JP6818278B1 - Glass cloth - Google Patents

Glass cloth Download PDF

Info

Publication number
JP6818278B1
JP6818278B1 JP2019201556A JP2019201556A JP6818278B1 JP 6818278 B1 JP6818278 B1 JP 6818278B1 JP 2019201556 A JP2019201556 A JP 2019201556A JP 2019201556 A JP2019201556 A JP 2019201556A JP 6818278 B1 JP6818278 B1 JP 6818278B1
Authority
JP
Japan
Prior art keywords
glass cloth
gap
glass
mass
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019201556A
Other languages
Japanese (ja)
Other versions
JP2021075805A (en
Inventor
服部 剛士
剛士 服部
大介 西中
大介 西中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Glass Fiber Co Ltd
Unitika Ltd
Original Assignee
Unitika Glass Fiber Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Glass Fiber Co Ltd, Unitika Ltd filed Critical Unitika Glass Fiber Co Ltd
Priority to JP2019201556A priority Critical patent/JP6818278B1/en
Priority to KR1020217008172A priority patent/KR102351904B1/en
Priority to JP2021554916A priority patent/JPWO2021090756A1/ja
Priority to PCT/JP2020/040613 priority patent/WO2021090756A1/en
Priority to TW109138267A priority patent/TWI771792B/en
Application granted granted Critical
Publication of JP6818278B1 publication Critical patent/JP6818278B1/en
Publication of JP2021075805A publication Critical patent/JP2021075805A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/267Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Woven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

【課題】 低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際にも、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立を図ることができるガラスクロスの提供を主な課題とする。【解決手段】 質量が10g/m2以下のガラスクロスであって、前記ガラスクロスの、隣接する経糸間の隙間設計値Iwdが95μm以下、及び隣接する緯糸間の隙間設計値Ifdが95μm以下であり、前記ガラスクロスの、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.10以上1.60以下であり、前記ガラスクロスの、バスケットホール面積割合が12%以上20%以下である、ガラスクロス。【選択図】 なしPROBLEM TO BE SOLVED: To achieve both suppression of pinhole generation and suppression of vertical wrinkle generation even when a low-mass glass cloth is impregnated with a resin solution so as to have a low mass ratio of the glass cloth to form a prepreg. The main issue is to provide a glass cloth that can achieve this. SOLUTION: A glass cloth having a mass of 10 g / m2 or less has a gap design value Iwd between adjacent warp threads of 95 μm or less and a gap design value Ifd between adjacent weft threads of 95 μm or less. The ratio (Iw / If) between the measured gap value (Iw) between adjacent warp threads and the measured gap value (If) between adjacent weft threads of the glass cloth is 1.10 or more and 1.60 or less. A glass cloth having a basket hole area ratio of 12% or more and 20% or less. [Selection diagram] None

Description

本発明は、ガラスクロスに関する。 The present invention relates to glass cloth.

近年、プリント配線板は、電子機器の小型化に伴い、軽量化が求められており、使用される材料も低質量であることが求められている。プリント配線板を製造するには、ガラスクロスに樹脂が含浸されたプリプレグが用いられるが、上記電子機器の軽量化に伴って、プリプレグも低質量であることが求められている。そして、プリプレグに含まれるガラスクロスも同様に低質量であることが求められている。 In recent years, printed wiring boards have been required to be lighter in weight with the miniaturization of electronic devices, and the materials used are also required to have a low mass. In order to manufacture a printed wiring board, a prepreg in which a glass cloth is impregnated with a resin is used. However, as the weight of the electronic device is reduced, the prepreg is also required to have a low mass. The glass cloth contained in the prepreg is also required to have a low mass.

低質量のガラスクロスとして、例えば、下記(i)〜(iv)を満足する、ガラスクロスが知られている(例えば、特許文献1参照)。
(i)下記式(1)に示す開繊度が、経糸が70〜90%であり、緯糸が95〜120%。
開繊度(%)={(25×1000)/WD−I}/(D×N)×100 (1)
WD:経糸または緯糸の織密度(本/25mm)
I:隣接する経糸間または緯糸間の隙間間隔(μm)
D:経糸または緯糸の平均フィラメント直径(μm)
N:経糸または緯糸の平均フィラメント本数(本)
(ii)隣接する前記経糸間の隙間間隔、または隣接する前記緯糸間の隙間間隔のいずれかが100μm以下。
(iii)JIS R 3420:2013 7.10.1に従って測定される厚さが14μm以下。
(iv)JIS R 3420:2103 7.2に従って測定されるクロス質量が11g/m以下。
As a low-mass glass cloth, for example, a glass cloth satisfying the following (i) to (iv) is known (see, for example, Patent Document 1).
(I) The degree of openness represented by the following formula (1) is 70 to 90% for the warp and 95 to 120% for the weft.
Fineness (%) = {(25 x 1000) / WD-I} / (D x N) x 100 (1)
WD: Weaving density of warp or weft (book / 25 mm)
I: Gap spacing between adjacent warp or weft (μm)
D: Average filament diameter (μm) of warp or weft
N: Average number of filaments of warp or weft (thread)
(Ii) Either the gap spacing between the adjacent warp threads or the gap spacing between the adjacent weft threads is 100 μm or less.
(Iii) The thickness measured according to JIS R 3420: 2013 7.10.1 is 14 μm or less.
(Iv) The cross mass measured according to JIS R 3420: 2103 7.2 is 11 g / m 2 or less.

特許文献1のガラスクロスによれば、厚さを14μm以下と薄くしつつ、例えば、厚さ20μm以下のように薄いプリプレグ及び該プリプレグを用いた基板としたときに、ピンホールの発生を抑制することができるとされている。 According to the glass cloth of Patent Document 1, the occurrence of pinholes is suppressed when a thin prepreg having a thickness of 20 μm or less and a substrate using the prepreg are used while reducing the thickness to 14 μm or less. It is said that it can be done.

また、低質量のガラスクロスとして、3.0〜4.2μmの範囲の直径を備えるガラスフィラメントが14〜55本の範囲で集束されてなる経糸及び緯糸から構成され、該経糸及び緯糸の織密度が86〜140本/25mmの範囲にあり、7.5〜12.0μmの範囲の厚さと、1m当たり6.0〜10.0gの範囲の質量とを備え、ガラスクロスの厚さを経糸のガラスフィラメントの直径と緯糸のガラスフィラメントの直径との平均値で除した値(ガラスクロスの厚さ/{(経糸のガラスフィラメントの直径+緯糸のガラスフィラメントの直径)/2})として示される平均段数が2.00以上3.00未満の範囲にあるガラスクロスであって、前記経糸の開繊度(経糸の糸幅/(経糸を構成するガラスフィラメントの直径×経糸を構成するガラスフィラメントの本数))と前記緯糸の開繊度(緯糸の糸幅/(緯糸を構成するガラスフィラメントの直径×緯糸を構成するガラスフィラメントの本数))との相乗平均((経糸の開繊度×緯糸の開繊度)1/2)で示される平均開繊度が1.000〜1.300の範囲にあり、前記緯糸の糸幅に対する前記経糸の糸幅の比(経糸の糸幅/緯糸の糸幅)で示される糸幅比が0.720〜0.960の範囲にあるガラスクロスが知られている(例えば特許文献2参照)。 Further, as a low-mass glass cloth, glass filaments having a diameter in the range of 3.0 to 4.2 μm are composed of warp threads and weft threads in which 14 to 55 threads are focused, and the weaving density of the warp threads and weft threads is formed. Is in the range of 86 to 140 lines / 25 mm, has a thickness in the range of 7.5 to 12.0 μm, and has a mass in the range of 6.0 to 10.0 g per 1 m 2 , and has a thickness of glass cloth as warp. It is shown as the value divided by the average value of the diameter of the glass filament and the diameter of the glass filament of the weft (glass cloth thickness / {(the diameter of the glass filament of the warp + the diameter of the glass filament of the weft) / 2}). A glass cloth having an average number of steps in the range of 2.00 or more and less than 3.00, and the degree of opening of the warp (thread width of the warp / (diameter of the glass filament constituting the warp × number of glass filaments constituting the warp). )) And the openness of the weft (the width of the weft / (the diameter of the glass filaments constituting the weft x the number of glass filaments constituting the weft))) ((openness of the warp x openness of the weft)) The average openness indicated by 1/2) is in the range of 1.00 to 1.300, and is indicated by the ratio of the warp yarn width to the weft yarn width (warp yarn width / weft yarn width). Glass cloths having a yarn width ratio in the range of 0.720 to 0.960 are known (see, for example, Patent Document 2).

特許文献2のガラスクロスによれば、平均段数を3.00未満としても、該ガラスクロスを用いたプリプレグにおいてピンホールの発生を抑制することができるとともに、該ガラスクロスの毛羽立ちが少ないことで該プリプレグの優れた外観品質を維持できるとされている。 According to the glass cloth of Patent Document 2, even if the average number of stages is less than 3.00, the occurrence of pinholes can be suppressed in the prepreg using the glass cloth, and the fluffing of the glass cloth is small. It is said that the excellent appearance quality of prepreg can be maintained.

特開2017−43873号公報JP-A-2017-43873 特開2018−21274号公報Japanese Unexamined Patent Publication No. 2018-21274

低質量のプリプレグは、絶縁信頼性の観点から、例えば、プリプレグの総質量に対するガラスクロスの質量の割合が10〜40質量%程度と、ガラスクロスの質量割合が低いものとして使用されることが多い。しかしながら、本発明者が検討したところ、上記特許文献1及び2のガラスクロスは、プリプレグとする際にガラスクロスの質量割合が低いものとして樹脂溶液を含浸して硬化すると、得られるプリプレグは、製造時機械方向に走るシワ(タテシワ)が発生する場合があることを知得した。 From the viewpoint of insulation reliability, a low-mass prepreg is often used as having a low mass ratio of glass cloth, for example, the ratio of the mass of the glass cloth to the total mass of the prepreg is about 10 to 40% by mass. .. However, as a result of examination by the present inventor, the glass cloths of Patent Documents 1 and 2 are obtained by impregnating and curing a resin solution on the assumption that the mass ratio of the glass cloth is low when the prepreg is formed. I learned that wrinkles (vertical wrinkles) that run in the direction of the machine may occur.

そこで、本発明は、上記問題を解決し、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際にも、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立を図ることができるガラスクロスの提供を主な課題とする。 Therefore, the present invention solves the above-mentioned problems and suppresses the occurrence of pinholes even when a low-mass glass cloth is impregnated with a resin solution so as to have a low mass ratio of the glass cloth to form a prepreg. The main issue is to provide a glass cloth that can be compatible with the suppression of vertical wrinkles.

本発明者が上記問題の原因について検討したところ、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸して硬化する際に、ガラスクロスの経糸方向(ガラスクロス長さ方向)の張力に対して緯糸方向(ガラスクロス幅方向)の張力が著しく低くなる。そして、特許文献1のガラスクロスにおいては、該ガラスクロスに含浸した樹脂を硬化する際の硬化収縮により緯糸がガラスクロス幅方向に微妙に動きやすく、結果、前記タテシワが発生しやすくなると考えた。具体的に、特許文献1のガラスクロスは、
(i)隣接する経糸間の隙間同士の間隔が、隣接する緯糸間の隙間同士の間隔に対して大きく、経糸による緯糸の把持が十分でないこと、
(ii)元々薄いガラスクロスとするものであり、経糸及び緯糸が細く柔軟であること
(iii)低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸して硬化する際には、ガラスクロスの質量割合が比較的高いものとなるよう樹脂溶液を含浸して硬化させる場合に比して、緯糸が硬化収縮によりガラスクロス幅方向により動きやすくなること、
等が相俟って、緯糸がガラスクロス幅方向に微妙に動き、これに伴ってタテシワが発生しやすくなると考えた。
When the present inventor investigated the cause of the above problem, when a low-mass glass cloth was impregnated with a resin solution so as to have a low mass ratio of the glass cloth and cured, the warp direction (glass) of the glass cloth was examined. The tension in the weft direction (glass cloth width direction) is significantly lower than the tension in the cloth length direction. Then, in the glass cloth of Patent Document 1, it was considered that the wefts tend to move slightly in the width direction of the glass cloth due to the curing shrinkage when the resin impregnated in the glass cloth is cured, and as a result, the vertical wrinkles are likely to occur. Specifically, the glass cloth of Patent Document 1 is
(I) The distance between the gaps between adjacent warp threads is larger than the distance between the gaps between adjacent weft threads, and the weft threads are not sufficiently gripped by the warp threads.
(Ii) Originally a thin glass cloth, the warp and weft are thin and flexible (iii) A low-mass glass cloth is impregnated with a resin solution so that the mass ratio of the glass cloth is low. When curing, the wefts are more easily moved in the width direction of the glass cloth due to curing shrinkage than when the glass cloth is impregnated with a resin solution so that the mass ratio of the glass cloth is relatively high.
In combination with these factors, we thought that the wefts would move slightly in the width direction of the glass cloth, and that vertical wrinkles would be more likely to occur.

また、本発明者は、特許文献2のガラスクロスにおいては、過度な開繊処理をおこなうものであり、特に緯糸を構成する各フィラメントが目曲がりを起こし、これに起因してタテシワが発生しやすくなると考えた。すなわち、緯糸を構成する各フィラメントが目曲がりを起こすと、各フィラメントが緩んだ状態でガラスクロス中に存在することとなる。そして、緩んだフィラメントはガラスクロス幅方向に動き易い状態となっており、これに低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸し硬化すれば、硬化収縮の際に上記フィラメントの緩みに起因して緯糸がガラスクロス幅方向に微妙に動き、これに伴ってタテシワが発生しやすくなると考えた。 In addition, the present inventor performs an excessive fiber-spreading treatment on the glass cloth of Patent Document 2, and in particular, each filament constituting the weft is bent, and vertical wrinkles are likely to occur due to this. I thought it would be. That is, when each filament constituting the weft is bent, each filament is present in the glass cloth in a loosened state. Then, the loose filament is in a state where it can easily move in the width direction of the glass cloth, and if a low-mass glass cloth is impregnated with a resin solution so that the mass ratio of the glass cloth is low and cured, the glass cloth is cured. It was considered that the wefts slightly moved in the width direction of the glass cloth due to the loosening of the filaments during the contraction, and the vertical wrinkles were likely to occur accordingly.

一方、上記作用機序を考慮すれば、ピンホール発生の抑制と上記タテシワ発生の抑制との両立は、ガラスクロスの経糸密度及び緯糸密度を大きくするか、又は経糸及び緯糸中のフィラメント本数を多くすれば良いとも考えられた。しかしながら、本発明者等は、ガラスクロスの経糸密度及び緯糸密度を大きくしたり、経糸及び緯糸中のフィラメント本数を多くしたりすると、ガラスクロスの質量が大きくなってしまい、プリプレグの質量も大きくなってしまうという問題があることを知得した。また、プリプレグおいて、ガラスクロスの質量割合を高くしすぎると、ガラスクロスがプリプレグ表面から露出し、信号層と露出したガラスクロスとが直接接触することで絶縁信頼性を損なうという問題があることも知得した。 On the other hand, considering the above-mentioned mechanism of action, both suppression of pinhole generation and suppression of vertical wrinkle generation can be achieved by increasing the warp density and weft density of the glass cloth or by increasing the number of filaments in the warp and weft. It was also thought that it should be done. However, the present inventors increase the mass of the glass cloth and the mass of the prepreg when the warp density and the weft density of the glass cloth are increased or the number of filaments in the warp and the weft is increased. I learned that there is a problem of getting rid of it. Further, if the mass ratio of the glass cloth is too high in the prepreg, the glass cloth is exposed from the surface of the prepreg, and the signal layer and the exposed glass cloth are in direct contact with each other, which impairs the insulation reliability. I also learned.

さらに、本発明者等は、ガラスクロスが薄くなるにつれて、ガラスクロスの経糸密度及び緯糸密度を大きくしたり、経糸及び緯糸中のフィラメント本数を多くしたり、過剰な開繊処理を施すことで、隣接する経糸と緯糸とで囲まれる隙間空間が極端に小さくなると、ガラスクロスに内部歪みが生じやすく、タテシワが発生しやすくなるという問題があることも知得した。 Further, the present inventors have increased the warp density and the weft density of the glass cloth as the glass cloth becomes thinner, increased the number of filaments in the warp and the weft, and performed excessive fiber opening treatment. It was also found that when the gap space surrounded by the adjacent warp and weft threads becomes extremely small, the glass cloth tends to be internally distorted and vertical wrinkles are likely to occur.

