JP6817610B2 - Three-dimensional cultured epidermis model and its manufacturing method, and how to use the three-dimensional cultured epidermis model - Google Patents

Three-dimensional cultured epidermis model and its manufacturing method, and how to use the three-dimensional cultured epidermis model Download PDF

Info

Publication number
JP6817610B2
JP6817610B2 JP2016075963A JP2016075963A JP6817610B2 JP 6817610 B2 JP6817610 B2 JP 6817610B2 JP 2016075963 A JP2016075963 A JP 2016075963A JP 2016075963 A JP2016075963 A JP 2016075963A JP 6817610 B2 JP6817610 B2 JP 6817610B2
Authority
JP
Japan
Prior art keywords
keratinocytes
dimensional
cultured epidermis
epidermis
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016075963A
Other languages
Japanese (ja)
Other versions
JP2017184659A (en
Inventor
悠 井上
悠 井上
靖司 長谷川
靖司 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Menard Cosmetic Co Ltd
Original Assignee
Nippon Menard Cosmetic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Menard Cosmetic Co Ltd filed Critical Nippon Menard Cosmetic Co Ltd
Priority to JP2016075963A priority Critical patent/JP6817610B2/en
Publication of JP2017184659A publication Critical patent/JP2017184659A/en
Application granted granted Critical
Publication of JP6817610B2 publication Critical patent/JP6817610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、表皮を構成する各階層の細胞をリアルタイムで多方向から観察できる三次元培養表皮モデル及びその製造方法、ならびに該三次元培養表皮モデルの使用方法に関する。 The present invention relates to a three-dimensional cultured epidermis model capable of observing cells in each layer constituting the epidermis from multiple directions in real time, a method for producing the same, and a method for using the three-dimensional cultured epidermis model.

皮膚は、大きく分けて表皮・真皮・皮下組織の3層構造をとっている。皮膚のうち、最外層に存在する表皮は、主にケラチノサイト(表皮角化細胞)により構成され、メラニン色素を産出するメラノサイト、抗原提示細胞であるランゲルハンス細胞、触覚に関係するメルケル細胞なども含まれる。ケラチノサイトは、表皮の最下層である基底層で分裂し、成熟するにしたがって上方の層へ移行し、角化してやがて剥がれ落ちる(角質化)。したがって、表皮は成熟段階の異なる表皮角化細胞からなる複数の層(基底層、有棘層、顆粒層、角質層)により構成される。ケラチノサイトの幹細胞は、基底層に存在し、必要に応じて増殖と分化を繰り返し、表皮に新しい細胞を常に供給し、その結果、皮膚は絶えず再生を繰り返している。ところが、ケラチノサイトの増殖や分化に異常が起こると、様々な疾患の原因となる。例えば、乾癬はケラチノサイトの過剰増殖及び分化不全を特徴とする慢性炎症性疾患である。 The skin is roughly divided into a three-layer structure of epidermis, dermis, and subcutaneous tissue. The epidermis, which exists in the outermost layer of the skin, is mainly composed of keratinocytes (epidermis keratinocytes), and also includes melanocytes that produce melanin pigment, Langerhans cells that are antigen-presenting cells, and Merkel cells related to tactile sensation. .. Keratinocytes divide in the basal layer, which is the lowest layer of the epidermis, move to the upper layer as they mature, keratinize, and eventually peel off (keratinization). Therefore, the epidermis is composed of a plurality of layers (basal layer, spinous layer, granular layer, stratum corneum) composed of epidermal keratinocytes at different maturation stages. Stem cells of keratinocytes are present in the basal layer, proliferate and differentiate as needed, constantly supplying new cells to the epidermis, and as a result, the skin is constantly regenerating. However, when abnormalities occur in the proliferation and differentiation of keratinocytes, they cause various diseases. For example, psoriasis is a chronic inflammatory disease characterized by overgrowth and poor differentiation of keratinocytes.

近年、動物愛護の観点から、動物実験を行わずに医薬品や化粧品原料の安全性や有効性の評価試験を行う動物実験代替法が非常に注目されている。なかでも、皮膚に対する薬剤の有効性や毒性の評価、又は皮膚科学研究に応用するために、様々な三次元培養皮膚が開発されている。 In recent years, from the viewpoint of animal protection, an alternative method for animal experiments, in which an evaluation test for the safety and effectiveness of pharmaceuticals and cosmetic raw materials is conducted without conducting animal experiments, has attracted much attention. Among them, various three-dimensional cultured skins have been developed for evaluation of the efficacy and toxicity of drugs on the skin or application to dermatological research.

しかしながら、従来の三次元培養皮膚は、皮膚の状態を観察及び評価するためには、パラホルムアルデヒド等による固定、パラフィン等による包埋、切片作製、染色といった非常に煩雑な一連の作業が必要であった(特許文献1、2)。また、組織切片の染色画像からは、一方向から観察される面からの限られた情報しか得ることができなかった。さらに、従来の方法では、作製された三次元培養皮膚を生きたまま観察することができず、生きた細胞や組織の情報をリアルタイムに取得することはできなかった。 However, in order to observe and evaluate the condition of the skin, the conventional three-dimensional cultured skin requires a very complicated series of operations such as fixation with paraformaldehyde, embedding with paraffin, section preparation, and dyeing. (Patent Documents 1 and 2). Moreover, from the stained image of the tissue section, only limited information could be obtained from the surface observed from one direction. Furthermore, with the conventional method, the prepared three-dimensional cultured skin could not be observed alive, and information on living cells and tissues could not be acquired in real time.

特開2009−294200号公報JP-A-2009-294200 特開2010−193822号公報Japanese Unexamined Patent Publication No. 2010-193822

従って、本発明は、上述した実情に鑑み、表皮細胞を多方向から生きたままリアルタイムに観察でき、表皮の状態をより正確に評価することができる三次元培養表皮モデルを提供することを課題とする。 Therefore, in view of the above-mentioned circumstances, it is an object of the present invention to provide a three-dimensional cultured epidermis model capable of observing epidermal cells from multiple directions in real time while alive and more accurately evaluating the state of the epidermis. To do.

本発明者らは、上記課題を解決するため鋭意研究を行った結果、あらかじめ蛍光色素で染色するか、蛍光タンパク質を導入したケラチノサイトを作製し、このケラチノサイトを三次元培養することにより作製された培養表皮は、各階層の細胞又はオルガネラが蛍光物質で三次元可視化され、それらの形態や分布を多方向から生きたままリアルタイムに観察できることを見出し、本発明を完成させるに至った。 As a result of diligent research to solve the above problems, the present inventors prepared keratinocytes dyed with a fluorescent dye in advance or introduced a fluorescent protein, and cultured the keratinocytes three-dimensionally. In the epidermis, we have found that cells or organelles in each layer are three-dimensionally visualized with a fluorescent substance, and their morphology and distribution can be observed in real time from multiple directions while living, and the present invention has been completed.

すなわち、本発明は、以下の発明を包含する。
[1] 表皮を構成する各階層の細胞又はオルガネラが蛍光物質で三次元可視化されている、三次元培養表皮モデル。
[2] 前記蛍光物質が蛍光色素又は蛍光タンパク質である、[1]に記載の三次元培養表皮モデル。
[3] 前記細胞がケラチノサイト又はメラノサイトである、[1]又は[2]に記載の三次元培養表皮モデル。
[4] 以下の工程を含む、三次元培養表皮モデルの製造方法。
(1) ケラチノサイトを蛍光色素で染色又はケラチノサイトに蛍光タンパク質発現ベクターを導入する工程
(2) 工程(1)で得られたケラチノサイトを三次元培養する工程
[5] 前記ケラチノサイトの三次元培養を、蛍光タンパク質発現ベクターを導入したメラノサイトとともに行う、[4]に記載の三次元培養表皮モデルの製造方法。
[6] 前記三次元培養の開始前、三次元培養中、及び三次元培養の終了後から選ばれる少なくとも1つの段階で、ケラチノサイトに対して刺激を付与する工程をさらに含む、[4]又は[5]に記載の三次元培養表皮モデルの製造方法。
[7] [1]〜[3]のいずれかに記載の三次元培養表皮モデルに被験物質を接触させ、該モデルの表皮細胞又はオルガネラを蛍光イメージングによって観察し、その観察結果に基づいて該被験物質の有効性又は安全性を評価する方法。
[8] [1]〜[3]のいずれかに記載の三次元培養表皮モデルに被験物質を接触させ、該モデルの表皮細胞又はオルガネラを蛍光イメージングによって観察し、その観察結果に基づいて表皮機能の改善物質をスクリーニングする方法。
[9] [1]〜[3]のいずれかに記載の三次元培養表皮モデルを含む、皮膚評価用キット。
That is, the present invention includes the following inventions.
[1] A three-dimensional cultured epidermis model in which cells or organelles in each layer constituting the epidermis are three-dimensionally visualized with a fluorescent substance.
[2] The three-dimensional cultured epidermis model according to [1], wherein the fluorescent substance is a fluorescent dye or a fluorescent protein.
[3] The three-dimensional cultured epidermis model according to [1] or [2], wherein the cells are keratinocytes or melanocytes.
[4] A method for producing a three-dimensional cultured epidermis model, which comprises the following steps.
(1) Step of staining keratinocytes with a fluorescent dye or introducing a fluorescent protein expression vector into keratinocytes
(2) Step of three-dimensional culture of keratinocytes obtained in step (1)
[5] The method for producing a three-dimensional cultured epidermis model according to [4], wherein the three-dimensional culture of keratinocytes is carried out together with melanocytes into which a fluorescent protein expression vector has been introduced.
[6] Further comprising the step of stimulating the keratinocytes at at least one step selected from before the start of the 3D culture, during the 3D culture, and after the end of the 3D culture [4] or [4] or [ 5] The method for producing a three-dimensional cultured epidermis model.
[7] The test substance is brought into contact with the three-dimensional cultured epidermis model according to any one of [1] to [3], the epidermal cells or organelles of the model are observed by fluorescence imaging, and the test is performed based on the observation results. A method of assessing the efficacy or safety of a substance.
[8] The test substance is brought into contact with the three-dimensional cultured epidermis model according to any one of [1] to [3], the epidermis cells or organelles of the model are observed by fluorescence imaging, and the epidermis function is based on the observation results. How to screen for improving substances.
[9] A skin evaluation kit comprising the three-dimensional cultured epidermis model according to any one of [1] to [3].

