JP6813320B2 - Contaminated water treatment system and contaminated water treatment method - Google Patents

Contaminated water treatment system and contaminated water treatment method Download PDF

Info

Publication number
JP6813320B2
JP6813320B2 JP2016189243A JP2016189243A JP6813320B2 JP 6813320 B2 JP6813320 B2 JP 6813320B2 JP 2016189243 A JP2016189243 A JP 2016189243A JP 2016189243 A JP2016189243 A JP 2016189243A JP 6813320 B2 JP6813320 B2 JP 6813320B2
Authority
JP
Japan
Prior art keywords
contaminated water
adsorption tower
adsorbent
water treatment
treatment system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016189243A
Other languages
Japanese (ja)
Other versions
JP2018054403A (en
Inventor
恒雄 大村
恒雄 大村
山田 和矢
和矢 山田
俊介 須佐
俊介 須佐
直樹 田嶋
直樹 田嶋
翔 鈴木
翔 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2016189243A priority Critical patent/JP6813320B2/en
Publication of JP2018054403A publication Critical patent/JP2018054403A/en
Application granted granted Critical
Publication of JP6813320B2 publication Critical patent/JP6813320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明の実施形態は、海水や地下水などに由来した成分と放射性核種を含む汚染水から、放射性核種を除去する汚染水処理システム及び汚染水処理方法に関する。 An embodiment of the present invention relates to a contaminated water treatment system and a contaminated water treatment method for removing radionuclides from contaminated water containing components derived from seawater, groundwater, etc. and radionuclides.

近年、放射性核種を含む汚染水から放射性核種を除去する方法、システム及び吸着材について、多数提案がなされている。
放射性核種を含む汚染水から放射性核種を除去する方法としては、除去対象となる放射性核種を選択的に吸着する吸着材を充填させた吸着塔を使用し、汚染水を通水させることにより、放射性核種を除去する固定層吸着方法が一般的である。
In recent years, many proposals have been made for methods, systems and adsorbents for removing radionuclides from contaminated water containing radionuclides.
As a method of removing radionuclides from contaminated water containing radionuclides, a adsorption tower filled with an adsorbent that selectively adsorbs the radionuclides to be removed is used, and the contaminated water is passed through to make the radionuclides radioactive. A fixed layer adsorption method for removing nuclides is common.

この固定層吸着方法では、吸着塔の入口側から汚染水中の放射性核種の吸着が起こり、出口に向けて汚染水中の放射性核種濃度が低くなる。したがって、吸着塔の入口側にある吸着材ほど放射性核種の吸着量は高くなる。そのため、吸着塔の入口側の放射性核種濃度が規定の値に達すると、吸着塔の出口側の放射性核種濃度が規定の値に達する前であっても吸着塔を新品に交換することになる。また、吸着塔の表面線量率や吸着塔の上部から上方へ出た放射線の一部は、空気で散乱されることにより、再び地上付近に降り注ぐこととなり、スカイシャイン線と呼ばれる。吸着塔の上部から上方へ出る放射線量が多くなり、スカイシャイン線量が許容範囲を超えてしまった場合にも、出口側の放射性核種濃度が規定の値に達する前であっても吸着塔を新品に交換することになる。 In this fixed layer adsorption method, the radionuclide in the contaminated water is adsorbed from the inlet side of the adsorption tower, and the concentration of the radionuclide in the contaminated water decreases toward the outlet. Therefore, the adsorbent on the inlet side of the adsorption tower has a higher adsorption amount of radionuclides. Therefore, when the radionuclide concentration on the inlet side of the adsorption tower reaches the specified value, the adsorption tower is replaced with a new one even before the radionuclide concentration on the outlet side of the adsorption tower reaches the specified value. In addition, the surface dose rate of the adsorption tower and a part of the radiation emitted upward from the upper part of the adsorption tower are scattered by the air and fall again near the ground, which is called a skyshine line. Even if the amount of radiation emitted upward from the top of the adsorption tower increases and the Skyshine dose exceeds the permissible range, the adsorption tower will be replaced with a new one even before the radionuclide concentration on the outlet side reaches the specified value. Will be exchanged for.

ここで、放射性核種の吸着量は、吸着材の種類、汚染水の性状により異なり、これらの因子によって定まる放射性核種ごとの核種分配係数で表すことが多い。固定層吸着方法では、核種分配係数は、出口放射性核種濃度/入口放射性核種濃度=1における放射性核種吸着量(最大放射性核種吸着量と記す)と入口放射性核種濃度により式(1)で表される。 Here, the amount of adsorbed radionuclides differs depending on the type of adsorbent and the properties of contaminated water, and is often expressed by the nuclide partition coefficient for each radionuclide determined by these factors. In the fixed layer adsorption method, the nuclide distribution coefficient is expressed by the formula (1) by the amount of radionuclide adsorbed at the outlet radionuclide concentration / inlet radionuclide concentration = 1 (denoted as the maximum radionuclide adsorption amount) and the inlet radionuclide concentration. ..

