JP6818487B2 - Spectrum measurement method - Google Patents
Spectrum measurement method Download PDFInfo
- Publication number
- JP6818487B2 JP6818487B2 JP2016190432A JP2016190432A JP6818487B2 JP 6818487 B2 JP6818487 B2 JP 6818487B2 JP 2016190432 A JP2016190432 A JP 2016190432A JP 2016190432 A JP2016190432 A JP 2016190432A JP 6818487 B2 JP6818487 B2 JP 6818487B2
- Authority
- JP
- Japan
- Prior art keywords
- wavelength range
- subject
- infrared light
- spectrum
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001228 spectrum Methods 0.000 title claims description 95
- 238000000691 measurement method Methods 0.000 title claims description 7
- 230000003287 optical effect Effects 0.000 claims description 100
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 238000000411 transmission spectrum Methods 0.000 claims description 28
- 230000005540 biological transmission Effects 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 24
- 238000001514 detection method Methods 0.000 claims description 23
- 238000003384 imaging method Methods 0.000 claims description 21
- 238000004611 spectroscopical analysis Methods 0.000 claims description 20
- 238000010521 absorption reaction Methods 0.000 claims description 15
- 238000002835 absorbance Methods 0.000 claims description 12
- 230000008602 contraction Effects 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 230000001131 transforming effect Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 description 26
- 230000004907 flux Effects 0.000 description 12
- 238000002834 transmittance Methods 0.000 description 10
- 238000005286 illumination Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 239000002537 cosmetic Substances 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 241000282412 Homo Species 0.000 description 2
- 229920000995 Spectralon Polymers 0.000 description 2
- 238000009223 counseling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- 206010014970 Ephelides Diseases 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 208000003351 Melanosis Diseases 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Landscapes
- Spectrometry And Color Measurement (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Description
本発明は、近赤外光の反射又は透過スペクトルの測定方法に関する。 The present invention relates to a method for measuring a reflection or transmission spectrum of near-infrared light.
美容カウンセリングを行う場合、被験者の顔をカメラで撮影し、その画像を元に顔の輪郭、凹凸、肌の色等を評価することがしばしば行われている。このような顔の撮影においては、顔面の凹凸によって照明の当たり方にむらが生じ、画像に陰影が写り、皮膚表面のシミやソバカス等の正確な評価が妨げられることがある。そこで、被写体の顔等に最適な照明環境を提供するために、顔全体や体全体を筐体やエンクロージャー等によって覆い、その内部において光源を照射する装置が提案されている(特許文献1参照)。 When performing cosmetology counseling, it is often the case that the subject's face is photographed with a camera and the contour, unevenness, skin color, etc. of the face are evaluated based on the image. In such a face photography, the unevenness of the face may cause uneven lighting, which may cause shadows to appear in the image and hinder accurate evaluation of spots and freckles on the skin surface. Therefore, in order to provide an optimum lighting environment for the face of the subject, a device has been proposed in which the entire face or body is covered with a housing, an enclosure, or the like, and a light source is irradiated inside the housing (see Patent Document 1). ..
特許文献2にも、被験者の顔を撮影するために用いられる顔撮影装置が記載されている。この装置は、被写体の顔全体の部分を収容し略球状の空間が形成された筐体と、筐体の空間内に光を照射する少なくとも2つの光源と、光源による光が照射された顔全体の部分を撮影する撮像手段とを有するものである。光源は、球状の面において被写体の左右対称の位置にそれぞれ1又は複数配置されている。 Patent Document 2 also describes a face photographing device used for photographing the face of a subject. This device includes a housing in which a substantially spherical space is formed by accommodating the entire face of the subject, at least two light sources that irradiate the space of the housing, and the entire face that is irradiated with the light from the light sources. It has an imaging means for photographing the portion of. One or a plurality of light sources are arranged symmetrically with each other on a spherical surface.
これらの技術とは別に、生体成分を非侵襲で精度よく測定できる分光計測装置が提案されている(特許文献3参照)。同文献においては、手の平を測定対象として近赤外光を照射し、干渉分光法によって分光像を二次元的に取得している。同文献に記載の装置によれば、例えば静脈パターンを認識することで、生体膜表層の血管領域の近赤外二次元分光像をより明確に取得できると、同文献には記載されている。 Apart from these techniques, a spectroscopic measuring device capable of non-invasively and accurately measuring biological components has been proposed (see Patent Document 3). In this document, the palm is irradiated with near-infrared light as a measurement target, and a spectroscopic image is acquired two-dimensionally by interference spectroscopy. According to the apparatus described in the same document, it is described in the same document that, for example, by recognizing a vein pattern, a near-infrared two-dimensional spectroscopic image of a blood vessel region on the surface layer of a biological membrane can be obtained more clearly.
特許文献1及び2に記載されているような肌の評価技術において、特許文献3に記載されている近赤外二次元分光像を得ようとする場合、干渉分光法では、ある波長領域におけるすべての波長の光を同時に検出するので、特定の波長の光の強度が強い場合、該波長と異なる波長の光の強度が弱い場合には、その光を検出しづらい場合がある。その結果、測定されたスペクトルのSN比が低下することがある。 When trying to obtain a near-infrared two-dimensional spectroscopic image described in Patent Document 3 in a skin evaluation technique as described in Patent Documents 1 and 2, in the interference spectroscopy, all in a certain wavelength region. Since light of the same wavelength is detected at the same time, it may be difficult to detect the light when the intensity of the light of a specific wavelength is strong or when the intensity of the light of a wavelength different from the wavelength is weak. As a result, the signal-to-noise ratio of the measured spectrum may decrease.
したがって本発明の課題は、干渉分光法を利用した近赤外二次元分光像を得る技術の改良にある。 Therefore, an object of the present invention is to improve a technique for obtaining a near-infrared two-dimensional spectroscopic image using interference spectroscopy.
前記の課題を解決すべく本発明者が鋭意検討した結果、被験体に照射する近赤外光、又は被験体から検出する近赤外光の強度分布を調整することが有効であることを知見した。 As a result of diligent studies by the present inventor in order to solve the above problems, it has been found that it is effective to adjust the intensity distribution of the near-infrared light irradiating the subject or the near-infrared light detected from the subject. did.
本発明は前記の知見に基づきなされたものであり、光源から発せられ且つ被験体に照射された多波長の近赤外光のパワースペクトルA、及び該被験体を透過した多波長の近赤外光のパワースペクトルBを、それぞれ干渉分光法によって測定し、パワースペクトルA及びBから該被験体の透過スペクトルを測定する方法であって、
被験体と検出部との間、又は被験体と光源との間に、観測波長域内の1又は複数の特定波長域の近赤外光を透過させ、且つ観測波長域内の前記特定波長域以外の波長域の近赤外光の透過を減衰させる光学フィルタを配置する、透過スペクトルの測定方法を提供することにより前記の課題を解決したものである。
The present invention has been made based on the above findings, and has a power spectrum A of multi-wavelength near-infrared light emitted from a light source and irradiated to a subject, and a multi-wavelength near-infrared light transmitted through the subject. A method in which the power spectrum B of light is measured by interference spectroscopy, and the transmission spectrum of the subject is measured from the power spectra A and B, respectively.
Near-infrared light in one or more specific wavelength ranges within the observation wavelength range is transmitted between the subject and the detection unit, or between the subject and the light source, and other than the specific wavelength range within the observation wavelength range. The above-mentioned problems are solved by providing a method for measuring a transmission spectrum in which an optical filter that attenuates the transmission of near-infrared light in the wavelength range is arranged.
また本発明は、光源から発せられ且つ被験体に照射された多波長の近赤外光のパワースペクトルC、及び該被験体にて反射した多波長の近赤外光のパワースペクトルDを、それぞれ干渉分光法によって測定し、パワースペクトルC及びDから該被験体の反射スペクトルを測定する方法であって、
被験体と検出部との間、又は被験体と光源との間に、観測波長域内の1又は複数の特定波長域の近赤外光を透過させ、且つ観測波長域内の前記特定波長域以外の波長域の近赤外光の透過を減衰させる光学フィルタを配置する、反射スペクトルの測定方法を提供することにより前記の課題を解決したものである。
Further, the present invention has a power spectrum C of multi-wavelength near-infrared light emitted from a light source and irradiated to a subject, and a power spectrum D of multi-wavelength near-infrared light reflected by the subject, respectively. It is a method of measuring the reflection spectrum of the subject from the power spectra C and D by measuring by interference spectroscopy.
Near-infrared light in one or more specific wavelength ranges within the observation wavelength range is transmitted between the subject and the detection unit, or between the subject and the light source, and other than the specific wavelength range within the observation wavelength range. The above-mentioned problems are solved by providing a method for measuring a reflection spectrum in which an optical filter that attenuates the transmission of near-infrared light in the wavelength range is arranged.
本発明によれば、干渉分光法を利用した近赤外二次元分光像を高い精度で取得することが可能な、スペクトルの測定方法が提供される。
また、本発明によれば 観測波長域内の複数の特定波長域の近赤外光を透過させ、且つ観測波長域内の前記特定波長域以外の波長域の近赤外光の透過を減衰させる光学フィルタが提供される。
According to the present invention, there is provided a method for measuring a spectrum capable of acquiring a near-infrared two-dimensional spectroscopic image using interference spectroscopy with high accuracy.
Further, according to the present invention, an optical filter that transmits near-infrared light in a plurality of specific wavelength regions within the observation wavelength region and attenuates transmission of near-infrared light in a wavelength region other than the specific wavelength region within the observation wavelength region. Is provided.