本発明によれば、表皮を構成する各階層の細胞又はオルガネラが蛍光物質で三次元可視化されている三次元培養表皮モデル及びその製造方法が提供される。本発明の三次元培養表皮モデルは、従来の三次元培養表皮モデルのように、皮膚の状態を観察及び評価する場合に、固定、包埋、切片作製、染色といった煩雑な作業を行うことなく、生きたままの細胞(生細胞)を多方向から観察でき、細胞の情報(数、形態、局在、移動など)を多方向から取得できる。また、本発明の三次元培養表皮モデルでは、生きたまま細胞観察を行うことが可能であるため、タイムラプスイメージングにより、細胞の形態変化や動きをリアルタイムで観察することも可能である。また、当該三次元培養表皮モデルを薬剤等で刺激を付与することによって、創傷や角化異常症などの皮膚疾患を再現した表皮モデルとすることもできる。よって、本発明の三次元培養表皮モデルは、皮膚のターンオーバーの促進やメラニン生成抑制のための化粧品や薬剤の開発、皮膚のターンオーバーや美白作用のメカニズムの研究、乾癬や接触性皮膚炎などの難治性皮膚疾患の発症機序の解明などに有用である。 According to the present invention, there is provided a three-dimensional cultured epidermis model in which cells or organelles in each layer constituting the epidermis are three-dimensionally visualized with a fluorescent substance, and a method for producing the same. Unlike the conventional three-dimensional cultured epidermis model, the three-dimensional cultured epidermis model of the present invention does not require complicated operations such as fixation, embedding, section preparation, and staining when observing and evaluating the skin condition. Living cells (living cells) can be observed from multiple directions, and cell information (number, morphology, localization, migration, etc.) can be obtained from multiple directions. Further, in the three-dimensional cultured epidermis model of the present invention, since it is possible to observe cells alive, it is also possible to observe cell morphological changes and movements in real time by time-lapse imaging. In addition, by stimulating the three-dimensional cultured epidermis model with a drug or the like, it is possible to obtain an epidermis model that reproduces a skin disease such as a wound or keratosis. Therefore, the three-dimensional cultured epidermis model of the present invention can be used for developing cosmetics and drugs for promoting skin turnover and suppressing melanin production, studying the mechanism of skin turnover and whitening action, psoriasis and contact dermatitis, etc. It is useful for elucidating the pathogenic mechanism of intractable skin diseases.

図1Aは、セルトラッカーオレンジ(CTO)で染色したケラチノサイトの共焦点レーザー顕微鏡像、三次元培養の模式図、及び、蛍光染色ケラチノサイトを用いて作製された三次元培養表皮の共焦点レーザー顕微鏡像による立体画像を示す(R:赤く染色された細胞)。図1Bは、作製された三次元培養表皮の深さ方向(水平方向)の共焦点レーザー顕微鏡像を示す(画像中の値は、角質層からの距離を示す)。FIG. 1A shows a confocal laser scanning microscope image of keratinocytes stained with cell tracker orange (CTO), a schematic diagram of three-dimensional culture, and a confocal laser scanning microscope image of a three-dimensional cultured epidermis prepared using fluorescently stained keratinocytes. Shows a stereoscopic image (R: cells stained red). FIG. 1B shows a confocal laser scanning microscope image in the depth direction (horizontal direction) of the prepared three-dimensional cultured epidermis (values in the image indicate the distance from the stratum corneum). 図2Aは、緑色蛍光タンパク質GFP発現ベクター(pTagGFP2-C)を導入したケラチノサイト(G-HEK)の共焦点レーザー顕微鏡像、及び当該ケラチノサイトを三次元培養して作製された三次元培養表皮(G-HEK由来三次元培養表皮)の垂直方向の断面の共焦点レーザー顕微鏡像を示す(G:緑色に光る細胞)。図2Bは、G-HEK由来三次元培養表皮の深さ方向(水平方向)の断面の共焦点レーザー顕微鏡像を示す(画像中の数値は、角質層からの距離を示す)。FIG. 2A shows a confocal laser scanning microscope image of keratinocytes (G-HEK) into which a green fluorescent protein GFP expression vector (pTagGFP2-C) has been introduced, and a three-dimensional cultured epidermis (G-) prepared by culturing the keratinocytes in three dimensions. A confocal laser scanning microscope image of a vertical cross section of a HEK-derived three-dimensional cultured epidermis (G: cells glowing green) is shown. FIG. 2B shows a confocal laser scanning microscope image of a cross section of the G-HEK-derived three-dimensional cultured epidermis in the depth direction (horizontal direction) (numerical values in the image indicate the distance from the stratum corneum). 図3Aは、G-HEKと、赤色蛍光タンパク質RFP発現ベクター(pTagRFP-C)を導入したケラチノサイト(R-HEK)の混合細胞の共焦点レーザー顕微鏡像、及び当該混合細胞を三次元培養して作製された三次元培養表皮の垂直方向の断面の共焦点レーザー顕微鏡像を示す(点線で囲んだ細胞:R-HEK、無印の細胞:G-HEK)。図3Bは、当該混合細胞を三次元培養して作製された三次元培養表皮の中のR-HEKの形態を共焦点レーザー顕微鏡立体的に観察した画像を示す。FIG. 3A shows a confocal laser scanning microscope image of mixed cells of G-HEK and keratinocytes (R-HEK) into which a red fluorescent protein RFP expression vector (pTagRFP-C) was introduced, and three-dimensional culture of the mixed cells. A confocal laser scanning microscope image of a vertical cross section of the three-dimensional cultured epidermis is shown (cells surrounded by dotted lines: R-HEK, unmarked cells: G-HEK). FIG. 3B shows an image obtained by sterically observing the morphology of R-HEK in a three-dimensional cultured epidermis prepared by three-dimensionally culturing the mixed cells with a confocal laser scanning microscope. 図4Aは、核移行シグナルを付加したGFP発現ベクター(pAcGFP1-Nuc Vector)を導入したケラチノサイト(NG-HEK)を三次元培養して作製された三次元培養表皮(NG-HEK由来三次元培養表皮)の共焦点レーザー顕微鏡による立体画像を示す。図4Bは、NG-HEK由来三次元培養表皮の深さ方向(水平方向)の断面の共焦点レーザー顕微鏡像を示す(画像中の数値は、角質層からの距離を示す)。FIG. 4A shows a three-dimensional cultured epidermis (NG-HEK-derived three-dimensional cultured epidermis) prepared by three-dimensionally culturing keratinocytes (NG-HEK) into which a GFP expression vector (pAcGFP1-Nuc Vector) to which a nuclear localization signal has been added has been introduced. ) Is shown as a stereoscopic image by a confocal laser scanning microscope. FIG. 4B shows a confocal laser scanning microscope image of a cross section of the NG-HEK-derived three-dimensional cultured epidermis in the depth direction (horizontal direction) (numerical values in the image indicate the distance from the stratum corneum). 図5は、pTagRFP-C及びpAcGFP1-Nuc Vectorを同時に導入したケラチノサイト(R-NG-HEK)と通常のHEK(遺伝子導入を行っていない)の混合細胞を三次元培養して作製された三次元培養表皮の垂直方向の断面の共焦点レーザー顕微鏡像を示す(NC:有核細胞、ENC:脱核細胞、Y1:黄色に光る核、Y2:黄色に光る細胞質全体)。FIG. 5 shows a three-dimensional cell prepared by three-dimensionally culturing a mixed cell of keratinocytes (R-NG-HEK) into which pTagRFP-C and pAcGFP1-Nuc Vector were simultaneously introduced and normal HEK (without gene transfer). A confocal laser scanning microscope image of a vertical cross section of the cultured epidermis is shown (NC: nucleated cells, ENC: enucleated cells, Y1: yellow glowing nucleus, Y2: entire yellow glowing cytoplasm). 図6は、NG-HEKを三次元培養して作製された三次元培養表皮を、皮膚刺激物質であるSDSで処理した後の共焦点レーザー顕微鏡による深さ方向(水平方向)の断面の共焦点レーザー顕微鏡像を示す(画像中の数値は、角質層からの距離を示す。また、矢頭は、アポトーシスを起こした細胞を示す)。FIG. 6 shows the confocal cross-section of the cross section in the depth direction (horizontal direction) by a confocal laser scanning microscope after treating the three-dimensional cultured epidermis prepared by three-dimensionally culturing NG-HEK with SDS, which is a skin stimulant. A laser microscope image is shown (the numbers in the image indicate the distance from the stratum corneum, and the arrowheads indicate the cells that have undergone apoptosis). 図7は、G-HEKと、RFP発現ベクターを導入したメラノサイト(R-HEM)の混合細胞を三次元培養して作製された三次元培養表皮の共焦点レーザー顕微鏡による立体画像を様々な角度から観察した像を示す(点線で囲んだ細胞:R-HEM、無印の細胞:G-HEK)。FIG. 7 shows stereoscopic images of a three-dimensionally cultured epidermis prepared by three-dimensionally culturing mixed cells of G-HEK and melanocytes (R-HEM) into which an RFP expression vector has been introduced by a confocal laser scanning microscope from various angles. Shows the observed image (cells surrounded by dotted lines: R-HEM, unmarked cells: G-HEK). 図8は、通常のケラチノサイトを三次元培養して作製された三次元培養表皮の組織切片を抗チロシナーゼ(Tyrosinase)抗体、DAPIで染色した蛍光顕微鏡像を示す(点線で囲んだ細胞:メラノサイト)。FIG. 8 shows a fluorescence microscope image of a tissue section of a three-dimensionally cultured epidermis prepared by three-dimensionally culturing ordinary keratinocytes and stained with an anti-tyrosinase antibody and DAPI (cells surrounded by a dotted line: melanocytes).