核種分配係数(L/Kg)=最大放射性核種吸着量(Bq[核種]/Kg[吸着材重量])/入口放射性核種濃度(Bq[核種]/L[汚染水通過量])・・・(1)
なお、式(1)において、Bq(ベクレル)は放射能の量を表す単位である。
Nuclide distribution coefficient (L / Kg) = maximum radionuclide adsorption amount (Bq [nuclide] / Kg [adsorbent weight]) / inlet radionuclide concentration (Bq [nuclide] / L [contaminated water passage amount]) ... 1)
In the formula (1), Bq (becquerel) is a unit representing the amount of radioactivity.

また、出口放射性核種濃度と入口放射性核種濃度により式(2)で表される出口/入口放射性核種濃度比が0.05〜0.95、好ましくは0.05〜0.10の間に到達したところで吸着塔を交換するのが一般的である。 Further, the outlet / inlet radionuclide concentration ratio represented by the formula (2) reached between 0.05 and 0.95, preferably 0.05 to 0.10. Based on the outlet radionuclide concentration and the inlet radionuclide concentration. By the way, it is common to replace the adsorption tower.

出口/入口放射性核種濃度比=出口放射性核種濃度(Bq[核種]/L[汚染水通過量])/入口放射性核種濃度(Bq[核種]/L[汚染水通過量])・・・(2) Outlet / inlet radionuclide concentration ratio = outlet radionuclide concentration (Bq [nuclide] / L [contaminated water passage amount]) / inlet radionuclide concentration (Bq [nuclides] / L [contaminated water passage amount]) ... (2 )

特開2015−64251号公報Japanese Unexamined Patent Publication No. 2015-64251 特開2011−200856号公報Japanese Unexamined Patent Publication No. 2011-20856 特開平4−86599号公報Japanese Unexamined Patent Publication No. 4-86599

従来の汚染水処理システムでは、吸着材がまだ吸着性能を有している場合でも、表面線量率やスカイシャイン線量が上限値を超えると吸着塔を交換しなければならないため、吸着塔の使用効率が悪化するという課題があった。 In the conventional contaminated water treatment system, even if the adsorbent still has the adsorption performance, the adsorption tower must be replaced when the surface dose rate or the skyshine dose exceeds the upper limit, so the utilization efficiency of the adsorption tower There was a problem that the

本件発明の実施形態は、上記課題を解決するためになされたもので、吸着塔の使用効率を向上させた汚染水処理システム及び汚染水処理方法を提供することを目的とする。 An embodiment of the present invention has been made to solve the above problems, and an object of the present invention is to provide a contaminated water treatment system and a contaminated water treatment method in which the utilization efficiency of the adsorption tower is improved.

上記課題を解決するために、本発明の実施形態に係る汚染水処理システムは、放射性核種を含む汚染水を吸着塔へ通水することにより前記放射性核種を除去する汚染水処理システムにおいて、前記吸着塔は前記放射性核種を吸着する吸着材と、前記放射性核種を殆ど吸着しない粒状の鉛からなる非吸着材が充填されており、同一吸着塔内で前記非吸着材を前記吸着塔内の出口側よりも入口側の方により多く配置されている。 In order to solve the above problems, the contaminated water treatment system according to the embodiment of the present invention is an adsorption in a contaminated water treatment system for removing the radionuclides by passing contaminated water containing a radionuclide through an adsorption tower. The tower is filled with an adsorbent that adsorbs the radionuclide and a non-adsorbent made of granular lead that hardly adsorbs the radionuclide, and the non-adsorbent is placed on the outlet side of the adsorption tower in the same adsorption tower. It is placed more on the entrance side than on the entrance side .

また、本発明の実施形態に係る汚染水処理方法は、本発明の実施形態に係る汚染水処理システムを用いて、汚染水に含まれる放射性核種を除去する。 In addition, the contaminated water treatment method according to the embodiment of the present invention removes radionuclides contained in the contaminated water by using the contaminated water treatment system according to the embodiment of the present invention.

本発明の実施形態に係る汚染水処理システム及び汚染水処理方法によれば、吸着塔の使用効率を向上させることができる。 According to the contaminated water treatment system and the contaminated water treatment method according to the embodiment of the present invention, the utilization efficiency of the adsorption tower can be improved.

(a)は第1の実施形態に係る汚染水処理システムの構成図、(b)は(a)のA−A線断面図。(A) is a block diagram of the contaminated water treatment system according to the first embodiment, and (b) is a sectional view taken along line AA of (a). 第2の実施形態に係る汚染水処理システムの構成図。The block diagram of the contaminated water treatment system which concerns on 2nd Embodiment.

以下、本発明の汚染水処理システム及び汚染水処理方法の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the contaminated water treatment system and the contaminated water treatment method of the present invention will be described with reference to the drawings.