そこで、本発明者が上記課題を解決すべく鋭意検討したところ、開繊処理前の、経糸及び緯糸の、フィラメント径、フィラメント本数及び織密度から計算される経糸間、緯糸間の隙間設計値を、過剰な開繊を要しないように特定数値以下として設計しておき、ガラスクロス質量を特定質量以下としながら経糸及び緯糸を相互に十分に把持するために、開繊処理後の隣接する経糸間の隙間実測値と隣接する緯糸間の隙間実測値との比を特定範囲内とし、かつ、隣接する経糸及び隣接する緯糸により形成されるバスケットホール(目開き部分)の面積割合を特定範囲とするように開繊処理をおこなうことにより、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際に、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立を図ることができることを見出した。本発明は、かかる知見に基づいて、更に検討を重ねることにより完成するに至った。 Therefore, as a result of diligent studies by the present inventor in order to solve the above problems, the gap design values between the warp threads and the weft threads calculated from the filament diameter, the number of filaments and the weaving density of the warp threads and the weft threads before the fiber opening treatment are obtained. , Designed to be less than or equal to a specific value so as not to require excessive fiber opening, and between adjacent warp threads after fiber opening treatment in order to sufficiently grip the warp and weft while keeping the glass cloth mass below the specific mass. The ratio of the measured gap value and the measured gap between adjacent wefts is within the specified range, and the area ratio of the basket hole (opening portion) formed by the adjacent warp and adjacent weft is set within the specified range. By performing the fiber opening treatment in this manner, when a low-mass glass cloth is impregnated with a resin solution so as to have a low mass ratio of the glass cloth to form a prepreg, the occurrence of pinholes is suppressed and the above-mentioned vertical wrinkles are suppressed. It was found that it is possible to achieve both suppression of occurrence. The present invention has been completed by further studies based on such findings.

すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1.質量が10g/m以下のガラスクロスであって、前記ガラスクロスの、下記式(1)に示す隣接する経糸間の隙間設計値Iwdが95μm以下、及び下記式(2)に示す隣接する緯糸間の隙間設計値Ifdが95μm以下であり、前記ガラスクロスの、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.10以上1.60以下であり、前記ガラスクロスの、下記式(3)で示すバスケットホール面積割合が12%以上20%以下である、ガラスクロス。
隣接する経糸間の隙間設計値Iwd(μm)=(25000/Ww)−(Dw×Nw) ・・・式(1)
隣接する緯糸間の隙間設計値Ifd(μm)=(25000/Wf)−(Df×Nf) ・・・式(2)
バスケットホール面積割合(%)=(Iw×If)/{(25000/Ww)×(25000/Wf)}×100 ・・・式(3)
Ww:ガラスクロスの経糸密度(本/25mm)
Wf:ガラスクロスの緯糸密度(本/25mm)
Dw:ガラスクロスを構成する経糸の平均フィラメント径(μm)
Df:ガラスクロスを構成する緯糸の平均フィラメント径(μm)
Nw:ガラスクロスを構成する経糸の平均フィラメント本数(本)
Nf:ガラスクロスを構成する緯糸の平均フィラメント本数(本)
Iw:ガラスクロス中の隣接する経糸間の隙間実測値(μm)
If:ガラスクロス中の隣接する緯糸間の隙間実測値(μm)
項2.前記隣接する経糸間の隙間設計値Iwdが70μm以上95μm以下、及び前記隣接する緯糸間の隙間設計値Ifdが70μm以上95μm以下であり、前記ガラスクロスの、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.25以上1.45以下であり、前記ガラスクロスのバスケットホール面積割合が12%以上18%以下である、項1に記載のガラスクロス。
項3.項1又は2に記載のガラスクロスを含むプリプレグであって、該プリプレグの質量(g/m)に対する前記ガラスクロスの質量(g/m)の割合(ガラスクロスの質量/プリプレグの質量)が10〜40質量%である、プリプレグ。
項4.質量が10g/m以下のガラスクロスの製造方法であって、前記ガラスクロスの、下記式(1)に示す隣接する経糸間の隙間設計値Iwdが95μm以下、及び下記式(2)に示す隣接する緯糸間の隙間設計値Ifdが95μm以下としつつ、前記ガラスクロスの、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.10以上1.60以下、及び、前記ガラスクロスの、下記式(3)で示すバスケットホール面積割合が12%以上20%以下となるように、開繊処理をおこなうことを特徴とする、ガラスクロスの製造方法。
隣接する経糸間の隙間設計値Iwd(μm)=(25000/Ww)−(Dw×Nw) ・・・式(1)
隣接する緯糸間の隙間設計値Ifd(μm)=(25000/Wf)−(Df×Nf) ・・・式(2)
バスケットホール面積割合(%)=(Iw×If)/{(25000/Ww)×(25000/Wf)}×100 ・・・式(3)
Ww:ガラスクロスの経糸密度(本/25mm)
Wf:ガラスクロスの緯糸密度(本/25mm)
Dw:ガラスクロスを構成する経糸の平均フィラメント径(μm)
Df:ガラスクロスを構成する緯糸の平均フィラメント径(μm)
Nw:ガラスクロスを構成する経糸の平均フィラメント本数(本)
Nf:ガラスクロスを構成する緯糸の平均フィラメント本数(本)
Iw:ガラスクロス中の隣接する経糸間の隙間実測値(μm)
If:ガラスクロス中の隣接する緯糸間の隙間実測値(μm)
That is, the present invention provides the inventions of the following aspects.
Item 1. A glass cloth having a mass of 10 g / m 2 or less, the gap design value Iwd between adjacent warp threads represented by the following formula (1) of the glass cloth is 95 μm or less, and adjacent weft threads represented by the following formula (2). The gap design value Ifd between them is 95 μm or less, and the ratio (Iw / If) of the measured gap value (Iw) between adjacent warp threads and the measured gap value (If) between adjacent weft threads of the glass cloth is 1. .10 or more and 1.60 or less, and the basket hole area ratio of the glass cloth represented by the following formula (3) is 12% or more and 20% or less.
Gap design value between adjacent warp threads Iwd (μm) = (25000 / Ww)-(Dw × Nw) ・ ・ ・ Equation (1)
Gap design value between adjacent wefts Ifd (μm) = (25000 / Wf)-(Df × Nf) ・ ・ ・ Equation (2)
Basket hole area ratio (%) = (Iw × If) / {(25000 / Ww) × (25000 / Wf)} × 100 ・ ・ ・ Equation (3)
Ww: Warp density of glass cloth (book / 25 mm)
Wf: Weft density of glass cloth (book / 25 mm)
Dw: Average filament diameter (μm) of the warp threads constituting the glass cloth
Df: Average filament diameter (μm) of the wefts constituting the glass cloth
Nw: Average number of warp filaments (filament) that make up the glass cloth
Nf: Average number of filaments of wefts constituting the glass cloth (threads)
Iw: Measured value of gap between adjacent warp threads in glass cloth (μm)
If: Measured value of gap between adjacent wefts in glass cloth (μm)
Item 2. The gap design value Iwd between the adjacent warp threads is 70 μm or more and 95 μm or less, and the gap design value Ifd between the adjacent weft threads is 70 μm or more and 95 μm or less, and the gap measured value (Iw) between the adjacent warp threads of the glass cloth. ) And the measured value (If) of the gap between the adjacent weft threads (Iw / If) is 1.25 or more and 1.45 or less, and the basket hole area ratio of the glass cloth is 12% or more and 18% or less. , Item 1. The glass cloth.
Item 3. A prepreg comprising a glass cloth according to claim 1 or 2, wherein the prepreg mass (g / m 2) the glass cloth of the mass with respect to the proportion of (g / m 2) (mass of glass cloth weight / prepreg) Is 10-40% by mass, prepreg.
Item 4. A method for producing a glass cloth having a mass of 10 g / m 2 or less, wherein the gap design value Iwd between adjacent warp threads represented by the following formula (1) of the glass cloth is 95 μm or less, and the following formula (2) is shown. While the gap design value Ifd between adjacent wefts is 95 μm or less, the ratio (Iw / If) of the glass cloth between the measured gap between adjacent warp threads (Iw) and the measured gap between adjacent weft threads (If). ) Is 1.10 or more and 1.60 or less, and the fiber opening treatment is performed so that the basket hole area ratio of the glass cloth represented by the following formula (3) is 12% or more and 20% or less. How to manufacture glass cloth.
Gap design value between adjacent warp threads Iwd (μm) = (25000 / Ww)-(Dw × Nw) ・ ・ ・ Equation (1)
Gap design value between adjacent wefts Ifd (μm) = (25000 / Wf)-(Df × Nf) ・ ・ ・ Equation (2)
Basket hole area ratio (%) = (Iw × If) / {(25000 / Ww) × (25000 / Wf)} × 100 ・ ・ ・ Equation (3)
Ww: Warp density of glass cloth (book / 25 mm)
Wf: Weft density of glass cloth (book / 25 mm)
Dw: Average filament diameter (μm) of the warp threads constituting the glass cloth
Df: Average filament diameter (μm) of the wefts constituting the glass cloth
Nw: Average number of warp filaments (filament) that make up the glass cloth
Nf: Average number of filaments of wefts constituting the glass cloth (threads)
Iw: Measured value of gap between adjacent warp threads in glass cloth (μm)
If: Measured value of gap between adjacent wefts in glass cloth (μm)

本発明のガラスクロスによれば、質量が10g/m以下のガラスクロスであって、隣接する経糸間の隙間設計値Iwdが95μm以下、及び隣接する緯糸間の隙間設計値Ifdが95μmであり、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.10以上1.60以下であり、バスケットホール面積割合が12%以上20%以下であることから、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際に、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立を図ることが可能となる。 According to the glass cloth of the present invention, the glass cloth having a mass of 10 g / m 2 or less has a gap design value Iwd between adjacent warp threads of 95 μm or less and a gap design value Ifd between adjacent weft threads of 95 μm. The ratio (Iw / If) of the measured gap value (Iw) between adjacent warp threads and the measured gap value (If) between adjacent weft threads is 1.10 or more and 1.60 or less, and the basket hole area ratio is 12. Since it is% or more and 20% or less, when a low-mass glass cloth is impregnated with a resin solution so as to have a low mass ratio of the glass cloth to form a prepreg, pinhole generation is suppressed and the above-mentioned vertical wrinkles are suppressed. It is possible to achieve both suppression of occurrence.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明のガラスクロスは、質量が10g/m以下のガラスクロスであって、前記ガラスクロスの、下記式(1)に示す隣接する経糸間の隙間設計値Iwdが95μm以下、及び下記式(2)に示す隣接する緯糸間の隙間設計値Ifdが95μm以下であり、前記ガラスクロスの、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.10以上1.60以下であり、前記ガラスクロスの、下記式(3)で示すバスケットホール面積割合が12%以上20%以下である。
隣接する経糸間の隙間設計値Iwd(μm)=(25000/Ww)−(Dw×Nw) ・・・式(1)
隣接する緯糸間の隙間設計値Ifd(μm)=(25000/Wf)−(Df×Nf) ・・・式(2)
バスケットホール面積割合(%)=(Iw×If)/{(25000/Ww)×(25000/Wf)}×100・・・式(3)
Ww:ガラスクロスの経糸密度(本/25mm)
Wf:ガラスクロスの緯糸密度(本/25mm)
Dw:ガラスクロスを構成する経糸の平均フィラメント径(μm)
Df:ガラスクロスを構成する緯糸の平均フィラメント径(μm)
Nw:ガラスクロスを構成する経糸の平均フィラメント本数(本)
Nf:ガラスクロスを構成する緯糸の平均フィラメント本数(本)
Iw:ガラスクロス中の隣接する経糸間の隙間実測値(μm)
If:ガラスクロス中の隣接する緯糸間の隙間実測値(μm)
The glass cloth of the present invention is a glass cloth having a mass of 10 g / m 2 or less, and the gap design value Iwd between adjacent warp threads represented by the following formula (1) of the glass cloth is 95 μm or less, and the following formula ( The gap design value Ifd between adjacent wefts shown in 2) is 95 μm or less, and the ratio of the measured gap between adjacent warp threads (Iw) and the measured gap between adjacent wefts (If) of the glass cloth. (Iw / If) is 1.10 or more and 1.60 or less, and the basket hole area ratio of the glass cloth represented by the following formula (3) is 12% or more and 20% or less.
Gap design value between adjacent warp threads Iwd (μm) = (25000 / Ww)-(Dw × Nw) ・ ・ ・ Equation (1)
Gap design value between adjacent wefts Ifd (μm) = (25000 / Wf)-(Df × Nf) ・ ・ ・ Equation (2)
Basket hole area ratio (%) = (Iw × If) / {(25000 / Ww) × (25000 / Wf)} × 100 ... Equation (3)
Ww: Warp density of glass cloth (book / 25 mm)
Wf: Weft density of glass cloth (book / 25 mm)
Dw: Average filament diameter (μm) of the warp threads constituting the glass cloth
Df: Average filament diameter (μm) of the wefts constituting the glass cloth
Nw: Average number of warp filaments (filament) that make up the glass cloth
Nf: Average number of filaments of wefts constituting the glass cloth (threads)
Iw: Measured value of gap between adjacent warp threads in glass cloth (μm)
If: Measured value of gap between adjacent wefts in glass cloth (μm)

本発明のガラスクロスは、質量が10g/m以下であり、9.5g/m以下が好ましく、9.0g/m以下がより好ましい。上記質量の範囲の下限値については特に制限されないが、例えば、5.0g/m以上が好ましく、6.0g/m以上がより好ましく、7.0g/m以上がより好ましく、8.0g/m以上がさらに好ましい。なお、本発明において、上記質量は、JIS R 3420:2103 7.2に準じて測定、算出されるものである。 Glass cloth of the present invention, the mass is less 10 g / m 2, preferably from 9.5 g / m 2 or less, more preferably 9.0 g / m 2. The lower limit of the above mass range is not particularly limited, but for example, 5.0 g / m 2 or more is preferable, 6.0 g / m 2 or more is more preferable, 7.0 g / m 2 or more is more preferable, and 8. 0 g / m 2 or more is more preferable. In the present invention, the mass is measured and calculated according to JIS R 3420: 2103 7.2.

本発明のガラスクロスは、下記式(1)に示す隣接する経糸間の隙間設計値Iwdが95μm以下、及び下記式(2)に示す隣接する緯糸間の隙間設計値Ifdが95μm以下である。上記経糸間の隙間設計値及び緯糸間の隙間設計値の下限値については特に制限されないが、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立をより一層図りやすくするという観点から、60μm以上が好ましく、70μm以上がより好ましく、85μm以上がさらに好ましい。 In the glass cloth of the present invention, the gap design value Iwd between adjacent warp threads represented by the following formula (1) is 95 μm or less, and the gap design value Ifd between adjacent weft threads represented by the following formula (2) is 95 μm or less. The lower limit of the gap design value between the warp threads and the gap design value between the weft threads is not particularly limited, but 60 μm from the viewpoint of making it easier to achieve both the suppression of pinhole occurrence and the suppression of vertical wrinkle generation. The above is preferable, 70 μm or more is more preferable, and 85 μm or more is further preferable.

隣接する経糸間の隙間設計値Iwd(μm)=(25000/Ww)−(Dw×Nw) ・・・式(1)
隣接する緯糸間の隙間設計値Ifd(μm)=(25000/Wf)−(Df×Nf) ・・・式(2)
Ww:ガラスクロスの経糸密度(本/25mm)
Wf:ガラスクロスの緯糸密度(本/25mm)
Dw:ガラスクロスを構成する経糸の平均フィラメント径(μm)
Df:ガラスクロスを構成する緯糸の平均フィラメント径(μm)
Nw:ガラスクロスを構成する経糸の平均フィラメント本数(本)
Nf:ガラスクロスを構成する緯糸の平均フィラメント本数(本)
Gap design value between adjacent warp threads Iwd (μm) = (25000 / Ww)-(Dw × Nw) ・ ・ ・ Equation (1)
Gap design value between adjacent wefts Ifd (μm) = (25000 / Wf)-(Df × Nf) ・ ・ ・ Equation (2)
Ww: Warp density of glass cloth (book / 25 mm)
Wf: Weft density of glass cloth (book / 25 mm)
Dw: Average filament diameter (μm) of the warp threads constituting the glass cloth
Df: Average filament diameter (μm) of the wefts constituting the glass cloth
Nw: Average number of warp filaments (filament) that make up the glass cloth
Nf: Average number of filaments of wefts constituting the glass cloth (threads)

上記経糸の隙間設計値及び緯糸の隙間設計値は、まず、複数のフィラメントからなる経糸及び緯糸(ガラス糸)中において、該ガラス糸を構成する全てのフィラメントがガラス糸幅方向に隙間なく一列に配置されたと仮想する。このとき、該仮想において、仮想的なガラス糸の幅(μm)は、平均フィラメント径×平均フィラメント本数(すなわち、経糸の場合はDw×Nw)で算出できる。次に、織密度(経糸密度はWw、緯糸密度はWf)は、後述するように25mm(25000μm)間のガラス糸本数であることから、25000μmを織密度で除する(経糸の場合25000/Ww)ことで、ガラス糸の幅と隣り合うガラス糸同士の隙間間隔との和が算出できる。そして、ガラス糸の幅と隣り合うガラス糸同士の和から、上記仮想的なガラス糸幅を減じることで、上記仮想における、仮想的な隣接する経糸間の隙間間隔及び仮想的な隣接する経糸間の隙間間隔が算出でき、これらを夫々隣接する経糸間の隙間設計値及び隣接する緯糸間の隙間設計値とする。 The gap design value of the warp yarn and the gap design value of the weft yarn are obtained by first, in the warp yarn and the weft yarn (glass yarn) composed of a plurality of filaments, all the filaments constituting the glass yarn are arranged in a row without a gap in the glass yarn width direction. Virtually placed. At this time, in the virtual, the width (μm) of the virtual glass yarn can be calculated by multiplying the average filament diameter by the average number of filaments (that is, Dw × Nw in the case of warp yarns). Next, since the weaving density (warp density is Ww and weft density is Wf) is the number of glass threads between 25 mm (25,000 μm) as described later, 25,000 μm is divided by the weave density (25,000 / Ww in the case of warp threads). ) Therefore, the sum of the width of the glass threads and the gap spacing between the adjacent glass threads can be calculated. Then, by subtracting the virtual glass thread width from the sum of the widths of the glass threads and the adjacent glass threads, the gap spacing between the virtual adjacent warp threads and the virtual adjacent warp threads in the virtual state are obtained. The gap spacing can be calculated, and these are used as the gap design value between adjacent warp yarns and the gap design value between adjacent weft yarns, respectively.