1.三次元培養表皮モデル
本発明の三次元培養表皮モデルは、表皮を構成する各階層の細胞(表皮細胞)又はオルガネラが蛍光物質で三次元可視化されていることを特徴とする。
1. 1. Three-dimensional cultured epidermis model The three-dimensional cultured epidermis model of the present invention is characterized in that cells (epidermis cells) or organelles in each layer constituting the epidermis are three-dimensionally visualized with a fluorescent substance.

蛍光物質には、蛍光色素及び蛍光タンパク質が含まれる。蛍光色素としては、細胞の形態や局在などの観察が可能で、生細胞に対して毒性がなく、細胞の染色に適したものであれば特に限定はされないが、例えば、セルトラッカー(CellTracker;登録商標)の各シリーズ(Orange CMRA, Green CMFDA, Blue CMAC, Violet BMQC, Red CMTPX等)、アレクサフルオール(Alexa Fluor:登録商標)の各シリーズ、Cy3、Cy5、Hoechst 33342、Hoechst 33258などが挙げられる。蛍光タンパク質としては、例えば、緑色蛍光タンパク質(GFP)、赤色蛍光タンパク質(RFP)、黄色蛍光タンパク質(YFP)、シアン色蛍光タンパク質(CFP)等が挙げられる。これらの蛍光物質は、1種を用いてもよく、2種以上を用いてもよい。 Fluorescent substances include fluorescent dyes and fluorescent proteins. The fluorescent dye is not particularly limited as long as it can observe the morphology and localization of cells, is not toxic to living cells, and is suitable for staining cells, but for example, CellTracker; Each series of registered trademarks) (Orange CMRA, Green CMFDA, Blue CMAC, Violet BMQC, Red CMTPX, etc.), Alexa Fluor (registered trademark) series, Cy3, Cy5, Hoechst 33342, Hoechst 33258, etc. Be done. Examples of the fluorescent protein include green fluorescent protein (GFP), red fluorescent protein (RFP), yellow fluorescent protein (YFP), cyanide fluorescent protein (CFP) and the like. As these fluorescent substances, one kind may be used, and two or more kinds may be used.

表皮を構成する各階層とは、皮膚表面から深いほうから順に基底層(1層)、有棘層(5〜10層)、顆粒層(2〜3層)、角質層(約10層)に含まれるすべての層をいう。 The layers that make up the epidermis are the basal layer (1 layer), the spinous layer (5 to 10 layers), the stratum granulosum (2 to 3 layers), and the stratum corneum (about 10 layers) in order from the deepest to the skin surface. Refers to all layers included.

表皮細胞には、表皮角化細胞(ケラチノサイト)、色素細胞(メラノサイト)、ランゲルハンス細胞、メルケル細胞、毛母細胞、毛乳頭細胞等が含まれる。また、オルガネラ(細胞内小器官)には、核、小胞体、リボソーム顆粒、細胞骨格(アクチン、微小管、中間径フィラメント)、ゴルジ体、エンドソーム、ミトコンドリア等が含まれる。 Epidermal cells include epidermal keratinocytes (keratinocytes), pigment cells (melanocytes), Langerhans cells, Merkel cells, hair matrix cells, hair papilla cells and the like. In addition, organelles (organelles) include nuclei, endoplasmic reticulum, ribosomal granules, cytoskeleton (actins, microtubules, intermediate filaments), Golgi apparatus, endosomes, mitochondria and the like.

2.三次元培養表皮モデルの製造方法
本発明の三次元培養表皮モデルの製造方法は、(1)ケラチノサイトを蛍光色素で染色又はケラチノサイトに蛍光タンパク質発現ベクターを導入する工程と、(2) 工程(1)で得られたケラチノサイトを三次元培養する工程を含む。
2. 2. Method for producing a three-dimensional cultured epidermis model The method for producing a three-dimensional cultured epidermis model of the present invention includes (1) staining keratinocytes with a fluorescent dye or introducing a fluorescent protein expression vector into keratinocytes, and (2) step (1). Including the step of three-dimensionally culturing the keratinocytes obtained in 1.

まず、工程(1)では、ケラチノサイトを蛍光色素で染色又はケラチノサイトに蛍光タンパク質発現ベクターを導入する。ケラチノサイトは、不死化ケラチノサイトでも正常ケラチノサイトでもよいが、不死化ケラチノサイトが好ましい。不死化方法については、ケラチノサイトなどの上皮細胞の培養細胞を不死化させ、かつ細胞死を誘導しない方法であれば限定はされないが、例えば、テロメラーゼ逆転写酵素(TERT)、ウイルス遺伝子(SV40T、HPV E6-E7、EBV等)による方法などが挙げられる。細胞の由来は哺乳動物であれば特に限定はされず、例えば、ヒト、マウス、ラット、モルモット、ハムスター、ウサギ、イヌ、ネコ、ブタ、ウシ、ウマ等が挙げられるが、ヒトであることが好ましい。 First, in step (1), keratinocytes are stained with a fluorescent dye or a fluorescent protein expression vector is introduced into the keratinocytes. The keratinocytes may be immortalized keratinocytes or normal keratinocytes, but immortalized keratinocytes are preferred. The immortalization method is not limited as long as it immortalizes cultured cells of epithelial cells such as keratinocytes and does not induce cell death. For example, telomerase reverse transcriptase (TERT) and viral genes (SV40T, HPV) E6-E7, EBV, etc.) can be mentioned. The origin of the cells is not particularly limited as long as it is a mammal, and examples thereof include humans, mice, rats, guinea pigs, hamsters, rabbits, dogs, cats, pigs, cows, and horses, but humans are preferable. ..

蛍光色素及び蛍光タンパク質の種類は、前述のとおりである。蛍光タンパク質のケラチノサイトへの導入は、蛍光タンパク質をコードする遺伝子を挿入したベクター(蛍光タンパク質発現ベクター)を作製し、これをエレクトロポレーション法、トランスフェクション法、マイクロインジェクション法等を用いてケラチノサイトに導入することにより行うことができる。また、表皮細胞内の特定のオルガネラや細胞内構造を観察する場合は、例えば蛍光タンパク質をコードする遺伝子を、各種オルガネラ移行シグナルペプチドをコードするDNAや、各種オルガネラ構成タンパク質をコードする遺伝子と結合させた遺伝子を適当なベクターに挿入し、これを上記方法にてケラチノサイトに導入すればよい。また、蛍光タンパク質をコードする遺伝子を、皮膚機能や皮膚疾患に関連する各種遺伝子(例えば、アトピー性皮膚炎の発症や皮膚バリア機能異常に関連する遺伝子、色素異常症の原因遺伝子、炎症に関連する遺伝子等)特異的プロモーター配列の下流に結合させた遺伝子をケラチノサイトに導入した場合は、当該各種遺伝子の三次元培養皮膚内での発現パターンをリアルタイムにモニタリングすることが可能である。 The types of fluorescent dyes and fluorescent proteins are as described above. For the introduction of fluorescent protein into keratinocytes, a vector into which a gene encoding the fluorescent protein is inserted (fluorescent protein expression vector) is prepared, and this is introduced into keratinocytes using an electroporation method, a transfection method, a microinjection method, or the like. It can be done by doing. When observing a specific organelle or intracellular structure in epidermal cells, for example, a gene encoding a fluorescent protein is bound to a DNA encoding various organelle translocation signal peptides or a gene encoding various organelle constituent proteins. The gene may be inserted into an appropriate vector and introduced into keratinocytes by the above method. In addition, genes encoding fluorescent proteins are related to various genes related to skin function and skin diseases (for example, genes related to the onset of atopic dermatitis and skin barrier dysfunction, genes causing pigmentation disorders, and inflammation. (Genes, etc.) When a gene bound downstream of a specific promoter sequence is introduced into keratinocytes, it is possible to monitor the expression pattern of the various genes in three-dimensional cultured skin in real time.

次に、工程(2)では、蛍光色素で染色したケラチノサイト又は蛍光タンパク質発現ベクターを導入したケラチノサイトを用いて三次元培養を行う。三次元培養は、ケラチノサイトを空気暴露により重層化させ皮膚を再構成させるという、当分野で一般的に用いられている下記の三次元培養皮膚の作製方法に従って行うことができる。 Next, in step (2), three-dimensional culture is carried out using keratinocytes stained with a fluorescent dye or keratinocytes into which a fluorescent protein expression vector has been introduced. The three-dimensional culture can be carried out according to the following method for producing three-dimensional cultured skin, which is generally used in the art, in which keratinocytes are layered by air exposure to reconstruct the skin.

三次元培養皮膚の作製は、細胞の増殖培養工程と分化誘導工程からなる。増殖培養工程においては、蛍光色素で染色したケラチノサイト又は蛍光タンパク質発現ベクターを導入したケラチノサイト(以下、単にケラチノサイトという)を、培養インサート等の培養容器内で底面にコンフルエントになるまで増殖培養させる。具体的には、ケラチノサイトを細胞増殖用培地に分散し、この細胞分散液を、液透過性膜を底面に有する培養インサートに播種し、培養インサートの外部も同じ細胞増殖用培地で満たして、液透過性膜上のケラチノサイトが細胞増殖用培地中に浸漬した状態で培養する。液透過性膜によって、培養インサートの内部と外部とは培地が透過可能なように連通している状態が維持される。ここで、細胞培養インサートに添加するケラチノサイトの数は、特に限定されないが、通常15×10〜120×10細胞/cmが好ましく、30×10〜90×10細胞/cmがより好ましい。 Preparation of three-dimensional cultured skin consists of a cell proliferation culture step and a differentiation induction step. In the growth culture step, keratinocytes stained with a fluorescent dye or keratinocytes introduced with a fluorescent protein expression vector (hereinafter, simply referred to as keratinocytes) are grown and cultured in a culture vessel such as a culture insert until they become confluent on the bottom surface. Specifically, keratinocytes are dispersed in a cell growth medium, the cell dispersion is seeded in a culture insert having a liquid permeable membrane on the bottom surface, and the outside of the culture insert is also filled with the same cell growth medium to prepare the liquid. The keratinocytes on the permeable membrane are cultured in a state of being immersed in a cell growth medium. The liquid permeable membrane keeps the inside and outside of the culture insert in communication so that the medium can permeate. Here, the number of keratinocytes added to the cell culture insert is not particularly limited, but is usually preferably 15 × 10 4 to 120 × 10 4 cells / cm 2 , preferably 30 × 10 4 to 90 × 10 4 cells / cm 2. More preferred.