[第1の実施形態]
第1の実施形態に係る汚染水処理システム及び汚染水処理方法を、図1(a)、(b)を用いて説明する。
なお、以下の説明では、処理対象の放射性核種がセシウムの例について説明するが、ストロンチウム等、他の放射性核種についても適用できることはもちろんである。
[First Embodiment]
The contaminated water treatment system and the contaminated water treatment method according to the first embodiment will be described with reference to FIGS. 1 (a) and 1 (b).
In the following description, an example in which the radionuclide to be treated is cesium will be described, but it goes without saying that it can be applied to other radionuclides such as strontium.

(構成)
第1の実施形態に係る汚染水処理システム10は、図1(a)、(b)に示すように、吸着塔2と、吸着塔2内に充填された放射性セシウムを選択的に吸着する吸着材1と、放射性セシウムを吸着しにくい物質3(以下、「非吸着材」という。)と、吸着塔2の上部に接続され、イオン形態の放射性セシウムを含有する汚染水4が導入される供給配管6と、吸着塔2の下部に接続され、吸着塔2内で処理された処理水5を排出する排出配管7と、から構成される。
(Constitution)
As shown in FIGS. 1A and 1B, the contaminated water treatment system 10 according to the first embodiment selectively adsorbs the adsorption tower 2 and the radioactive cesium filled in the adsorption tower 2. Supply of material 1, substance 3 that does not easily adsorb radioactive cesium (hereinafter referred to as “non-adsorbent”), and contaminated water 4 that is connected to the upper part of the adsorption tower 2 and contains ionic radioactive cesium. It is composed of a pipe 6 and a discharge pipe 7 connected to the lower part of the suction tower 2 and discharging the treated water 5 treated in the suction tower 2.

吸着塔2は、放射性セシウムからの放射線を遮蔽することができる厚み、材質を有する円筒体からなるが、円筒体の厚みを小さくし、円筒体の周囲に放射線遮蔽材を設けてもよい。また、吸着塔2の形状は、円筒体に限定されず、楕円筒体、角筒体等を種々の形状のものを用いることができる。 The adsorption tower 2 is made of a cylinder having a thickness and a material capable of shielding radiation from radioactive cesium, but the thickness of the cylinder may be reduced and a radiation shielding material may be provided around the cylinder. Further, the shape of the suction tower 2 is not limited to the cylindrical body, and various shapes such as an elliptical cylinder body and a square cylinder body can be used.

さらに、本実施形態では、円筒状の吸着塔2を縦置きし、上部を汚染水の入口側、下部を出口側としているが、汚染水4を吸着塔2の下部から供給し、処理水5を上部から排出するようにしてもよく、また、吸着塔2を横置きとしてもよい。 Further, in the present embodiment, the cylindrical adsorption tower 2 is vertically arranged, the upper portion is the inlet side of the contaminated water and the lower portion is the outlet side. However, the contaminated water 4 is supplied from the lower portion of the adsorption tower 2 and the treated water 5 is provided. May be discharged from the upper part, or the suction tower 2 may be placed horizontally.

放射性セシウムの吸着材として、ケイチタン酸塩、クリノプチロライト、チャバサイト、モルデナイト、及びフェロシアン化物、プルシアンブルー型金属錯体、等が用いられる。 As the adsorbent for radioactive cesium, silicate, clinoptilolite, chavasite, mordenite, ferrocyanide, Prussian blue type metal complex, and the like are used.

また、非吸着材3として、鉛、砂、セメント、等が用いられるが、これに限定されず、放射性セシウムを殆ど吸着しない機能を有すれば他の物質でもよく、あるいは放射性セシウムの吸着材1に比べて放射性セシウムの吸着性能が小さい物質でもよい。 Further, as the non-adsorbent 3, lead, sand, cement, etc. are used, but the present invention is not limited to this, and any other substance may be used as long as it has a function of hardly adsorbing radioactive cesium, or the adsorbent 1 of radioactive cesium. A substance having a smaller adsorption performance of radioactive cesium than the above may be used.

本第1の実施形態では、非吸着材3として、粒状の鉛玉が用いられ、吸着塔2の内部に略均等に分散配置されている。
また、本第1の実施形態では、吸着塔2の内容積に対し非吸着材3の合計容積が占める割合(占有率)を約50%としているが、この占有率は非吸着材3の材質、求められる吸着性能、許容放射線量等によって適宜変更可能である。
In the first embodiment, granular lead balls are used as the non-adsorbent material 3, and the lead balls are dispersed and arranged substantially evenly inside the adsorption tower 2.
Further, in the first embodiment, the ratio (occupancy rate) of the total volume of the non-adsorbent 3 to the internal volume of the adsorption tower 2 is about 50%, and this occupancy is the material of the non-adsorbent 3. It can be changed as appropriate depending on the required adsorption performance, allowable radiation amount, and the like.

