPSGFDKSGSSTTRTPAMSVIVDE(配列番号22)である。
Trx-His−ΔN28-CofBが1μM、CofJ1-24-GCN4が各濃度(0、0.5、1.0、2.0、5.0、10.0μM)となるように混合した溶液を一晩氷上で静置した。さらに、終濃度が1μMとなるようにCofJを混合し氷上で1時間静置したものを実験サンプルとした。20mM Tris-HCl, 150mM NaCl, pH8.0で平衡化したNiカラムに各サンプルをアプライし、20mM Tris-HCl, 150mM NaCl, 15 mM Imidazole, pH8.0でカラムの洗浄をおこなった。その後、20mM Tris-HCl, 150mM NaCl, 300 mM Imidazole, pH8.0で溶出をおこない、SDS−PAGEによって溶出画分の確認をおこなった。その結果を図11に示す。図11に示すように、予めCofJと同濃度以上のCofJ1-24-GCN4をTrx-His-ΔN28-CofBと混合しておくことで、CofJとTrx-His-ΔN28-CofBの結合を強力に阻害できることが明らかとなった。
CofJ1-24ペプチド、およびCofJpepRに関しても同様の方法でその阻害能を検討した。具体的に、Trx-His-ΔN28-CofBが1μM、CofJ1-24ペプチドおよびCofJpepRが1000μMとなるように混合した溶液を一晩氷上で静置した。さらに、終濃度1μMとなるようにCofJを混合し氷上で1時間静置したものを実験サンプルとした。プルダウンアッセイは前述の方法と同様に行った。その結果を図12に示す。図12に示すように、CofJ1-24ペプチドではCofJの1000倍の濃度を予め加えていたとしても、CofJとTrx-His-ΔN28-CofBとの結合をほとんど阻害できないことが明らかとなった。また、CofJpepRでは、全く阻害できないことが明らかとなった。このことから、CofJ1-24-GCN4は三量体化することにより、CofBと強く結合することで、CofBとCofJの結合を阻害できるものと考えられる。
(実施例9)Caco2細胞を用いた阻害ペプチドのETEC付着阻害活性評価
実施例1および実施例2と同様の手法で定着実験をおこなった。その際、CofJ1-24-GCN4を0、10、100、1000μg/mL、HB101 cofを1.0×10cells/mLとなるように混合調製後、25℃で1時間静置したものを50μLずつ500μLの培地に加え、CofJ1-24-GCN4が0、1、10、100μg/mL、HB101 cofが1.0×10cells/mLとなるようにした。この結果を図13に示す。図13に示すように、Recovery rateは、0μg/mL CofJ1-24-GCN4が14.7%、1μg/mL CofJ1-24-GCN4が14.0%、10μg/mL CofJ1-24-GCN4が11.5%、100μg/mL CofJ1-24-GCN4が2.6%であった。
この結果から、CofJ1-24-GCN4が濃度依存的にHB101cofのCaco2細胞に対する定着を阻害することが明らかとなった。
(実施例10)CofJ4−16ペプチドとΔN28−CofBとのITCによる相互作用解析
ここまで、CofJ1−24ペプチドがCofB/CofJ相互作用を阻害して、ETECの腸組織への付着を阻害することを示した。上述したようにCofJ1−24ペプチド/ΔN28−CofB複合体の結晶構造から、CofJ1−24ペプチドの一部、具体的には図7に示した通り、5番目のセリンから15番目のプロリンがそれら両者の相互作用に特に関与していると考えられる。そこで、次に、CofJ1−24ペプチドのうち、特に重要と考えられる部分を含む、CofJ1−24ペプチドの4番目から16番目までのアミノ酸配列からなるCofJ4−16ペプチド(配列番号23)であっても、CofJ1−24ペプチドと同等の効果を示すことができるか否かを検討した。
まず、実施例3で行った試験と同様に、CofJ4−16ペプチドの線毛への結合への寄与を調べるため、CofJ4−16の合成ペプチド(株式会社スクラムから購入)とΔN28−CofBとの相互作用解析を、上記と同様に等温滴定型熱量計Microcal iTC200(GE Healthcare社製)を用いて実施した。具体的に、滴定シリンジに2mMのCofJ4−16ペプチド溶液、測定セルに33.9μM(三量体換算)のΔN28−CofB溶液をそれぞれ充填し、CofJ4−16ペプチド溶液をΔN28−CofB溶液に滴下した際に生じる熱量変化を直接観測することで両者の相互作用を評価した。CofJ4−16ペプチド溶液の滴下により発熱変化が観測され、これは滴定の進行に伴い希釈熱と同等にまで収束した。得られたデータについて解析ソフトOriginを用いた解析を行った結果、CofJ4−16ペプチドとΔN28−CofBの結合が観測された。両者の解離定数Kd値は4μMであった。
以上から、CofJ4−16ペプチドが、CofJ1−24ペプチドと同様にCofBと結合できることが示唆された。
(実施例11)CofJ4−16−GCN4ペプチドの設計
次に、実施例6で行ったのと同様に、CofJ4−16においても三量体ペプチドを作製するために、三量体化ドメインを有するGCN4、及びリンカーを用いて、CofJ4−16−GCN4ペプチドの作製を試みた。
CofJ4−16ペプチドとリンカー(TSGGG)を用いてGCN4を融合させた阻害ペプチド(CofJ4-16-GCN4と呼ぶ)の発現プラスミドを以下の通り構築した。CofJ1-24-GCN4発現プラスミドにおけるCofJ1-24ペプチド配列の両末端に予め組み込んでおいた制限酵素BamHI及びSpeIのサイトを両制限酵素を用いて切断後、精製した。CofJ4-16の配列を含むオリゴヌクレオチド1:5’-GATCCAGCGAAGGTGGTGCTTTCACCGTTAACATGCCGAAGA-3’(配列番号24)とオリゴヌクレオチド2:5’-CTAGTCTTCGGCATGTTAACGGTGAAAGCACCACCTTCGCTG-3’(配列番号25)を混合、アニーリングさせることで二本鎖DNAとし、精製したベクターとライゲーションをすることでCofJ4-16-GCN4発現プラスミドを得た。