以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。本発明は、近赤外光を被験体に照射し、反射光又は透過光のスペクトルを測定する方法に関するものである。近赤外光とは波長が約800nmから約2500nmまでの範囲の電磁波のことである。本発明の測定の対象となる被験体の種類に特に制限はなく、生体及び非生体の双方を包含する。生体を測定の対象とする場合、該生体としては、ヒト及びヒト以外の生物が挙げられる。ヒトを測定の対象とする場合には、当該測定は非医療目的で行われる。非医療目的の具体例としては、美容カウンセリング、ユーザーの化粧品の選択、化粧品の開発、おむつや生理用品の開発、衣料の開発、皮膚用洗浄料の開発、及び顧客とのコミュニケーション用の情報交換手段の開発などが挙げられるが、これらに限られない。 Hereinafter, the present invention will be described based on the preferred embodiment with reference to the drawings. The present invention relates to a method of irradiating a subject with near-infrared light and measuring the spectrum of reflected light or transmitted light. Near-infrared light is an electromagnetic wave having a wavelength in the range of about 800 nm to about 2500 nm. The type of subject to be measured by the present invention is not particularly limited, and includes both living and non-living bodies. When a living body is to be measured, the living body includes humans and non-human organisms. When humans are the subject of measurement, the measurement is performed for non-medical purposes. Specific examples of non-medical purposes include beauty counseling, user cosmetic selection, cosmetics development, diaper and sanitary napkin development, clothing development, skin cleansing development, and information exchange means for communication with customers. Development, etc., but not limited to these.
被験体は、保形性を有する剛体やゲルやゴムなどの非剛体に加えて、水や油などの液体でもよいが、保形性を有するものであることが好ましい。保形性とは、一定期間にわたり外形を自身で一定に保つことができる性質をいう。生体の皮膚等は保形性を有する非剛体の範疇に属する。 The subject may be a rigid body having shape-retaining property or a non-rigid body such as gel or rubber, or a liquid such as water or oil, but is preferably one having shape-retaining property. Shape retention refers to the property of being able to keep the outer shape constant by itself for a certain period of time. The skin of a living body belongs to the category of non-rigid body having shape retention.
被験体は、その測定対象面となる外面が平面(すなわち二次元形状)であってもよく、あるいは凹凸を有する三次元形状をしていてもよい。本発明の測定方法は、三次元形状を有する測定対象面からの反射スペクトルを精度よく測定することに特に適したものであるが、二次元形状を有する測定対象面からの反射スペクトルの測定に本発明の方法を用いることに何ら差し支えはない。 The outer surface of the subject to be measured may be a flat surface (that is, a two-dimensional shape), or may have a three-dimensional shape having irregularities. The measurement method of the present invention is particularly suitable for accurately measuring the reflection spectrum from the measurement target surface having a three-dimensional shape, but the present invention is used for measuring the reflection spectrum from the measurement target surface having a two-dimensional shape. There is no problem in using the method of the invention.
本発明の測定方法は、被験体に照射された近赤外光の反射スペクトル又は透過スペクトルを測定して、被験体における測定対象面における反射スペクトル又は透過スペクトルを二次元的に取得することに係る。反射スペクトル又は透過スペクトルを二次元的に取得するとは、例えば測定対象面(この面は完全な平面の二次元的な面でもよく、あるいは凹凸を有する三次元的な面でもよい。)の任意の位置での座標を(xi、yi)とし(iは測定対象面における座標の数を示し、1からnまでの数をとる。)、その座標(xi、yi)での近赤外光の波長領域での反射スペクトル又は透過スペクトルをPiとしたとき、(x1、y1)から(xn、yn)までのすべての座標での反射スペクトル又は透過スペクトルP1からPnまでを取得することをいう。したがって、単位面積に含まれる座標(xi、yi)の数が多いほど、解像度の高い測定が可能となる。 The measuring method of the present invention relates to measuring the reflection spectrum or transmission spectrum of near-infrared light irradiated to a subject and two-dimensionally acquiring the reflection spectrum or transmission spectrum on the measurement target surface of the subject. .. Obtaining the reflection spectrum or transmission spectrum two-dimensionally means, for example, any surface to be measured (this surface may be a two-dimensional surface of a perfect plane or a three-dimensional surface having irregularities). the coordinates at the position (x i, y i) and then (i denotes the number of coordinates in the object surface, take a number from 1 to n.), the coordinates (x i, y i) a near in when the reflection spectrum or transmission spectrum in the wavelength region of outside light was P i, (x 1, y 1) from (x n, y n) from the reflection spectrum or transmission spectrum P 1 at all coordinates to P It means to acquire up to n . Therefore, the coordinates (x i, y i) included in the unit area as the number of increases, thereby enabling high resolution measurements.
本発明においては、光源から発せられ且つ被験体に照射された多波長の近赤外光のパワースペクトルA、及び該被験体を透過した多波長の近赤外光のパワースペクトルBを、それぞれ干渉分光法によって測定する。あるいは、光源から発せられ且つ被験体に照射された多波長の近赤外光のパワースペクトルC、及び該被験体にて反射した多波長の近赤外光のパワースペクトルDを、それぞれ干渉分光法によって測定する。そして、パワースペクトルA及びBから被験体の透過スペクトルを測定するか、又はパワースペクトルC及びDから被験体の反射スペクトルを測定する。 In the present invention, the power spectrum A of the multi-wavelength near-infrared light emitted from the light source and irradiated to the subject and the power spectrum B of the multi-wavelength near-infrared light transmitted through the subject interfere with each other. Measured by spectroscopy. Alternatively, the power spectrum C of the multi-wavelength near-infrared light emitted from the light source and irradiated to the subject and the power spectrum D of the multi-wavelength near-infrared light reflected by the subject are respectively subjected to interference spectroscopy. Measured by. Then, the transmission spectrum of the subject is measured from the power spectra A and B, or the reflection spectrum of the subject is measured from the power spectra C and D.
パワースペクトルA及びBから被験体の透過スペクトルを測定する場合には、パワースペクトルB/パワースペクトルAの算出式を用いることができる。一方、パワースペクトルC及びDから被験体の反射スペクトルを測定する場合には、パワースペクトルD/パワースペクトルCの算出式を用いることができる。 When measuring the transmission spectrum of a subject from the power spectra A and B, the calculation formula of the power spectrum B / power spectrum A can be used. On the other hand, when measuring the reflection spectrum of the subject from the power spectra C and D, the calculation formula of the power spectrum D / power spectrum C can be used.
被験体は、光源から発せられた多波長の近赤外光照明下に配置される。光源としては、多波長の近赤外光の照射が可能なものであれば、その種類に特に制限はない。そのような光源の例としては、近赤外光の波長領域に連続スペクトルを有するハロゲンランプなどが挙げられる。また、照射は直接的な照射(直接照明)であっても、間接的な照射(間接照明)であってもよい。 The subject is placed under multi-wavelength near-infrared illumination emitted from a light source. The type of light source is not particularly limited as long as it can irradiate multi-wavelength near-infrared light. Examples of such a light source include a halogen lamp having a continuous spectrum in the wavelength region of near infrared light. Further, the irradiation may be direct irradiation (direct illumination) or indirect irradiation (indirect illumination).
測定に際しては、光源とともに検出器を含む光学システムが配置され、これらと被験体とで測定系が構成される。測定系の一例を図1及び2に示す。同図に示すとおり、光学システム10における検出器の配置位置は、光源Lから被験体11に照射された近赤外光の反射光又は吸収光を検出可能な位置であれば特に制限はない。一般的には、被験体11に対して、光学システム10を正面の位置に配置することが、正確な反射スペクトル及び透過スペクトルの測定の点から好ましい。光学システム10に備えられる検出器としては、近赤外光の検出が可能な装置として、当該技術分野において知られているものを特に制限なく用いることができ、その例としてはInGaAs検出器やPbSe検出器などが挙げられる。光源Lとしては、例えばリング状光源を用いることができる。この場合、被験体11はリング状光源Lの内部に位置するように、両者の位置関係を調整する。 At the time of measurement, an optical system including a detector is arranged together with a light source, and the measurement system is composed of these and a subject. An example of the measurement system is shown in FIGS. 1 and 2. As shown in the figure, the arrangement position of the detector in the optical system 10 is not particularly limited as long as it is a position where the reflected light or the absorbed light of the near infrared light emitted from the light source L to the subject 11 can be detected. In general, it is preferable to place the optical system 10 in front of the subject 11 from the viewpoint of accurate measurement of the reflection spectrum and the transmission spectrum. As the detector provided in the optical system 10, as a device capable of detecting near-infrared light, a device known in the art can be used without particular limitation, and examples thereof include an InGaAs detector and PbSe. Examples include detectors. As the light source L, for example, a ring-shaped light source can be used. In this case, the positional relationship between the subjects 11 is adjusted so that the subject 11 is located inside the ring-shaped light source L.
図1に示すとおり、測定系においては、被験体11と光学システム10との間に光学フィルタFが配置される。光学フィルタFの配置位置は、図1(a)及び図2(a)に示す形態以外に図1(b)及び図2(b)に示す形態であってもよい。図1(b)及び図2(b)に示す形態では、光学フィルタFを被験体11と光源Lとの間に配置している。図2(b)においては、光源Lを、光学システム10に隣接させて一対配置しているので、各光源Lに対応させて一対の光学フィルタFが配置されている。図1(a)及び図2(a)に示す配置位置と、図1(b)及び図2(b)に示す配置位置で、スペクトルの測定結果に本質的な相違は生じない。尤も、図1(a)及び図2(a)に示す配置位置は、図1(b)及び図2(b)に示す配置位置に比べて、光源Lと光学フィルタFとの位置が離れるので、光源Lから生じる熱に起因するダメージを光学フィルタFが受けにくいという利点がある。 As shown in FIG. 1, in the measurement system, the optical filter F is arranged between the subject 11 and the optical system 10. The arrangement position of the optical filter F may be in the form shown in FIGS. 1 (b) and 2 (b) in addition to the form shown in FIGS. 1 (a) and 2 (a). In the modes shown in FIGS. 1 (b) and 2 (b), the optical filter F is arranged between the subject 11 and the light source L. In FIG. 2B, since a pair of light sources L are arranged adjacent to the optical system 10, a pair of optical filters F are arranged corresponding to each light source L. There is no essential difference in the measurement results of the spectrum between the arrangement positions shown in FIGS. 1 (a) and 2 (a) and the arrangement positions shown in FIGS. 1 (b) and 2 (b). However, in the arrangement positions shown in FIGS. 1 (a) and 2 (a), the positions of the light source L and the optical filter F are separated from the arrangement positions shown in FIGS. 1 (b) and 2 (b). There is an advantage that the optical filter F is less likely to receive damage caused by heat generated from the light source L.