培養インサートの液透過性膜は、播種したケラチノサイトが接着又は固定され、その上でケラチノサイトが増殖でき、支持体となりうるものであれば、特に限定されないが、例えば、ポリカーボネート、ポリエチレンテレフタレート、ポリスチレン等の膜が挙げられる。また、当該膜にコラーゲン、ラミニン、フィブロネクチン等の細胞外マトリックスやポリL−リジン等の細胞の接着を補助するものをコーティングしてもよい。 The liquid-permeable membrane of the culture insert is not particularly limited as long as the seeded keratinocytes are adhered or fixed, and the keratinocytes can grow on it and can serve as a support, but for example, polycarbonate, polyethylene terephthalate, polystyrene, etc. Membrane is mentioned. Further, the membrane may be coated with an extracellular matrix such as collagen, laminin or fibronectin, or a substance that assists cell adhesion such as poly L-lysine.

さらに、支持体として培養インサートを用いる他に、コラーゲンゲル、コラーゲンスポンジもしくは上皮や線維芽細胞が除去された無細胞化真皮を用いてもよい。これらを支持体として用いる場合には、適宜線維芽細胞を組み込んでもよい。また、これらの支持体には支持体表面にガラスリングを設置し、その中にケラチノサイトの細胞懸濁液を添加するのが好ましい。 Further, in addition to using a culture insert as a support, a collagen gel, a collagen sponge, or a cell-free dermis from which epithelium and fibroblasts have been removed may be used. When these are used as supports, fibroblasts may be incorporated as appropriate. Further, it is preferable to install a glass ring on the surface of these supports and add a cell suspension of keratinocytes to the glass ring.

増殖培養は、例えば1〜6日間、好ましくは2〜4日間行う。また、この間、培地を適宜交換してもよい。培養インサートにおいて増殖したケラチノサイトがコンフルエントの状態にあるかどうかは、CnT-ST-100 stain kit(CELLn TEC社製)等の細胞染色試薬により確認することができる。また、培養インサート内の培養液の液面が、培養インサート外の培養液の液面よりも高くなったときに、ケラチノサイトがコンフルエントになったと判断することもできる。 The growth culture is carried out, for example, for 1 to 6 days, preferably 2 to 4 days. Further, during this period, the medium may be changed as appropriate. Whether or not the keratinocytes grown in the culture insert are in a confluent state can be confirmed by a cell staining reagent such as CnT-ST-100 stain kit (manufactured by CELLn TEC). It can also be determined that keratinocytes have become confluent when the liquid level of the culture solution in the culture insert is higher than the liquid level of the culture solution outside the culture insert.

次に、分化誘導工程では、培養インサートの内部及び外部の培地を細胞増殖用培地から細胞分化用培地に変更し、当該培地にてケラチノサイトを6〜48時間程度浸漬培養した後、培養インサートの内部及び外部のすべての培地をアスピレーターで除去し、インサート外部に細胞分化用培地を添加し、培養インサート内部のケラチノサイトは空気(大気)に暴露し、5〜12日間培養して、重層化した表皮細胞に分化誘導する。 Next, in the differentiation induction step, the medium inside and outside the culture insert is changed from the medium for cell proliferation to the medium for cell differentiation, and keratinocytes are immersed and cultured in the medium for about 6 to 48 hours, and then the inside of the culture insert. And all external medium was removed with an aspirator, medium for cell differentiation was added to the outside of the insert, keratinocytes inside the culture insert were exposed to air (air), cultured for 5 to 12 days, and stratified epidermal cells. Induce differentiation into.

上記の細胞増殖用培地としては、例えば、ケラチノサイトの増殖や継代培養に適した基本培地であれば、特に限定はされないが、無血清・低カルシウム濃度の基本培地であることが好ましく、例えば、Keratinocyte-SFM(Thermo Fisher Scientific社製)、MCDB153培地(Sigma社製)、Humedia-KG2(クラボウ社製)、正常ヒト表皮角化細胞用無血清培地(DSファーマバイオメディカル社製)等の市販の培地を使用すればよい。上記培地には、増殖因子として塩基性線維芽細胞増殖因子(bFGF)、白血球遊走阻止因子(LIF)、Stem Cell Factor(SCF)等が含有されていてもよい。また、増殖速度を増大させるために、必要に応じて、上皮細胞増殖因子(EGF)、腫瘍壊死因子(TNF)、ビタミン類、インターロイキン類、インスリン、トランスフェリン、ヘパリン、ヘパラン硫酸、コラーゲン、ウシ血清アルブミン(BSA)、L−グルタミン、フィブロネクチン、プロゲステロン、セレナイト、B27−サプリメント、N2−サプリメント、ITS−サプリメントが含有されてもよい。また、必要に応じて、抗生物質を添加してもよい。細胞増殖用培地のカルシウム濃度は、約0.03〜0.15mMが好ましい。 The medium for cell proliferation is not particularly limited as long as it is a basal medium suitable for keratinocyte growth and subculture, but is preferably a serum-free and low calcium concentration basal medium, for example. Commercially available Keratinocyte-SFM (Thermo Fisher Scientific), MCDB153 medium (Sigma), Humedia-KG2 (Kurabou), serum-free medium for normal human epidermal keratinocytes (DS Pharma Biomedical), etc. A medium may be used. The medium may contain basic fibroblast growth factor (bFGF), leukemia inhibitory factor (LIF), Stem Cell Factor (SCF) and the like as growth factors. In addition, epidermal growth factor (EGF), tumor necrosis factor (TNF), vitamins, interleukins, insulin, transferase, heparin, heparan sulfate, collagen, bovine serum are required to increase the growth rate. Albumin (BSA), L-glutamine, fibronectin, progesterone, selenite, B27-supplement, N2-supplement, ITS-supplement may be contained. In addition, antibiotics may be added if necessary. The calcium concentration of the cell growth medium is preferably about 0.03 to 0.15 mM.

上記の細胞分化用培地としては、ケラチノサイトの分化誘導に適した基本培地であれば、特に限定はされないが、CnT-Prime 3D Barrier Culture Medium(CELLn TEC社製)等の市販の培地を使用すればよい。また、細胞分化用培地のカルシウム濃度は、約1.2〜1.5mMが好ましい。 The above-mentioned medium for cell differentiation is not particularly limited as long as it is a basal medium suitable for inducing differentiation of keratinocytes, but if a commercially available medium such as CnT-Prime 3D Barrier Culture Medium (manufactured by CELLn TEC) is used. Good. The calcium concentration of the cell differentiation medium is preferably about 1.2 to 1.5 mM.

増殖及び分化誘導のための培養温度は、細胞の由来により異なるが、例えばヒト由来の場合30℃〜40℃が好ましく、36〜38℃がより好ましい。また、COガス濃度は、例えば約1〜10%が好ましく、約2〜5%がより好ましい。 The culture temperature for inducing proliferation and differentiation varies depending on the origin of the cells, but for example, in the case of human origin, 30 ° C to 40 ° C is preferable, and 36 to 38 ° C is more preferable. The CO 2 gas concentration is preferably, for example, about 1 to 10%, more preferably about 2 to 5%.

上記の蛍光色素で染色したケラチノサイト又は蛍光タンパク質を導入したケラチノサイトを培養して重層化した表皮細胞を作製する工程は、ミリセルセルカルチャーインサート(Millipore社製)、ケラチノサイト三次元培養スターターキット(フナコシ社製)等の市販の培養表皮作製用キットを利用してもよく、該キットに梱包された培地、培養インサートを用いて該キットに添付の指示書に従って行うことができる。 The steps of culturing keratinocytes stained with the above fluorescent dye or keratinocytes introduced with fluorescent protein to prepare stratified epidermal cells are Millicelle cell culture insert (manufactured by Millipore) and keratinocytes three-dimensional culture starter kit (manufactured by Funakoshi). ) And the like, a commercially available culture epidermis preparation kit may be used, and the culture medium and culture insert packed in the kit can be used according to the instructions attached to the kit.

また、他の態様として、上記の三次元培養を、2種の異なる蛍光タンパク質(例えばGFPとRFP)をそれぞれ導入した2種のケラチノサイトを混合して行うことにより、細胞ひとつひとつの形態の観察が容易である三次元培養表皮モデルを作製することができる。2種のケラチノサイトを用いて三次元培養を行う場合、例えばGFP導入ケラチノサイトの細胞数に対するRFP導入ケラチノサイトの細胞数の比は、三次元培養表皮の使用の目的により異なるが、例えば、約0.001〜50%が好ましく、0.01〜10%がより好ましい。 In addition, as another embodiment, by performing the above-mentioned three-dimensional culture by mixing two types of keratinocytes into which two different fluorescent proteins (for example, GFP and RFP) have been introduced, it is easy to observe the morphology of each cell. A three-dimensional cultured epidermis model can be prepared. When three-dimensional culture is performed using two types of keratinocytes, for example, the ratio of the number of cells of RFP-introduced keratinocytes to the number of cells of GFP-introduced keratinocytes varies depending on the purpose of use of the three-dimensional cultured epidermis, for example, about 0.001. It is preferably ~ 50%, more preferably 0.01-10%.

さらに別の態様として、上記の三次元培養を、蛍光タンパク質を導入したケラチノサイトと蛍光タンパク質を導入したメラノサイトを混合して行うことにより、メラノサイトを含む三次元培養表皮モデルを作製することができる。この場合、メラノサイトに導入する蛍光タンパク質として、ケラチノサイトに導入する蛍光タンパク質と異なる種類を用いることにより、メラノサイトの表皮組織における局在の観察が容易となる。メラノサイトの由来は上述した哺乳動物であれば特に限定はされないが、ヒト由来が好ましい。ケラチノサイトとメラノサイトをいっしょに三次元培養を行う場合のケラチノサイトの細胞数に対するメラノサイトの細胞数の比は、三次元培養表皮の使用の目的により異なるが、例えば、約0.1〜30%が好ましく、5〜20%がより好ましい。 As yet another aspect, a three-dimensional cultured epidermis model containing melanocytes can be prepared by performing the above-mentioned three-dimensional culture by mixing keratinocytes into which a fluorescent protein has been introduced and melanocytes into which a fluorescent protein has been introduced. In this case, by using a different type of fluorescent protein to be introduced into melanocytes from the fluorescent protein to be introduced into keratinocytes, it becomes easy to observe the localization of melanocytes in the epidermal tissue. The origin of melanocytes is not particularly limited as long as it is the above-mentioned mammal, but human origin is preferable. The ratio of the number of melanocytes to the number of cells of keratinocytes when keratinocytes and melanocytes are cultured together varies depending on the purpose of use of the three-dimensional cultured epidermis, but is preferably about 0.1 to 30%, for example. 5 to 20% is more preferable.