次に、CofJ4-16-GCN4発現用プラスミドを用いて大腸菌株BL21(DE3)(NIPPON GENE)を形質転換した。コロニーを拾い、アンピシリンを100μg/mL含むLB培地に加え、37℃で一晩振盪培養した。翌朝、当該培養液を本培養培地に全量加えてスケールアップし、37℃で振盪培養した。OD660=0.6に達したときに、IPTGを終濃度1mMとなるように加え、25℃で18時間振盪し、発現誘導を行った。発現誘導した菌体を4000g、7分、4℃で遠心回収した。得られた菌体を氷上においてlysis buffer (20mM Tris-HCl, 1M NaCl, pH8.0)で溶解した後、リゾチームを20 μg/mL、TritonX-100を0.2%となるように加え15分放置した後、15秒間超音波破砕、1分休憩のサイクルを15回繰り返した。超音波破砕液を20000g、4℃で1時間遠心し、遠心上清を0.8 μmフィルターでろ過した。ろ過したサンプルをlysis bufferで平衡化したGSTカラム(GlutathioneSepharose4 Fast Flow:GE Healthcare Biosciences)にアプライした。GSTカラムをlysis bufferで洗浄した後、elution buffer (20mMTris-HCl, 20 mM GSH, pH8.0 )で溶出した。溶出サンプルを30unitsのTurbo 3C protease(Accelagen)で酵素処理をしながら、透析buffer(20 mM Tris-HCl, pH8.0)で透析をおこない、GSTタグとCofJ4-16-GCN4を切断した。切断後のサンプルをGSTカラムにアプライし、GSTタグとCofJ4-16-GCN4を分離した。回収したサンプルを透析bufferで平衡化したHitrapDEAEカラム(GE HealthcareBiosciences)にアプライし、カラムに結合しなかった画分を回収した。得られたサンプルをゲル濾過buffer(20 mM Tris-HCl, 150 mM NaCl, pH8.0)で平衡化したSuperdex75(26/60)カラム(GEHealthcareBiosciences)にアプライし、最終精製物とした。
得られた最終精製物は、N末端側から、ベクター由来配列4残基(GPLG)、CofJN末領域由来13残基(SSEGGAFTVNMPK:配列番号23)、リンカー配列5残基(TSGGG:配列番号9)、GCN4配列30残基(RMKQIEDKIEEILSKIYHIENEIARIKKLI:配列番号6)から構成される。これをCofJ4-16-GCN4阻害ペプチドとする。
(実施例12)CofJ4-16-GCN4阻害ペプチドとΔN28−CofBとのITCによる相互作用解析
実施例11で得られたCofJ4-16-GCN4阻害ペプチドの線毛への結合の寄与を調べるため、CofJ4-16-GCN4阻害ペプチドとΔN28−CofBの相互作用解析を等温滴定型熱量計Microcal iTC200(GE Healthcare社製)を用いて実施した。滴定シリンジに0.59mMのCofJ4-16-GCN4阻害ペプチド溶液、測定セルに28.5μM(三量体換算)のΔN28−CofB溶液をそれぞれ充填し、CofJ4-16-GCN4阻害ペプチド溶液をΔN28−CofB溶液に滴下した際に生じる熱量変化を直接観測することで両者の相互作用を評価した。CofJ4-16-GCN4阻害ペプチド溶液の滴下により発熱変化が観測され、これは滴定の進行に伴い希釈熱と同等にまで収束した。得られたデータについて解析ソフトOriginを用いた解析を行った結果、CofJ4-16-GCN4阻害ペプチドとΔN28−CofBとの結合が観測された。両者の解離定数Kd値は0.08μMであった。
解析の結果得られたCofJ4-16-GCN4阻害ペプチドとΔN28−CofBとの結合親和性は、CofJとΔN28−CofBの結合親和性に比べて2.5倍程度強いことが示され、GCN4融合型阻害ペプチドがCofJとΔN28−CofBとの相互作用を効率良く阻害することが明らかとなった。
(実施例13)プルダウンアッセイによるCofJ4-16-GCN4阻害ペプチドのCofB/CofJ相互作用の阻害
CofJ4-16-GCN4阻害ペプチドがCofBとCofJの結合を阻害可能かどうか調べるために、Niカラムを用いたプルダウンアッセイによりin vitroの実験系で確かめた。実験には、チオレドキシンタグ(Trx)、Hisタグ(His)が付加したΔN28-CofB(Trx-His-ΔN28-CofB)、CofJ、CofJ4-16-GCN4を使用した。
Trx-His-ΔN28-CofBが1μM、CofJ4-16-GCN4が各濃度(0、0.5、1.0、2.0、5.0、10μM)となるように混合した溶液を一晩氷上で静置した。さらに、終濃度が1μMとなるようにCofJを混合し氷上で1時間静置したものを実験サンプルとした。20mM Tris-HCl, 150mM NaCl, pH8.0で平衡化したNiカラムに各サンプルをアプライし、20mM Tris-HCl, 150mM NaCl, 15 mM Imidazole, pH8.0でカラムの洗浄をおこなった。その後、20mM Tris-HCl, 150mM NaCl, 300 mM Imidazole, pH8.0で溶出をおこない、SDS-PAGEによって溶出画分の確認をおこなった。その結果、図14に示すように、予めCofJと同濃度以上のCofJ4-16-GCN4をTrx-His-ΔN28-CofBと混合しておくことで、CofJとTrx-His-ΔN28-CofBの結合を強力に阻害できることが明らかとなった。
(実施例14)Caco2細胞を用いたCofJ4-16-GCN4のETEC付着阻害活性評価
CofJ4-16-GCN4を用いて実施例9と同様にETEC付着阻害活性評価を行った。CofJ4-16-GCN4を0、10、100、1000μg/mL、HB101cofを1.0×10 cells/mLとなるように混合調製後、25℃で1時間静置したものを50μLずつ500μLの培地に加え、CofJ4-16-GCN4が0、1、10、100μg/mL、HB101cofが1.0×10cells/mLとなるようにした。その結果、図15に示すように、Recovery rateは、0μg/mL CofJ4-16-GCN4が1.01%、1μg/mL CofJ4-16-GCN4が0.32%、10μg/mL CofJ4-16-GCN4が0.36%、100μg/mL CofJ4-16-GCN4が0.068%であった。
この結果から、CofJ4-16-GCN4が濃度依存的にHB101cofのCaco2細胞に対する定着を阻害することが明らかとなった。