本発明者は、特許文献2で具体的な実施例として挙げられているガラスクロスは、上記経糸の隙間設計値及び緯糸の隙間設計値が100μmを越えるものとして設計されており、これを過剰な開繊処理によって隙間を小さくする手法を採っていること、当該手法では、各フィラメントが緩んだ状態でガラスクロス中に存在することとなり、これに起因して、特に緯糸を構成する各フィラメントが目曲がりを起こし、これに起因してタテシワが発生しやすくなると考えた。そして、本発明者は、経糸の隙間設計値及び緯糸の隙間設計値を特定範囲以下とすることにより、上記タテシワの発生とピンホール抑制を図れることを見出したのである。 The present inventor has designed the glass cloth given as a specific example in Patent Document 2 so that the gap design value of the warp and the gap design value of the weft exceed 100 μm, which is excessive. A method is adopted in which the gap is reduced by the fiber opening treatment. In this method, each filament is present in the glass cloth in a loosened state, and due to this, each filament constituting the weft is particularly eye-catching. It caused bending, and it was thought that vertical wrinkles were likely to occur due to this. Then, the present inventor has found that the occurrence of vertical wrinkles and the suppression of pinholes can be achieved by setting the gap design value of the warp and the gap design value of the weft to a specific range or less.

本発明のガラスクロスにおいて、ガラスクロスの経糸密度Ww及び緯糸密度Wf(本/25mm)は、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際に、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立をより一層図りやすくする観点から、90〜160本/25mmが好ましく、95〜150本/25mmがより好ましく、100〜120本/25mmがさらに好ましい。なお、本発明において、経糸密度及び緯糸密度は、JIS R 3420 2013 7.9に従い、測定、算出されるものである。 In the glass cloth of the present invention, the warp density Ww and the weft density Wf (25 mm) of the glass cloth are prepared by impregnating a low-mass glass cloth with a resin solution so that the mass ratio of the glass cloth is low. From the viewpoint of making it easier to achieve both the suppression of pinhole generation and the suppression of vertical wrinkle generation, 90 to 160 lines / 25 mm is preferable, 95 to 150 lines / 25 mm is more preferable, and 100 to 100 to 120 pieces / 25 mm is more preferable. In the present invention, the warp density and the weft density are measured and calculated according to JIS R 3420 2013 7.9.

本発明のガラスクロスにおいて、ガラスクロスを構成する経糸(ガラス糸)を構成するフィラメントの平均フィラメント径Dw及び緯糸(ガラス糸)を構成するフィラメントの平均フィラメント径Dfは、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際に、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立をより一層図りやすくする観点から、2.5〜4.0μmが好ましく、3.0〜3.7μmがより好ましい。 In the glass cloth of the present invention, the average filament diameter Dw of the filaments constituting the warp threads (glass threads) constituting the glass cloth and the average filament diameter Df of the filaments constituting the weft threads (glass threads) are such that a low-mass glass cloth is used. 2. From the viewpoint of making it easier to achieve both suppression of pinhole generation and suppression of vertical wrinkle generation when impregnating a resin solution so that the mass ratio of the glass cloth is low to form a prepreg. It is preferably 5 to 4.0 μm, more preferably 3.0 to 3.7 μm.

本発明のガラスクロスにおいて、ガラスクロスを構成する経糸(ガラス糸)を構成するフィラメントの平均本数Nw及び緯糸(ガラス糸)を構成するフィラメントの平均フィラメント本数Nfは、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際に、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立をより一層図りやすくする観点から、25〜50本が好ましく、30〜40本がより好ましい。 In the glass cloth of the present invention, the average number of filaments Nw constituting the warp threads (glass threads) constituting the glass cloth and the average number of filaments Nf of the filaments constituting the weft threads (glass threads) are such that a low-mass glass cloth is used as the glass. When impregnating a resin solution so that the mass ratio of the cloth is low to form a prepreg, from the viewpoint of making it easier to achieve both suppression of pinhole generation and suppression of vertical wrinkle generation, 25 to 50 Books are preferred, and 30-40 are more preferred.

なお、本発明において、上記平均フィラメント径(Dw及びDf)、並びに上記平均フィラメント本数(Nw及びNf)は、次のように測定、算出されるものである。 In the present invention, the average filament diameter (Dw and Df) and the average number of filaments (Nw and Nf) are measured and calculated as follows.

すなわち、得られたガラスクロスを30cm角にカットしたものを2枚用意し、一方を経糸観察用、他方を緯糸観察用として、それぞれをエポキシ樹脂(丸本ストルアス株式会社製商品名3091)に包埋して硬化させ、経糸、緯糸が観察可能な程度に研磨し、SEM(日本電子株式会社製商品名JSM−6390A)を用い、フィラメント直径は倍率1000倍で、フィラメント本数は倍率500倍で観察、測定をおこなう。
(1)ガラス糸の平均フィラメント直径(μm)
経糸、緯糸それぞれについて無作為に30本選び、該30本のガラス糸の全フィラメントの直径(最も大きい部分)を測定して平均値を算出し、経糸及び緯糸の平均フィラメント直径とする。
(2)平均フィラメント本数(本)
経糸、緯糸それぞれについて無作為に20本選び、20本のガラス糸の全フィラメント数を測定して平均値を算出し、経糸及び緯糸の平均フィラメント直径とする。
That is, two pieces of the obtained glass cloth cut into 30 cm squares are prepared, one for observing warp threads and the other for observing weft threads, and each is wrapped in epoxy resin (trade name 3091 manufactured by Marumoto Struas Co., Ltd.). It is buried and cured, polished to the extent that warp and weft can be observed, and observed using SEM (trade name JSM-6390A manufactured by JEOL Ltd.) with a filament diameter of 1000 times and a number of filaments of 500 times. , Make a measurement.
(1) Average filament diameter (μm) of glass thread
Thirty warp threads and weft threads are randomly selected, and the diameters (largest portions) of all filaments of the 30 glass threads are measured to calculate an average value, which is used as the average filament diameter of the warp threads and weft threads.
(2) Average number of filaments (filament)
Twenty warp threads and weft threads are randomly selected, and the total number of filaments of the 20 glass threads is measured to calculate the average value, which is used as the average filament diameter of the warp threads and the weft threads.

本発明のガラスクロスにおいて、経糸及び緯糸の番手(tex)としては、特に制限されないが、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際に、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立をより一層図りやすくする観点から、0.5〜1.2texが好ましく、0.6〜1.1texがより好ましく、0.9〜1.1texがさらに好ましい。なお、本発明において、経糸及び緯糸の番手は、JIS R 3420 2013 7.1に準じて、測定、算出するものである。 In the glass cloth of the present invention, the count (tex) of the warp and weft is not particularly limited, but a low-mass glass cloth is impregnated with a resin solution so that the mass ratio of the glass cloth is low, and the prepreg is used. From the viewpoint of making it easier to achieve both suppression of pinhole generation and suppression of vertical wrinkle generation, 0.5 to 1.2 tex is preferable, 0.6 to 1.1 tex is more preferable, and 0 .9 to 1.1 tex is more preferable. In the present invention, the counts of the warp and the weft are measured and calculated according to JIS R 3420 2013 7.1.

本発明において、経糸及び緯糸を構成するガラス材料については、特に制限されず、公知のガラス材料を用いることができる。ガラス材料としては、具体的には、無アルカリガラス(Eガラス)、耐酸性の含アルカリガラス(Cガラス)、高強度・高弾性率ガラス(Sガラス、Tガラス、UTガラス(ユニチカグラスファイバー株式会社製)等)、耐アルカリ性ガラス(ARガラス)、低誘電ガラス(NEガラス、Lガラス、LUガラス(ユニチカグラスファイバー株式会社製)等)等が挙げられる。これらのガラス材料の中でも、好ましくは汎用性の高い無アルカリガラス(Eガラス)が挙げられる。ガラス繊維布帛2を構成するガラス繊維は、1種類のガラス材料からなるものであってもよいし、異なるガラス材料からなるガラス繊維を2種類以上組み合わせたものであってもよい。 In the present invention, the glass material constituting the warp and weft is not particularly limited, and a known glass material can be used. Specific examples of the glass material include non-alkali glass (E glass), acid-resistant alkali-containing glass (C glass), high-strength and high-elasticity glass (S glass, T glass, UT glass (Unitica glass fiber stock). (Manufactured by the company), etc.), alkali resistant glass (AR glass), low dielectric glass (NE glass, L glass, LU glass (manufactured by Unitica Glass Fiber Co., Ltd.), etc.) and the like. Among these glass materials, preferably non-alkali glass (E glass) having high versatility can be mentioned. The glass fiber constituting the glass fiber cloth 2 may be made of one kind of glass material, or may be a combination of two or more kinds of glass fibers made of different glass materials.

本発明のガラスクロスは、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.10以上1.60以下であり、1.20以上1.45以下がより好ましく、1.30以上1.40以下がさらに好ましい。上記比が1.60以下とすることにより、経糸による緯糸の把持が十分となり、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸して硬化する際に、緯糸がガラスクロス幅方向に微妙に動くことを抑制し、これに起因してタテシワの発生を防ぎやすくなる。また、上記比が1.10以上とすることにより、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸して硬化する際にピンホールの発生を抑制しやすくなる。 In the glass cloth of the present invention, the ratio (Iw / If) of the measured gap value (Iw) between adjacent warp threads and the measured gap value (If) between adjacent weft threads is 1.10 or more and 1.60 or less. It is more preferably 1.20 or more and 1.45 or less, and further preferably 1.30 or more and 1.40 or less. When the above ratio is 1.60 or less, the weft threads are sufficiently gripped by the warp threads, and when the low-mass glass cloth is impregnated with the resin solution and cured so that the mass ratio of the glass cloth is low. , It suppresses the weft from moving slightly in the width direction of the glass cloth, which makes it easier to prevent the occurrence of vertical wrinkles. Further, by setting the above ratio to 1.10 or more, the occurrence of pinholes is suppressed when the low-mass glass cloth is impregnated with the resin solution and cured so that the mass ratio of the glass cloth is low. It will be easier.

なお、本発明において、隣接する経糸間の隙間実測値及び隣接する緯糸間の隙間実測値は、次のように測定、算出される。すなわち、まず、ガラスクロスにおいて、任意に選ばれた3箇所から、経糸、緯糸ともに隙間が連続して100箇所ずつ観察できる大きさにカットし、サンプルとする。次いで、該サンプルについて、マイクロスコープを用い、倍率150倍で隙間間隔の観察、測定をおこなう。具体的に、ガラスクロス平面の法線方向から、クロス経方向、緯方向それぞれ同一直線上に連続する隙間間隔100箇所ずつについて観察する。それを上記任意に選ばれた3箇所についておこない、経糸、緯糸ともに合計300箇所ずつ測定し、当該300箇所の平均値を隙間実測値とする。 In the present invention, the measured gap value between adjacent warp threads and the measured gap value between adjacent weft threads are measured and calculated as follows. That is, first, in the glass cloth, the warp and weft threads are cut from three arbitrarily selected points to a size in which 100 consecutive gaps can be observed, and the sample is used as a sample. Next, the sample is observed and measured at a magnification of 150 times with a microscope. Specifically, from the normal direction of the glass cloth plane, the cross warp direction and the weft direction are observed at 100 continuous gap intervals on the same straight line. This is performed for the above-mentioned three arbitrarily selected points, and the warp and weft threads are measured at a total of 300 points, and the average value of the 300 points is used as the measured gap value.

本発明のガラスクロスにおいて、隣接する経糸間の隙間実測値(Iw)としては、例えば、70〜120μmが挙げられ、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際に、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立をより一層図る観点から、80〜110μmがより好ましく、100〜110μmがさらに好ましい。また、本発明のガラスクロスにおいて、隣接する緯糸間の隙間実測値(If)としては、例えば、60〜100μmが挙げられ、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際に、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立をより一層図る観点から、70〜90μmがより好ましく、75〜80μmがさらに好ましい。 In the glass cloth of the present invention, an actual measurement value (Iw) of a gap between adjacent warp threads is, for example, 70 to 120 μm, and a resin is used to reduce the mass ratio of the glass cloth to a low mass. When the solution is impregnated into a prepreg, 80 to 110 μm is more preferable, and 100 to 110 μm is further preferable, from the viewpoint of further suppressing the occurrence of pinholes and the above-mentioned vertical wrinkles. Further, in the glass cloth of the present invention, the measured gap value (If) between adjacent weft threads is, for example, 60 to 100 μm, so that the mass ratio of the low mass glass cloth is low. When the glass is impregnated with the resin solution to form a prepreg, 70 to 90 μm is more preferable, and 75 to 80 μm is further preferable, from the viewpoint of further suppressing the occurrence of pinholes and the above-mentioned vertical wrinkles.

本発明のガラスクロスにおいて、隣接する経糸間の隙間設計値Iwd(μm)に対する、隣接する経糸間の隙間実測値(Iw)の比(Iw/Iwd)としては、例えば、1.00〜1.30が挙げられ、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際に、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立をより一層図る観点から、1.10〜1.18が好ましく挙げられる。また、隣接する緯糸間の隙間設計値Ifd(μm)に対する、隣接する緯糸間の隙間実測値(If)の比(If/Ifd)としては、例えば、0.70〜1.00が挙げられ、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際に、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立をより一層図る観点から、0.80〜1.00が好ましく挙げられる。 In the glass cloth of the present invention, the ratio (Iw / Iwd) of the measured gap value (Iw) between adjacent warp threads to the gap design value Iwd (μm) between adjacent warp threads is, for example, 1.00 to 1. 30 is mentioned, and when a low-mass glass cloth is impregnated with a resin solution so as to have a low mass ratio of the glass cloth to form a prepreg, the occurrence of pinholes and the suppression of vertical wrinkles are suppressed. From the viewpoint of further achieving both, 1.10 to 1.18 are preferably mentioned. Further, as the ratio (If / Ifd) of the gap measured value (If) between adjacent wefts to the gap design value Ifd (μm) between adjacent wefts, for example, 0.70 to 1.00 can be mentioned. When a low-mass glass cloth is impregnated with a resin solution so as to have a low mass ratio of the glass cloth to form a prepreg, both suppression of pinhole generation and suppression of vertical wrinkle generation are further achieved. From the viewpoint, 0.80 to 1.00 is preferably mentioned.

本発明のガラスクロスは、下記式(3)で示すバスケットホール面積割合が12%以上20%以下であり、12%以上18%以下が好ましく、14%以上17%以下がより好ましい。
バスケットホール面積割合(%)=(Iw×If)/{(25000/Ww)×(25000/Wf)}×100 ・・・式(3)
Iw:隣接する経糸間の隙間実測値(μm)
If:隣接する緯糸間の隙間実測値(μm)
Ww:ガラスクロスの経糸密度(本/25mm)
Wf:ガラスクロスの緯糸密度(本/25mm)
In the glass cloth of the present invention, the basket hole area ratio represented by the following formula (3) is 12% or more and 20% or less, preferably 12% or more and 18% or less, and more preferably 14% or more and 17% or less.
Basket hole area ratio (%) = (Iw × If) / {(25000 / Ww) × (25000 / Wf)} × 100 ・ ・ ・ Equation (3)
Iw: Measured value of gap between adjacent warp threads (μm)
If: Measured value of gap between adjacent weft threads (μm)
Ww: Warp density of glass cloth (book / 25 mm)
Wf: Weft density of glass cloth (book / 25 mm)

本発明のガラスクロスは、バスケットホール面積割合を12%以上とすることにより、ガラスクロスに内部歪みが生じにくくなり、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際にタテシワが発生しにくくなる。また、本発明のガラスクロスは、バスケットホール面積が20%以下とすることにより、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際にピンホールの発生を抑制しやすくなる。 In the glass cloth of the present invention, by setting the basket hole area ratio to 12% or more, internal distortion is less likely to occur in the glass cloth, and the low mass glass cloth is made of a resin so that the mass ratio of the glass cloth is low. Vertical wrinkles are less likely to occur when the solution is impregnated into a prepreg. Further, in the glass cloth of the present invention, when the basket hole area is 20% or less, a low mass glass cloth is impregnated with a resin solution so that the mass ratio of the glass cloth is low to form a prepreg. It becomes easier to suppress the occurrence of pinholes.