例えば、非吸着材3の占有率を20%とすれば、吸着材1の充填量が20%低減することになるので、放射性セシウムの最大吸着量も20%低減する。
なお、粒状の非吸着材3の形状は、球状、楕円球状、矩形状、塊状等、種々の形状のものが用いられる。
また吸着塔2内に装填される非吸着材3の、サイズ(形状)、重量及び個数は、吸着塔2の内容積、求められる吸着性能、許容放射線量等によって適宜変更可能である。
For example, if the occupancy rate of the non-adsorbent 3 is 20%, the filling amount of the adsorbent 1 is reduced by 20%, so that the maximum adsorbed amount of radioactive cesium is also reduced by 20%.
As the shape of the granular non-adsorbent material 3, various shapes such as a spherical shape, an elliptical spherical shape, a rectangular shape, and a lump shape are used.
Further, the size (shape), weight and number of the non-adsorbent 3 loaded in the adsorption tower 2 can be appropriately changed depending on the internal volume of the adsorption tower 2, the required adsorption performance, the allowable radiation amount and the like.

なお、使用済の吸着塔2を処理する際に、吸着材1と非吸着材3とを容易に分離回収できるように、吸着材1と非吸着材3のサイズ及び/又は重量をそれぞれ異なるようにすることが望ましい。 The size and / or weight of the adsorbent 1 and the non-adsorbent 3 are different so that the adsorbent 1 and the non-adsorbent 3 can be easily separated and recovered when the used adsorption tower 2 is processed. It is desirable to.

さらに、非吸着材3として鉛等の放射線遮蔽機能を有する材料を用いる場合は、吸着された放射性セシウムからの放射線を遮蔽する機能も有するため、吸着塔2の表面線量率やスカイシャイン線量を低減させる作用効果も奏する。 Further, when a material having a radiation shielding function such as lead is used as the non-adsorbing material 3, it also has a function of shielding radiation from the adsorbed radioactive cesium, so that the surface dose rate and skyshine dose of the adsorption tower 2 are reduced. It also has an effect of causing radiation.

また、吸着塔2の入口及び出口には、放射性セシウムの濃度を測定するための放射線モニター(放射線検出器)が設置される(図示せず)。さらに、吸着塔2の表面線量率及びスカイシャイン線量を測定するための放射線モニターが吸着塔2の周囲に適宜設置される(図示せず)。
これらの放射線モニターは、吸着塔2内の吸着状況や吸着量を把握するためにも用いられる。
Further, a radiation monitor (radiation detector) for measuring the concentration of radioactive cesium is installed at the inlet and outlet of the adsorption tower 2 (not shown). Further, a radiation monitor for measuring the surface dose rate and the skyshine dose of the adsorption tower 2 is appropriately installed around the adsorption tower 2 (not shown).
These radiation monitors are also used to grasp the adsorption status and the adsorption amount in the adsorption tower 2.

さらに、吸着材1に放射性セシウムが吸着すると、吸着された放射性セシウムが発生する熱により処理水5の温度が上昇することから、吸着塔2の出口等に温度計を設置し、処理水の温度を監視することで、放射性セシウムの吸着量を予測するようにしてもよい。 Further, when radioactive cesium is adsorbed on the adsorbent 1, the temperature of the treated water 5 rises due to the heat generated by the adsorbed radioactive cesium. Therefore, a thermometer is installed at the outlet of the adsorption tower 2 and the temperature of the treated water. The amount of radioactive cesium adsorbed may be predicted by monitoring.

(作用)
上記のように構成された汚染水処理システム10において、イオン形態の放射性セシウムを含む汚染水4が供給配管6から吸着塔2に導入されると、吸着塔2の上部から放射性セシウムが吸着材1に吸着されていく。
(Action)
In the contaminated water treatment system 10 configured as described above, when the contaminated water 4 containing radioactive cesium in the ion form is introduced into the adsorption tower 2 from the supply pipe 6, the radioactive cesium is released from the upper part of the adsorption tower 2 to the adsorbent 1. Will be adsorbed to.

そして、吸着塔2の全体にわたって吸着材1による吸着が進み、出口/入口放射性核種濃度比が所定の値に達するか、あるいは吸着塔2の表面線量率又はスカイシャイン線量が上限値を超えると、汚染水処理を中止し、吸着塔2を新規なものに交換する。
使用済みの吸着塔2は、処理施設に移され、そこで吸着材1と非吸着材3が分離され、非吸着材3は再利用される。
Then, when the adsorption by the adsorbent 1 proceeds throughout the adsorption tower 2 and the outlet / inlet radionuclide concentration ratio reaches a predetermined value, or the surface dose rate or skyshine dose of the adsorption tower 2 exceeds the upper limit value, The treatment of contaminated water is stopped and the adsorption tower 2 is replaced with a new one.
The used adsorption tower 2 is moved to a treatment facility where the adsorbent 1 and the non-adsorbent 3 are separated, and the non-adsorbent 3 is reused.