Claims (4)

  1. IVb型線毛のマイナーピリンに結合可能なアミノ酸配列を有する第1ドメインと、
    前記第1ドメインにリンカー配列を介して接続され、多量体化が可能なアミノ酸配列を有する第2ドメインとを含み、
    前記第1ドメインは、配列番号5のアミノ酸配列を有し、
    前記第2ドメインは、配列番号6のアミノ酸配列、又は配列番号7若しくは配列番号8のアミノ酸配列の4〜10回の繰り返し配列を有することを特徴とするペプチド。
  2. 前記第1ドメインは、配列番号23の配列を有することを特徴とする請求項1に記載のペプチド。
  3. 前記リンカー配列は、配列番号9であることを特徴とする請求項1又は2に記載のペプチド。
  4. 請求項1〜のいずれか1項に記載のペプチドを含む病原性細菌の消化器への定着阻害剤。
JP2018514605A 2016-04-27 2017-04-25 病原性細菌の定着を阻害するペプチド及びそれを含む定着阻害剤 Active JP6820565B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016089902 2016-04-27
JP2016089902 2016-04-27
PCT/JP2017/016284 WO2017188215A1 (ja) 2016-04-27 2017-04-25 病原性細菌の定着を阻害するペプチド及びそれを含む定着阻害剤