本発明のガラスクロスにおいて、バスケットホール面積としては、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際に、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立をより一層図る観点から、例えば、3000〜12000μmが挙げられ、5000〜9000μmがより好ましく、7500〜8500μmがさらに好ましい。なお、上記バスケットホール面積は、前述した隣接する経糸間の隙間実測値Iw(μm)と隣接する緯糸間の隙間実測値If(μm)とを乗じることにより算出されるものである。 In the glass cloth of the present invention, the basket hole area is such that when a low-mass glass cloth is impregnated with a resin solution so as to have a low mass ratio of the glass cloth to form a prepreg, the occurrence of pinholes is suppressed. From the viewpoint of further suppressing the occurrence of vertical wrinkles, for example, 3000 to 12000 μm 2 is mentioned, 5000 to 9000 μm 2 is more preferable, and 7500 to 8500 μm 2 is further preferable. The basket hole area is calculated by multiplying the measured gap value Iw (μm) between adjacent warp threads and the measured gap value If (μm) between adjacent weft threads.

本発明のガラスクロスにおいて、バスケットホール面積設計値としては、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際に、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立をより一層図る観点から、例えば、例えば、3000〜12000μmが挙げられ、5000〜9000μmがより好ましく、7500〜8500μmがさらに好ましい。なお、本発明において、バスケットホール面積設計値は、前述した隣接する経糸間の隙間設計値Iwd(μm)と隣接する緯糸間の隙間設計値Ifd(μm)とを乗じることにより算出されるものである。 In the glass cloth of the present invention, as a basket hole area design value, pinholes are generated when a low-mass glass cloth is impregnated with a resin solution so as to have a low mass ratio of the glass cloth to form a prepreg. From the viewpoint of further achieving both suppression and suppression of vertical wrinkle generation, for example, 3000 to 12000 μm 2 is mentioned, 5000 to 9000 μm 2 is more preferable, and 7500 to 8500 μm 2 is further preferable. In the present invention, the baskethole area design value is calculated by multiplying the above-mentioned gap design value Iwd (μm) between adjacent warp threads and the gap design value Ifd (μm) between adjacent weft threads. is there.

本発明のガラスクロスにおいて、上記したバスケットホール面積設計値に対するバスケットホール面積の比(バスケットホール面積/バスケットホール面積設計値)としては、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際に、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立をより一層図る観点から、0.8〜1.2が挙げられ、0.9〜1.1がより好ましく挙げられる。 In the glass cloth of the present invention, the ratio of the basket hole area to the above-mentioned basket hole area design value (basket hole area / basket hole area design value) is such that a low mass glass cloth has a low mass ratio of the glass cloth. From the viewpoint of further suppressing the occurrence of pinholes and the above-mentioned vertical wrinkles when impregnating the resin solution so as to form a prepreg, 0.8 to 1.2 can be mentioned. 9 to 1.1 are more preferable.

本発明のガラスクロスの厚さとしては、例えば、12μm以下が好ましく、11μm以下がより好ましい。下限値としては、例えば、6μm以上が挙げられ、7μm以上が好ましく挙げられる。 The thickness of the glass cloth of the present invention is, for example, preferably 12 μm or less, more preferably 11 μm or less. As the lower limit value, for example, 6 μm or more is mentioned, and 7 μm or more is preferably mentioned.

ガラスクロスの織組織としては、特に制限されないが、例えば、平織、朱子織、綾織、斜子織、畦織などが挙げられる。中でも、平織が好ましい。また、本発明のガラスクロスは、ガラスクロスロール製品とすることが好ましい。当該ガラスクロスロール製品の長さとしては、例えば、100m以上が挙げられる。 The weaving structure of the glass cloth is not particularly limited, and examples thereof include plain weave, satin weave, twill weave, diagonal weave, and ridge weave. Of these, plain weave is preferable. Further, the glass cloth of the present invention is preferably a glass cloth roll product. Examples of the length of the glass cloth roll product include 100 m or more.

次に、本発明のガラスクロスの製造方法について説明する。 Next, the method for producing the glass cloth of the present invention will be described.

本発明のガラスクロスの製造方法は、質量が10g/m以下のガラスクロスの製造方法であって、前記ガラスクロスの、下記式(1)に示す隣接する経糸間の隙間設計値Iwdが95μm以下、及び下記式(2)に示す隣接する緯糸間の隙間設計値Ifdが95μm以下としつつ、前記ガラスクロスの、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.10以上1.60以下、及び、前記ガラスクロスの、下記式(3)で示すバスケットホール面積割合が12%以上20%以下となるように、開繊処理をおこなう。
隣接する経糸間の隙間設計値Iwd(μm)=(25000/Ww)−(Dw×Nw) ・・・式(1)
隣接する緯糸間の隙間設計値Ifd(μm)=(25000/Wf)−(Df×Nf) ・・・式(2)
バスケットホール面積割合(%)=(Iw×If)/{(25000/Ww)×(25000/Wf)}×100 ・・・式(3)
Ww:ガラスクロスの経糸密度(本/25mm)
Wf:ガラスクロスの緯糸密度(本/25mm)
Dw:ガラスクロスを構成する経糸の平均フィラメント径(μm)
Df:ガラスクロスを構成する緯糸の平均フィラメント径(μm)
Nw:ガラスクロスを構成する経糸の平均フィラメント本数(本)
Nf:ガラスクロスを構成する緯糸の平均フィラメント本数(本)
Iw:ガラスクロス中の隣接する経糸間の隙間実測値(μm)
If:ガラスクロス中の隣接する緯糸間の隙間実測値(μm)
The method for producing a glass cloth of the present invention is a method for producing a glass cloth having a mass of 10 g / m 2 or less, and the gap design value Iwd between adjacent warp threads represented by the following formula (1) of the glass cloth is 95 μm. Below, while setting the gap design value Ifd between adjacent wefts shown in the following formula (2) to 95 μm or less, the measured gap between adjacent warp threads (Iw) and the measured gap between adjacent wefts of the glass cloth The ratio (Iw / If) to (If) is 1.10 or more and 1.60 or less, and the basket hole area ratio of the glass cloth represented by the following formula (3) is 12% or more and 20% or less. , Perform fiber opening treatment.
Gap design value between adjacent warp threads Iwd (μm) = (25000 / Ww)-(Dw × Nw) ・ ・ ・ Equation (1)
Gap design value between adjacent wefts Ifd (μm) = (25000 / Wf)-(Df × Nf) ・ ・ ・ Equation (2)
Basket hole area ratio (%) = (Iw × If) / {(25000 / Ww) × (25000 / Wf)} × 100 ・ ・ ・ Equation (3)
Ww: Warp density of glass cloth (book / 25 mm)
Wf: Weft density of glass cloth (book / 25 mm)
Dw: Average filament diameter (μm) of the warp threads constituting the glass cloth
Df: Average filament diameter (μm) of the wefts constituting the glass cloth
Nw: Average number of warp filaments (filament) that make up the glass cloth
Nf: Average number of filaments of wefts constituting the glass cloth (threads)
Iw: Measured value of gap between adjacent warp threads in glass cloth (μm)
If: Measured value of gap between adjacent wefts in glass cloth (μm)

上記のようにガラスクロスを構成する経糸及び緯糸の織密度、当該経糸及び緯糸を構成するフィラメントの平均直径及び本数を調整して上記隣接する経糸間の隙間設計値及び隣接する緯糸間の隙間設計値としておいて、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.10以上1.60以下、及び、バスケットホール面積割合が12%以上20%以下となるように開繊処理を施すことで、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際に、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立を図ることができる。 As described above, the weaving density of the warp and weft that make up the glass cloth, the average diameter and the number of filaments that make up the warp and the weft are adjusted to design the gap between the adjacent warp and the gap design between the adjacent weft. As for the values, the ratio (Iw / If) of the measured gap value (Iw) between adjacent warp threads and the measured gap value (If) between adjacent weft threads is 1.10 or more and 1.60 or less, and the basket hole. When a low-mass glass cloth is impregnated with a resin solution so that the mass ratio of the glass cloth is low by performing a fiber opening treatment so that the area ratio is 12% or more and 20% or less to form a prepreg. In addition, it is possible to achieve both suppression of pinhole generation and suppression of vertical wrinkle generation.

開繊処理する方法としては、例えば、得られたガラスクロスに水流の圧力による開繊処理、水(例えば脱気水、イオン交換水、脱イオン水、電解陽イオン水又は電解陰イオン水等)等を媒体とした高周波振動による開繊処理、ロールによる加圧での加工処理等が挙げられる。かかる開繊処理は織成と同時に行ってもよいし、織成後に行ってもよい。後述するヒートクリーニング前或いは後若しくはヒートクリーニングと同時に行ってもよいし、後述する表面処理と同時に若しくは後に行ってもよい。また、経糸と緯糸の開繊程度を調整する方法としては、公知の手法が採用でき、経糸張力を調整する方法、緯方向にもピンチエキスパンダー、湾曲ゴムローラー、回転周動ローラー、ミラボーローラー、又はテンターといった方法を採用して経糸方向と緯糸方向との張力バランスを調整、付与しながら開繊をおこなう方法、又はこれらを組み合わせる方法等が挙げられる。 As a method for opening the fibers, for example, the obtained glass cloth is subjected to the opening treatment by the pressure of a water stream, and water (for example, degassed water, ion-exchanged water, deionized water, electrolytic cation water, electrolytic anion water, etc.). Examples thereof include fiber opening treatment by high-frequency vibration using the above as a medium, processing treatment by pressurization with a roll, and the like. Such opening treatment may be performed at the same time as weaving, or may be performed after weaving. It may be performed before or after heat cleaning described later or at the same time as heat cleaning, or may be performed at the same time as or after surface treatment described later. In addition, as a method for adjusting the degree of opening of the warp and weft, a known method can be adopted, a method for adjusting the warp tension, a pinch expander, a curved rubber roller, a rotary rotating roller, a Mirabo roller, or a method for adjusting the weft direction. Examples thereof include a method of adjusting and applying a tension balance between the warp and weft directions by adopting a method such as a tenter to open the fibers, or a method of combining these.

中でも、開繊処理する方法として、水流加工の圧力を0.9〜1.1MPaとし、経糸方向(ガラスクロス長さ方向)の張力が18〜22N/mとし、緯糸をテンターで把持しながらヨコ方向にも5〜10N/mの張力を付与して開繊処理を施すと、より一層、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.10以上1.60以下、及び、バスケットホール面積割合が12%以上20%以下としやすくなる。 Among them, as a method of opening fibers, the pressure of water flow processing is set to 0.9 to 1.1 MPa, the tension in the warp direction (glass cloth length direction) is set to 18 to 22 N / m, and the weft is held by a tenter while being wefted. When the fiber opening treatment is performed by applying a tension of 5 to 10 N / m in the direction, the ratio of the measured gap between adjacent warp yarns (Iw) and the measured gap between adjacent weft yarns (If) is further increased. (Iw / If) is likely to be 1.10 or more and 1.60 or less, and the basket hole area ratio is 12% or more and 20% or less.

本発明のガラスクロスの製造方法において、ガラスクロスの織成方法としては、従来公知の任意の方法を採用すればよく、例えば、経糸を整経工程及び糊付工程を施した後、ジェット織機(例えば、エアージェット織機、ウォータージェット織機等)、スルザー織機、レピヤー織機等を用いて緯糸を緯糸として打ち込むことが挙げられる。 In the method for producing a glass cloth of the present invention, any conventionally known method may be adopted as a method for weaving the glass cloth. For example, after the warp threads are subjected to a warping step and a gluing step, a jet loom ( For example, an air jet loom, a water jet loom, etc.), a sulzer loom, a repeater loom, or the like is used to drive the weft into the weft.

織成したガラスクロスに、集束剤等、プリプレグとする際の樹脂の密着性、含浸性を阻害する物質が付着している場合は、例えば、ヒートクリーニング処理等により該物質を除去するのが好ましい。更に、ヒートクリーニング処理されたガラスクロスは従来公知のシランカップリング剤で表面処理が施されるのが好ましい。かかる表面処理手段は、従来公知の手段でよく、例えば、シランカップリング剤をガラスクロスに含浸する方法、塗布する方法、スプレーする方法等が挙げられる。 When a substance that inhibits the adhesion and impregnation property of the resin used as a prepreg, such as a sizing agent, is attached to the woven glass cloth, it is preferable to remove the substance by, for example, a heat cleaning treatment. Further, it is preferable that the heat-cleaned glass cloth is surface-treated with a conventionally known silane coupling agent. Such a surface treatment means may be a conventionally known means, and examples thereof include a method of impregnating a glass cloth with a silane coupling agent, a method of coating, a method of spraying, and the like.

本発明のプリプレグは、前述した本発明のガラスクロスを含み、該プリプレグの質量(g/m)に対する前記ガラスクロスの質量(g/m)の割合(ガラスクロスの質量/プリプレグの質量)が10〜40質量%であり、20〜30質量%がより好ましい。本発明のプリプレグは、本発明のガラスクロスを含むことから、プリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合を上記範囲としても、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立を図ることが可能となる。 The prepreg of the present invention comprises a glass cloth of the present invention described above, (the weight of glass cloth weight / prepreg) ratio of the glass cloth of the mass relative to the mass (g / m 2) of the prepreg (g / m 2) Is 10 to 40% by mass, more preferably 20 to 30% by mass. Since the prepreg of the present invention contains the glass cloth of the present invention, even if the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) is within the above range, the occurrence of pinholes can be suppressed. , It is possible to achieve both the above-mentioned suppression of vertical wrinkles.

本発明のプリプレグは、ガラスクロスに加え、熱硬化性樹脂と、ガラスクロス以外の無機充填剤を含むことができる。 The prepreg of the present invention can contain a thermosetting resin and an inorganic filler other than the glass cloth in addition to the glass cloth.

熱硬化性樹脂としては、熱により硬化する樹脂であれば特に限定されないが、例えば、フェノール樹脂、エポキシ樹脂、非ハロゲン系エポキシ樹脂、シアネート樹脂、マレイミド樹脂、ビスマレイミド樹脂、変性ビスマレイミド樹脂、イソシアネート樹脂、ベンゾシクロブテン樹脂、ビニル樹脂、ビスマレイミドトリアジン樹脂、フェノール樹脂、熱硬化型ポリフェニレンエーテル樹脂等が挙げられる。熱硬化性樹脂は、1種単独で用いても、2種以上を併用してもよい。 The thermosetting resin is not particularly limited as long as it is a resin that can be cured by heat, but for example, a phenol resin, an epoxy resin, a non-halogen epoxy resin, a cyanate resin, a maleimide resin, a bismaleimide resin, a modified bismaleimide resin, or an isocyanate. Examples thereof include resins, benzocyclobutene resins, vinyl resins, bismaleimide triazine resins, phenol resins, thermosetting polyphenylene ether resins and the like. The thermosetting resin may be used alone or in combination of two or more.

無機充填剤としては、例えば、天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等のシリカ類;ベーマイト;酸化モリブデンやモリブデン酸亜鉛等のモリブデン化合物;アルミナ、タルク、焼成タルク、マイカ、ガラス短繊維、球状ガラス等のガラスフィラー(EガラスやTガラス、UTガラス(ユニチカグラスファイバー株式会社製)、Sガラス、Dガラス、NEガラ、Lガラス、LUガラス(ユニチカグラスファイバー株式会社製)などをガラス材料とするガラスフィラー)などが挙げられる。 Examples of the inorganic filler include silicas such as natural silica, molten silica, amorphous silica, and hollow silica; boehmite; molybdenum compounds such as molybdenum oxide and zinc molybdate; alumina, talc, calcined talc, mica, and short glass fibers. Glass fillers such as spherical glass (E glass, T glass, UT glass (manufactured by Unitika Glass Fiber Co., Ltd.), S glass, D glass, NE glass, L glass, LU glass (manufactured by Unitika Glass Fiber Co., Ltd.), etc. are used as glass materials. Glass filler) and the like.

無機充填材の平均粒子径(D50)は、特に限定されないが、薄型多層プリント配線板用途に使用すること及び分散性の観点から、好ましくは10nm〜5.0μmが挙げられ、より好ましくは100nm〜2.0μm、さらに好ましくは100nm〜1.0μmが挙げられる。ここで、平均粒子径(D50)とはメジアン径を意味し、測定した粉体の粒度分布を2つに分けたときの大きい側と小さい側が等量となる径である。より具体的には、平均粒子径(D50)は、レーザ回折散乱式の粒度分布測定装置により、メチルエチルケトン中に分散させた粉体の粒度分布を測定したときの、小さい粒子から体積積算して全体積の50%に達したときの値を意味する。 The average particle size (D50) of the inorganic filler is not particularly limited, but is preferably 10 nm to 5.0 μm, more preferably 100 nm to 100 nm, from the viewpoint of use in thin multilayer printed wiring board applications and dispersibility. 2.0 μm, more preferably 100 nm to 1.0 μm. Here, the average particle diameter (D50) means the median diameter, and is the diameter at which the large side and the small side when the particle size distribution of the measured powder is divided into two are equal amounts. More specifically, the average particle size (D50) is the total volume integrated from the small particles when the particle size distribution of the powder dispersed in the methyl ethyl ketone is measured by a laser diffraction / scattering type particle size distribution measuring device. It means the value when 50% of the product is reached.