(実施例1)
図1に示すように、鉛直縦置きの円筒状の吸着塔2に放射性セシウムイオン吸着性能を有するケイチタン酸塩からなる吸着材1を10Kg充填するとともに、吸着塔2の内容積に対し、占有率が約50%となるように、多数の鉛玉からなる非吸着材3を略均一に分散配置した。
(Example 1)
As shown in FIG. 1, the adsorbent 1 consisting Keichitan salts with radioactive cesium ion adsorption performance in a cylindrical adsorption column 2 of every vertical longitudinal as well as 10 3 Kg filling, to the internal volume of the adsorption column 2, The non-adsorbent 3 composed of a large number of lead balls was substantially uniformly dispersed and arranged so that the occupancy rate was about 50%.

この吸着塔2に、全てがイオン形態で存在する放射性セシウム137濃度5×10Bq/Lの汚染水4を、吸着塔2の上部から供給配管6を通して通水し、下部から排出配管7を通して処理水5として排出した。 Contaminated water 4 having a concentration of radioactive cesium-137 of 5 × 10 7 Bq / L, which is entirely present in the ionic form, is passed through the adsorption tower 2 through the supply pipe 6 from the upper part of the adsorption tower 2 and through the discharge pipe 7 from the lower part. It was discharged as treated water 5.

吸着材1のセシウム分配係数は汚染水の性状、ケイチタン酸塩の種類により異なるが、仮に10L/Kgとすると、式(1)に従いセシウム137の最大吸着濃度は、5×1012Bq/Kg(=5×10Bq/L×10L/Kg)となる。 Properties of cesium distribution coefficient of the adsorbent 1 contaminated water, when may vary depending on the type of Keichitan salt, assumed as 10 5 L / Kg, maximum adsorption concentration of 137Cs in accordance with Equation (1) is, 5 × 10 12 Bq / It becomes Kg (= 5 × 10 7 Bq / L × 10 5 L / Kg).

入口側の放射性セシウム137濃度と出口側の放射性セシウム137濃度が等しくなる場合では、放射性セシウム137の吸着量は最大となり、5×1015Bq(=5×1012Bq/Kg×103Kg)となる。 When the concentration of radioactive cesium-137 on the inlet side and the concentration of radioactive cesium-137 on the outlet side are equal, the amount of radioactive cesium-137 adsorbed becomes maximum and becomes 5 × 1015 Bq (= 5 × 1012 Bq / Kg × 103 kg).

本実施形態では、出口/入口放射性核種濃度比が0.05〜0.10となった時点で汚染水の注入を停止し、吸着塔2を交換した。また、使用済の吸着塔2は、処理施設で吸着材1と非吸着材3を分離回収し、非吸着材3を再利用した。 In this embodiment, when the outlet / inlet radionuclide concentration ratio reaches 0.05 to 0.10., The injection of contaminated water is stopped and the adsorption tower 2 is replaced. Further, in the used adsorption tower 2, the adsorbent 1 and the non-adsorbent 3 were separated and recovered at the treatment facility, and the non-adsorbent 3 was reused.

なお、吸着塔2では上流にある吸着材1から放射性セシウムを吸着していくため、放射性セシウムの吸着が進むにつれて、吸着塔2の表面線量率やスカイシャイン線量が上昇していくが、非吸着材3を吸着塔2内に分散配置しているため、表面線量率やスカイシャイン線量が上限値を超えることはないが、仮に、表面線量率やスカイシャイン線量が許容値を超えた場合には、その時点で汚染水4の注入を停止する。 Since the adsorption tower 2 adsorbs radioactive cesium from the adsorbent 1 located upstream, the surface dose rate and skyshine dose of the adsorption tower 2 increase as the adsorption of radioactive cesium progresses, but non-adsorption. Since the material 3 is dispersedly arranged in the adsorption tower 2, the surface dose rate and the skyshine dose do not exceed the upper limit values, but if the surface dose rate and the skyshine dose exceed the permissible values, At that point, the injection of the contaminated water 4 is stopped.

(効果)
本実施形態によれば、再利用可能な非吸着材3を用い、かつ、吸着塔2内に装填される非吸着材3の量(占有率)を適宜調整することで、吸着材1に吸着される放射性セシウムの量を所望の値に調整することが可能となるとともに、吸着塔2の表面線量率又はスカイシャイン線量も許容値を超えないように調整することが可能となる。
これにより、汚染水処理システム10の安全性及び運転効率を向上させることができるとともに、作業員の放射線被曝や環境放射能を低減することができる。
(effect)
According to this embodiment, the non-adsorbent 3 that can be reused is used, and the amount (occupancy) of the non-adsorbent 3 loaded in the adsorption tower 2 is appropriately adjusted to be adsorbed on the adsorbent 1. The amount of radioactive cesium produced can be adjusted to a desired value, and the surface dose rate or skyshine dose of the adsorption tower 2 can also be adjusted so as not to exceed the permissible value.
As a result, the safety and operating efficiency of the contaminated water treatment system 10 can be improved, and the radiation exposure and environmental radioactivity of the workers can be reduced.