Publications (2)

Publication Number Publication Date
JPWO2017188215A1 JPWO2017188215A1 (ja) 2019-03-07
JP6820565B2 true JP6820565B2 (ja) 2021-01-27

Family

ID=60160459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018514605A Active JP6820565B2 (ja) 2016-04-27 2017-04-25 病原性細菌の定着を阻害するペプチド及びそれを含む定着阻害剤

Country Status (5)

Country Link
US (1) US10829522B2 (ja)
EP (1) EP3450556B1 (ja)
JP (1) JP6820565B2 (ja)
ES (1) ES2913257T3 (ja)
WO (1) WO2017188215A1 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69433820T2 (de) * 1993-12-23 2005-06-23 Immunex Corp., Seattle Verwendung von löslichen oligomerischen cd40 liganden oder monoklonalen antikörpern zur herstellung eines arzneimitells zur vorbeugung oder behandlung von neoplastischen krankheiten
US6211338B1 (en) * 1997-11-28 2001-04-03 Schering Corporation Single-chain recombinant complexes of hepatitis C virus NS3 protease and NS4A cofactor peptide
US7504490B1 (en) * 1998-10-16 2009-03-17 Oscient Pharmaceuticals Corporation Nucleic acid and amino acid sequences relating to Apergillus fumigatus for diagnostics and therapeutics
US7569389B2 (en) * 2004-09-30 2009-08-04 Ceres, Inc. Nucleotide sequences and polypeptides encoded thereby useful for modifying plant characteristics
US8785374B2 (en) * 2007-10-19 2014-07-22 Alba Therapeutics Corporation Inhibitors of mammalian tight junction opening
DK2356269T3 (en) * 2008-10-31 2016-08-15 Janssen Biotech Inc FIBRONECTIN TYPE III DOMAIN-BASED SCAFFOLD COMPOSITIONS, PROCEDURES AND APPLICATIONS
JP2013505017A (ja) 2009-09-16 2013-02-14 ゴトバックス アーベー コレラおよび毒素原性大腸菌(etec)下痢に対するワクチン
US9073990B2 (en) * 2010-04-05 2015-07-07 Bar-Llan University Protease-activatable pore-forming polypeptides
WO2013118120A2 (en) * 2012-02-06 2013-08-15 Rosetta Green Ltd. Isolated polynucleotides expressing or modulating micrornas or targets of same, transgenic plants comprising same and uses thereof in improving nitrogen use efficiency, abiotic stress tolerance, biomass, vigor or yield of a plant
EP2929032A4 (en) * 2012-12-07 2016-04-06 Solazyme Inc GENETICALLY MODIFIED MICROBIAL STRAINS WITH CHLORELLA PROTOTHECOIDES LIPID SIGNAL PROGRAMS