無機充填材はシランカップリング剤などの表面処理剤で表面処理されたものが好ましい。無機充填材100質量%に対する前記表面処理剤の付着量(強熱減量)は、0.1〜5.0質量%であり、好ましくは0.5〜3.0質量%であり、更に好ましくは0.75〜2.0質量%である。 The inorganic filler is preferably surface-treated with a surface treatment agent such as a silane coupling agent. The amount of the surface treatment agent adhered to 100% by mass of the inorganic filler (ignition loss) is 0.1 to 5.0% by mass, preferably 0.5 to 3.0% by mass, and more preferably 0.5 to 3.0% by mass. It is 0.75 to 2.0% by mass.

ガラスクロスに含浸される樹脂溶液(ワニス)の不揮発成分の濃度としては、50〜100質量%が挙げられる。また、不揮発成分中、前述した無機充填材の濃度が30〜60vol%となるようワニスを調製することができる。本発明のプリプレグにおいて、熱硬化性樹脂の質量(g/m)に対する無機充填剤の質量(g/m)の比(無機充填剤/熱硬化性樹脂)としては、例えば、0.5〜1.5が挙げられる。 The concentration of the non-volatile component of the resin solution (varnish) impregnated in the glass cloth is 50 to 100% by mass. Further, the varnish can be prepared so that the concentration of the above-mentioned inorganic filler in the non-volatile component is 30 to 60 vol%. In the prepreg of the present invention, the ratio (inorganic filler / thermosetting resin) of the mass (g / m 2 ) of the inorganic filler to the mass (g / m 2 ) of the thermosetting resin is, for example, 0.5. ~ 1.5 can be mentioned.

以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.

(実施例1)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.6μm、平均フィラメント本数40本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が105本/25mm、緯糸密度が105本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力1.0MPaの水流加工でガラスクロスの張力を経方向が20N/mとしつつ、ガラスクロスの緯方向両端をテンターで把持しながら緯方向にも5〜10N/mの張力を付与して開繊処理を施し、実施例1のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが94μm、隣接する緯糸間の隙間設計値Ifdが94μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.38、バスケットホール面積割合が14.9%であった。
(Example 1)
As the warp and weft, the glass material is E glass, and glass yarn having an average filament diameter of 3.6 μm, an average number of filaments of 40, and a twist of 0.5Z is woven by an air jet loom, and the warp density is 105 / yarn. A glass cloth roll having a width of 130 cm in a plain weave having a width of 25 mm and a weft density of 105 threads / 25 mm was obtained. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Co., Ltd.) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, while the tension of the glass cloth is set to 20 N / m in the warp direction by water flow processing at a pressure of 1.0 MPa, a tension of 5 to 10 N / m is also applied in the weft direction while grasping both ends of the glass cloth in the weft direction with a tenter. The fiber was opened and the glass cloth roll product of Example 1 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 94 μm, a gap design value Ifd between adjacent weft threads of 94 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.38, and the baskethole area ratio was 14.9%.

次に、プリプレグを得るためのワニスを2種類調製した。
<ワニスA>
エポキシ樹脂(三菱化学株式会社製 jER5045B80) 100質量部
硬化剤(三菱化学株式会社製 jERキュアDICY7) 2.7質量部(ジシアンジアミド)
硬化促進剤(三菱化学株式会社製2−エチル−4−メチルイミダゾール) 0.2質量部
希釈溶剤(キシダ化学株式会社製ジメチルホルムアミド) 20質量部
無機充填剤(球状ガラス、平均粒子径0.5μm) 25質量部
Next, two types of varnishes for obtaining prepreg were prepared.
<Varnish A>
Epoxy resin (jER5045B80 manufactured by Mitsubishi Chemical Corporation) 100 parts by mass Hardener (jER Cure DICY7 manufactured by Mitsubishi Chemical Corporation) 2.7 parts by mass (dicyandiamide)
Curing accelerator (2-ethyl-4-methylimidazole manufactured by Mitsubishi Chemical Corporation) 0.2 parts by mass Diluting solvent (dimethylformamide manufactured by Kishida Chemical Co., Ltd.) 20 parts by mass Inorganic filler (spherical glass, average particle diameter 0.5 μm) ) 25 parts by mass

<ワニスB>
<ワニスB>
変性ビスマレイミド樹脂(株式会社プリンテック製 HR3070) 60質量部
硬化促進剤(三菱化学株式会社製2−エチル−4−メチルイミダゾール) 0.3質量部
希釈溶剤(キシダ化学株式会社製メチルエチルケトン) 40質量部
無機充填剤(球状ガラス、平均粒子径0.5μm) 25質量部
<Varnish B>
<Varnish B>
Modified bismaleimide resin (HR3070 manufactured by Printec Co., Ltd.) 60 parts by mass Curing accelerator (2-ethyl-4-methylimidazole manufactured by Mitsubishi Chemical Corporation) 0.3 parts by mass Diluting solvent (methyl ethyl ketone manufactured by Kishida Chemical Co., Ltd.) 40 parts by mass Part Inorganic filler (spherical glass, average particle diameter 0.5 μm) 25 parts by mass

実施例1のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、さらに続けて樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥機に通してそのまま巻き取り、実施例1のプリプレグロール製品Aを得た。 The glass cloth roll product of Example 1 was continuously fed out in the longitudinal direction (transverse direction), sufficiently immersed in the varnish A, and the varnish A was applied to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish A adhered was adjusted, and the prepregrol product A of Example 1 was obtained by continuously winding the varnish A through a dryer so that the gel time indicating the degree of curing of the resin was about 110 seconds.

また、実施例1のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、ゲルタイムが110秒前後になるように乾燥機に通してそのまま巻き取り、実施例1のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Example 1 was continuously fed out in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish B adhered was adjusted, and the varnish B was passed through a dryer so that the gel time was about 110 seconds and wound as it was to obtain the prepregrol product B of Example 1.

(実施例2)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.6μm、平均フィラメント本数40本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が110本/25mm、緯糸密度が110本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力1.0MPaの水流加工でガラスクロスの張力を経方向が20N/mとしつつ、ガラスクロスの緯方向両端をテンターで把持しながら緯方向にも5〜10N/mの張力を付与して開繊処理を施し、実施例2のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが83μm、隣接する緯糸間の隙間設計値Ifdが83μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.51、バスケットホール面積割合が16.0%であった。
(Example 2)
As the warp and weft, the glass material is E glass, and glass yarn having an average filament diameter of 3.6 μm, an average number of filaments of 40, and a twist number of 0.5Z is woven by an air jet loom, and the warp density is 110 threads / A glass cloth roll having a width of 130 cm and a plain weave of 25 mm and a weft density of 110 threads / 25 mm was obtained. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Co., Ltd.) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, while the tension of the glass cloth is set to 20 N / m in the warp direction by water flow processing at a pressure of 1.0 MPa, a tension of 5 to 10 N / m is also applied in the weft direction while grasping both ends of the glass cloth in the weft direction with a tenter. The fiber was opened and the glass cloth roll product of Example 2 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 83 μm, a gap design value Ifd between adjacent weft threads of 83 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.51 and the basket hole area ratio was 16.0%.

次に、プリプレグを得るためのワニスとして、実施例1と同様、ワニスAとワニスBを準備した。 Next, as the varnish for obtaining the prepreg, varnish A and varnish B were prepared as in Example 1.

実施例2のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、ゲルタイムが110秒前後になるように乾燥機に通してそのまま巻き取り、実施例2のプリプレグロール製品Aを得た。 The glass cloth roll product of Example 2 was continuously fed out in the longitudinal direction (longitudinal direction) and sufficiently immersed in the varnish A to apply the varnish A to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish A adhered was adjusted, and the varnish A was passed through a dryer so that the gel time was about 110 seconds and wound as it was to obtain the prepregrol product A of Example 2.

また、実施例2のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、ゲルタイムが110秒前後になるように乾燥機に通してそのまま巻き取り、実施例2のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Example 2 was continuously fed in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish B adhered was adjusted, and the varnish was passed through a dryer so that the gel time was about 110 seconds and wound as it was to obtain the prepregrol product B of Example 2.

(実施例3)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.6μm、平均フィラメント本数36本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が115本/25mm、緯糸密度が115本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力1.0MPaの水流加工でガラスクロスの張力を経方向が20N/mとしつつ、ガラスクロスの緯方向両端をテンターで把持しながら緯方向にも5〜10N/mの張力を付与して開繊処理を施し、実施例3のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが88μm、隣接する緯糸間の隙間設計値Ifdが88μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.34、バスケットホール面積割合が16.4%であった。
(Example 3)
As the warp and weft, the glass material is E glass, and glass yarn having an average filament diameter of 3.6 μm, an average number of filaments of 36, and a twist of 0.5Z is woven by an air jet loom, and the warp density is 115 / yarn. A glass cloth roll having a width of 130 cm in a plain weave having a width of 25 mm and a weft density of 115 threads / 25 mm was obtained. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Co., Ltd.) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, while the tension of the glass cloth is set to 20 N / m in the warp direction by water flow processing at a pressure of 1.0 MPa, a tension of 5 to 10 N / m is also applied in the weft direction while grasping both ends of the glass cloth in the weft direction with a tenter. The fiber was opened and the glass cloth roll product of Example 3 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 88 μm, a gap design value Ifd between adjacent weft threads of 88 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.34, and the baskethole area ratio was 16.4%.

次に、プリプレグを得るためのワニスとして、実施例1と同様、ワニスAとワニスBを準備した。 Next, as the varnish for obtaining the prepreg, varnish A and varnish B were prepared as in Example 1.

実施例3のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、ゲルタイムが110秒前後になるように乾燥機に通してそのまま巻き取り、実施例3のプリプレグロール製品Aを得た。 The glass cloth roll product of Example 3 was continuously fed out in the longitudinal direction (longitudinal direction) and sufficiently immersed in the varnish A to apply the varnish A to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish A adhered was adjusted, and the varnish A was passed through a dryer so that the gel time was about 110 seconds and wound as it was to obtain the prepregrol product A of Example 3.

また、実施例3のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、ゲルタイムが110秒前後になるように乾燥機に通してそのまま巻き取り、実施例3のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Example 3 was continuously fed out in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish B adhered was adjusted, and the mixture was passed through a dryer so that the gel time was about 110 seconds and wound as it was to obtain the prepregrol product B of Example 3.

(実施例4)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.6μm、平均フィラメント本数36本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が125本/25mm、緯糸密度が125本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力1.0MPaの水流加工でガラスクロスの張力を経方向が20N/mとしつつ、ガラスクロスの緯方向両端をテンターで把持しながら緯方向にも5〜10N/mの張力を付与して開繊処理を施し、実施例4のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが70μm、隣接する緯糸間の隙間設計値Ifdが70μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.53、バスケットホール面積割合が13.3%であった。
(Example 4)
As the warp and weft, the glass material is E glass, and glass yarn having an average filament diameter of 3.6 μm, an average number of filaments of 36, and a twist of 0.5Z is used and woven by an air jet loom, and the warp density is 125 threads / A glass cloth roll having a width of 130 cm and a plain weave of 25 mm and a weft density of 125 threads / 25 mm was obtained. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Co., Ltd.) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, while the tension of the glass cloth is set to 20 N / m in the warp direction by water flow processing at a pressure of 1.0 MPa, a tension of 5 to 10 N / m is also applied in the weft direction while grasping both ends of the glass cloth in the weft direction with a tenter. The fiber was opened and the glass cloth roll product of Example 4 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 70 μm, a gap design value Ifd between adjacent weft threads of 70 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.53, and the basket hole area ratio was 13.3%.

次に、プリプレグを得るためのワニスとして、実施例1と同様、ワニスAとワニスBを準備した。 Next, as the varnish for obtaining the prepreg, varnish A and varnish B were prepared as in Example 1.

実施例4のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、実施例4のプリプレグロール製品Aを得た。 The glass cloth roll product of Example 4 was continuously fed out in the longitudinal direction (longitudinal direction) and sufficiently immersed in the varnish A to apply the varnish A to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish A adhered was adjusted, the drying conditions were adjusted so that the gel time indicating the degree of curing of the resin was about 110 seconds, and the varnish A was passed through a dryer and wound as it was to obtain the prepregrol product A of Example 4. It was.

また、実施例4のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、実施例4のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Example 4 was continuously fed out in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish B adhered was adjusted, the drying conditions were adjusted so that the gel time, which indicates the degree of curing of the resin, was around 110 seconds, and the varnish was passed through a dryer and wound as it was to obtain the prepregrol product B of Example 4. It was.

(実施例5)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.3μm、平均フィラメント本数35本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が125本/25mm、緯糸密度が125本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力1.0MPaの水流加工でガラスクロスの張力を経方向が20N/mとしつつ、ガラスクロスの緯方向両端をテンターで把持しながら緯方向にも5〜10N/mの張力を付与して開繊処理を施し、実施例5のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが85μm、隣接する緯糸間の隙間設計値Ifdが85μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.20、バスケットホール面積割合が19.2%であった。
(Example 5)
As the warp and weft, the glass material is E glass, and glass yarn having an average filament diameter of 3.3 μm, an average number of filaments of 35, and a twist number of 0.5Z is woven by an air jet loom, and the warp density is 125 threads / A glass cloth roll having a width of 130 cm in a plain weave having a width of 25 mm and a weft density of 125 threads / 25 mm was obtained. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Co., Ltd.) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, while the tension of the glass cloth is set to 20 N / m in the warp direction by water flow processing at a pressure of 1.0 MPa, a tension of 5 to 10 N / m is also applied in the weft direction while grasping both ends of the glass cloth in the weft direction with a tenter. The fiber was opened and the glass cloth roll product of Example 5 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 85 μm, a gap design value Ifd between adjacent weft threads of 85 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.20, and the baskethole area ratio was 19.2%.

次に、プリプレグを得るためのワニスとして、実施例1と同様、ワニスAとワニスBを準備した。 Next, as the varnish for obtaining the prepreg, varnish A and varnish B were prepared as in Example 1.

実施例5のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、実施例5のプリプレグロール製品Aを得た。 The glass cloth roll product of Example 5 was continuously fed out in the longitudinal direction (longitudinal direction) and sufficiently immersed in the varnish A to apply the varnish A to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish A adhered was adjusted, the drying conditions were adjusted so that the gel time indicating the degree of curing of the resin was about 110 seconds, and the varnish A was passed through a dryer and wound as it was to obtain the prepregrol product A of Example 5. It was.

また、実施例5のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、実施例5のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Example 5 was continuously fed out in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish B adhered was adjusted, the drying conditions were adjusted so that the gel time, which is an index of the degree of curing of the resin, was around 110 seconds, and the prepreg roll product B of Example 5 was obtained by passing it through a dryer and winding it as it was. It was.

(実施例6)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.1μm、平均フィラメント本数34本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が135本/25mm、緯糸密度が135本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力1.5MPaの水流加工でガラスクロスの張力を経方向が20N/mとしつつ、ガラスクロスの緯方向両端をテンターで把持しながら緯方向にも5〜10N/mの張力を付与して開繊処理を施し、実施例6のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが80μm、隣接する緯糸間の隙間設計値Ifdが80μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.29、バスケットホール面積割合が18.4%であった。
(Example 6)
As the warp and weft, the glass material is E glass, and glass yarn having an average filament diameter of 3.1 μm, an average number of filaments of 34, and a twist of 0.5Z is woven by an air jet loom, and the warp density is 135 /. A glass cloth roll having a width of 130 cm in a plain weave having a width of 25 mm and a weft density of 135 threads / 25 mm was obtained. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Co., Ltd.) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, while the tension of the glass cloth is set to 20 N / m in the warp direction by water flow processing at a pressure of 1.5 MPa, a tension of 5 to 10 N / m is also applied in the weft direction while grasping both ends of the glass cloth in the weft direction with a tenter. The fiber was opened and the glass cloth roll product of Example 6 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 80 μm, a gap design value Ifd between adjacent weft threads of 80 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.29, and the baskethole area ratio was 18.4%.

次に、プリプレグを得るためのワニスとして、実施例1と同様、ワニスAとワニスBを準備した。 Next, as the varnish for obtaining the prepreg, varnish A and varnish B were prepared as in Example 1.

実施例6のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、実施例6のプリプレグロール製品Aを得た。 The glass cloth roll product of Example 6 was continuously fed out in the longitudinal direction (longitudinal direction) and sufficiently immersed in the varnish A to apply the varnish A to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish A adhered was adjusted, the drying conditions were adjusted so that the gel time indicating the degree of curing of the resin was about 110 seconds, and the varnish A was passed through a dryer and wound as it was to obtain the prepregrol product A of Example 6. It was.