光学フィルタFは、観測波長域内の特定波長域の近赤外光を透過させ、且つ観測波長域内の前記特定波長域以外の波長域の近赤外光の透過を減衰させるような光学特性を有するものである。「観測波長域」とは、近赤外光の波長領域の少なくとも一部を含む波長領域のことである。「近赤外光を透過させる」とは、その波長での近赤外光の透過率が40%以上であるような光学特性を有することである。また、「近赤外光の透過を減衰させる」とは、その波長での近赤外光の透過率が40%未満であるような光学特性を有することである。 The optical filter F has optical characteristics that allow near-infrared light in a specific wavelength range within the observation wavelength range to be transmitted and attenuate the transmission of near-infrared light in a wavelength range other than the specific wavelength range within the observation wavelength range. It is a thing. The "observed wavelength region" is a wavelength region including at least a part of the wavelength region of near-infrared light. "Transmitting near-infrared light" means having optical characteristics such that the transmittance of near-infrared light at that wavelength is 40% or more. Further, "attenuating the transmission of near-infrared light" means having an optical characteristic such that the transmittance of near-infrared light at that wavelength is less than 40%.
光学フィルタFにおいて、近赤外光を透過させる「特定波長域」は、被験体11の種類や、スペクトルの測定目的等に応じて任意に設定することができる。特定波長域は一つでもよく、あるいは複数でもよい。例えば被験体における水の存在の有無ないし存在量を測定する場合には、水に特徴的な吸収帯の波長領域を、特定波長域のうちの少なくとも一つに設定することが好ましい。水に特徴的な吸収帯としては、例えば水のOH伸縮倍音を含む波長域や、水のOH伸縮及び変角振動に由来する結合音を含む波長域などが挙げられる。水のOH伸縮倍音を含む波長域は、一般に1400nm以上1600nm以下である。好ましくは少なくとも1450nmを含む1400nm以上1600nm以下の波長域である。一方、水のOH伸縮及び変角振動に由来する結合音を含む波長域は、一般に1800nm以上2000nm以下である。好ましくは少なくとも1900nmを含む1800nm以上2000nm以下の波長域である。この観点から、光学フィルタとして、水のOH伸縮倍音を含む波長域、並びに水のOH伸縮及び変角振動に由来する結合音を含む波長域以外の一部又はすべての近赤外光の透過を減衰させるものを用いることができる。 In the optical filter F, the "specific wavelength range" through which near-infrared light is transmitted can be arbitrarily set according to the type of the subject 11 and the purpose of measuring the spectrum. The specific wavelength range may be one or a plurality. For example, when measuring the presence or absence or abundance of water in a subject, it is preferable to set the wavelength region of the absorption band characteristic of water to at least one of the specific wavelength regions. Examples of the absorption band characteristic of water include a wavelength range including OH expansion and contraction harmonics of water, and a wavelength range including a coupling sound derived from OH expansion and contraction of water and angular vibration. The wavelength range including the OH expansion and contraction harmonics of water is generally 1400 nm or more and 1600 nm or less. It is preferably a wavelength range of 1400 nm or more and 1600 nm or less including at least 1450 nm. On the other hand, the wavelength range including the coupling sound derived from the OH expansion and contraction and the angular vibration of water is generally 1800 nm or more and 2000 nm or less. It is preferably a wavelength range of 1800 nm or more and 2000 nm or less including at least 1900 nm. From this point of view, as an optical filter, transmission of some or all near-infrared light other than the wavelength range including the OH expansion and contraction harmonics of water and the wavelength range including the coupling sound derived from the OH expansion and contraction of water and the angular vibration is transmitted. Those that attenuate can be used.
上述したとおり、光学フィルタFは、近赤外光を透過させる特定波長域を一つ有していてもよく、あるいは複数有していてもよい。上述した水に特徴的な吸収帯の波長領域を特定波長域として設定する場合には、該吸収帯が上述のとおり2つあることから、水を含め、特徴的な吸収帯が複数観察される物質を測定の対象とする場合には、2つ又はそれ以上の異なる波長域の近赤外光を透過させ、それ以外の波長域の近赤外光の透過を減衰させる光学フィルタFを用いることが有利である。光学フィルタFとして、2つ以上の異なる波長域の近赤外光を透過させる透過特性を有するものを用いる場合、一の波長域における近赤外光の透過率と、他の一以上の波長域における近赤外光の透過率とは、同じであってもよく、あるいは異なっていてもよい(以下に述べる図3参照)。 As described above, the optical filter F may have one specific wavelength region for transmitting near-infrared light, or may have a plurality of specific wavelength regions. When the wavelength region of the absorption band characteristic of water is set as the specific wavelength region, since there are two absorption bands as described above, a plurality of characteristic absorption bands including water are observed. When a substance is to be measured, an optical filter F that transmits near-infrared light in two or more different wavelength regions and attenuates the transmission of near-infrared light in other wavelength regions should be used. Is advantageous. When an optical filter F having a transmittance for transmitting near-infrared light in two or more different wavelength regions is used, the transmittance of the near-infrared light in one wavelength region and the other one or more wavelength regions are used. The transmittance of the near-infrared light in the above may be the same or different (see FIG. 3 described below).
図3には、本発明で用いることのできる光学フィルタの近赤外光の透過特性の一例が示されている。同図に示すとおり、この光学フィルタは、約1000nmを中心とする波長領域A、約1450nmを中心とする波長領域B及び約1900nm以上の波長領域Cの3つの波長領域の近赤外光を透過し、それ以外の波長領域D、E及びFの近赤外光の透過を減衰させる透過特性を有している。つまり、この光学フィルタはいわゆるバンドパスフィルタである。このような近赤外光の透過特性を有する光学フィルタは、上述した水に特徴的な吸収帯の波長領域の近赤外光を透過させるのに適したものである。具体的には、約1450nmを中心とする波長領域Bは、水のOH伸縮倍音を含んでいる。約1900nm以上の波長領域Cは、水のOH伸縮結合音を含んでいる。一方、約1000nmを中心とする波長領域Aには、水に起因する吸収は観察されない。 FIG. 3 shows an example of the transmission characteristics of near-infrared light of the optical filter that can be used in the present invention. As shown in the figure, this optical filter transmits near-infrared light in three wavelength regions: a wavelength region A centered on about 1000 nm, a wavelength region B centered on about 1450 nm, and a wavelength region C centered on about 1900 nm or more. However, it has a transmission characteristic that attenuates the transmission of near-infrared light in the other wavelength regions D, E, and F. That is, this optical filter is a so-called bandpass filter. An optical filter having such near-infrared light transmission characteristics is suitable for transmitting near-infrared light in the wavelength region of the absorption band characteristic of water described above. Specifically, the wavelength region B centered on about 1450 nm contains the OH expansion and contraction overtones of water. The wavelength region C of about 1900 nm or more contains the OH expansion / contraction coupling sound of water. On the other hand, in the wavelength region A centered on about 1000 nm, absorption due to water is not observed.
光学フィルタとして誘電体多層膜型フィルタを用いれば、任意の波長域の透過度を調整することができ、図3に示した近赤外光の透過特性を持つ光学フィルタを容易に調製することができる。また、ロングパスフィルタやノッチフィルタ等を組み合わせて光学フィルタとして用いることにより、図3に示した近赤外光の透過特性を持つ光学フィルタを調製することもできる。具体的には、図3のA、E、B、F及びCの波長領域の光を透過するロングパスフィルタとE、B及びF領域のそれぞれの透過率が図3に記載の透過率であるノッチフィルタとを組み合わせることにより、図3に示した近赤外光の透過特性を持つ光学フィルタを調製することができる。 If a dielectric multilayer film type filter is used as the optical filter, the transmittance in an arbitrary wavelength range can be adjusted, and an optical filter having the transmission characteristics of near-infrared light shown in FIG. 3 can be easily prepared. it can. Further, by using a long-pass filter, a notch filter, or the like in combination as an optical filter, it is possible to prepare an optical filter having the transmission characteristics of near-infrared light shown in FIG. Specifically, a long-pass filter that transmits light in the wavelength regions A, E, B, F, and C of FIG. 3 and a notch in which the transmittances of the E, B, and F regions are the transmittances shown in FIG. By combining with a filter, an optical filter having the transmission characteristics of near-infrared light shown in FIG. 3 can be prepared.
なお、図3から明らかなとおり、例えば波長領域Bと波長領域A及びCとでは、近赤外光の透過率が相違しており、波長領域Bの方が、波長領域A及びCよりも透過率が低くなっている。この理由は、近赤外光の光源として一般に用いられるものであるハロゲンランプでは、波長領域Bでの光量が、波長領域A及びCでの光量よりも多いことから、波長領域Bでの透過率を低く設定して、波長領域の全域にわたる光量を均一化するためである。 As is clear from FIG. 3, for example, the transmittance of near-infrared light is different between the wavelength region B and the wavelength regions A and C, and the wavelength region B transmits more than the wavelength regions A and C. The rate is low. The reason for this is that in a halogen lamp, which is generally used as a light source of near-infrared light, the amount of light in the wavelength region B is larger than the amount of light in the wavelength regions A and C, so that the transmittance in the wavelength region B is large. Is set low to equalize the amount of light over the entire wavelength region.