また、ケラチノサイトの三次元培養の開始前、三次元培養中、及び三次元培養の終了後から選ばれる少なくとも1つの段階で、該ケラチノサイトに対して刺激を付与することによって、創傷や角化異常症などの皮膚疾患を再現又は模倣した表皮モデルとすることもできる。刺激には、紫外線照射、乾燥、熱、薬剤(界面活性剤、有機溶媒など)による刺激が含まれる。 In addition, by stimulating the keratinocytes at at least one stage selected before the start of the three-dimensional culture of keratinocytes, during the three-dimensional culture, and after the end of the three-dimensional culture, wounds and keratoses are abnormal. It is also possible to use an epidermis model that reproduces or imitates a skin disease such as. Stimulation includes UV irradiation, drying, heat, and stimulation with chemicals (surfactants, organic solvents, etc.).

本発明の上記三次元培養表皮モデルは、キット化してもよく、当該キットには、例えば、表皮細胞の培養に適した培地や容器、陽性や陰性の標準試料、キットの使用方法を記載した指示書等を含めることができる。 The above-mentioned three-dimensional cultured epidermis model of the present invention may be made into a kit, and the kit describes, for example, a medium or container suitable for culturing epidermal cells, positive or negative standard samples, and instructions on how to use the kit. Calligraphy etc. can be included.

3.三次元培養表皮モデルの使用方法
本発明の三次元培養表皮モデルは、動物実験の代替法として、化粧品や皮膚外用剤、化学物質(洗剤、衣服用染料等)の有効性や安全性の評価に用いることができる。例えば、有効性の評価には、皮膚バリア機能、水分又は油分の保持・調節機能、シワ予防・改善機能、水分浸透性の有無等が挙げられ、安全性の評価としては、紅斑、発赤、炎症、色素沈着、腫脹、かぶれの発生の有無等が挙げられる。また、本発明の三次元培養表皮モデルは、表皮機能の改善物質のスクリーニングに用いることもできる。表皮機能改善には、表皮のバリア機能(水分保持機能、外部からの紫外線・化学物質・細菌などの侵入防止機能など)の向上、皮膚のターンオーバーの正常化機能、メラニン代謝正常化機能等が挙げられる。
3. 3. How to use the 3D cultured skin model The 3D cultured skin model of the present invention can be used as an alternative method for animal experiments to evaluate the effectiveness and safety of cosmetics, external preparations for skin, and chemical substances (detergents, dyes for clothes, etc.). Can be used. For example, the evaluation of efficacy includes skin barrier function, retention / regulation function of water or oil, wrinkle prevention / improvement function, presence / absence of water permeability, etc., and evaluation of safety includes erythema, redness, inflammation. , Pigmentation, swelling, presence or absence of rash, etc. In addition, the three-dimensional cultured epidermis model of the present invention can also be used for screening for substances that improve epidermis function. Improvement of epidermis function includes improvement of epidermis barrier function (water retention function, prevention function of invasion of ultraviolet rays, chemical substances, bacteria, etc. from the outside), normalization function of skin turnover, normalization function of melanin metabolism, etc. Can be mentioned.

本発明において、化粧品や医薬品の有効性や安全性の評価、及びスクリーニングは、本発明の三次元培養表皮モデルに被験物質を接触させ、該モデルの表皮細胞又はオルガネラの変化を蛍光イメージングによる観察によって行うことができ、表皮細胞又はオルガネラの変化が評価の指標となる。この際、被験物質と接触させない本発明の三次元培養表皮モデルを対照とし、その観察結果と比較すれば、評価がより正確となる。表皮細胞又はオルガネラの変化には、それらの数、形態、分布、局在、移動、消失などの変化が含まれる。例えば、表皮細胞の細胞死や増殖阻害を指標とすれば、被験物質が表皮に対して刺激性を与える物質であると評価でき、核の消失(脱核)を指標とすれば、被験物質を皮膚ターンオーバー促進剤の候補物質としてスクリーニングすることができ、メラノサイトの数の減少を指標とすれば、被験物質を美白剤の候補物質としてスクリーニングすることができる。被験物質は、培養インサート内に形成された三次元培養表皮モデルに、角質層表面側から及び/又は基底層表面側から接触させる。具体的には、培養インサート内の表皮モデルに上部から被験物質を投与又は塗布する方法、培養インサートの外部の培養液に被験物質を添加する方法により行うことができる。 In the present invention, the efficacy and safety of cosmetics and pharmaceuticals are evaluated and screened by contacting the test substance with the three-dimensional cultured epidermis model of the present invention and observing changes in the epidermal cells or organelles of the model by fluorescence imaging. It can be done, and changes in epidermal cells or organelles are indicators of evaluation. At this time, if the three-dimensional cultured epidermis model of the present invention, which is not brought into contact with the test substance, is used as a control and compared with the observation result, the evaluation becomes more accurate. Changes in epidermal cells or organelles include changes in their number, morphology, distribution, localization, migration, disappearance, etc. For example, if the cell death or proliferation inhibition of epidermal cells is used as an index, the test substance can be evaluated as a substance that stimulates the epidermis, and if the disappearance of the nucleus (enucleation) is used as an index, the test substance can be used. It can be screened as a candidate substance for a skin turnover promoter, and if the decrease in the number of melanocytes is used as an index, the test substance can be screened as a candidate substance for a whitening agent. The test substance is brought into contact with the three-dimensional cultured epidermis model formed in the culture insert from the surface side of the stratum corneum and / or from the surface side of the basal layer. Specifically, it can be carried out by a method of administering or applying the test substance from above to the epidermis model in the culture insert, or a method of adding the test substance to the culture solution outside the culture insert.

被験物質は、主に化粧品及び/又は医薬品に利用できる成分を対象とし、例えば、動・植物組織の抽出物もしくは微生物培養物等の複数の化合物を含む混合物、またそれらから精製された標品;天然に生じる分子(例えば、アミノ酸、ペプチド、オリゴペプチド、ポリペプチド、タンパク質、核酸、脂質、ステロイド、糖タンパク質、プロテオグリカンなど);あるいは天然に生じる分子の合成アナログ又は誘導体(例えば、ペプチド擬態物など);及び天然に生じない分子(例えば、コンビナトリアルケミストリー技術等を用いて作製した低分子有機化合物);ならびにそれらの混合物などを挙げることができる。また、被験物質としては単一の被験物質を独立に試験しても、いくつかの候補となる被験物質の混合物(ライブラリーなどを含む)について試験をしてもよい。複数の被験物質を含むライブラリーとしては、合成化合物ライブラリー、ペプチドライブラリーなどが挙げられる。 The test substance is mainly intended for components that can be used in cosmetics and / or pharmaceuticals, for example, a mixture containing multiple compounds such as animal / plant tissue extracts or microbial cultures, and preparations purified from them; Naturally occurring molecules (eg, amino acids, peptides, oligopeptides, polypeptides, proteins, nucleic acids, lipids, steroids, glycoproteins, proteoglycans, etc.); or synthetic analogs or derivatives of naturally occurring molecules (eg, peptide mimetics, etc.) And non-naturally occurring molecules (eg, low molecular weight organic compounds made using combinatorial chemistry techniques and the like); and mixtures thereof. In addition, as the test substance, a single test substance may be tested independently, or a mixture (including a library) of several candidate test substances may be tested. Examples of the library containing a plurality of test substances include a synthetic compound library and a peptide library.

蛍光イメージングによる細胞の観察は、三次元の表皮組織構造を正確に再現して可視化できる顕微鏡を用いて行うことができ、共焦点レーザー顕微鏡を用いることが好ましい。共焦点レーザー顕微鏡は、光学顕微鏡本体、共焦点スキャニングモジュール、及び検出器を備え、生細胞観察用に市販されている蛍光イメージング装置であれば特に限定はされず、例えば、共焦点レーザー顕微鏡LSM510(ZEISS社製)等が挙げられる。観察は、培養表皮モデル中の蛍光を直接肉眼で行ってもよく、又は写真撮影をして画像を取得し、該画像に基づいて行ってもよい。写真撮影により得られた画像に基づいて観察する場合、ある一定の時間でのみ撮影して画像を取得してもよいが、一定の時間間隔で経時的に連続撮影(タイムラプス撮影)を行って画像を取得することにより、細胞の変化の動的可視化を行うことができる。また、蛍光の観察は、可視化を目的とする細胞又はオルガネラの種類、被験物質の種類、蛍光物質の種類によって測定条件や時間を適宜変更して行うことができる。 Observation of cells by fluorescence imaging can be performed using a microscope capable of accurately reproducing and visualizing a three-dimensional epidermal tissue structure, and it is preferable to use a confocal laser scanning microscope. The confocal laser scanning microscope includes an optical microscope main body, a confocal scanning module, and a detector, and is not particularly limited as long as it is a commercially available fluorescence imaging device for observing living cells. For example, the confocal laser scanning microscope LSM510 ( ZEISS) and the like. The observation may be performed by directly fluorescing the cultured epidermis model with the naked eye, or by taking a photograph to obtain an image and performing the observation based on the image. When observing based on the image obtained by photography, the image may be acquired by taking a picture only at a certain time, but the image is taken continuously over time (time-lapse photography) at a certain time interval. By acquiring, dynamic visualization of changes in cells can be performed. Further, the fluorescence can be observed by appropriately changing the measurement conditions and time depending on the type of cell or organelle for visualization, the type of the test substance, and the type of the fluorescent substance.