Also Published As

Publication number Publication date
US20190284246A1 (en) 2019-09-19
EP3450556A1 (en) 2019-03-06
WO2017188215A1 (ja) 2017-11-02
EP3450556A4 (en) 2019-12-04
EP3450556B1 (en) 2022-03-23
JPWO2017188215A1 (ja) 2019-03-07
ES2913257T3 (es) 2022-06-01
US10829522B2 (en) 2020-11-10

Similar Documents

Publication Publication Date Title
Digiandomenico et al. Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopolysaccharide Psl by phenotypic screening
Chan et al. Adherence to and invasion of host cells by spotted fever group Rickettsia species
Marchesini et al. In search of Brucella abortus type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system
Godlewska et al. Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis
Raghunathan et al. SadA, a trimeric autotransporter from Salmonella enterica serovar Typhimurium, can promote biofilm formation and provides limited protection against infection
Case et al. MxiN differentially regulates monomeric and oligomeric species of the Shigella type three secretion system ATPase Spa47
Wang et al. Escherichia coli outer membrane protein F (OmpF): an immunogenic protein induces cross-reactive antibodies against Escherichia coli and Shigella
Kim et al. Brucella immunogenic BP26 forms a channel-like structure
CA3171831A1 (en) Propionibacterium acnes prophylactic and therapeutic immune treatment
Humbert et al. Immunization with recombinant truncated Neisseria meningitidis-Macrophage Infectivity Potentiator (rT-Nm-MIP) protein induces murine antibodies that are cross-reactive and bactericidal for Neisseria gonorrhoeae
Masri et al. Specific ligand binding attributable to individual epitopes of gonococcal transferrin binding protein A
Xiong et al. Characterization of the role in adherence of Mycoplasma hyorhinis variable lipoproteins containing different repeat unit copy numbers
LaFrentz et al. Proteomic analysis of Flavobacterium psychrophilum cultured in vivo and in iron-limited media
Xicohtencatl-Cortes et al. Identification of Proinflammatory Flagellin Proteins in Supernatants of Vibrio cholerae O1 by Proteomics Analysis* S
Hung et al. A putative amino acid ABC transporter substrate-binding protein, NMB1612, from Neisseria meningitidis, induces murine bactericidal antibodies against meningococci expressing heterologous NMB1612 proteins
JP6820565B2 (ja) 病原性細菌の定着を阻害するペプチド及びそれを含む定着阻害剤
Coppens et al. Structural and adhesive properties of the long polar fimbriae protein LpfD from adherent-invasive Escherichia coli
Delogu et al. Impact of structural domains of the heparin binding hemagglutinin of Mycobacterium tuberculosis on function
Sierocki et al. An antibody targeting type III secretion system induces broad protection against Salmonella and Shigella infections
Su et al. A genome level survey of Burkholderia pseudomallei immunome expressed during human infection
Zhu-Ge et al. The effects of upaB deletion and the double/triple deletion of upaB, aatA, and aatB genes on pathogenicity of avian pathogenic Escherichia coli
RU2531235C2 (ru) Поливалентная вакцина против гриппа на основе гибридного белка
CN104508120A (zh) 编码肝素结合血凝素(hbha)融合蛋白质的重组分枝杆菌和其用途
Behrouzi et al. Recombinant truncated E protein as a new vaccine candidate against nontypeable H. influenzae: its expression and immunogenic evaluation
Ferreira et al. Immunization of mice with Lactobacillus casei expressing intimin fragments produces antibodies able to inhibit the adhesion of enteropathogenic Escherichia coli to cultivated epithelial cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201222

R150 Certificate of patent or registration of utility model

Ref document number: 6820565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250