以上のとおり、本発明の測定方法においては、光源から発せられた近赤外光を直接にそのまま被験体に照射するのではなく、特定の透過特性を有する光学フィルタを透過してきた近赤外光を被験体に照射している。それによって被験体に照射する近赤外光の強度分布を調整し、その結果、干渉分光法を利用した近赤外二次元分光像を高い精度で取得することが可能となる。そこで次に、干渉分光法を利用した近赤外二次元分光像の取得について説明する。 As described above, in the measurement method of the present invention, the near-infrared light emitted from the light source is not directly applied to the subject as it is, but the near-infrared light transmitted through an optical filter having a specific transmission characteristic is transmitted. Is irradiating the subject. As a result, the intensity distribution of the near-infrared light irradiating the subject can be adjusted, and as a result, a near-infrared two-dimensional spectroscopic image using interference spectroscopy can be obtained with high accuracy. Therefore, next, acquisition of a near-infrared two-dimensional spectroscopic image using interference spectroscopy will be described.
干渉分光法を利用した近赤外二次元分光像の取得においては、まず光源から発せられた多波長の近赤外光を被験体に照射し、被験体からの反射スペクトル又は透過スペクトルを二次元的に取得する。なお、上述したパワースペクトルA又はパワースペクトルCを取得する場合には、被験体を配置する位置に、該被験体に代えて鏡、スペクトラロン、硫酸バリウム等の反射板又はスペクトラロン、硫酸バリウム等の透過板を配置すればよい。反射スペクトル又は透過スペクトルの二次元的な取得には、例えば図4に示す光学システム10を用いることができる。同図に示す光学システム10は、光源から被験体に照射された近赤外光の透過又は反射光を、第1及び第2の光に分離する分割光学系と、第1及び第2の光をほぼ同一点に導き干渉像を形成する結像光学系と、第1及び第2の光の光学光路長差を伸縮する光路長差伸縮手段とを備えている。同図に示す光学システム10を用いた反射スペクトルの二次元的な取得方法は以下のとおりである。 In the acquisition of a near-infrared two-dimensional spectroscopic image using interference spectroscopy, the subject is first irradiated with multi-wavelength near-infrared light emitted from a light source, and the reflection spectrum or transmission spectrum from the subject is two-dimensional. To get. When the above-mentioned power spectrum A or power spectrum C is acquired, a mirror, a reflector such as Spectralon or barium sulfate, or a reflector such as Spectralon or barium sulfate is used instead of the subject at the position where the subject is placed. The transparent plate may be arranged. For two-dimensional acquisition of the reflection spectrum or the transmission spectrum, for example, the optical system 10 shown in FIG. 4 can be used. The optical system 10 shown in the figure includes a split optical system that separates transmitted or reflected light of near-infrared light emitted from a light source to a subject into first and second lights, and first and second lights. It is provided with an imaging optical system for forming an interference image by guiding the light to substantially the same point, and an optical path length difference expanding / contracting means for expanding / contracting the optical path length difference between the first and second lights. The two-dimensional acquisition method of the reflection spectrum using the optical system 10 shown in the figure is as follows.
図1及び図2に示す光学フィルタFを介して光源Lから被験体11に対して光が照射されることにより該被験体11の一輝点から多様な方向に向かって放射状に生じる散乱光や蛍光発光等の光線群(「物体光」ともいう)は、図4に示す光学システム10を構成する一部材である対物レンズ12に入射し、平行光束へ変換される。対物レンズ12は、レンズ駆動機構13によって光軸方向に移動可能に構成されている。レンズ駆動機構13は、対物レンズ12の合焦位置を走査するためのもので、例えばピエゾ素子により構成することができる。 When the subject 11 is irradiated with light from the light source L via the optical filter F shown in FIGS. 1 and 2, scattered light or fluorescence generated radially from one bright spot of the subject 11 in various directions. A group of light rays such as light emission (also referred to as “object light”) enters the objective lens 12, which is a member constituting the optical system 10 shown in FIG. 4, and is converted into a parallel light beam. The objective lens 12 is configured to be movable in the optical axis direction by the lens driving mechanism 13. The lens driving mechanism 13 is for scanning the focusing position of the objective lens 12, and can be configured by, for example, a piezo element.
対物レンズ12を透過した後の光束は完全な平行光束である必要はない。対物レンズ12を透過した後の光束は、一つの輝点から生じた光線群を二分割又はそれ以上に分割できる程度に広げることができればよい。尤も、より高い分光計測精度を得るためにはできるだけ平行光束とすることが望ましい。 The luminous flux after passing through the objective lens 12 does not have to be a perfect parallel luminous flux. The luminous flux after passing through the objective lens 12 may be widened to such an extent that the light beam group generated from one bright spot can be divided into two or more. However, in order to obtain higher spectral measurement accuracy, it is desirable to use parallel luminous flux as much as possible.
対物レンズ12を透過してきた平行光束は位相シフター14に到達する。位相シフター14は光路長差伸縮手段として機能するものである。位相シフター14は、矩形板状の固定ミラー部15と、その中央の開口部(図示せず)に挿入された円柱状の可動ミラー部16とを備えている。固定ミラー部15及び可動ミラー部16の表面は光学的に平坦であり、且つ光学システム10が計測対象とする光の波長帯域を反射可能な光学鏡面となっている。 The parallel light flux transmitted through the objective lens 12 reaches the phase shifter 14. The phase shifter 14 functions as an optical path length difference expansion / contraction means. The phase shifter 14 includes a rectangular plate-shaped fixed mirror portion 15 and a columnar movable mirror portion 16 inserted into an opening (not shown) at the center thereof. The surfaces of the fixed mirror portion 15 and the movable mirror portion 16 are optically flat, and are optical mirror surfaces capable of reflecting the wavelength band of light to be measured by the optical system 10.
以下の説明では、位相シフター14に到達した光束のうち固定ミラー部15の反射面に到達して反射される光束を固定光線群、可動ミラー部16の反射面に到達して反射される光束を可動光線群ともいう。これらの部材によって、光源から被験体に照射された近赤外光の透過又は反射光を、第1及び第2の光に分離する分割光学系が構成される。 In the following description, among the luminous fluxes that have reached the phase shifter 14, the luminous flux that reaches the reflective surface of the fixed mirror portion 15 and is reflected is the fixed light beam group, and the luminous flux that reaches the reflective surface of the movable mirror portion 16 and is reflected. Also called a movable light group. These members constitute a split optical system that separates the transmitted or reflected light of the near-infrared light emitted from the light source to the subject into the first and second lights.
固定ミラー部15及び可動ミラー部16は、駆動ステージ(図示せず)上に設置されている。駆動ステージは、例えば静電容量センサーを具備する圧電素子から構成されており、制御部17からの制御信号を受けて矢印A方向に沿って進退可能になっている。これにより、可動ミラー部16は光の波長に応じた精度で矢印A方向に沿って移動する。 The fixed mirror portion 15 and the movable mirror portion 16 are installed on a drive stage (not shown). The drive stage is composed of, for example, a piezoelectric element including a capacitance sensor, and can move forward and backward along the direction of arrow A in response to a control signal from the control unit 17. As a result, the movable mirror unit 16 moves along the direction of arrow A with an accuracy corresponding to the wavelength of light.
位相シフター14は、対物レンズ12からの平行光束の光軸に対して固定ミラー部15及び可動ミラー部16の反射面が45度傾くように配置されている。駆動ステージ(図示せず)は、可動ミラー部16の反射面の光軸に対する傾きを45度に維持した状態で可動ミラー部16を移動させる。このような構成により、可動ミラー部16の光軸方向の移動量は、駆動ステージの移動量の1/√2となる。また、固定光線群と可動光線群の二光束間の相対的な位相変化を与える光路長差は、可動ミラー部16の光軸方向の移動量の2倍となる。 The phase shifter 14 is arranged so that the reflecting surfaces of the fixed mirror portion 15 and the movable mirror portion 16 are tilted by 45 degrees with respect to the optical axis of the parallel light flux from the objective lens 12. The drive stage (not shown) moves the movable mirror unit 16 while maintaining the inclination of the reflecting surface of the movable mirror unit 16 with respect to the optical axis at 45 degrees. With such a configuration, the amount of movement of the movable mirror unit 16 in the optical axis direction is 1 / √2 of the amount of movement of the drive stage. Further, the optical path length difference that gives a relative phase change between the two light rays of the fixed light ray group and the movable light ray group is twice the amount of movement of the movable mirror portion 16 in the optical axis direction.
このように固定ミラー部15及び可動ミラー部16を斜めに配置すれば、光線を分岐するためのビームスプリッタが不要となるため、物体光の利用効率を高くすることができる。また、可動ミラー部16を傾けたことにより、駆動ステージの移動量に対する可動ミラー部16の光軸方向の移動量が小さくなるため、ステージ移動誤差の分光計測精度への劣化の影響を小さくできる。 If the fixed mirror portion 15 and the movable mirror portion 16 are arranged obliquely in this way, a beam splitter for splitting the light beam becomes unnecessary, so that the utilization efficiency of the object light can be improved. Further, by tilting the movable mirror unit 16, the amount of movement of the movable mirror unit 16 in the optical axis direction with respect to the amount of movement of the drive stage becomes small, so that the influence of deterioration of the stage movement error on the spectral measurement accuracy can be reduced.