以下、実施例により本発明をさらに具体的に説明する。但し、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited thereto.

(実施例1)蛍光指示薬により染色したケラチノサイトを用いる三次元培養表皮の作製及び共焦点レーザー顕微鏡による観察
まず、細胞不死化試薬(Lenti-hTERT Virus Cell Immortalization Reagent、Applied Biological Materials社製)により、正常ヒトケラチノサイト(Human epidermal keratinocyte、HEK、クラボウ社製)を製造者のプロトコールに従って不死化した。以降の実施例に記載するHEKは全てこの不死化HEKである。HEKは、Keratinocyte-SFM(Thermo Fisher Scientific社製)を用いて培養した。培地に細胞質を特異的に染色する蛍光指示薬であるセルトラッカーオレンジ(CTO, Thermo Fisher Scientific社製)を加えて1時間培養することによってHEKを染色し、細胞質が光るHEKを作製した。
(Example 1) Preparation of three-dimensional cultured epidermis using keratinocytes stained with a fluorescent indicator and observation with a confocal laser scanning microscope First, normal with a cell immortalization reagent (Lenti-hTERT Virus Cell Immortalization Reagent, manufactured by Applied Biological Materials). Human epidermal keratinocytes (HEK, manufactured by Kurabou) were immortalized according to the manufacturer's protocol. All HEKs described in the following examples are this immortalized HEK. HEK was cultured using Keratinocyte-SFM (manufactured by Thermo Fisher Scientific). HEK was stained by adding Cell Tracker Orange (CTO, manufactured by Thermo Fisher Scientific), which is a fluorescent indicator that specifically stains the cytoplasm, to the medium and culturing for 1 hour to prepare a HEK that glows in the cytoplasm.

次に、この染色したHEKを用いて定法により三次元培養表皮を作製した。具体的には、上記HEKをミリセルセルカルチャーインサート(24well plate用)に20万個播種し、Keratinocyte-SFMにて3日間培養後(培地量はインサート内400μL、インサート外1000μL)、インサート内外の培地を除き、分化培地であるCnT-Prime 3D barrier medium(CELLnTEC社製)に交換した(培地量はインサート内400μL、インサート外1000μL)。翌日、インサート内外の培地を除き、インサート外部にのみCnT-Prime 3D barrier mediumを700μL添加し、空気暴露を10日間行い、三次元培養表皮を作製した(図1A)。作製した三次元培養表皮を共焦点レーザー顕微鏡LSM510を用いて観察したところ、各階層にある表皮細胞の形態を生きたまま垂直方向からも水平方向からも立体的に観察することができた(図1A、1B)。一方、CTOで染色していない通常のHEKを用いて三次元培養表皮を作製した後、その表皮組織をCTOで染色をしようとしても、一度形成された表皮組織は強固なバリア機能を有するためCTOが組織の中に入っていかず、組織の表面を染色するに過ぎなかった。 Next, a three-dimensional cultured epidermis was prepared by a conventional method using this stained HEK. Specifically, 200,000 of the above HEKs were sown on a millicell culture insert (for a 24-well plate), cultured in Keratinocyte-SFM for 3 days (medium volume: 400 μL inside the insert, 1000 μL outside the insert), and then media inside and outside the insert. Was replaced with CnT-Prime 3D barrier medium (manufactured by CELLnTEC), which is a differentiation medium (medium volume is 400 μL inside the insert and 1000 μL outside the insert). The next day, the medium inside and outside the insert was removed, 700 μL of CnT-Prime 3D barrier medium was added only to the outside of the insert, and air exposure was performed for 10 days to prepare a three-dimensional cultured epidermis (Fig. 1A). When the prepared three-dimensional cultured epidermis was observed using a confocal laser scanning microscope LSM510, the morphology of the epidermal cells in each layer could be observed three-dimensionally from both the vertical and horizontal directions while alive (Fig.). 1A, 1B). On the other hand, even if you try to stain the epidermis tissue with CTO after preparing a three-dimensional cultured epidermis using normal HEK that has not been stained with CTO, the epidermis tissue once formed has a strong barrier function, so CTO. Did not enter the tissue, it only stained the surface of the tissue.

(実施例2)蛍光タンパク質発現ベクターを導入したケラチノサイトを用いる三次元培養表皮の作製及び共焦点レーザー顕微鏡による観察
Gene Pulser Xcell (BIORAD社製)を用いて、不死化させたHEKにGFP発現ベクター(pTagGFP2-C, Evrogen社製)をエレクトロポレーション法により遺伝子導入した。薬剤選択により安定発現株を樹立し、細胞全体が緑色に光るHEK(G-HEK)を樹立した。次に、当該細胞を用いて実施例1と同様にして三次元培養表皮を作製した(図2A)。作製した三次元培養表皮をLSM510を用いて観察したところ、各階層にある表皮細胞の形態を生きたまま垂直方向からも水平方向からも立体的に観察することができた(図2A、2B)。細胞像は、実施例1の蛍光指示薬と比較して、培養により蛍光が減退することがないため、より明確に観察することができた。
(Example 2) Preparation of three-dimensional cultured epidermis using keratinocytes introduced with a fluorescent protein expression vector and observation with a confocal laser scanning microscope
Using a Gene Pulser Xcell (manufactured by BIORAD), a GFP expression vector (pTagGFP2-C, manufactured by Evrogen) was introduced into an immortalized HEK by an electroporation method. A stable expression strain was established by drug selection, and HEK (G-HEK) in which the entire cell glowed green was established. Next, using the cells, a three-dimensional cultured epidermis was prepared in the same manner as in Example 1 (FIG. 2A). When the prepared three-dimensional cultured epidermis was observed using LSM510, the morphology of the epidermal cells in each layer could be observed three-dimensionally from both the vertical and horizontal directions while alive (FIGS. 2A and 2B). .. The cell image could be observed more clearly because the fluorescence did not decrease due to the culture as compared with the fluorescence indicator of Example 1.

また、HEKにRFP発現ベクター (pTagRFP-C, Evrogen社製)を遺伝子導入し、細胞全体が赤色に光るHEK (R-HEK)を樹立し、その細胞を、G-HEK(20万個)に対して0.01%の割合(20個)の細胞数で混ぜ、実施例1と同様にして三次元培養表皮を作製した(図3A)。LSM510を用いて、赤色に光るR-HEKに着目し、その形態を観察したところ、細胞ひとつひとつの形態変化をより詳細に観察することができた(図3A、3B)。さらに、タイムラプスイメージングにより、細胞の形態変化や動きをリアルタイムで観察することも可能であった。 In addition, an RFP expression vector (pTagRFP-C, manufactured by Evrogen) was introduced into HEK to establish HEK (R-HEK) in which the entire cell glows red, and the cells were converted to G-HEK (200,000). The cells were mixed at a ratio of 0.01% (20 cells) to prepare a three-dimensional cultured epidermis in the same manner as in Example 1 (Fig. 3A). When we focused on R-HEK that glows red using LSM510 and observed its morphology, we were able to observe the morphological changes of each cell in more detail (FIGS. 3A and 3B). Furthermore, it was possible to observe cell morphological changes and movements in real time by time-lapse imaging.

(実施例3)オルガネラが特異的に光るケラチノサイトを用いる三次元培養表皮の作製及び共焦点レーザー顕微鏡による観察
HEKに、核移行シグナルを付加したGFP発現ベクター(pAcGFP1-Nuc Vector, Clontech社製)を遺伝子導入し、薬剤選択を行い、核が特異的に光るHEK(NG-HEK)を樹立した。
(Example 3) Preparation of three-dimensional cultured epidermis using keratinocytes in which organelles specifically shine, and observation with a confocal laser scanning microscope
A GFP expression vector (pAcGFP1-Nuc Vector, manufactured by Clontech) to which a nuclear localization signal was added was introduced into HEK, drug selection was performed, and HEK (NG-HEK) in which the nucleus shines specifically was established.

次に、NG-HEKを用いて実施例1と同様にして三次元培養表皮を作製し、LSM510を用いて観察した。その結果、各階層にある表皮細胞の核の形態を生きたまま詳細に観察することができた(図4A、B)。また、NG-HEKの分化が進行し、最外層である角質層まで移動すると、脱核により核が消滅する様子も確認された(図4B:角質層からの距離10.5μm付近)。 Next, a three-dimensional cultured epidermis was prepared using NG-HEK in the same manner as in Example 1, and observed using LSM510. As a result, the morphology of the epidermal cells in each layer could be observed in detail alive (FIGS. 4A and 4B). It was also confirmed that when NG-HEK differentiated and moved to the outermost stratum corneum, the nuclei disappeared due to enucleation (Fig. 4B: distance from the stratum corneum around 10.5 μm).

この現象をより詳細に観察するために、HEKに上述のpTagRFP-C及びpAcGFP1-Nuc Vectorを同時に導入し、細胞全体が赤色、核が緑色に光るHEKを樹立した(R-NG-HEK)。R-NG-HEKを遺伝子導入を行っていない通常のHEK(20万個)に対して0.01%の割合(20個)の細胞数で混ぜ、実施例1と同様にして三次元培養表皮を作製した。その結果、脱核を起こしてない細胞は、細胞質が赤で核が黄色(赤と緑が混ざる結果黄色に見える)に観察されるが、脱核を起こした細胞は細胞質全体が黄色に観察されることが分かった(図5)。これは、脱核を起こした細胞は核がないため、核移行シグナルを付加したGFPが細胞質に留まるためであると考えられる。従って、本発明の三次元培養表皮を用いれば表皮細胞の脱核の様子を生きたまま極めて詳細に解析できることとなる。なお、表皮組織の角質層と基底層の位置を知るために、作製された表皮組織を蛍光指示薬であるコムギ胚芽凝集素、Alexa FluorTM 488コンジュゲート(WGA)(Thermo Fisher Scientific社製)で染色(緑色)した。実施例1で示した通り、蛍光指示薬は、表皮組織の強固なバリアのため、組織の中に入っていかず、組織の表面を染色するため、基底層と角質層の位置が判別できる。 In order to observe this phenomenon in more detail, the above-mentioned pTagRFP-C and pAcGFP1-Nuc Vector were simultaneously introduced into HEK to establish HEK in which the whole cell glows red and the nucleus glows green (R-NG-HEK). R-NG-HEK is mixed at a ratio of 0.01% (20 cells) to normal HEK (200,000 cells) without gene transfer to prepare a three-dimensional cultured epidermis in the same manner as in Example 1. did. As a result, cells that have not undergone enucleation are observed to have a red cytoplasm and a yellow nucleus (the result of a mixture of red and green looks yellow), whereas cells that have undergone enucleation have an entire cytoplasm observed to be yellow. It was found that (Fig. 5). This is thought to be because GFP with a nuclear localization signal stays in the cytoplasm because enucleated cells do not have a nucleus. Therefore, by using the three-dimensional cultured epidermis of the present invention, the state of enucleation of epidermal cells can be analyzed in great detail while alive. In order to know the positions of the stratum corneum and the basal layer of the epidermal tissue, the prepared epidermal tissue was stained with the fluorescent indicator wheat germ agglutinin, Alexa Fluor TM 488 conjugate (WGA) (manufactured by Thermo Fisher Scientific). (Green). As shown in Example 1, since the fluorescent indicator does not enter the tissue due to the strong barrier of the epidermal tissue and stains the surface of the tissue, the positions of the basal layer and the stratum corneum can be discriminated.