また、実施例6のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、実施例6のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Example 6 was continuously fed out in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish B adhered was adjusted, the drying conditions were adjusted so that the gel time indicating the degree of curing of the resin was about 110 seconds, and the varnish was passed through a dryer and wound as it was to obtain the prepregrol product B of Example 6. It was.

(実施例7)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.1μm、平均フィラメント本数32本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が145本/25mm、緯糸密度が145本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)JNC株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力1.0MPaの水流加工でガラスクロスの張力を経方向が20N/mとしつつ、ガラスクロスの緯方向両端をテンターで把持しながら緯方向にも5〜10N/mの張力を付与して開繊処理を施し、実施例6のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが73μm、隣接する緯糸間の隙間設計値Ifdが73μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.19、バスケットホール面積割合が19.5%であった。
(Example 7)
As the warp and weft, the glass material is E glass, and glass yarn having an average filament diameter of 3.1 μm, an average number of filaments of 32, and a twist of 0.5Z is woven by an air jet loom, and the warp density is 145 yarns / yarn. A glass cloth roll having a width of 130 cm in a plain weave having a width of 25 mm and a weft density of 145 threads / 25 mm was obtained. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) JNC Corporation) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, while the tension of the glass cloth is set to 20 N / m in the warp direction by water flow processing at a pressure of 1.0 MPa, a tension of 5 to 10 N / m is also applied in the weft direction while grasping both ends of the glass cloth in the weft direction with a tenter. The fiber was opened and the glass cloth roll product of Example 6 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 73 μm, a gap design value Ifd between adjacent weft threads of 73 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.19, and the baskethole area ratio was 19.5%.

次に、プリプレグを得るためのワニスとして、実施例1と同様、ワニスAとワニスBを準備した。 Next, as the varnish for obtaining the prepreg, varnish A and varnish B were prepared as in Example 1.

実施例7のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、実施例7のプリプレグロール製品Aを得た。 The glass cloth roll product of Example 7 was continuously fed out in the longitudinal direction (longitudinal direction) and sufficiently immersed in the varnish A to apply the varnish A to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish A adhered was adjusted, the drying conditions were adjusted so that the gel time indicating the degree of curing of the resin was about 110 seconds, and the varnish A was passed through a dryer and wound as it was to obtain the prepregrol product A of Example 7. It was.

また、実施例7のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、実施例7のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Example 7 was continuously fed in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish B adhered was adjusted, the drying conditions were adjusted so that the gel time, which is an index of the degree of curing of the resin, was around 110 seconds, and the prepregrol product B of Example 7 was obtained by passing it through a dryer and winding it as it was. It was.

(比較例1)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.6μm、平均フィラメント本数40本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が105本/25mm、緯糸密度が105本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力0.5MPaの水流加工でガラスクロスの張力を経方向が20N/mとしつつ、ガラスクロスの緯方向両端をテンターで把持しながら緯方向にも5〜10N/mの張力を付与して開繊処理を施し、比較例1のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが94μm、隣接する緯糸間の隙間設計値Ifdが94μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.35、バスケットホール面積割合が21.5%であった。
(Comparative Example 1)
As the warp and weft, the glass material is E glass, and glass yarn having an average filament diameter of 3.6 μm, an average number of filaments of 40, and a twist of 0.5Z is woven by an air jet loom, and the warp density is 105 / yarn. A glass cloth roll having a width of 130 cm in a plain weave having a weft density of 105 threads / 25 mm was obtained at 25 mm. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Co., Ltd.) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, while the tension of the glass cloth is set to 20 N / m in the warp direction by water flow processing at a pressure of 0.5 MPa, a tension of 5 to 10 N / m is also applied in the weft direction while grasping both ends of the glass cloth in the weft direction with a tenter. The fiber was opened and the glass cloth roll product of Comparative Example 1 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 94 μm, a gap design value Ifd between adjacent weft threads of 94 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.35, and the basket hole area ratio was 21.5%.

次に、プリプレグを得るためのワニスとして、実施例1と同様、ワニスAとワニスBを準備した。 Next, as the varnish for obtaining the prepreg, varnish A and varnish B were prepared as in Example 1.

比較例1のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例1のプリプレグロール製品Aを得た。 The glass cloth roll product of Comparative Example 1 was continuously fed out in the longitudinal direction (transverse direction) and sufficiently immersed in the varnish A to apply the varnish A to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. Adjust the amount of varnish A attached, adjust the drying conditions so that the gel time, which is an index of the degree of curing of the resin, is around 110 seconds, pass it through a dryer, and wind it as it is to obtain the prepregrol product A of Comparative Example 1. It was.

また、比較例1のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例1のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Comparative Example 1 was continuously fed out in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. Adjust the amount of varnish B attached, adjust the drying conditions so that the gel time, which is an index of the degree of curing of the resin, is around 110 seconds, pass it through a dryer, and wind it as it is to obtain the prepregrol product B of Comparative Example 1. It was.

(比較例2)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.6μm、平均フィラメント本数40本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が105本/25mm、緯糸密度が105本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力1.2MPaの水流加工でガラスクロスの張力を経方向が50N/mとしつつ、ガラスクロスの緯方向両端をテンターで把持しながら緯方向にも20〜25N/mの張力を付与して開繊処理を施し、比較例2のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが94μm、隣接する緯糸間の隙間設計値Ifdが94μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.00、バスケットホール面積割合が18.7%であった。
(Comparative Example 2)
As the warp and weft, the glass material is E glass, and glass yarn having an average filament diameter of 3.6 μm, an average number of filaments of 40, and a twist of 0.5Z is woven by an air jet loom, and the warp density is 105 / yarn. A glass cloth roll having a width of 130 cm in a plain weave having a weft density of 105 threads / 25 mm was obtained at 25 mm. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Co., Ltd.) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, while the tension of the glass cloth is set to 50 N / m in the warp direction by water flow processing at a pressure of 1.2 MPa, a tension of 20 to 25 N / m is applied in the weft direction while grasping both ends of the glass cloth in the weft direction with a tenter. The fiber was opened and the glass cloth roll product of Comparative Example 2 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 94 μm, a gap design value Ifd between adjacent weft threads of 94 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.00, and the basket hole area ratio was 18.7%.

次に、プリプレグを得るためのワニスとして、実施例1と同様、ワニスAとワニスBを準備した。 Next, as the varnish for obtaining the prepreg, varnish A and varnish B were prepared as in Example 1.

比較例2のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例2のプリプレグロール製品Aを得た。 The glass cloth roll product of Comparative Example 2 was continuously fed out in the longitudinal direction (transverse direction), sufficiently immersed in the varnish A, and the varnish A was applied to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. Adjust the amount of varnish A attached, adjust the drying conditions so that the gel time, which is an index of the degree of curing of the resin, is around 110 seconds, pass it through a dryer, and wind it as it is to obtain the prepregrol product A of Comparative Example 2. It was.

また、比較例2のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例2のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Comparative Example 2 was continuously fed out in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. Adjust the amount of varnish B attached, adjust the drying conditions so that the gel time, which is an index of the degree of curing of the resin, is around 110 seconds, pass it through a dryer, and wind it as it is to obtain the prepregrol product B of Comparative Example 2. It was.

(比較例3)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.6μm、平均フィラメント本数40本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が125本/25mm、緯糸密度が125本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力1.0MPaの水流加工でガラスクロスの張力を経方向が20N/mとしつつ、ガラスクロスの緯方向両端をテンターで把持しながら緯方向にも15〜20N/mの張力を付与して開繊処理を施し、比較例3のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが56μm、隣接する緯糸間の隙間設計値Ifdが56μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.25、バスケットホール面積割合が9.8%であった。
(Comparative Example 3)
As the warp and weft, the glass material is E glass, and a glass thread having an average filament diameter of 3.6 μm, an average number of filaments of 40, and a twist number of 0.5Z is woven by an air jet loom, and the warp density is 125 threads / A glass cloth roll having a width of 130 cm in a plain weave having a width of 25 mm and a weft density of 125 threads / 25 mm was obtained. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Co., Ltd.) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, while the tension of the glass cloth is set to 20 N / m in the warp direction by water flow processing at a pressure of 1.0 MPa, a tension of 15 to 20 N / m is applied in the weft direction while grasping both ends of the glass cloth in the weft direction with a tenter. The fiber was opened and the glass cloth roll product of Comparative Example 3 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 56 μm, a gap design value Ifd between adjacent weft threads of 56 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.25, and the baskethole area ratio was 9.8%.

次に、プリプレグを得るためのワニスとして、実施例1と同様、ワニスAとワニスBを準備した。 Next, as the varnish for obtaining the prepreg, varnish A and varnish B were prepared as in Example 1.

比較例3のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例3のプリプレグロール製品Aを得た。 The glass cloth roll product of Comparative Example 3 was continuously fed out in the longitudinal direction (transverse direction) and sufficiently immersed in the varnish A to apply the varnish A to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish A adhered was adjusted, the drying conditions were adjusted so that the gel time, which indicates the degree of curing of the resin, was around 110 seconds, and the varnish A was passed through a dryer and wound as it was to obtain the prepregrol product A of Comparative Example 3. It was.

また、比較例3のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例3のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Comparative Example 3 was continuously fed out in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. Adjust the amount of varnish B attached, adjust the drying conditions so that the gel time, which is an index of the degree of curing of the resin, is around 110 seconds, pass it through a dryer, and wind it as it is to obtain the prepregrol product B of Comparative Example 3. It was.

(比較例4)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.6μm、平均フィラメント本数40本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が105本/25mm、緯糸密度が105本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力1.0MPaの水流加工でガラスクロスの張力を経方向が50N/mとし、緯方向に張力を付与せずに開繊処理を施したこと以外は、実施例1と同様に行い、比較例4のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが94μm、隣接する緯糸間の隙間設計値Ifdが94μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.64、バスケットホール面積割合が17.6%であった。
(Comparative Example 4)
As the warp and weft, the glass material is E glass, and glass yarn having an average filament diameter of 3.6 μm, an average number of filaments of 40, and a twist of 0.5Z is woven by an air jet loom, and the warp density is 105 / yarn. A glass cloth roll having a width of 130 cm in a plain weave having a width of 25 mm and a weft density of 105 threads / 25 mm was obtained. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Co., Ltd.) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, the same procedure as in Example 1 was carried out except that the tension of the glass cloth was set to 50 N / m in the warp direction by water flow processing at a pressure of 1.0 MPa and the fiber opening treatment was performed without applying tension in the weft direction. The glass cloth roll product of Comparative Example 4 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 94 μm, a gap design value Ifd between adjacent weft threads of 94 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.64, and the basket hole area ratio was 17.6%.

次に、プリプレグを得るためのワニスとして、実施例1と同様、ワニスAとワニスBを準備した。 Next, as the varnish for obtaining the prepreg, varnish A and varnish B were prepared as in Example 1.

比較例4のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例4のプリプレグロール製品Aを得た。 The glass cloth roll product of Comparative Example 4 was continuously fed out in the longitudinal direction (transverse direction) and sufficiently immersed in the varnish A to apply the varnish A to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish A adhered was adjusted, the drying conditions were adjusted so that the gel time, which indicates the degree of curing of the resin, was around 110 seconds, and the varnish A was passed through a dryer and wound as it was to obtain the prepregrol product A of Comparative Example 4. It was.

また、比較例4のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例4のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Comparative Example 4 was continuously fed out in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. Adjust the amount of varnish B attached, adjust the drying conditions so that the gel time, which is an index of the degree of curing of the resin, is around 110 seconds, pass it through a dryer, and wind it as it is to obtain the prepregrol product B of Comparative Example 4. It was.

(比較例5)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.6μm、平均フィラメント本数40本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が100本/25mm、緯糸密度が100本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力1.5MPaの水流加工でガラスクロスの張力を経方向が20N/mとしつつ、ガラスクロスの緯方向両端をテンターで把持しながら緯方向にも15〜20N/mの張力を付与して開繊処理を施し、比較例5のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが106μm、隣接する緯糸間の隙間設計値Ifdが106μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.22、バスケットホール面積割合が15.8%であった。
(Comparative Example 5)
As the warp and weft, the glass material is E glass, and a glass thread having an average filament diameter of 3.6 μm, an average number of filaments of 40, and a twist number of 0.5Z is woven by an air jet loom, and the warp density is 100 threads / A glass cloth roll having a width of 130 cm and a plain weave of 25 mm and a weft density of 100 threads / 25 mm was obtained. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Co., Ltd.) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, while the tension of the glass cloth is set to 20 N / m in the warp direction by water flow processing at a pressure of 1.5 MPa, a tension of 15 to 20 N / m is also applied in the weft direction while grasping both ends of the glass cloth in the weft direction with a tenter. The fiber was opened and the glass cloth roll product of Comparative Example 5 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 106 μm, a gap design value Ifd between adjacent weft threads of 106 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.22, and the baskethole area ratio was 15.8%.

次に、プリプレグを得るためのワニスとして、実施例1と同様、ワニスAとワニスBを準備した。 Next, as the varnish for obtaining the prepreg, varnish A and varnish B were prepared as in Example 1.

比較例5のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例5のプリプレグロール製品Aを得た。 The glass cloth roll product of Comparative Example 5 was continuously fed out in the longitudinal direction (transverse direction) and sufficiently immersed in the varnish A to apply the varnish A to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. Adjust the amount of varnish A attached, adjust the drying conditions so that the gel time, which is an index of the degree of curing of the resin, is around 110 seconds, pass it through a dryer, and wind it as it is to obtain the prepregrol product A of Comparative Example 5. It was.

また、比較例5のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例5のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Comparative Example 5 was continuously fed out in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. Adjust the amount of varnish B attached, adjust the drying conditions so that the gel time, which is an index of the degree of curing of the resin, is around 110 seconds, pass it through a dryer, and wind it as it is to obtain the prepregrol product B of Comparative Example 5. It was.

(比較例6)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.6μm、平均フィラメント本数36本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が115本/25mm、緯糸密度が115本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力0.5MPaの水流加工でガラスクロスの張力を経方向が20N/mとしつつ、ガラスクロスの緯方向両端をテンターで把持しながら緯方向にも5〜10N/mの張力を付与して開繊処理を施し、比較例6のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが88μm、隣接する緯糸間の隙間設計値Ifdが88μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.34、バスケットホール面積割合が21.5%であった。
(Comparative Example 6)
As the warp and weft, the glass material is E glass, and glass yarn having an average filament diameter of 3.6 μm, an average number of filaments of 36, and a twist of 0.5Z is woven by an air jet loom, and the warp density is 115 / yarn. A glass cloth roll having a width of 130 cm in a plain weave having a width of 25 mm and a weft density of 115 threads / 25 mm was obtained. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Co., Ltd.) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, while the tension of the glass cloth is set to 20 N / m in the warp direction by water flow processing at a pressure of 0.5 MPa, a tension of 5 to 10 N / m is also applied in the weft direction while grasping both ends of the glass cloth in the weft direction with a tenter. The fiber was opened and the glass cloth roll product of Comparative Example 6 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 88 μm, a gap design value Ifd between adjacent weft threads of 88 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.34, and the basket hole area ratio was 21.5%.

次に、プリプレグを得るためのワニスとして、実施例1と同様、ワニスAとワニスBを準備した。 Next, as the varnish for obtaining the prepreg, varnish A and varnish B were prepared as in Example 1.

比較例6のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例6のプリプレグロール製品Aを得た。 The glass cloth roll product of Comparative Example 6 was continuously fed out in the longitudinal direction (transverse direction) and sufficiently immersed in the varnish A to apply the varnish A to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish A adhered was adjusted, the drying conditions were adjusted so that the gel time, which indicates the degree of curing of the resin, was around 110 seconds, and the varnish was passed through a dryer and wound as it was to obtain the prepregrol product A of Comparative Example 6. It was.

また、比較例6のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例6のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Comparative Example 6 was continuously fed out in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. Adjust the amount of varnish B attached, adjust the drying conditions so that the gel time, which is an index of the degree of curing of the resin, is around 110 seconds, pass it through a dryer, and wind it as it is to obtain the prepregrol product B of Comparative Example 6. It was.

(比較例7)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.6μm、平均フィラメント本数36本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が110本/25mm、緯糸密度が110本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力1.0MPaの水流加工でガラスクロスの張力を経方向が20N/mとしつつ、ガラスクロスの緯方向両端をテンターで把持しながら緯方向にも5〜10N/mの張力を付与して開繊処理を施し、比較例7のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが98μm、隣接する緯糸間の隙間設計値Ifdが98μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.29、バスケットホール面積割合が18.9%であった。
(Comparative Example 7)
As the warp and weft, the glass material is E glass, and glass yarn having an average filament diameter of 3.6 μm, an average number of filaments of 36, and a twist of 0.5Z is woven by an air jet loom, and the warp density is 110 threads / A glass cloth roll having a width of 130 cm and a plain weave of 25 mm and a weft density of 110 threads / 25 mm was obtained. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Co., Ltd.) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, while the tension of the glass cloth is set to 20 N / m in the warp direction by water flow processing at a pressure of 1.0 MPa, a tension of 5 to 10 N / m is also applied in the weft direction while grasping both ends of the glass cloth in the weft direction with a tenter. The fiber was opened and the glass cloth roll product of Comparative Example 7 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 98 μm, a gap design value Ifd between adjacent weft threads of 98 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.29, and the baskethole area ratio was 18.9%.