位相シフター14に到達し、固定ミラー部15及び可動ミラー部16の反射面で反射された固定光線群及び可動光線群は、それぞれ結像レンズ22により収束されて検出部18の結像面に入る。この部分が、第1及び第2の光をほぼ同一点に導き干渉像を形成する結像光学系を構成する。検出部18は例えば複数の検出素子、例えば複数の画素からなる受光素子を備えた二次元CCDカメラから構成されている。この受光素子が、干渉像の光強度を検出する手段として機能する。受光素子は平面内にわたり二次元的に配置されており、それによって被験体の表面における透過又は反射スペクトルの二次元分布が取得可能になっている。固定ミラー部15の反射面と可動ミラー部16の反射面は、検出部18の結像面で2つの光線群の集光位置がずれない程度の精度で平行に構成されている。 The fixed ray group and the movable ray group that reach the phase shifter 14 and are reflected by the reflecting surfaces of the fixed mirror unit 15 and the movable mirror unit 16 are converged by the imaging lens 22 and enter the imaging surface of the detection unit 18, respectively. .. This portion constitutes an imaging optical system that guides the first and second lights to substantially the same point to form an interference image. The detection unit 18 is composed of, for example, a two-dimensional CCD camera including a plurality of detection elements, for example, a light receiving element composed of a plurality of pixels. This light receiving element functions as a means for detecting the light intensity of the interference image. The light receiving elements are arranged two-dimensionally over a plane, which makes it possible to obtain a two-dimensional distribution of the transmission or reflection spectrum on the surface of the subject. The reflective surface of the fixed mirror unit 15 and the reflective surface of the movable mirror unit 16 are configured to be parallel to each other with an accuracy such that the focusing positions of the two light rays are not displaced on the image plane of the detection unit 18.
前記構成を有する光学システム10の光学的作用について説明する。まず、蛍光や散乱光など初期位相が必ずしも揃っていない光線群が、対物レンズ12と結像レンズ22を経て検出部18の結像面で位相が揃った波として一つの点に集光し、輝点像(干渉像)を形成する光学モデルに基づいて説明する。 The optical operation of the optical system 10 having the above configuration will be described. First, a group of light rays such as fluorescence and scattered light whose initial phases are not necessarily aligned are focused on one point as waves having the same phase on the imaging surface of the detection unit 18 via the objective lens 12 and the imaging lens 22. The description will be based on an optical model that forms a bright spot image (interference image).
前述したように、被験体11の一輝点から発せられた光線群は、対物レンズ12を経て位相シフター14の固定ミラー部15及び可動ミラー部16の表面に到達する。このとき、図5に示すとおり、固定ミラー部15の表面及び可動ミラー部16の表面に光線群が二分割されて到達する。なお、固定ミラー部15の表面に到達した光線群、すなわち固定光線群と、可動ミラー部16の表面に到達した光線群、すなわち可動光線群の光量がほぼ等しくなるように、可動ミラー部16の表面の面積は設定されているが、固定光線群及び可動光線群の一方あるいは両方の光路に減光フィルタを設置して相対的な光量差を調整し、光量の均等化を行うことも可能である。 As described above, the group of light rays emitted from the bright spot of the subject 11 reaches the surfaces of the fixed mirror portion 15 and the movable mirror portion 16 of the phase shifter 14 via the objective lens 12. At this time, as shown in FIG. 5, the light beam group reaches the surface of the fixed mirror portion 15 and the surface of the movable mirror portion 16 in two portions. The movable mirror unit 16 is provided so that the light rays group that reaches the surface of the fixed mirror unit 15, that is, the fixed light ray group, and the light ray group that reaches the surface of the movable mirror unit 16, that is, the movable light ray group are substantially equal. Although the surface area is set, it is also possible to install a dimming filter in one or both optical paths of the fixed ray group and the movable ray group to adjust the relative light amount difference and equalize the light amount. is there.
固定ミラー部15及び可動ミラー部16の表面で反射された光線群は、それぞれ固定光線群及び可動光線群として結像レンズ22に入射し、検出部18の結像面において干渉像を形成する。このとき、被験体11から発せられる光線群には様々な波長の光が含まれる(且つ各波長の光の初期位相が必ずしも揃っていない)ことから、可動ミラー部16を移動させて固定光線群と可動光線群との光路長差を変化させることにより、図6(a)に示すようなインターフェログラムと呼ばれる結像強度変化(干渉光強度変化)の波形が得られる。つまり、干渉分光法によるインターフェログラムが、検出部18に備えられた画素ごとに取得される。図6(a)は検出部18の一つの画素におけるインターフェログラムである。なお、図6(a)において、横軸は可動ミラー部16の移動に伴う固定光線群と可動光線群間の光路長差を示し、縦軸は結像面上の一点における結像強度を示す。 The light rays reflected on the surfaces of the fixed mirror unit 15 and the movable mirror unit 16 enter the imaging lens 22 as a fixed light ray group and a movable light ray group, respectively, and form an interference image on the imaging surface of the detection unit 18. At this time, since the light beam group emitted from the subject 11 includes light of various wavelengths (and the initial phases of the light of each wavelength are not always aligned), the movable mirror unit 16 is moved to move the fixed light ray group. By changing the difference in optical path length between the moving light beam group and the moving light ray group, a waveform of an imaging intensity change (interference light intensity change) called an interferogram as shown in FIG. 6A can be obtained. That is, an interferogram by interference spectroscopy is acquired for each pixel provided in the detection unit 18. FIG. 6A is an interferogram in one pixel of the detection unit 18. In FIG. 6A, the horizontal axis shows the optical path length difference between the fixed ray group and the movable ray group due to the movement of the movable mirror portion 16, and the vertical axis shows the imaging intensity at one point on the imaging plane. ..
取得された各インターフェログラムをフーリエ変換することにより、被験体11の一輝点から発せられた光の波長ごとの相対強度である分光特性を画素ごとに取得することができる(図6(b)参照)。そして検出部18のすべての画素において分光特性を得ることで、光源Lから発せられ且つ被験体11に照射された多波長の近赤外光のパワースペクトルA、及び被験体11を透過した多波長の近赤外光のパワースペクトルBの二次元分光計測が行われる。あるいは、光源Lから発せられ且つ被験体11に照射された多波長の近赤外光のパワースペクトルC、及び被験体11にて反射した多波長の近赤外光のパワースペクトルDの二次元分光計測が行われる。前記のインターフェログラムの生成、及び該インターフェログラムのフーリエ変換によるスペクトルの取得は、処理部としての制御部17で行われるか、又は制御部17に接続された演算部(図示せず)によって行われる。 By Fourier transforming each of the acquired interferograms, it is possible to acquire the spectral characteristics, which are the relative intensities of the light emitted from the bright spot of the subject 11 for each wavelength, for each pixel (FIG. 6B). reference). Then, by obtaining the spectral characteristics in all the pixels of the detection unit 18, the power spectrum A of the multi-wavelength near-infrared light emitted from the light source L and irradiated to the subject 11 and the multi-wavelength transmitted through the subject 11 Two-dimensional spectroscopic measurement of the power spectrum B of the near-infrared light of the above is performed. Alternatively, two-dimensional spectroscopy of the power spectrum C of the multi-wavelength near-infrared light emitted from the light source L and irradiated to the subject 11 and the power spectrum D of the multi-wavelength near-infrared light reflected by the subject 11. Measurements are made. The generation of the interferogram and the acquisition of the spectrum by the Fourier transform of the interferogram are performed by the control unit 17 as a processing unit, or by a calculation unit (not shown) connected to the control unit 17. Will be done.
ここで、インターフェログラムの生成原理について説明する。まず、測定波長が単一波長の光の場合の光路長差と干渉光強度との関係について図7(a)ないし(c)を参照しながら説明する。図7(a)ないし(c)において、横軸は可動ミラー部の移動に伴う固定光線群と可動光線群間の相対的な光路長差を示し、縦軸は検出部の一つの画素における結像強度を示している。 Here, the principle of interferogram generation will be described. First, the relationship between the optical path length difference and the interference light intensity when the measurement wavelength is single wavelength light will be described with reference to FIGS. 7 (a) to 7 (c). In FIGS. 7A to 7C, the horizontal axis shows the relative optical path length difference between the fixed ray group and the movable ray group due to the movement of the movable mirror portion, and the vertical axis shows the connection in one pixel of the detection portion. It shows the image intensity.
図7(a)ないし(c)は波長の長さが異なる3種類の単色光(λa>λb>λc)の光路長差と干渉光強度との関係を示している。図7の中央付近に示す位相シフト原点(図中、一点鎖線で示す)は、図8(b)に示す可動ミラー部16の反射面が固定ミラー部15の反射面と一致している状態をいう。可動ミラー部16と固定ミラー部15の反射面が一致しているときは、固定光線群と可動光線群に相対的な位相差が生じていない。つまり、これら二光線群の光線は結像面において位相が揃って到達するため、互いに強め合う。このため、結像面には明るい輝点が形成され、結像強度が大きくなる。 7 (a) to 7 (c) show the relationship between the optical path length difference and the interference light intensity of three types of monochromatic light (λa> λb> λc) having different wavelength lengths. The phase shift origin (indicated by the alternate long and short dash line in the figure) shown near the center of FIG. 7 indicates that the reflecting surface of the movable mirror portion 16 shown in FIG. 8B coincides with the reflecting surface of the fixed mirror portion 15. Say. When the reflecting surfaces of the movable mirror portion 16 and the fixed mirror portion 15 are aligned, there is no relative phase difference between the fixed ray group and the movable ray group. That is, since the rays of these two light rays arrive in phase with each other on the image plane, they strengthen each other. Therefore, bright bright spots are formed on the image plane, and the image intensity is increased.