その他、アクチンやミトコンドリアを可視化するためのベクター(pAcGFP1-Actin Vector, pDsRed2-Mito Vector, Clontech社製)を用いて、それらのオルガネラが光るHEKを作製し、同様の実験を行ったところ、それらのオルガネラの形態変化を観察することができた。 In addition, using vectors for visualizing actin and mitochondria (pAcGFP1-Actin Vector, pDsRed2-Mito Vector, manufactured by Clontech), HEKs in which those organelles shine were prepared, and similar experiments were performed. We were able to observe the morphological changes of the organelles.

以上に示した通り、オルガネラが特異的に光るケラチノサイトを用いて作製した三次元培養表皮によれば、表皮の状態が生きたまま非常に明確に判別することが可能であった。さらに、タイムラプスイメージングにより、細胞のオルガネラの形態変化や動きをリアルタイムで観察することも可能であった。 As shown above, according to the three-dimensional cultured epidermis prepared using keratinocytes in which organelles specifically shine, it was possible to determine the state of the epidermis alive and very clearly. Furthermore, it was possible to observe the morphological changes and movements of cell organelles in real time by time-lapse imaging.

(実施例4)核が特異的に光るケラチノサイトを用いて作製した三次元培養表皮を用いた被験物質の評価
実施例3と同様にして、核が特異的に光るNG-HEKを用いて三次元培養表皮を作製し、当該三次元培養表皮を用いて被験物質が表皮に与える影響を評価できるか検討した。具体的には、空気暴露10日目の三次元培養表皮に角質層側から皮膚刺激反応を起こす代表的な物質SDS(sodium dodecyl sulfate, 和光純薬社製)を0.1%濃度で添加し、15分間静置した。その後、表皮をPBSにて二回洗浄し、再びCnT-Prime 3D barrier mediumで培養し、24時間後にLSM510で観察を行った。その結果、SDS処理した表皮では、核の凝縮が確認され、表皮細胞がアポトーシスしている様子が詳細に確認された(図6)。また、このような核が凝縮した細胞の割合は、SDSの濃度に依存して多くなる傾向があった(表1)。
(Example 4) Evaluation of a test substance using a three-dimensional cultured epidermis prepared using keratinocytes in which the nucleus shines specifically Three-dimensionally using NG-HEK in which the nucleus shines specifically in the same manner as in Example 3. A cultured epidermis was prepared, and it was examined whether the effect of the test substance on the epidermis could be evaluated using the three-dimensional cultured epidermis. Specifically, SDS (sodium dodecyl sulfate, manufactured by Wako Pure Chemical Industries, Ltd.), a typical substance that causes a skin irritation reaction from the stratum corneum side, was added to the three-dimensional cultured epidermis on the 10th day of air exposure at a concentration of 0.1%. Allowed to stand for minutes. Then, the epidermis was washed twice with PBS, cultured again in CnT-Prime 3D barrier medium, and observed with LSM510 24 hours later. As a result, in the SDS-treated epidermis, nuclear condensation was confirmed, and the appearance of apoptotic epidermal cells was confirmed in detail (Fig. 6). In addition, the proportion of cells with condensed nuclei tended to increase depending on the concentration of SDS (Table 1).

Figure 0006817610
Figure 0006817610

以上の結果から、核が特異的に光るNG-HEKを用いて作製した三次元培養表皮を用いれば、刺激物質であるか否かの評価が非常に詳細にかつ簡便にできることが明らかとなった。また、本評価法は、三次元培養表皮を生きたまま観察ができるので、例えばSDSにより受けたダメージやダメージからの回復過程の経時的な観察を同一サンプルを用いて行うことができる。これに対し、従来法では、三次元培養表皮の観察には、固定処理・包埋処理・切片作製処理などが必要であり、経時的な観察を行うためには、各日数ごとにサンプルを用意しなければならず、また同一サンプルの経時的な観察を行うことはできなかった。 From the above results, it was clarified that the evaluation of whether or not it is a stimulant can be performed in great detail and easily by using a three-dimensional cultured epidermis prepared using NG-HEK in which the nucleus shines specifically. .. In addition, since this evaluation method allows observation of the three-dimensional cultured epidermis alive, it is possible to observe the damage received by SDS and the recovery process from the damage over time using the same sample. On the other hand, in the conventional method, observation of the three-dimensional cultured epidermis requires fixation treatment, embedding treatment, section preparation treatment, etc., and in order to perform observation over time, a sample is prepared for each number of days. And it was not possible to observe the same sample over time.

(実施例5)メラノサイト含有三次元培養表皮の作製及び共焦点レーザー顕微鏡による観察
Gene Pulser Xcellを用いて、ヒトメラノサイト(HEM;クラボウ社製)にpTagRFP-Cをエレクトロポレーション法により遺伝子導入し、細胞全体が赤色に光るHEM(R-HEM)を樹立し、その細胞を、G-HEK(20万個)に対して10%の割合(2万個)の細胞数で混ぜ、実施例1と同様にして三次元培養表皮を作製した。LSM510を用いて赤色に光るR-HEM(メラノサイト)に着目して観察を行った結果、メラノサイトの数、形態、局在を生きたまま観察することができた(図7)。なお、このメラノサイト含有三次元培養表皮モデルを用いて、メラノサイト増殖因子(SCF、エンドセリン、WNT)の効果を確認したところ、単位面積当たりのメラノサイトの数がこれらの因子により増加することが定量的に解析することができた。
(Example 5) Preparation of melanocyte-containing three-dimensional cultured epidermis and observation with a confocal laser scanning microscope
Using Gene Pulser Xcell, pTagRFP-C was introduced into human melanocytes (HEM; manufactured by Kurabou Co., Ltd.) by the electroporation method to establish HEM (R-HEM) in which the entire cell glows red. A three-dimensional cultured epidermis was prepared in the same manner as in Example 1 by mixing at a ratio of 10% (20,000 cells) to G-HEK (200,000 cells). As a result of observing R-HEM (melanocytes) that glow red using LSM510, the number, morphology, and localization of melanocytes could be observed alive (Fig. 7). When the effects of melanocyte growth factors (SCF, endothelin, WNT) were confirmed using this melanocyte-containing three-dimensional cultured epidermis model, it was quantitatively found that the number of melanocytes per unit area was increased by these factors. I was able to analyze it.

比較として、従来法による三次元培養表皮の作製とそれを用いた観察を次のとおり行った。蛍光色素で染色又はケラチノサイトに蛍光タンパク質を導入していない通常のケラチノサイトHEK(20万個)に対して、通常のヒトメラノサイトHEMを10%の割合(2万個)で混ぜ、実施例1と同様にして三次元培養表皮を作製した。作製された培養表皮を4%パラホルムアルデヒドにて30分固定した。その後、組織をティシュー・テック クリオモルド プラスチック包埋皿(サクラファインテック社製)に入れ、そこにO.C.T. コンパウンド(サクラファインテック社製)を流し込み、-80℃で凍結させた(15分)。次に、クライオスタット ミクロトームにより切片を作製し、ドライヤーにて乾燥させた。組織切片をPBSにて洗浄後、メラノサイトのマーカータンパク質チロシナーゼに対する抗体(抗Tyrosinase抗体、Santa Cruz社製)と1時間反応させ(37℃)、その後Alexa Fluor 594で標識した抗IgG抗体(ライフテクノロジーズ社製)と30分反応させ、蛍光顕微鏡(OLYMPUS社製)により観察を行った(図8)。また、DAPI(dojindo社製)により、HEKとHEMの核を染色した。その結果、メラノサイトの局在は確認されたが、一方向からの情報しか得ることができず、また固定され死んだ組織の情報しか得られなかった。 For comparison, the preparation of the three-dimensional cultured epidermis by the conventional method and the observation using it were performed as follows. Normal human melanocyte HEM was mixed at a ratio of 10% (20,000 pieces) to normal keratinocyte HEK (200,000 pieces) stained with a fluorescent dye or not having a fluorescent protein introduced into keratinocytes, and the same as in Example 1. To prepare a three-dimensional cultured epidermis. The prepared cultured epidermis was fixed with 4% paraformaldehyde for 30 minutes. The tissue was then placed in a Tissue Tech Cliomold plastic embedding dish (Sakura Finetech), poured with O.C.T. compound (Sakura Finetech) and frozen at -80 ° C (15 minutes). Next, sections were prepared by cryostat microtome and dried with a dryer. Tissue sections were washed with PBS and then reacted with an antibody against the melanocyte marker protein tyrosinase (anti-Tyrosinase antibody, manufactured by Santa Cruz) for 1 hour (37 ° C), and then an anti-IgG antibody labeled with Alexa Fluor 594 (Life Technologies). It was reacted with (manufactured by OLYMPUS) for 30 minutes and observed with a fluorescence microscope (manufactured by OLYMPUS) (Fig. 8). In addition, HEK and HEM nuclei were stained with DAPI (manufactured by dojindo). As a result, the localization of melanocytes was confirmed, but only information from one direction could be obtained, and only information on fixed and dead tissues could be obtained.