次に、プリプレグを得るためのワニスとして、実施例1と同様、ワニスAとワニスBを準備した。 Next, as the varnish for obtaining the prepreg, varnish A and varnish B were prepared as in Example 1.

比較例7のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例7のプリプレグロール製品Aを得た。 The glass cloth roll product of Comparative Example 7 was continuously fed out in the longitudinal direction (transverse direction) and sufficiently immersed in the varnish A to apply the varnish A to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish A adhered was adjusted, the drying conditions were adjusted so that the gel time, which indicates the degree of curing of the resin, was around 110 seconds, and the varnish was passed through a dryer and wound as it was to obtain the prepregrol product A of Comparative Example 7. It was.

また、比較例7のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例7のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Comparative Example 7 was continuously fed out in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. Adjust the amount of varnish B attached, adjust the drying conditions so that the gel time, which is an index of the degree of curing of the resin, is around 110 seconds, pass it through a dryer, and wind it as it is to obtain the prepregrol product B of Comparative Example 7. It was.

(比較例8)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.6μm、平均フィラメント本数36本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が115本/25mm、緯糸密度が115本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力0.5MPaの水流加工でガラスクロスの張力を経方向が50N/mとし、緯方向に張力を付与せずに開繊処理を施したこと以外は、実施例1と同様に行い、比較例8のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが88μm、隣接する緯糸間の隙間設計値Ifdが88μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.70、バスケットホール面積割合が17.1%であった。
(Comparative Example 8)
As the warp and weft, the glass material is E glass, and glass yarn having an average filament diameter of 3.6 μm, an average number of filaments of 36, and a twist of 0.5Z is woven by an air jet loom, and the warp density is 115 / yarn. A glass cloth roll having a width of 130 cm in a plain weave having a width of 25 mm and a weft density of 115 threads / 25 mm was obtained. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Co., Ltd.) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, the same procedure as in Example 1 was carried out except that the tension of the glass cloth was set to 50 N / m in the warp direction by water flow processing at a pressure of 0.5 MPa and the fiber opening treatment was performed without applying tension in the weft direction. The glass cloth roll product of Comparative Example 8 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 88 μm, a gap design value Ifd between adjacent weft threads of 88 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.70, and the baskethole area ratio was 17.1%.

次に、プリプレグを得るためのワニスとして、実施例1と同様、ワニスAとワニスBを準備した。 Next, as the varnish for obtaining the prepreg, varnish A and varnish B were prepared as in Example 1.

比較例1のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例1のプリプレグロール製品Aを得た。 The glass cloth roll product of Comparative Example 1 was continuously fed out in the longitudinal direction (transverse direction) and sufficiently immersed in the varnish A to apply the varnish A to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. Adjust the amount of varnish A attached, adjust the drying conditions so that the gel time, which is an index of the degree of curing of the resin, is around 110 seconds, pass it through a dryer, and wind it as it is to obtain the prepregrol product A of Comparative Example 1. It was.

また、比較例1のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例1のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Comparative Example 1 was continuously fed out in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. Adjust the amount of varnish B attached, adjust the drying conditions so that the gel time, which is an index of the degree of curing of the resin, is around 110 seconds, pass it through a dryer, and wind it as it is to obtain the prepregrol product B of Comparative Example 1. It was.

(比較例9)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.6μm、平均フィラメント本数36本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が130本/25mm、緯糸密度が130本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力1.5MPaの水流加工でガラスクロスの張力を経方向が50N/mとしつつ、ガラスクロスの緯方向両端をテンターで把持しながら緯方向にも20〜25N/mの張力を付与して開繊処理を施し、比較例9のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが63μm、隣接する緯糸間の隙間設計値Ifdが63μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.50、バスケットホール面積割合が8.6%であった。
(Comparative Example 9)
As the warp and weft, the glass material is E glass, and glass yarn having an average filament diameter of 3.6 μm, an average number of filaments of 36, and a twist of 0.5Z is woven by an air jet loom, and the warp density is 130 threads / A glass cloth roll having a width of 130 cm in a plain weave having a weft density of 130 threads / 25 mm was obtained at 25 mm. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Co., Ltd.) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, while the tension of the glass cloth is set to 50 N / m in the warp direction by water flow processing at a pressure of 1.5 MPa, a tension of 20 to 25 N / m is applied in the weft direction while grasping both ends of the glass cloth in the weft direction with a tenter. The fiber was opened and the glass cloth roll product of Comparative Example 9 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 63 μm, a gap design value Ifd between adjacent weft threads of 63 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.50, and the basket hole area ratio was 8.6%.

次に、プリプレグを得るためのワニスとして、実施例1と同様、ワニスAとワニスBを準備した。 Next, as the varnish for obtaining the prepreg, varnish A and varnish B were prepared as in Example 1.

比較例9のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例9のプリプレグロール製品Aを得た。 The glass cloth roll product of Comparative Example 9 was continuously fed out in the longitudinal direction (transverse direction), sufficiently immersed in the varnish A, and the varnish A was applied to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. The amount of varnish A adhered was adjusted, the drying conditions were adjusted so that the gel time, which indicates the degree of curing of the resin, was around 110 seconds, and the varnish A was passed through a dryer and wound as it was to obtain the prepregrol product A of Comparative Example 9. It was.

また、比較例9のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例9のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Comparative Example 9 was continuously fed out in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. Adjust the amount of varnish B attached, adjust the drying conditions so that the gel time, which is an index of the degree of curing of the resin, is around 110 seconds, pass it through a dryer, and wind it as it is to obtain the prepregrol product B of Comparative Example 9. It was.

(比較例10)
経糸及び緯糸として、ガラス材料がEガラスであり、平均フィラメント径3.6μm、平均フィラメント本数38本、撚り数0.5Zのガラス糸を用い、エアージェット織機で製織し、経糸密度が105本/25mm、緯糸密度が110本/25mmの平織130cm幅のガラスクロスロールを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去した。その後、表面処理剤のシランカップリング剤(S−350:N−ビニルベンジル−アミノエチル−γ−アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を10g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングした。そして、圧力0.8MPaの水流加工でガラスクロスの張力を経方向が20N/mとしつつ、ガラスクロスの緯方向両端をテンターで把持しながら緯方向にも5〜10N/mの張力を付与して開繊処理を施し、比較例10のガラスクロスロール製品を得た。得られたガラスクロスは、隣接する経糸間の隙間設計値Iwdが101μm、隣接する緯糸間の隙間設計値Ifdが90μm、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比が1.33、バスケットホール面積割合が21.7%であった。
(Comparative Example 10)
As the warp and weft, the glass material is E glass, and glass yarn having an average filament diameter of 3.6 μm, an average number of filaments of 38, and a twist of 0.5Z is woven by an air jet loom, and the warp density is 105 / yarn. A glass cloth roll having a width of 130 cm and a plain weave of 25 mm and a weft density of 110 threads / 25 mm was obtained. Then, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours. Then, the surface treatment agent silane coupling agent (S-350: N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Co., Ltd.) was adjusted to a concentration of 10 g / L and squeezed with a padder roll. After that, it was dried and cured at 120 ° C. for 1 minute. Then, while the tension of the glass cloth is set to 20 N / m in the warp direction by water flow processing at a pressure of 0.8 MPa, a tension of 5 to 10 N / m is also applied in the weft direction while grasping both ends of the glass cloth in the weft direction with a tenter. The fiber was opened and the glass cloth roll product of Comparative Example 10 was obtained. The obtained glass cloth has a gap design value Iwd between adjacent warp threads of 101 μm, a gap design value Ifd between adjacent weft threads of 90 μm, and a gap measurement value (Iw) between adjacent warp threads and a gap measurement between adjacent weft threads. The ratio to the value (If) was 1.33, and the baskethole area ratio was 21.7%.

次に、プリプレグを得るためのワニスとして、実施例1と同様、ワニスAとワニスBを準備した。 Next, as the varnish for obtaining the prepreg, varnish A and varnish B were prepared as in Example 1.

比較例10のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、ワニスAに充分に浸漬させてガラスクロスにワニスAを塗布した。続けて、ワニスAが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスAの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例10のプリプレグロール製品Aを得た。 The glass cloth roll product of Comparative Example 10 was continuously fed out in the longitudinal direction (transverse direction) and sufficiently immersed in the varnish A to apply the varnish A to the glass cloth. Subsequently, the glass cloth coated with the varnish A was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. Adjust the amount of varnish A attached, adjust the drying conditions so that the gel time, which is an index of the degree of curing of the resin, is around 110 seconds, pass it through a dryer, and wind it as it is to obtain the prepregrol product A of Comparative Example 10. It was.

また、比較例10のガラスクロスロール製品を長手方向(経方向)に連続的に繰り出し、今度はワニスBに充分に浸漬させてガラスクロスにワニスBを塗布した。続けて、ワニスBが塗布されたガラスクロスをギャップロールを用いてプリプレグの質量(g/m)に対するガラスクロスの質量(g/m)の割合が表1に記載のものとなるようにワニスBの付着量を調整し、樹脂の硬化度を指標するゲルタイムが110秒前後になるように乾燥条件を調整して乾燥機に通してそのまま巻き取り、比較例10のプリプレグロール製品Bを得た。 Further, the glass cloth roll product of Comparative Example 10 was continuously fed out in the longitudinal direction (transverse direction), and this time, the glass cloth was sufficiently immersed in the varnish B to apply the varnish B to the glass cloth. Subsequently, the glass cloth coated with the varnish B was subjected to a gap roll so that the ratio of the mass of the glass cloth (g / m 2 ) to the mass of the prepreg (g / m 2 ) was as shown in Table 1. Adjust the amount of varnish B attached, adjust the drying conditions so that the gel time, which is an index of the degree of curing of the resin, is around 110 seconds, pass it through a dryer, and wind it as it is to obtain the prepregrol product B of Comparative Example 10. It was.

実施例、比較例における測定及び評価は下記の方法でおこなった。 Measurements and evaluations in Examples and Comparative Examples were carried out by the following methods.

1.平均フィラメント直径Dw及びDf(μm)、平均フィラメント本数Nw及びNf(本)
前述した方法にておこなった。
1. 1. Average filament diameter Dw and Df (μm), average number of filaments Nw and Nf (lines)
This was done by the method described above.

2.番手(tex)
前述した方法にておこなった。
2. 2. Count (tex)
This was done by the method described above.

3.織密度Ww及びWf(本/25mm)
前述した方法にておこなった。
3. 3. Weaving density Ww and Wf (book / 25mm)
This was done by the method described above.

4.隣接する経糸間の隙間実測値Iw及び隣接する緯糸間の隙間実測値If(μm)
前述した方法にておこなった。
4. Measured gap between adjacent warp threads Iw and measured gap between adjacent weft threads If (μm)
This was done by the method described above.

5.ガラスクロスの質量(g/m)及び厚さ(μm)
ガラスクロスの質量は、JIS R 3420 2013 7.2に準じて、測定、算出した。ガラスクロスの厚さは、JIS R 3420 2013 7.10.1A法に従い、測定、算出した。
5. Mass (g / m 2 ) and thickness (μm) of glass cloth
The mass of the glass cloth was measured and calculated according to JIS R 3420 2013 7.2. The thickness of the glass cloth was measured and calculated according to the JIS R 3420 2013 7.10.1A method.

6.ピンホール発生の評価
得られたプリプレグロール製品から400mm×400mmの四角形にカットしたプリプレグを、幅方向の任意の箇所から3枚採取し、これを長さ方向に任意に50セット(合計150枚)採取し、150枚のプリプレグそれぞれ目視でピンホールの数をカウントして4個以内であったプリプレグを良品とし、150枚のうちの良品率について評価した。良品率が90%以上のものを合格とした。
6. Evaluation of pinhole generation Three prepregs cut into a 400 mm x 400 mm quadrangle from the obtained prepreg roll product were collected from any location in the width direction, and 50 sets were arbitrarily set in the length direction (150 sheets in total). The number of pinholes was visually counted for each of the 150 prepregs, and the prepregs having 4 or less were regarded as non-defective products, and the non-defective product rate out of 150 sheets was evaluated. Those with a non-defective rate of 90% or more were accepted.

7.タテシワ発生の評価
得られたプリプレグロール製品A及びBそれぞれについて無作為に長さ100mを目視検査してタテシワの数を観察し、長さ100mあたりのタテシワの数として、以下の基準により評価した。なお、タテシワは長さ10cm以上のものをカウントした。
○:タテシワの発生が0〜2個/100mであった。
△:タテシワの数が3〜5個/100mであった。
×:タテシワの数が5個/100mを越えるものであった。
7. Evaluation of vertical wrinkles The number of vertical wrinkles was observed by visually inspecting each of the obtained prepregrol products A and B at a length of 100 m at random, and the number of vertical wrinkles per 100 m in length was evaluated according to the following criteria. The vertical wrinkles were counted to have a length of 10 cm or more.
◯: The occurrence of vertical wrinkles was 0 to 2/100 m.
Δ: The number of vertical wrinkles was 3 to 5/100 m.
X: The number of vertical wrinkles exceeded 5/100 m.

実施例及び比較例の各物性等について表1及び2に示す。 Tables 1 and 2 show the physical characteristics of Examples and Comparative Examples.


実施例1〜7のガラスクロスは、質量が10g/m以下のガラスクロスであって、前記ガラスクロスの、隣接する経糸間の隙間設計値Iwdが95μm以下、及び隣接する緯糸間の隙間設計値Ifdが95μm以下であり、前記ガラスクロスの、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.10以上1.60以下であり、前記ガラスクロスの、下記式(3)で示すバスケットホール面積割合が12%以上20%以下であることから、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際に、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立を図ることが可能となるものであった。 The glass cloths of Examples 1 to 7 are glass cloths having a mass of 10 g / m 2 or less, and the gap design value Iwd between adjacent warp threads of the glass cloth is 95 μm or less, and the gap design between adjacent weft threads. The value Ifd is 95 μm or less, and the ratio (Iw / If) of the measured gap value (Iw) between adjacent warp threads and the measured gap value (If) between adjacent weft threads of the glass cloth is 1.10 or more and 1 Since it is .60 or less and the basket hole area ratio of the glass cloth represented by the following formula (3) is 12% or more and 20% or less, the low mass glass cloth is considered to have a low mass ratio of the glass cloth. When impregnating the resin solution so as to form a prepreg, it has become possible to suppress the occurrence of pinholes and the above-mentioned vertical wrinkles at the same time.

中でも、実施例1及び3のガラスクロスは、前記隣接する経糸間の隙間設計値Iwdが70μm以上95μm以下、及び前記隣接する緯糸間の隙間設計値Ifdが70μm以上95μm以下であり、前記ガラスクロスの、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.25以上1.45以下であり、前記ガラスクロスの、下記式(3)で示すバスケットホール面積割合が12%以上18%以下であることから、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際に、ピンホール発生の抑制と、上記タテシワ発生の抑制との両立を図ることがより一層可能となるものであった。 Among them, in the glass cloths of Examples 1 and 3, the gap design value Iwd between the adjacent warp threads is 70 μm or more and 95 μm or less, and the gap design value Ifd between the adjacent weft threads is 70 μm or more and 95 μm or less, and the glass cloth. The ratio (Iw / If) of the measured gap value (Iw) between adjacent warp threads and the measured gap value (If) between adjacent weft threads is 1.25 or more and 1.45 or less, and the glass cloth of the said glass cloth. Since the basket hole area ratio represented by the following formula (3) is 12% or more and 18% or less, a low-mass glass cloth is impregnated with a resin solution so that the mass ratio of the glass cloth is low to form a prepreg. At the same time, it has become possible to further suppress the occurrence of pinholes and the above-mentioned vertical wrinkles.

一方、比較例1は、バスケットホール面積割合が20%を越えるものであったことから、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際にピンホールの発生の抑制が困難となるものであった。 On the other hand, in Comparative Example 1, since the basket hole area ratio exceeded 20%, a low-mass glass cloth was impregnated with a resin solution so that the mass ratio of the glass cloth was low, and the prepreg was used. At that time, it was difficult to suppress the occurrence of pinholes.

比較例2は、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.10未満であったことから、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸して硬化する際にピンホールの発生の抑制が困難となるものであった。 In Comparative Example 2, since the ratio (Iw / If) of the measured gap value (Iw) between adjacent warp threads and the measured gap value (If) between adjacent weft threads was less than 1.10, the mass was low. When the glass cloth is impregnated with the resin solution and cured so that the mass ratio of the glass cloth is low, it is difficult to suppress the occurrence of pinholes.