また、本実施形態の構成により、スカイシャイン線量を低減させるための重装な遮蔽材を用いる必要がなくなり、吸着塔2の小型化及び簡素化を図ることができる。そのため、放射性セシウムの吸着時に発生する熱が吸着塔2内に滞留するのを抑制することができる。また、汚染水処理システム10の省スペース化により、製造コストの低減化を図ることができる。 Further, according to the configuration of the present embodiment, it is not necessary to use a heavy shielding material for reducing the skyshine dose, and the adsorption tower 2 can be miniaturized and simplified. Therefore, it is possible to prevent the heat generated during the adsorption of radioactive cesium from staying in the adsorption tower 2. Further, the manufacturing cost can be reduced by saving the space of the contaminated water treatment system 10.

また、吸着材1とは重量、サイズ等が異なる非吸着材3を用いているため、非吸着材3を吸着材1から分離回収しやすく、非吸着材3の再利用が容易となる。これにより、使用済みの吸着塔2の処理が簡便化するとともに、資源の有効活用を図ることができる。 Further, since the non-adsorbent 3 having a weight, size, etc. different from that of the adsorbent 1 is used, the non-adsorbent 3 can be easily separated and recovered from the adsorbent 1, and the non-adsorbent 3 can be easily reused. This simplifies the processing of the used adsorption tower 2 and makes effective use of resources.

[第2の実施形態]
第2の実施形態に係る汚染水処理システム及び汚染水処理方法を、図2を用いて説明する。なお、本第2の実施形態では、第1の実施形態と同様に、円筒状の吸着塔2を縦置きし、上部を汚染水の入口側、下部を出口側としている例について説明する。
[Second Embodiment]
The contaminated water treatment system and the contaminated water treatment method according to the second embodiment will be described with reference to FIG. In the second embodiment, similarly to the first embodiment, an example in which the cylindrical adsorption tower 2 is vertically arranged, the upper part is the inlet side of the contaminated water, and the lower part is the outlet side will be described.

上述したように、吸着塔2に吸着される放射性セシウム137の吸着量は、吸着塔2全体から放射される放射線量(表面線量率)の上限値や、主に吸着塔2の上部の領域に吸着された放射性セシウムから放射される敷地境界線量(スカイシャイン線量)の上限値により制限されている。 As described above, the amount of radioactive cesium-137 adsorbed on the adsorption tower 2 is the upper limit of the amount of radiation (surface dose rate) emitted from the entire adsorption tower 2 or mainly in the upper region of the adsorption tower 2. It is limited by the upper limit of the site boundary dose (skyshine dose) emitted from the adsorbed radioactive cesium.

したがって、出口/入口放射性核種濃度比が規定値に達する前に、吸着塔2の表面線量率やスカイシャイン線量が上限値を超えると、汚染水4の注入を停止して、吸着塔2を交換しなければならない。 Therefore, if the surface dose rate or skyshine dose of the adsorption tower 2 exceeds the upper limit before the outlet / inlet radionuclide concentration ratio reaches the specified value, the injection of the contaminated water 4 is stopped and the adsorption tower 2 is replaced. Must.

なお、表面線量率及びスカイシャイン線量の上限値は、各施設、環境によって異なるが、スカイシャイン線量の上限値の方がより厳しく設定されている場合がある。
本第2の実施形態では、特に、スカイシャイン線量の上限値が厳しく設定されているケースに着目し、汚染水処理システム10がスカイシャイン線量によって早期に運転停止にならないように、吸着塔2を構成することを特徴としている。
The upper limit of the surface dose rate and the skyshine dose differs depending on each facility and environment, but the upper limit of the skyshine dose may be set more strictly.
In the second embodiment, paying particular attention to the case where the upper limit of the skyshine dose is strictly set, the adsorption tower 2 is provided so that the contaminated water treatment system 10 does not stop operating early due to the skyshine dose. It is characterized by being configured.

(構成)
本第2の実施形態に係る吸着塔2では、図2に示すように、吸着塔2の上部(入口側)に充填する非吸着材3の数を多くし、吸着塔2の下部(出口側)に向けて非吸着材3の数を順次減少させている。すなわち、非吸着材3は吸着塔2内の出口側よりも入口側の方により多く配置されている。
(Constitution)
In the adsorption tower 2 according to the second embodiment, as shown in FIG. 2, the number of non-adsorption materials 3 to be filled in the upper part (inlet side) of the adsorption tower 2 is increased, and the lower part (outlet side) of the adsorption tower 2 is increased. ), The number of non-adsorbents 3 is gradually reduced. That is, more non-adsorbents 3 are arranged on the inlet side than on the outlet side in the adsorption tower 2.