これに対して、可動ミラー部16を図8(b)に示す位置から移動して固定光線群と可動光線群との間に相対的な光路長差を生じさせると、この光路長差が半波長(λ/2)の奇数倍になった時点で弱め合う干渉条件となるため結像強度は小さくなる。また、光路長差が1波長の整数倍になると、二光束間の干渉条件が強め合う状態となり、結像強度が大きくなる。したがって、可動ミラー部16を図8(a)から(b)を経て(c)の状態へと移動させて光路長差を順次変化させていくと、二光束間の干渉現象による結像強度は周期的に変化することになる。この結像強度変化の周期は、図7(a)ないし(c)に示すように、波長が長い光の場合は長く、波長が短い光の場合は短くなる。 On the other hand, when the movable mirror portion 16 is moved from the position shown in FIG. 8B to cause a relative optical path length difference between the fixed ray group and the movable ray group, this optical path length difference is half. When the wavelength (λ / 2) becomes an odd multiple, the interference conditions weaken each other, so that the imaging intensity becomes small. Further, when the optical path length difference becomes an integral multiple of one wavelength, the interference conditions between the two light fluxes become stronger and the imaging intensity becomes larger. Therefore, when the movable mirror portion 16 is moved from FIG. 8 (a) to the state of (c) via (b) and the optical path length difference is sequentially changed, the imaging intensity due to the interference phenomenon between the two luminous fluxes is increased. It will change periodically. As shown in FIGS. 7A to 7C, the period of the change in image intensity is long for light having a long wavelength and short for light having a short wavelength.
多波長の光を測定する光学システムでは、多様な長さの波長の干渉光強度変化が足し合わされた輝度値変化として検出されることになる。これが図6(a)に示すインターフェログラムである。固定光線群と可動光線群の相対的な光路長差がない位相シフト原点では、波長に依存せずに2光束は強め合うため、多波長の強度変化を足し合わせた測定値においても高い結像強度となる。しかし、光路長差が大きくなると、各波長の強度変化の周期が合わないため、多波長の強度変化を足し合わせても結像強度は大きくならない。このため、インターフェログラムは、光路長差が大きくなるに従い徐々に輝度値が小さくなっていく結像強度変化が観察される。このようにインターフェログラムは、単一波長の単周期結像強度変化が足し合わされた波形であることから、この波形データをフーリエ変換することにより波長ごとの相対強度である分光特性を取得することができる。 In an optical system that measures light of multiple wavelengths, changes in interference light intensity of wavelengths of various lengths are detected as a sum of changes in luminance value. This is the interferogram shown in FIG. 6 (a). At the phase shift origin where there is no relative optical path length difference between the fixed ray group and the movable ray group, the two luminous fluxes intensify each other regardless of the wavelength, so that the image formation is high even in the measured value obtained by adding the intensity changes of multiple wavelengths. It becomes strength. However, when the difference in optical path length becomes large, the periods of intensity change of each wavelength do not match, so that the imaging intensity does not increase even if the intensity changes of multiple wavelengths are added. For this reason, in the interferogram, a change in imaging intensity is observed in which the brightness value gradually decreases as the optical path length difference increases. In this way, since the interferogram is a waveform in which changes in single-period imaging intensity of a single wavelength are added together, it is possible to obtain spectral characteristics, which are relative intensities for each wavelength, by Fourier transforming this waveform data. Can be done.
このようにして、パワースペクトルA及びB、又はパワースペクトルC及びDが二次元的に取得されたら、被験体11の表面における個々の位置における透過スペクトル又は反射スペクトルを測定する。透過スペクトルの測定には、上述のとおり、パワースペクトルB/パワースペクトルAの算出式を用いることができる。反射スペクトルの測定には、パワースペクトルD/パワースペクトルCの算出式を用いることができる。これによって、透過スペクトル又は反射スペクトルが二次元的に取得される。この操作は、例えば図4に示す光学システム10に備えられた制御部17において行われるか、又は制御部17に接続された演算部(図示せず)において行われる。 In this way, once the power spectra A and B or the power spectra C and D are obtained two-dimensionally, the transmission spectrum or reflection spectrum at each position on the surface of the subject 11 is measured. As described above, the calculation formula of power spectrum B / power spectrum A can be used for the measurement of the transmission spectrum. The calculation formula of power spectrum D / power spectrum C can be used for the measurement of the reflection spectrum. As a result, the transmission spectrum or the reflection spectrum is acquired two-dimensionally. This operation is performed, for example, by the control unit 17 provided in the optical system 10 shown in FIG. 4, or by a calculation unit (not shown) connected to the control unit 17.
このようにして取得された二次元の透過スペクトル情報又は反射スペクトル情報に基づき近赤外二次元分光像を得ることができる。二次元分光像は、透過スペクトル又は反射スペクトル中に観察される、特定の物質又は特定の原子団(官能基)に由来する吸収帯に着目して取得することが有利である。例えば被験体が水を含むものである場合には、被験体の表面での任意の座標(xi、yi)における透過スペクトル又は反射スペクトルのうち水に特徴的な吸収帯の信号強度に基づき、被験体の座標(xi、yi)における水の吸光度Aiを求める。特に、水に特徴的な吸収帯として、上述した光学フィルタを透過する特定波長域を選択することが、感度の高い測定結果を得られる点から好ましい。 A near-infrared two-dimensional spectroscopic image can be obtained based on the two-dimensional transmission spectrum information or reflection spectrum information acquired in this way. It is advantageous to obtain the two-dimensional spectroscopic image by focusing on the absorption band derived from a specific substance or a specific atomic group (functional group) observed in the transmission spectrum or the reflection spectrum. For example, when the subject is intended to include water, based on the signal intensity of the characteristic absorption band among water transmission spectrum or reflection spectrum at an arbitrary coordinate (x i, y i) on the surface of the subject, the subject body coordinates (x i, y i) determining the absorbance a i of the water in. In particular, it is preferable to select a specific wavelength range through which the above-mentioned optical filter is transmitted as an absorption band characteristic of water from the viewpoint of obtaining highly sensitive measurement results.
この操作を、被験体の表面における(x1、y1)から(xn、yn)までのすべての座標において行い吸光度A1,A2,・・,Anを取得する。nは、被験体における二次元座標の数を示す。このようにして得られた吸光度Aの二次元的データに基づき近赤外二次元分光像を作成することで、被験体の表面における水の分布や、存在量を可視化することができる。この操作は、例えば図4に示す光学システム10に備えられた制御部17において行われるか、又は制御部17に接続された演算部(図示せず)において行われる。 This operation, absorbance A 1 performs in all coordinates of the surface of a subject from (x 1, y 1) to (x n, y n), A 2, ··, acquires the A n. n indicates the number of two-dimensional coordinates in the subject. By creating a near-infrared two-dimensional spectroscopic image based on the two-dimensional data of absorbance A thus obtained, the distribution and abundance of water on the surface of the subject can be visualized. This operation is performed, for example, by the control unit 17 provided in the optical system 10 shown in FIG. 4, or by a calculation unit (not shown) connected to the control unit 17.
以上の操作を経ることで、被験体の二次元座標における任意の位置での特定波長における吸光度を求めることができ、二次元座標における吸光度分布が得られる。そして、この分布を可視化することで、近赤外二次元分光像が得られる。しかも、光源から照射される多波長の近赤外光の強度を、光学フィルタによって均一化しているので、吸光度の測定を高精度で行うことができる。その結果、透過スペクトル又は反射スペクトルのS/N比を、従来よりも向上させることができる。つまり本発明は、光源から発せられた多波長の近赤外光を被験体に照射し、干渉分光法によって取得される透過スペクトル又は反射スペクトルのS/N比を向上させるS/N比の向上方法に係るものでもある。 By going through the above operation, the absorbance at a specific wavelength at an arbitrary position in the two-dimensional coordinates of the subject can be obtained, and the absorbance distribution in the two-dimensional coordinates can be obtained. Then, by visualizing this distribution, a near-infrared two-dimensional spectroscopic image can be obtained. Moreover, since the intensity of the multi-wavelength near-infrared light emitted from the light source is made uniform by the optical filter, the absorbance can be measured with high accuracy. As a result, the S / N ratio of the transmission spectrum or the reflection spectrum can be improved as compared with the conventional case. That is, the present invention improves the S / N ratio by irradiating the subject with multi-wavelength near-infrared light emitted from the light source and improving the S / N ratio of the transmission spectrum or the reflection spectrum acquired by the interference spectroscopy. It also relates to the method.
本発明の測定方法は、例えば、ヒト皮膚又はヒト皮膚表面付着物を被験体として、非医療の目的で、皮膚表面付着物又は皮膚水分の分布状態の評価のために、皮膚の反射スペクトルを測定する場合に特に有用なものである。ヒト皮膚表面付着物としては、例えばヒトの皮膚の表面に施された化粧料などが挙げられるが、これに限られない。 In the measuring method of the present invention, for example, human skin or human skin surface deposits are used as subjects, and the reflection spectrum of the skin is measured for non-medical purposes in order to evaluate the distribution state of skin surface deposits or skin moisture. It is especially useful when doing so. Examples of human skin surface deposits include, but are not limited to, cosmetics applied to the surface of human skin.
以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば前記実施形態では、近赤外光の光源としてリング状の光源を用いたが、光源の形状はこれに限られない。例えば、先に述べた特許文献1及び2に記載の光源を用いることができる。また、照射は直接的(直接照明)、間接的(間接照明)のいずれも用いることができる。 Although the present invention has been described above based on the preferred embodiment, the present invention is not limited to the above embodiment. For example, in the above embodiment, a ring-shaped light source is used as a light source for near-infrared light, but the shape of the light source is not limited to this. For example, the light sources described in Patent Documents 1 and 2 described above can be used. Further, the irradiation can be either direct (direct illumination) or indirect (indirect illumination).