比較例3は、バスケットホール面積割合が12%未満であることから、ガラスクロスに内部歪みが生じやすく、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際にタテシワの発生抑制が困難となるものであった。また、比較例3は、ガラスクロス質量が10g/mを超えてしまうものでもあった。 In Comparative Example 3, since the basket hole area ratio is less than 12%, internal strain is likely to occur in the glass cloth, and the low-mass glass cloth is impregnated with the resin solution so that the mass ratio of the glass cloth is low. It was difficult to suppress the occurrence of vertical wrinkles when the prepreg was used. Further, in Comparative Example 3, the mass of the glass cloth exceeded 10 g / m 2 .

比較例4は、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.60を越えるものであったことから、経糸による緯糸の把持が不十分となり、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸して硬化する際に、緯糸がガラスクロス幅方向に微妙に動くことの抑制が困難となり、これに起因してタテシワの発生の抑制が困難となるものであった。 In Comparative Example 4, the ratio (Iw / If) of the measured gap value (Iw) between adjacent warp threads and the measured gap value (If) between adjacent weft threads exceeded 1.60. The weft is slightly moved in the width direction of the glass cloth when the low-mass glass cloth is impregnated with the resin solution and cured so that the mass ratio of the glass cloth is low. It became difficult to suppress the occurrence of vertical wrinkles due to this.

比較例5は、隣接する経糸間の隙間設計値Iwd、及び隣接する緯糸間の隙間設計値Ifdが95μmを超えるものであり、これを隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.10以上1.60以下、及び、バスケットホール面積割合が12%以上20%以下となるように開繊処理を施したため、各フィラメントが緩んだ状態でガラスクロス中に存在することとなり、これに起因して、特に緯糸を構成する各フィラメントが目曲がりを起こし、これに起因してタテシワが発生しやすくなるものであった。 In Comparative Example 5, the gap design value Iwd between the adjacent warp threads and the gap design value Ifd between the adjacent weft threads exceed 95 μm, which are the measured gap value (Iw) between the adjacent warp threads and the adjacent weft threads. Since the fiber opening treatment was performed so that the ratio (Iw / If) to the measured gap value (If) between them was 1.10 or more and 1.60 or less, and the basket hole area ratio was 12% or more and 20% or less. Each filament was present in the glass cloth in a loosened state, and as a result, each filament constituting the weft was bent, and as a result, vertical wrinkles were likely to occur. ..

比較例6は、バスケットホール面積割合が20%を越えるものであったことから、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際にピンホールの発生の抑制が困難となるものであった。 In Comparative Example 6, since the basket hole area ratio exceeded 20%, when a low-mass glass cloth was impregnated with a resin solution so as to have a low mass ratio of the glass cloth to form a prepreg. In addition, it was difficult to suppress the occurrence of pinholes.

比較例7は、隣接する経糸間の隙間設計値Iwd、及び隣接する緯糸間の隙間設計値Ifdが95μmを超えるものであり、これを隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.10以上1.60以下、及び、バスケットホール面積割合が12%以上20%以下となるように開繊処理を施したため、各フィラメントが緩んだ状態でガラスクロス中に存在することとなり、これに起因して、特に緯糸を構成する各フィラメントが目曲がりを起こし、これに起因してタテシワが発生しやすくなるものであった。 In Comparative Example 7, the gap design value Iwd between the adjacent warp threads and the gap design value Ifd between the adjacent weft threads exceed 95 μm, which are the measured gap value (Iw) between the adjacent warp threads and the adjacent weft threads. Since the fiber opening treatment was performed so that the ratio (Iw / If) to the measured gap value (If) between them was 1.10 or more and 1.60 or less, and the basket hole area ratio was 12% or more and 20% or less. Each filament was present in the glass cloth in a loosened state, and as a result, each filament constituting the weft was bent, and as a result, vertical wrinkles were likely to occur. ..

比較例8は、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.60を越えるものであったことから、経糸による緯糸の把持が不十分となり、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸して硬化する際に、緯糸がガラスクロス幅方向に微妙に動くことの抑制が困難となり、これに起因してタテシワの発生の抑制が困難となるものであった。 In Comparative Example 8, the ratio (Iw / If) of the measured gap value (Iw) between adjacent warp threads and the measured gap value (If) between adjacent weft threads exceeded 1.60. The weft is slightly moved in the width direction of the glass cloth when the low-mass glass cloth is impregnated with the resin solution and cured so that the mass ratio of the glass cloth is low. It became difficult to suppress the occurrence of vertical wrinkles due to this.

比較例9は、バスケットホール面積割合が12%未満であることから、ガラスクロスに内部歪みが生じやすく、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際にタテシワの発生抑制が困難となるものであった。 In Comparative Example 9, since the basket hole area ratio is less than 12%, internal distortion is likely to occur in the glass cloth, and the low-mass glass cloth is impregnated with the resin solution so that the mass ratio of the glass cloth is low. It was difficult to suppress the occurrence of vertical wrinkles when the prepreg was used.

比較例10は、隣接する経糸間の隙間設計値Iwdが95μmを超えるものであり、これを比較的マイルドな条件で開繊処理をおこなったことから、バスケットホール面積比率が20%を越えるものとなり、低質量のガラスクロスを該ガラスクロスの質量割合が低いものとなるように樹脂溶液を含浸させてプリプレグとする際にピンホールの発生の抑制が困難となるものであった。 In Comparative Example 10, the gap design value Iwd between adjacent warp threads exceeds 95 μm, and the fiber opening treatment is performed under relatively mild conditions, so that the basket hole area ratio exceeds 20%. When a low-mass glass cloth is impregnated with a resin solution so as to have a low mass ratio of the glass cloth to form a prepreg, it is difficult to suppress the occurrence of pinholes.

Claims (3)

質量が10g/m以下のガラスクロスであって、
前記ガラスクロスの、下記式(1)に示す隣接する経糸間の隙間設計値Iwdが70μm以上95μm以下、及び下記式(2)に示す隣接する緯糸間の隙間設計値Ifdが70μm以上95μm以下であり、
前記ガラスクロスの、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.25以上1.45以下であり、
前記ガラスクロスの、下記式(3)で示すバスケットホール面積割合が12%以上18%以下である、ガラスクロス。

隣接する経糸間の隙間設計値Iwd(μm)=(25000/Ww)−(Dw×Nw) ・・・式(1)
隣接する緯糸間の隙間設計値Ifd(μm)=(25000/Wf)−(Df×Nf) ・・・式(2)
バスケットホール面積割合(%)=(Iw×If)/{(25000/Ww)×(25000/Wf)}×100 ・・・式(3)

Ww:ガラスクロスの経糸密度(本/25mm)
Wf:ガラスクロスの緯糸密度(本/25mm)
Dw:ガラスクロスを構成する経糸の平均フィラメント径(μm)
Df:ガラスクロスを構成する緯糸の平均フィラメント径(μm)
Nw:ガラスクロスを構成する経糸の平均フィラメント本数(本)
Nf:ガラスクロスを構成する緯糸の平均フィラメント本数(本)
Iw:ガラスクロス中の隣接する経糸間の隙間実測値(μm)
If:ガラスクロス中の隣接する緯糸間の隙間実測値(μm)
A glass cloth with a mass of 10 g / m 2 or less.
When the gap design value Iwd between adjacent warp yarns represented by the following formula (1) of the glass cloth is 70 μm or more and 95 μm or less, and the gap design value Ifd between adjacent weft yarns represented by the following formula (2) is 70 μm or more and 95 μm or less. Yes,
The ratio (Iw / If) of the glass cloth to the measured gap value (Iw) between adjacent warp threads and the measured gap value (If) between adjacent weft threads is 1.25 or more and 1.45 or less.
A glass cloth having a basket hole area ratio of 12% or more and 18 % or less represented by the following formula (3).

Gap design value between adjacent warp threads Iwd (μm) = (25000 / Ww)-(Dw × Nw) ・ ・ ・ Equation (1)
Gap design value between adjacent wefts Ifd (μm) = (25000 / Wf)-(Df × Nf) ・ ・ ・ Equation (2)
Basket hole area ratio (%) = (Iw × If) / {(25000 / Ww) × (25000 / Wf)} × 100 ・ ・ ・ Equation (3)

Ww: Warp density of glass cloth (book / 25 mm)
Wf: Weft density of glass cloth (book / 25 mm)
Dw: Average filament diameter (μm) of the warp threads constituting the glass cloth
Df: Average filament diameter (μm) of the wefts constituting the glass cloth
Nw: Average number of warp filaments (filament) that make up the glass cloth
Nf: Average number of filaments of wefts constituting the glass cloth (threads)
Iw: Measured value of gap between adjacent warp threads in glass cloth (μm)
If: Measured value of gap between adjacent wefts in glass cloth (μm)
請求項1に記載のガラスクロスを含むプリプレグであって、
該プリプレグの質量(g/m)に対する前記ガラスクロスの質量(g/m)の割合(ガラスクロスの質量/プリプレグの質量)が10〜40質量%である、プリプレグ。
A prepreg containing the glass cloth according to claim 1 .
The prepreg of the mass ratio of the glass cloth of the mass with respect to (g / m 2) (g / m 2) ( mass of the glass cloth mass / prepreg) is 10 to 40 wt%, the prepreg.
質量が10g/m以下のガラスクロスの製造方法であって、
前記ガラスクロスの、下記式(1)に示す隣接する経糸間の隙間設計値Iwdが70μm以上95μm以下、及び下記式(2)に示す隣接する緯糸間の隙間設計値Ifdが70μm以上95μm以下としつつ、
前記ガラスクロスの、隣接する経糸間の隙間実測値(Iw)と隣接する緯糸間の隙間実測値(If)との比(Iw/If)が1.25以上1.45以下、及び、前記ガラスクロスの、下記式(3)で示すバスケットホール面積割合が12%以上18%以下となるように、開繊処理をおこなうことを特徴とする、ガラスクロスの製造方法。
隣接する経糸間の隙間設計値Iwd(μm)=(25000/Ww)−(Dw×Nw) ・・・式(1)
隣接する緯糸間の隙間設計値Ifd(μm)=(25000/Wf)−(Df×Nf) ・・・式(2)
バスケットホール面積割合(%)=(Iw×If)/{(25000/Ww)×(25000/Wf)}×100 ・・・式(3)

Ww:ガラスクロスの経糸密度(本/25mm)
Wf:ガラスクロスの緯糸密度(本/25mm)
Dw:ガラスクロスを構成する経糸の平均フィラメント径(μm)
Df:ガラスクロスを構成する緯糸の平均フィラメント径(μm)
Nw:ガラスクロスを構成する経糸の平均フィラメント本数(本)
Nf:ガラスクロスを構成する緯糸の平均フィラメント本数(本)
Iw:ガラスクロス中の隣接する経糸間の隙間実測値(μm)
If:ガラスクロス中の隣接する緯糸間の隙間実測値(μm)
A method for manufacturing a glass cloth having a mass of 10 g / m 2 or less.
The gap design value Iwd between adjacent warp threads represented by the following formula (1) of the glass cloth is 70 μm or more and 95 μm or less, and the gap design value Ifd between adjacent weft threads represented by the following formula (2) is 70 μm or more and 95 μm or less. While
The ratio (Iw / If) of the gap measured value (Iw) between adjacent warp threads and the gap measured value (If) between adjacent weft threads of the glass cloth is 1.25 or more and 1.45 or less, and the glass. A method for producing a glass cloth, which comprises performing a fiber opening treatment so that the basket hole area ratio of the cloth represented by the following formula (3) is 12% or more and 18 % or less.
Gap design value between adjacent warp threads Iwd (μm) = (25000 / Ww)-(Dw × Nw) ・ ・ ・ Equation (1)
Gap design value between adjacent wefts Ifd (μm) = (25000 / Wf)-(Df × Nf) ・ ・ ・ Equation (2)
Basket hole area ratio (%) = (Iw × If) / {(25000 / Ww) × (25000 / Wf)} × 100 ・ ・ ・ Equation (3)

Ww: Warp density of glass cloth (book / 25 mm)
Wf: Weft density of glass cloth (book / 25 mm)
Dw: Average filament diameter (μm) of the warp threads constituting the glass cloth
Df: Average filament diameter (μm) of the wefts constituting the glass cloth
Nw: Average number of warp filaments (filament) that make up the glass cloth
Nf: Average number of filaments of wefts constituting the glass cloth (threads)
Iw: Measured value of gap between adjacent warp threads in glass cloth (μm)
If: Measured value of gap between adjacent wefts in glass cloth (μm)
JP2019201556A 2019-11-06 2019-11-06 Glass cloth Active JP6818278B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019201556A JP6818278B1 (en) 2019-11-06 2019-11-06 Glass cloth
KR1020217008172A KR102351904B1 (en) 2019-11-06 2020-10-29 glass cloth
JP2021554916A JPWO2021090756A1 (en) 2019-11-06 2020-10-29
PCT/JP2020/040613 WO2021090756A1 (en) 2019-11-06 2020-10-29 Glass cloth
TW109138267A TWI771792B (en) 2019-11-06 2020-11-03 glass cloth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019201556A JP6818278B1 (en) 2019-11-06 2019-11-06 Glass cloth

Publications (2)

Publication Number Publication Date
JP6818278B1 true JP6818278B1 (en) 2021-01-20
JP2021075805A JP2021075805A (en) 2021-05-20

Family

ID=74164725

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019201556A Active JP6818278B1 (en) 2019-11-06 2019-11-06 Glass cloth
JP2021554916A Pending JPWO2021090756A1 (en) 2019-11-06 2020-10-29

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021554916A Pending JPWO2021090756A1 (en) 2019-11-06 2020-10-29

Country Status (4)

Country Link
JP (2) JP6818278B1 (en)
KR (1) KR102351904B1 (en)
TW (1) TWI771792B (en)
WO (1) WO2021090756A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038944A1 (en) * 2020-08-19 2022-02-24 旭化成株式会社 Glass cloth, prepreg, and printed wiring board
TWI784902B (en) * 2022-03-31 2022-11-21 富喬工業股份有限公司 Glass fiber cloth, printed circuit boards, integrated circuit substrates and electronic products

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4458987B2 (en) * 2004-08-27 2010-04-28 ユニチカ株式会社 Method for producing flat glass fiber fabric
JP5177742B2 (en) * 2008-04-28 2013-04-10 信越石英株式会社 Quartz glass cloth
JP5905150B1 (en) * 2015-08-28 2016-04-20 ユニチカ株式会社 Glass cloth
JP6020764B1 (en) 2016-08-03 2016-11-02 日東紡績株式会社 Glass cloth
JP7169053B2 (en) * 2017-07-19 2022-11-10 旭化成株式会社 Glass cloth, prepreg, and printed wiring board
JP7010684B2 (en) * 2017-12-11 2022-02-10 旭化成株式会社 Glass cloth, prepreg, and printed wiring board
KR102083587B1 (en) * 2018-02-22 2020-03-02 니토 보세키 가부시기가이샤 Glass cloth, prepreg and glass fiber reinforced resin molding

Also Published As

Publication number Publication date
JPWO2021090756A1 (en) 2021-05-14
KR20210057051A (en) 2021-05-20
TW202132435A (en) 2021-09-01
KR102351904B1 (en) 2022-01-14
WO2021090756A1 (en) 2021-05-14
TWI771792B (en) 2022-07-21
JP2021075805A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
TWI680150B (en) Glass cloth, prepreg and glass fiber reinforced resin molded product
JP6818278B1 (en) Glass cloth
TWI729597B (en) Manufacturing method of glass cloth and glass yarn
TWI790691B (en) Glass cloth, prepreg, and printed circuit board
JP6454135B2 (en) Quartz glass fiber sizing agent, quartz glass fiber, quartz glass yarn, and quartz glass cloth
JP2024119957A (en) Glass cloth manufacturing method and glass yarn
WO2022202079A1 (en) Glass cloth
JP7425393B1 (en) Glass cloth, prepreg, and printed wiring board
JP7305070B1 (en) Glass cloth, method for manufacturing glass cloth, prepreg, printed wiring board
WO2021124913A1 (en) Glass cloth, prepreg, and printed wiring board
JP2023034712A (en) Glass cloth, prepreg, and printed wiring board
CN112626670B (en) Glass cloth, prepreg, and printed wiring board
JP2007162171A (en) Glass yarn package, method for producing the same and glass cloth
JP7017214B1 (en) Glass cloth and glass yarn
JP2024035134A (en) Glass cloth, prepreg, and printed wiring board
JP2005042245A (en) Method for processing glass cloth
CN117917490A (en) Glass cloth, prepreg and printed wiring board
JP7011396B2 (en) Glass cloth, prepreg, and printed wiring board
JP2023034686A (en) Glass cloth, prepreg, and printed wiring board
TW202315997A (en) Glass cloth, prepreg, and printed wiring board
JP2024044911A (en) Glass cloth and glass cloth manufacturing method
JP2023125119A (en) Fiber opening method of glass cloth
JP2022183025A (en) Glass yarn, method of producing glass cloth, and glass cloth
KR20240097940A (en) Glass cloth, manufacturing method of glass cloth, prepreg, printed wiring board
JPWO2019163159A1 (en) Glass cloth, prepreg, and glass fiber reinforced resin molded products

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191210

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191210

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201216

R150 Certificate of patent or registration of utility model

Ref document number: 6818278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250