(作用)
上記のように構成された吸着塔2において、吸着塔2の上部には放射性セシウムを吸着しない非吸着材3が多く充填されているため、吸着塔2の上部から放射されるスカイシャイン線量を低減化できる。また、吸着塔2の下部では、非吸着材3の充填量が漸減しているため、放射性セシウムの吸着量が漸次増大する。
これにより、放射性セシウムの吸着量を所望の値とすることができるとともに、スカイシャイン線量が増大するのを抑制することができる。
(Action)
In the adsorption tower 2 configured as described above, since the upper part of the adsorption tower 2 is filled with a large amount of non-adsorbent 3 that does not adsorb radioactive cesium, the skyshine dose radiated from the upper part of the adsorption tower 2 is reduced. Can be transformed into. Further, in the lower part of the adsorption tower 2, since the filling amount of the non-adsorbent 3 is gradually reduced, the adsorption amount of radioactive cesium is gradually increased.
As a result, the amount of radioactive cesium adsorbed can be set to a desired value, and an increase in the skyshine dose can be suppressed.

(実施例2)
実施例2では、スカイシャイン線量の上限値が表面線量率よりもより厳しく設定されている場合、例えば、スカイシャイン線量の上限値が2.0×1014(2.0E+14)Bqである場合について説明する。
(Example 2)
In Example 2, when the upper limit of the skyshine dose is set to be stricter than the surface dose rate, for example, when the upper limit of the skyshine dose is 2.0 × 10 14 (2.0E + 14) Bq. explain.

図2に示すように、縦置きの円筒状の吸着塔2に放射性セシウムイオン吸着性能を有するケイチタン酸塩からなる吸着材1を10Kg充填した。また、吸着塔2の上方から下方に向けて、多数の鉛玉からなる非吸着材3を、各領域毎に、表1に示す占有率になるように充填した。

Figure 0006813320
As shown in FIG. 2, the adsorbent 1 consisting Keichitan acid salt in a cylindrical adsorption column 2 of vertical with radioactive cesium ion adsorption performance was 10 3 Kg filling. Further, from the upper side to the lower side of the adsorption tower 2, a non-adsorbent material 3 composed of a large number of lead balls was filled in each region so as to have the occupancy ratio shown in Table 1.
Figure 0006813320

なお、吸着塔2の内容積に対する非吸着材3全体の占有率は、上記実施例1と同様に約50%としているが、これに限定されず、要求される吸着量、スカイシャイン線量の上限値等に応じて適宜増減してもよい。 The occupancy rate of the entire non-adsorbent 3 with respect to the internal volume of the adsorption tower 2 is about 50% as in Example 1, but is not limited to this, and the required adsorption amount and the upper limit of the skyshine dose are upper limit. It may be increased or decreased as appropriate according to the value or the like.

表1に示すように構成された吸着塔2の各領域における放射性セシウムの吸着量を表2に示す。

Figure 0006813320
Table 2 shows the amount of radioactive cesium adsorbed in each region of the adsorption tower 2 configured as shown in Table 1.
Figure 0006813320

表2を参酌すると、吸着塔上部から10分の1までの放射性セシウムの吸着量はスカイシャイン線量の略上限値である2.0×1014(2.0E+14)Bq、吸着塔2の全体では放射性セシウムの吸着量は2.5×1015Bqとなり、吸着塔2の全体にわたって放射性セシウムを効率的に吸着していることがわかる。
本実施例2では、吸着塔2の交換タイミングは、出口/入口放射性核種濃度比、スカイシャイン線量又は表面線量率等に基づいて定められる。
Taking Table 2 into consideration, the amount of radioactive cesium adsorbed from the upper part of the adsorption tower to 1/10 is 2.0 × 10 14 (2.0E + 14) Bq, which is the approximate upper limit of the skyshine dose, and the adsorption tower 2 as a whole The amount of radioactive cesium adsorbed is 2.5 × 10 15 Bq, and it can be seen that radioactive cesium is efficiently adsorbed over the entire adsorption tower 2.
In the second embodiment, the replacement timing of the adsorption tower 2 is determined based on the outlet / inlet radionuclide concentration ratio, the skyshine dose, the surface dose rate, and the like.

(効果)
本第2の実施形態によれば、上記第1の実施形態の効果に加えて、スカイシャイン線量の増大を抑制しつつ、放射性セシウムを効率的に吸着することができるので、汚染水処理システム10の安全性及び運転効率を向上させることができる。
(effect)
According to the second embodiment, in addition to the effect of the first embodiment, radioactive cesium can be efficiently adsorbed while suppressing an increase in the skyshine dose, so that the contaminated water treatment system 10 It is possible to improve the safety and operating efficiency of.

また、吸着塔2内の非吸着材3の配分を適宜調整することで、施設環境によって異なるスカイシャイン線量や表面線量率の上限値を超えないように、汚染水処理システム10を構成することが可能となる。 Further, by appropriately adjusting the distribution of the non-adsorbent 3 in the adsorption tower 2, the contaminated water treatment system 10 can be configured so as not to exceed the upper limit of the skyshine dose and the surface dose rate, which differ depending on the facility environment. It will be possible.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1…吸着材、2…吸着塔、3…非吸着材、4…汚染水、5…処理水、6…供給配管、7…排出配管、10…汚染水処理システム 1 ... Adsorbent, 2 ... Adsorption tower, 3 ... Non-adsorbent, 4 ... Contaminated water, 5 ... Treated water, 6 ... Supply pipe, 7 ... Discharge pipe, 10 ... Contaminated water treatment system