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited to such examples.
〔実施例1〕
図2(b)及び図4に示す装置を用いて、化粧水(ソフィーナボーテしっとり;花王株式会社製)を筆(水彩筆)に含ませ、両頬部に、水平方向に沿って線状に三本ずつ塗布した後のヒトの顔面の皮膚における水分率を測定した。測定は、近赤外光の波長領域での水の吸光度を二次元的に測定し、測定結果を画像化することで行った。測定装置は以下のとおりである。
・装置:結像型二次元フーリエ光学システム(アオイ電子株式会社製)
・光源:リング照明(ハロゲン電球×20)、光源のスペクトルを図9に示す。
・光学フィルタ:図3に示す透過特性を有するもの(誘電多層膜、朝日分光株式会社製)、光学フィルタを透過後の光源のスペクトルを図10に示す。
・対物レンズ:固定焦点レンズ(F1.4、16mm、エドモンドオプティクス)
・分光系:
共役面格子:開口幅30μm、遮光幅30μm
分光ユニット内のレンズ:φ25mm、焦点距離:100mm
光路長差:70.7μm
サンプリング間隔:108.25nm
・検出系:
カメラ:CV−N800(住友電気工業(株)、320×256pixel)
露光時間:2.5msec、フレームレート:320Hz
積算回数:1回
計測時間:2秒
[Example 1]
Using the devices shown in FIGS. 2 (b) and 4, soak a lotion (Sofina Beaute Moist; manufactured by Kao Corporation) in a brush (watercolor brush) and linearly apply it to both cheeks along the horizontal direction. The water content in the skin of the human face after applying three of each was measured. The measurement was performed by two-dimensionally measuring the absorbance of water in the wavelength region of near-infrared light and imaging the measurement result. The measuring device is as follows.
・ Equipment: Imaging type 2D Fourier optical system (manufactured by Aoi Electronics Co., Ltd.)
-Light source: Ring illumination (halogen bulb x 20), the spectrum of the light source is shown in FIG.
-Optical filter: A filter having the transmission characteristics shown in FIG. 3 (dielectric multilayer film, manufactured by Asahi Spectrometry Co., Ltd.), and a spectrum of a light source after passing through the optical filter is shown in FIG.
-Objective lens: Fixed focus lens (F1.4, 16mm, Edmond Optics)
・ Spectroscopic system:
Conjugated surface lattice: opening width 30 μm, shading width 30 μm
Lens in the spectroscopic unit: φ25 mm, focal length: 100 mm
Optical path length difference: 70.7 μm
Sampling interval: 108.25 nm
・ Detection system:
Camera: CV-N800 (Sumitomo Electric Industries, Ltd., 320 x 256pixel)
Exposure time: 2.5 msec, frame rate: 320 Hz
Number of integrations: 1 time Measurement time: 2 seconds
光学システム、光源、反射板を図2(b)及び図4に示すとおりに配置し、撮影を行い、光源から発せられた多波長の近赤外光のパワースペクトルCを干渉分光法によって測定した。反射板としてはスペクトロラン標準反射板(labsphere製、反射率10%)を用いた。次いで、反射板を取り除き、それに代えて反射板を配置した位置にヒトを配置し、ヒトにて反射した多波長の近赤外光のパワースペクトルDを、干渉分光法によって測定した。任意の一画素における結果を図11に示す。得られたパワースペクトルC及びDから求められた吸光度を図12に示す。また、光学フィルタを用いずに得られた吸光度を比較例として図13に示す。図12と図13との対比から明らかなとおり、光学フィルタを用いた図12においては、水に特徴的な吸収帯である1450nm付近及び1950nm付近の双方に吸収ピークが観察される。これに対して、光学フィルタを用いていない図13においては、1950nm付近に観察されるべき吸収ピークが観察されていない。 The optical system, the light source, and the reflector were arranged as shown in FIGS. 2 (b) and 4 and photographed, and the power spectrum C of the multi-wavelength near-infrared light emitted from the light source was measured by interference spectroscopy. .. As the reflector, a Spectrolan standard reflector (manufactured by labsphere, reflectance 10%) was used. Next, the reflector was removed, a human was placed at the position where the reflector was placed, and the power spectrum D of the multi-wavelength near-infrared light reflected by the human was measured by interference spectroscopy. The result at any one pixel is shown in FIG. The absorbance obtained from the obtained power spectra C and D is shown in FIG. Further, the absorbance obtained without using an optical filter is shown in FIG. 13 as a comparative example. As is clear from the comparison between FIGS. 12 and 13, in FIG. 12 using the optical filter, absorption peaks are observed both in the vicinity of 1450 nm and the vicinity of 1950 nm, which are the absorption bands characteristic of water. On the other hand, in FIG. 13 in which the optical filter is not used, the absorption peak to be observed near 1950 nm is not observed.
次に、図12に示す反射スペクトルを含め、二次元的に取得された反射スペクトルを用い、被験体であるヒトの顔面における波長1450nm付近のピーク強度の分布をイメージ化した。その結果を図14に示す。波長1450nm付近のピークは水に特徴的な吸収帯であり、よって同図においては水の存在量が多い部位(化粧水の塗布部位)ほど色を濃く示している。同図に示す結果から明らかなとおり、本測定方法によれば、ヒトの顔面における水の分布位置及び存在量を可視化できることが判る。 Next, using the two-dimensionally acquired reflection spectrum including the reflection spectrum shown in FIG. 12, the distribution of the peak intensity near the wavelength of 1450 nm on the human face as the subject was imaged. The result is shown in FIG. The peak near the wavelength of 1450 nm is an absorption band characteristic of water. Therefore, in the figure, the portion where the abundance of water is large (the portion where the lotion is applied) shows a darker color. As is clear from the results shown in the figure, it can be seen that the distribution position and abundance of water on the human face can be visualized by this measurement method.
10 光学システム
11 被験体
12 対物レンズ
13 レンズ駆動機構
14 位相シフター
15 固定ミラー部
16 可動ミラー部
17 制御部
18 検出部
F 光学フィルタ
L 光源
10 Optical system 11 Subject 12 Objective lens 13 Lens drive mechanism 14 Phase shifter 15 Fixed mirror part 16 Movable mirror part 17 Control part 18 Detection part F Optical filter L Light source
Claims (10)
被験体と検出部との間、又は被験体と光源との間に、観測波長域内の特定波長域である900nm〜1100nm、1300nm〜1600nm及び1900nm以上の波長域の内、少なくとも1900nm以上の波長域を含む1又は複数の波長域において、近赤外光を透過させ、且つ観測波長域内の前記特定波長域以外の波長域の近赤外光の透過を減衰させる光学フィルタを配置し、
前記特定波長域以外の波長域は、700nm〜900nm、1100nm〜1300nm及び1600nm〜1900nmの波長域である、透過スペクトルの測定方法。 The power spectrum A of the multi-wavelength near-infrared light emitted from the light source and irradiated to the subject and the power spectrum B of the multi-wavelength near-infrared light transmitted through the subject were measured by interference spectroscopy. , A method of measuring the transmission spectrum of the subject from the power spectra A and B.
Between the subject and the detection unit, or between the subject and the light source, a wavelength range of at least 1900 nm or more, which is a specific wavelength range within the observation wavelength range of 900 nm to 1100 nm, 1300 nm to 1600 nm, and 1900 nm or more. An optical filter that transmits near-infrared light in one or more wavelength ranges including the above and attenuates the transmission of near-infrared light in a wavelength range other than the specific wavelength range within the observation wavelength range is arranged .
Wavelength range other than the pre-Symbol particular wavelength range, 700 nm~900nm, a wavelength range of 1100nm~1300nm and 1600Nm~1900nm, method of measuring transmission spectra.
被験体と検出部との間、又は被験体と光源との間に、観測波長域内の特定波長域である900nm〜1100nm、1300nm〜1600nm及び1900nm以上の波長域の内、少なくとも1900nm以上の波長域を含む1又は複数の波長域において、近赤外光を透過させ、且つ観測波長域内の前記特定波長域以外の波長域の近赤外光の透過を減衰させる光学フィルタを配置し、
前記特定波長域以外の波長域は、700nm〜900nm、1100nm〜1300nm及び1600nm〜1900nmの波長域である、反射スペクトルの測定方法。 The power spectrum C of the multi-wavelength near-infrared light emitted from the light source and irradiated to the subject and the power spectrum D of the multi-wavelength near-infrared light reflected by the subject are measured by interference spectroscopy. A method of measuring the reflection spectrum of the subject from the power spectra C and D.
Between the subject and the detection unit, or between the subject and the light source, a wavelength range of at least 1900 nm or more, which is a specific wavelength range within the observation wavelength range of 900 nm to 1100 nm, 1300 nm to 1600 nm, and 1900 nm or more. An optical filter that transmits near-infrared light in one or more wavelength ranges including the above and attenuates the transmission of near-infrared light in a wavelength range other than the specific wavelength range within the observation wavelength range is arranged .
Wavelength range other than the pre-Symbol particular wavelength range, 700 nm~900nm, a wavelength range of 1100nm~1300nm and 1600Nm~1900nm, the measuring method of the reflection spectrum.
被験体と検出部との間、又は被験体と光源との間に、観測波長域内の特定波長域である900nm〜1100nm、1300nm〜1600nm及び1900nm以上の波長域の内、少なくとも1900nm以上の波長域を含む1又は複数の波長域において、近赤外光を透過させ、且つ観測波長域内の上記特定波長域以外の波長域の近赤外光の透過を減衰させる光学フィルタを配置し、
前記特定波長域以外の波長域は、700nm〜900nm、1100nm〜1300nm及び1600nm〜1900nmの波長域である、透過スペクトル又は反射スペクトルのS/N比の向上方法。 A method of irradiating a subject with multi-wavelength near-infrared light emitted from a light source to improve the S / N ratio of a transmission spectrum or a reflection spectrum acquired by interference spectroscopy.