表2に、従来法の三次元培養表皮の観察方法と本発明の三次元培養表皮の観察方法の比較を示す。 Table 2 shows a comparison between the conventional method for observing the three-dimensional cultured epidermis and the method for observing the three-dimensional cultured epidermis of the present invention.

Figure 0006817610
Figure 0006817610

表2に示した通り、本発明の三次元培養表皮は、従来法の三次元培養表皮に比較して非常に優れた利点を多数有する。 As shown in Table 2, the three-dimensional cultured epidermis of the present invention has many excellent advantages as compared with the conventional three-dimensional cultured epidermis.

本発明の三次元培養表皮モデルは、表皮細胞を多方向から生きたままリアルタイムに観察でき、表皮の状態をより正確に評価することができる。従って、本発明の三次元培養表皮モデルによれば、動物実験を行わずに医薬品や化粧品原料の安全性や有効性の評価試験を行うことでき、当該表皮モデルは、化粧品や医薬品の製造分野、皮膚科学研究分野などに利用できる。 In the three-dimensional cultured epidermis model of the present invention, epidermal cells can be observed alive from multiple directions in real time, and the state of the epidermis can be evaluated more accurately. Therefore, according to the three-dimensional cultured epidermis model of the present invention, it is possible to carry out an evaluation test of the safety and effectiveness of pharmaceuticals and cosmetic raw materials without conducting animal experiments, and the epidermis model is used in the fields of manufacturing cosmetics and pharmaceuticals. It can be used in dermatology research fields.

Claims (7)

蛍光色素で核を染色したケラチノサイト、又は、蛍光タンパク質を核で発現させたケラチノサイトを重層化させてなり、表皮を構成する各階層のケラチノサイトの核が蛍光物質で三次元可視化されている、三次元培養表皮モデル。 Three-dimensional, in which keratinocytes whose nuclei are stained with a fluorescent dye or keratinocytes expressing a fluorescent protein in the nuclei are layered, and the nuclei of keratinocytes in each layer constituting the epidermis are three-dimensionally visualized with a fluorescent substance. Cultured epidermis model. 以下の工程を含む、三次元培養表皮モデルの製造方法。
(1)ケラチノサイトの核を蛍光色素で染色するか、又は蛍光タンパク質をコードする遺伝子をケラチノサイトの核で発現可能に挿入した発現ベクターをケラチノサイトに導入する工程
(2)工程(1)で得られたケラチノサイトを三次元培養する工程
A method for producing a three-dimensional cultured epidermis model, which comprises the following steps.
(1) A step of staining the nucleus of keratinocytes with a fluorescent dye or introducing an expression vector into which a gene encoding a fluorescent protein is expressively inserted in the nucleus of keratinocytes (2) Obtained in step (1). Step of three-dimensional culture of keratinocytes
前記三次元培養の開始前、三次元培養中、及び三次元培養の終了後から選ばれる少なくとも1つの段階で、ケラチノサイトに対して刺激を付与する工程をさらに含む、請求項に記載の三次元培養表皮モデルの製造方法。 The three-dimensional structure according to claim 2 , further comprising a step of stimulating keratinocytes at at least one step selected from before the start of the three-dimensional culture, during the three-dimensional culture, and after the end of the three-dimensional culture. A method for producing a cultured epidermis model. 請求項に記載の三次元培養表皮モデルに被験物質を接触させ、該モデルのケラチノサイトの核を蛍光イメージングによって観察し、その観察結果に基づいて該被験物質の有効性又は安全性を評価する方法。 The three-dimensional culture skin model according to claim 1 is contacted with the test substance, the keratinocytes nuclei of the model was observed by fluorescence imaging, to evaluate the efficacy or safety of test substances on the basis of the observations Method. 請求項に記載の三次元培養表皮モデルに被験物質を接触させ、該モデルのケラチノサイトの核を蛍光イメージングによって観察し、その観察結果に基づいて表皮機能の改善物質をスクリーニングする方法。 How the three-dimensional culture skin model according to claim 1 is contacted with the test substance, the keratinocytes nuclei of the model was observed by fluorescence imaging, screening improver epidermal function based on the observation results. 請求項1に記載の三次元培養表皮モデルにおいて、核を可視化させた蛍光物質が、ケラチノサイトの細胞質全体に観察された場合に、該ケラチノサイトが分化及び/又は脱核を起こしていると判別する、ケラチノサイトの分化及び/又は脱核を判別する方法。 In the three-dimensional cultured epidermis model according to claim 1, when the fluorescent substance whose nucleus is visualized is observed in the entire cytoplasm of keratinocytes, it is determined that the keratinocytes are differentiated and / or enucleated. A method for determining differentiation and / or enucleation of keratinocytes. 請求項に記載の三次元培養表皮モデルを含む、皮膚評価用キット。 A skin evaluation kit including the three-dimensional cultured epidermis model according to claim 1 .
JP2016075963A 2016-04-05 2016-04-05 Three-dimensional cultured epidermis model and its manufacturing method, and how to use the three-dimensional cultured epidermis model Active JP6817610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016075963A JP6817610B2 (en) 2016-04-05 2016-04-05 Three-dimensional cultured epidermis model and its manufacturing method, and how to use the three-dimensional cultured epidermis model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016075963A JP6817610B2 (en) 2016-04-05 2016-04-05 Three-dimensional cultured epidermis model and its manufacturing method, and how to use the three-dimensional cultured epidermis model

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020191003A Division JP7041977B2 (en) 2020-11-17 2020-11-17 Three-dimensional cultured epidermis model and its manufacturing method, and how to use the three-dimensional cultured epidermis model

Publications (2)

Publication Number Publication Date
JP2017184659A JP2017184659A (en) 2017-10-12
JP6817610B2 true JP6817610B2 (en) 2021-01-20

Family

ID=60043493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016075963A Active JP6817610B2 (en) 2016-04-05 2016-04-05 Three-dimensional cultured epidermis model and its manufacturing method, and how to use the three-dimensional cultured epidermis model

Country Status (1)

Country Link
JP (1) JP6817610B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7136434B2 (en) * 2018-04-25 2022-09-13 日本メナード化粧品株式会社 Evaluation method and evaluation kit for primary skin irritation using three-dimensional cultured epidermis model
JP7109730B2 (en) * 2018-05-17 2022-08-01 株式会社エビデント Method for evaluating cell proliferation ability of cell clumps
CN110684713B (en) * 2018-07-05 2023-05-09 广东博溪生物科技有限公司 Construction method of in-vitro recombinant epidermis model for diaper dermatitis
EP3973271A1 (en) 2018-09-14 2022-03-30 Unilever IP Holdings B.V. Evaluating the efficacy of leave-on cosmetic compositions to protect skin from pollutants
GB201816911D0 (en) * 2018-10-17 2018-11-28 Univ London Queen Mary Apparatus and methods

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002255618B2 (en) * 2001-03-02 2006-09-07 Stratatech Corporation Improved skin substitutes and uses thereof
CN100463963C (en) * 2006-10-20 2009-02-25 扬州大学 Freeze preservating method for domestic pig skin tissue
CA2658074C (en) * 2008-03-17 2017-11-07 L'oreal Functional pigmented skin equivalent
US9766227B2 (en) * 2010-05-14 2017-09-19 Bloom Technology Co., Ltd. Screening method for substance having hemocyte maturation acceleration action
US20150250925A1 (en) * 2012-09-04 2015-09-10 Biomedical Technology Hybrid Co., Ltd. Artificial skin tissue, artificial skin model and manufacturing method therefor

Also Published As

Publication number Publication date
JP2017184659A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6817610B2 (en) Three-dimensional cultured epidermis model and its manufacturing method, and how to use the three-dimensional cultured epidermis model
CA2612269C (en) Method of producing organotypic cell cultures
EP3252452A1 (en) Method for imaging and analysis of a biological specimen
Jenkins et al. Oxygen-sensing scaffolds for 3-dimensional cell and tissue culture
ES2729341T3 (en) Method for a cell-based drug selection assay and use thereof
US20140154735A1 (en) Tumour cell and tissue culture
KR101970125B1 (en) Stretchable skin-on-a-chips
Motlik et al. Porcine epidermal stem cells as a biomedical model for wound healing and normal/malignant epithelial cell propagation
JP2950519B2 (en) Native tissue culture method for skin
Okkelman et al. Extracellular Ca2+-sensing fluorescent protein biosensor based on a collagen-binding domain
Sharma et al. 3D bioprinting complex models of cancer
Kwak et al. Adherens junctions organize size-selective proteolytic hotspots critical for Notch signalling
Li et al. In vitro biomimetic platforms featuring a perfusion system and 3D spheroid culture promote the construction of tissue-engineered corneal endothelial layers
JP2014204711A (en) Method for production of three-dimensional culture skin model, and use thereof
JP6886170B2 (en) Manufacturing method of 3D cultured epidermis model
JP7041977B2 (en) Three-dimensional cultured epidermis model and its manufacturing method, and how to use the three-dimensional cultured epidermis model
Karimi et al. X-ray microtomography as a new approach for imaging and analysis of tumor spheroids
WO2016054288A1 (en) A human liver microphysiology platform and self assembly liver acinus model and methods of their use
JP7224584B2 (en) Evaluation method for skin sensitization
CN114502740A (en) Method for independent analysis of multiple biological processes in encapsulated 3D cell co-cultures
Piasek et al. Building Up Skin Models for Numerous Applications-from Two-Dimensional (2D) Monoculture to Three-Dimensional (3D) Multiculture
US20190192698A1 (en) A method for obtaining indicator signals from a cell
JP2020092628A (en) Three-dimensional cultured epidermal model and production method thereof
Piasek et al. Author Spotlight: Enhancing Skin Model Diversity with Cost-Effective 3D Cellular Models
Awadová et al. Cell volume changes as revealed by fluorescence microscopy: Global vs local approaches

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201218

R150 Certificate of patent or registration of utility model

Ref document number: 6817610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250