Claims (5)

放射性核種を含む汚染水を吸着塔へ通水することにより前記放射性核種を除去する汚染水処理システムにおいて、
前記吸着塔は前記放射性核種を吸着する吸着材と、前記放射性核種を殆ど吸着しない粒状の鉛からなる非吸着材が充填されており、
同一吸着塔内で前記非吸着材を前記吸着塔内の出口側よりも入口側の方により多く配置された汚染水処理システム。
In a contaminated water treatment system that removes radionuclides by passing contaminated water containing radionuclides through an adsorption tower.
The adsorption tower is filled with an adsorbent that adsorbs the radionuclide and a non-adsorbent made of granular lead that hardly adsorbs the radionuclide.
A contaminated water treatment system in which more of the non-adsorbent is arranged on the inlet side than on the outlet side in the adsorption tower in the same adsorption tower .
前記吸着材及び非吸着材の形状及び/又は重量が異なる請求項1に記載の汚染水処理システム。 The contaminated water treatment system according to claim 1, wherein the adsorbent and the non-adsorbent have different shapes and / or weights. 前記放射性核種は放射性セシウム又は放射性ストロンチウムである請求項1又は2に記載の汚染水処理システム。 The contaminated water treatment system according to claim 1 or 2, wherein the radionuclide is radioactive cesium or radiostrontium. 前記非吸着材は前記吸着材から分離回収され、再利用される請求項1乃至3のいずれかに記載の汚染水処理システム。 The contaminated water treatment system according to any one of claims 1 to 3, wherein the non-adsorbent is separated and recovered from the adsorbent and reused. 請求項1乃至4のいずれかに記載の汚染水処理システムを用いて、汚染水に含まれる放射性核種を除去する汚染水処理方法。 A method for treating contaminated water by using the contaminated water treatment system according to any one of claims 1 to 4 to remove radionuclides contained in the contaminated water.
JP2016189243A 2016-09-28 2016-09-28 Contaminated water treatment system and contaminated water treatment method Active JP6813320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016189243A JP6813320B2 (en) 2016-09-28 2016-09-28 Contaminated water treatment system and contaminated water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016189243A JP6813320B2 (en) 2016-09-28 2016-09-28 Contaminated water treatment system and contaminated water treatment method

Publications (2)

Publication Number Publication Date
JP2018054403A JP2018054403A (en) 2018-04-05
JP6813320B2 true JP6813320B2 (en) 2021-01-13

Family

ID=61835693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189243A Active JP6813320B2 (en) 2016-09-28 2016-09-28 Contaminated water treatment system and contaminated water treatment method

Country Status (1)

Country Link
JP (1) JP6813320B2 (en)

Also Published As

Publication number Publication date
JP2018054403A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
KR102015155B1 (en) Fluid treatment system
US20130068102A1 (en) Radioactive iodine adsorbent and radioactive iodine removal apparatus
TWI743408B (en) Ventilated metal storage overpack (vmso) and methods for absorbing neutrons and gamma rays
JP5285171B1 (en) Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste
JP6813320B2 (en) Contaminated water treatment system and contaminated water treatment method
JP2017500189A5 (en)
JP6462491B2 (en) Radioactive liquid processing apparatus and processing method thereof
JP6224379B2 (en) Radioiodine removal device
JP2014145687A (en) Treatment equipment for radioactive strontium-containing waste water
US9406407B2 (en) Radioactive capture system for severe accident containment of light water reactors (LWRS), and method thereof
JP2013226530A (en) Impurity adsorption method and adsorption apparatus
JP2015125072A (en) Wastewater treatment device and wastewater treatment method
JP2019527125A (en) System and method for controlling performance of aqueous toxic waste capture
KR101909176B1 (en) Radon adsorption filter and radon reduction apparatus inculding the filter
JPH0334968B2 (en)
JP6581945B2 (en) Radioactive iodine adsorbent and radioactive iodine removal device
JP6082334B2 (en) Method for reducing radiation concentration from contaminated water storage tank and storage tank
JP2006313134A (en) Drum conceal type ion-exchange resin column
JP2019132778A (en) Accident countermeasures, nuclear power plant, and radiation shielding method
JP6793584B2 (en) Boron concentration control method for liquids containing radioactive substances and boron concentration control device for liquids containing radioactive substances
Abe et al. Radioactive Waste Water Treatment for Fukushima Daiichi Nuclear Power Plant–16081
JP6046574B2 (en) Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste
KR102060817B1 (en) Exclusive Ion Exchanger Set for Portable Radioactive Waste Water Treatment System
JP6310712B2 (en) Radioactive contaminated water concentration apparatus and radioactive contaminated water treatment method using the apparatus
TW201911332A (en) Apparatus of Treating Radioactive Waste of Molybdenum-99

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201217

R150 Certificate of patent or registration of utility model

Ref document number: 6813320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150