Between the subject and the detection unit, or between the subject and the light source, a wavelength range of at least 1900 nm or more, which is a specific wavelength range within the observation wavelength range of 900 nm to 1100 nm, 1300 nm to 1600 nm, and 1900 nm or more. An optical filter that transmits near-infrared light in one or more wavelength ranges including the above and attenuates the transmission of near-infrared light in a wavelength range other than the above-mentioned specific wavelength range within the observation wavelength range is arranged .
Before SL wavelength range other than the specific wavelength region, 700 nm~900nm, a wavelength range of 1100nm~1300nm and 1600Nm~1900nm, improved methods of S / N ratio of the transmission spectrum or reflection spectrum.
前記分光ユニットが、光源から被験体に照射された近赤外光の透過又は反射光を、第1及び第2の光に分離する分割光学系と、第1及び第2の光をほぼ同一点に導き干渉像を形成する結像光学系と、第1及び第2の光の光学光路長差を伸縮する光路長差伸縮手段とを備え、
前記検出部が、前記干渉像の光強度を検出する手段を備え、
前記処理部が、前記光路長差伸縮手段によって光学光路長差を伸縮させることにより前記検出部で検出される光強度変化に基づき、前記被験体のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得する手段を備えた透過又は反射スペクトルの測定装置であって、
前記被験体と前記検出部との間、又は前記被験体と前記光源との間に配置された、観測波長域内の特定波長域である900nm〜1100nm、1300nm〜1600nm及び1900nm以上の波長域の内、少なくとも1900nm以上の波長域を含む1又は複数の波長域において、近赤外光を透過させ、且つ観測波長域内の前記特定波長域以外の波長域の近赤外光の透過を減衰させる光学フィルタを備え、
前記特定波長域以外の波長域は、700nm〜900nm、1100nm〜1300nm及び1600nm〜1900nmの波長域である、透過又は反射スペクトルの測定装置。 It is equipped with a light source capable of irradiating multi-wavelength near-infrared light, a spectroscopic unit, a detection unit, and a processing unit.
The spectroscopic unit has substantially the same points as the split optical system that separates the transmitted or reflected light of the near-infrared light emitted from the light source to the subject into the first and second lights, and the first and second lights. It is provided with an imaging optical system that guides the light to form an interference image and an optical path length difference expanding / contracting means that expands / contracts the optical path length difference between the first and second lights.
The detection unit includes means for detecting the light intensity of the interference image.
The processing unit obtains an interferogram of the subject based on the change in light intensity detected by the detection unit by expanding / contracting the optical path length difference by the optical path length difference expansion / contraction means, and Fouriers this interferogram. A transmission or reflection spectrum measuring device provided with means for acquiring a spectrum by transforming.
Within the wavelength range of 900 nm to 1100 nm, 1300 nm to 1600 nm, and 1900 nm or more, which is a specific wavelength range within the observation wavelength range, which is arranged between the subject and the detection unit or between the subject and the light source . An optical filter that transmits near-infrared light in one or more wavelength ranges including a wavelength range of at least 1900 nm and attenuates the transmission of near-infrared light in a wavelength range other than the specific wavelength range within the observation wavelength range. equipped with a,
Before SL wavelength range other than the specific wavelength region, 700 nm~900nm, a wavelength range of 1100nm~1300nm and 1600Nm~1900nm, transmission or reflection spectrum of the measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016190432A JP6818487B2 (en) | 2016-09-28 | 2016-09-28 | Spectrum measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016190432A JP6818487B2 (en) | 2016-09-28 | 2016-09-28 | Spectrum measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018054448A JP2018054448A (en) | 2018-04-05 |
JP6818487B2 true JP6818487B2 (en) | 2021-01-20 |
Family
ID=61836518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016190432A Active JP6818487B2 (en) | 2016-09-28 | 2016-09-28 | Spectrum measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6818487B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111836575A (en) * | 2018-06-21 | 2020-10-27 | 松下知识产权经营株式会社 | Skin evaluation device, skin evaluation system, skin evaluation method, and computer-readable recording medium storing program for skin evaluation |
JP7085758B2 (en) * | 2019-05-13 | 2022-06-17 | 河北ライティングソリューションズ株式会社 | Optical measuring device, light source device |
US11601628B2 (en) | 2020-05-28 | 2023-03-07 | Seiko Epson Corporation | Control method of spectroscopic imaging device, spectroscopic imaging device, computer program, control method of display system, control method of projector, display system, and projector |
CN114034669A (en) * | 2021-12-13 | 2022-02-11 | 中国建筑材料科学研究总院有限公司 | Method for detecting spectral transmittance of quartz glass |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09297060A (en) * | 1996-05-07 | 1997-11-18 | Yokogawa Electric Corp | Lamp lifetime predicting device |
GB9725174D0 (en) * | 1997-11-27 | 1998-01-28 | Innes John Centre Innov Ltd | Spectrometers |
JPH11173986A (en) * | 1997-12-12 | 1999-07-02 | Jasco Corp | Measuring apparatus and processing method in the measuring apparatus |
US7043288B2 (en) * | 2002-04-04 | 2006-05-09 | Inlight Solutions, Inc. | Apparatus and method for spectroscopic analysis of tissue to detect diabetes in an individual |
JP3834224B2 (en) * | 2001-06-28 | 2006-10-18 | 株式会社アドバンテスト | Chemical substance detection method and apparatus |
US7706862B2 (en) * | 2003-04-17 | 2010-04-27 | Research Foundation Of The City University Of New York | Detecting human cancer through spectral optical imaging using key water absorption wavelengths |
WO2005059510A2 (en) * | 2003-12-11 | 2005-06-30 | The Regents Of The University Of California | Catheter-based mid-infrared reflectance and reflectance generated absorption spectroscopy |
JP5358890B2 (en) * | 2007-03-20 | 2013-12-04 | 株式会社島津製作所 | Interference spectrophotometer |
JP5078004B2 (en) * | 2007-06-15 | 2012-11-21 | 国立大学法人 香川大学 | Spectroscopic measurement apparatus and spectral measurement method |
DE102008019500B4 (en) * | 2007-09-20 | 2010-06-02 | Technische Universität München | Anorndnung, method and sensor for detecting liquid parameters |
JP4832590B2 (en) * | 2010-03-09 | 2011-12-07 | 株式会社 資生堂 | Image analysis method, evaluation method, image analysis apparatus, and image analysis program |
US20120009694A1 (en) * | 2010-07-12 | 2012-01-12 | National Institute Of Standards And Technology | Apparatus and method for monitoring precursor flux |
JP5209009B2 (en) * | 2010-09-13 | 2013-06-12 | 株式会社東芝 | Photocatalyst and photocatalyst dispersion |
WO2012094094A2 (en) * | 2011-01-04 | 2012-07-12 | Exxonmobil Research And Engineering Company | Method and apparatus for a mid-infrared (mir) system for real time detection of petroleum in colloidal suspensions of sediments and drilling muds during drilling, logging, and production operations |
RU2575946C1 (en) * | 2012-02-29 | 2016-02-27 | Нэшнл Юниверсити Корпорейшн Кагава Юниверсити | Device to measure spectral characteristics and method to measure spectral characteristics |
US9351671B2 (en) * | 2012-07-16 | 2016-05-31 | Timothy Ruchti | Multiplexed pathlength resolved noninvasive analyzer apparatus and method of use thereof |
-
2016
- 2016-09-28 JP JP2016190432A patent/JP6818487B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018054448A (en) | 2018-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7695140B2 (en) | Fourier-domain OCT ray-tracing on the eye | |
DK3025122T3 (en) | System, method and computer program for three-dimensional contour data provisioning and caries detection | |
US11806111B2 (en) | Systems and methods for in-vivo optical imaging and measurement | |
JP5078004B2 (en) | Spectroscopic measurement apparatus and spectral measurement method | |
KR101336048B1 (en) | Optical tomographic imaging method and optical tomographic imaging apparatus | |
US20070013918A1 (en) | Optical measuring system and optical measuring method | |
US10001363B2 (en) | Common-path optical fiber-based handheld parallel optical coherence tomography (OCT) apparatus | |
JP6818487B2 (en) | Spectrum measurement method | |
US20140028974A1 (en) | Line-field holoscopy | |
JP2006520900A (en) | Spectroscopic analysis apparatus and method comprising an excitation system and a focus monitoring system | |
KR20200042895A (en) | OCT in the oral cavity with color texture | |
EP2649421A1 (en) | Image mapped optical coherence tomography | |
US20210330184A1 (en) | Hyperspectral apparatus and method | |
US11737673B1 (en) | Systems for detecting carious lesions in teeth using short-wave infrared light | |
JP2006527852A (en) | Analytical apparatus and method having auto-focusing means | |
WO2018229832A1 (en) | Endoscope system | |
JP2019503516A (en) | System and method for high resolution imaging using a bundle of optical fibers | |
US20170332880A1 (en) | Processing apparatus | |
KR20150043115A (en) | Optical Coherence Tomography Device | |
JP7038102B2 (en) | Full-field interference imaging system and method | |
KR20170004180A (en) | Signal processing for multilayer surface profiler based on white light interferometer | |
RU2579640C1 (en) | Confocal image spectrum analyser | |
JP6688712B2 (en) | Method of measuring reflection spectrum | |
JP2018054450A (en) | Reflection spectrum measurement method | |
JP7389487B2 (en) | Interferometric imaging device and its applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20161117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20161117 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20190624 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190625 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20190624 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200428 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200811 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201009 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6818487 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |