JP6812231B2 - Method for producing fluoride phosphor - Google Patents

Method for producing fluoride phosphor Download PDF

Info

Publication number
JP6812231B2
JP6812231B2 JP2016246124A JP2016246124A JP6812231B2 JP 6812231 B2 JP6812231 B2 JP 6812231B2 JP 2016246124 A JP2016246124 A JP 2016246124A JP 2016246124 A JP2016246124 A JP 2016246124A JP 6812231 B2 JP6812231 B2 JP 6812231B2
Authority
JP
Japan
Prior art keywords
aqueous solution
manganese
fluoride phosphor
phosphor
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016246124A
Other languages
Japanese (ja)
Other versions
JP2018100332A (en
Inventor
真義 市川
真義 市川
秀幸 江本
秀幸 江本
良祐 近藤
良祐 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2016246124A priority Critical patent/JP6812231B2/en
Publication of JP2018100332A publication Critical patent/JP2018100332A/en
Application granted granted Critical
Publication of JP6812231B2 publication Critical patent/JP6812231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Luminescent Compositions (AREA)

Description

本発明は、フッ化物蛍光体の製造方法に関する。より詳しくは、良好な発光特性を有するフッ化物蛍光体を、より簡便に、安定して製造することが可能な方法に関する。 The present invention relates to a method for producing a fluoride phosphor. More specifically, the present invention relates to a method capable of more easily and stably producing a fluoride phosphor having good emission characteristics.

近年、発光ダイオード(Light emitting diode:LED)と蛍光体とを組み合わせた白色発光ダイオード(白色LED)が、ディスプレイのバックライト光源や照明装置の白色光源に利用されている。その中でも、InGaN系青色LEDを励起源とした白色LEDが幅広く普及している。 In recent years, a white light emitting diode (white LED), which is a combination of a light emitting diode (LED) and a phosphor, has been used as a backlight light source for a display or a white light source for a lighting device. Among them, white LEDs using InGaN-based blue LEDs as an excitation source are widely used.

白色LEDに用いられる蛍光体は、青色LEDの発光で効率良く励起され、可視光の蛍光を発光する必要がある。白色LED用蛍光体としては、青色光で効率良く励起され、ブロードな黄色発光を示すCe付活イットリウムアルミニウムガーネット(YAG)蛍光体が代表的な例として挙げられる。YAG蛍光体は単独で青色LEDと組み合わせることにより疑似白色が得られ、また幅広い可視光領域の発光を示すことから、照明及びバックライト光源に汎用されている。しかし、赤色成分が少ないために、照明用途では演色性が低く、バックライト用途では色再現範囲が狭いという問題がある。
そこで、青色LEDとYAG蛍光体を組み合わせた白色LEDの演色性及び色再現性を改善するために、青色LEDで励起可能な赤色蛍光体や、Eu付活β型サイアロンやオルソシリケートなどの緑色蛍光体をさらに組み合わせた白色LEDが開発されている。
The phosphor used for the white LED needs to be efficiently excited by the light emission of the blue LED and emit the fluorescence of visible light. A typical example of the fluorescent substance for a white LED is a Ce-activated yttrium aluminum garnet (YAG) phosphor that is efficiently excited by blue light and exhibits broad yellow emission. The YAG phosphor can be used alone in combination with a blue LED to obtain pseudo-white color, and also emits light in a wide visible light region, and is therefore widely used in lighting and backlight sources. However, since there are few red components, there is a problem that the color rendering property is low in lighting applications and the color reproduction range is narrow in backlight applications.
Therefore, in order to improve the color reproducibility and color reproducibility of the white LED, which is a combination of the blue LED and the YAG phosphor, a red LED that can be excited by the blue LED and green fluorescence such as Eu-activated β-type sialon and orthosilicate are used. White LEDs that further combine the body have been developed.

白色LED用の赤色蛍光体としては、蛍光変換効率が高く、高温での輝度低下が少なく、化学的安定性に優れることから、Eu2+を発光中心とした窒化物若しくは酸窒化物蛍光体が多く用いられている。代表例としては、化学式SrSi:Eu2+、CaAlSiN:Eu2+、(Ca,Sr)AlSiN:Eu2+で示される蛍光体が挙げられる。しかし、Eu2+を用いた蛍光体の発光スペクトルはブロードで、視感度が低い発光成分も多く含まれるために、蛍光変換効率が高い割には白色LEDの輝度がYAG蛍光体単独の場合に比べて大きく低下してしまう。また、特にディスプレイ用途に用いる蛍光体は、カラーフィルターとの組み合わせの相性が重要であり、よりシャープな発光スペクトルを有する蛍光体が求められている。 As red phosphors for white LEDs, there are many nitrides or oxynitride phosphors centered on Eu 2+ because they have high fluorescence conversion efficiency, little decrease in brightness at high temperatures, and excellent chemical stability. It is used. Typical examples include phosphors represented by the chemical formulas Sr 2 Si 5 N 8 : Eu 2+ , CaAlSiN 3 : Eu 2+ , and (Ca, Sr) AlSiN 3 : Eu 2+ . However, the emission spectrum of the phosphor using Eu 2+ is broad and contains many emission components with low luminosity factor. Therefore, the brightness of the white LED is higher than that of the YAG phosphor alone for the high fluorescence conversion efficiency. It will drop significantly. Further, in particular, for a phosphor used for a display application, compatibility with a color filter is important, and a phosphor having a sharper emission spectrum is required.

シャープな発光スペクトルを有する赤色蛍光体の発光中心としては、Eu3+やMn4+が挙げられる。中でも、KSiFのようなフッ化物結晶にMn4+を固溶させて付活すると、青色光で効率良く励起され、半値幅の狭いシャープな発光スペクトルを有する赤色蛍光体が得られる(非特許文献1)。白色LEDの輝度を低下させることなく、優れた演色性や色再現性が実現できることから、近年、KSiF:Mn4+蛍光体の白色LEDへの適用検討が盛んに行われている。 Examples of the emission center of the red phosphor having a sharp emission spectrum include Eu 3+ and Mn 4+ . Above all, when Mn 4+ is dissolved in a fluoride crystal such as K 2 SiF 6 and activated, a red phosphor having a sharp emission spectrum with a narrow half width is obtained by being efficiently excited by blue light (non-). Patent Document 1). Without lowering the luminance of the white LED, because it can realize excellent color rendering and color reproducibility, in recent years, K 2 SiF 6: application study to white LED Mn 4+ phosphor has been actively conducted.

SiF:Mn4+で示される蛍光体の製造方法としては、フッ化水素酸水溶液に酸化剤であるKMnOを加えて調製した混合液にシリコン含有材料を浸漬する製造方法が知られている(特許文献1)。 As a method for producing a phosphor represented by K 2 SiF 6 : Mn 4+ , a production method for immersing a silicon-containing material in a mixed solution prepared by adding an oxidizing agent KMnO 4 to an aqueous hydrofluoric acid solution is known. (Patent Document 1).

また、他の製造方法として、シリコンのフッ化物を含む第1溶液、カリウムを含む第2溶液を準備し、少なくとも一方にNaMnF又はKMnFで表されるマンガン化合物を添加し、第1溶液と第2溶液とを混合して反応させ、固体生成物を固液分離して回収する方法が知られている(特許文献2)。 As another production method, a first solution containing fluoride of silicon and a second solution containing potassium are prepared, and a manganese compound represented by Na 2 MnF 6 or K 2 MnF 6 is added to at least one of them. A method is known in which a first solution and a second solution are mixed and reacted, and a solid product is separated into solid and liquid and recovered (Patent Document 2).

A.G.Paulusz,ジャーナル オブ エレクトロケミカル ソサイエティ(Journal of The Electrochemical Society),1973年、第120巻、第7号、p.942−947A. G. Paulusz, Journal of the Electrochemical Society, 1973, Vol. 120, No. 7, p. 942-947

WO2009/119486国際公開パンフレットWO2009 / 119486 International Pamphlet 特開2012−224536号公報Japanese Unexamined Patent Publication No. 2012-224536

しかしながら、特許文献1に記載される製造方法では、マンガンの蛍光体中への固溶量が少なく、発光特性に劣る傾向がある。
また、特許文献2に記載される製造方法では、Mn源としてNaMnF又はKMnFを使用しており、これらのマンガン化合物は湿度によって分解しやすいことから、品質が安定した製品を得るためには特殊な環境管理が必要である。また、これらのマンガン化合物は市販されていないため、蛍光体を製造する直前に合成する必要があり、全体として蛍光体の製造工程が複雑化してしまう。
However, in the production method described in Patent Document 1, the amount of manganese dissolved in the phosphor is small, and the light emitting characteristics tend to be inferior.
Further, in the production method described in Patent Document 2, Na 2 MnF 6 or K 2 MnF 6 is used as the Mn source, and these manganese compounds are easily decomposed by humidity, so that a product having stable quality can be obtained. Special environmental management is required to obtain it. Further, since these manganese compounds are not commercially available, they need to be synthesized immediately before producing the phosphor, which complicates the manufacturing process of the phosphor as a whole.

本発明は、より簡便でありながら、良好な発光特性を有するフッ化物蛍光体を安定して製造することが可能な方法を提供する。 The present invention provides a method capable of stably producing a fluoride phosphor having good emission characteristics while being simpler.

本発明者らは、フッ化物蛍光体の製造方法及び得られた蛍光体の物性を種々検討したところ、水溶液中でマンガンを還元した後に蛍光体を析出することにより、安定でしかも商業的に入手可能なマンガン化合物をマンガンの供給源として用いることができ、その結果、良好な発光特性を有するフッ化物蛍光体を、より簡便に、安定して製造できることを見出し、本発明に至った。 The present inventors have studied various methods for producing a fluoride phosphor and the physical properties of the obtained phosphor. As a result, the present inventors have obtained stable and commercially available by precipitating the phosphor after reducing manganese in an aqueous solution. We have found that a possible manganese compound can be used as a source of manganese, and as a result, a fluoride phosphor having good luminescent properties can be produced more easily and stably, and the present invention has been made.

すなわち、本発明は、以下の一般式(I):
SiF:Mn・・・(I)
(Aは、少なくともカリウムを含む1種以上のアルカリ金属元素である)
で表されるフッ化物蛍光体の製造方法であって、
フッ素、アルカリ金属元素A及びマンガンを含む水溶液を調製する第一の工程と、
水溶液に還元剤を加えてマンガンを還元する第二の工程と、
水溶液に固体状シリカを溶解する第三の工程とを含み、
水溶液における固体状シリカの溶解の進行と並行してフッ化物蛍光体が析出する、フッ化物蛍光体の製造方法に関する。
第一の工程において水溶液の調製に使用するマンガンの供給源が+5価以上のマンガンを含むことが好ましく、マンガンの供給源としては特に過マンガン酸カリウムが好ましい。
また、第二の工程における還元剤は過酸化水素水であることが好ましく、第二の工程を経た後の水溶液中のマンガンが+4価に還元されることが好ましい。
さらに、水溶液の溶媒がフッ化水素酸であることが好ましい。
また、第一の工程において水溶液がフッ化物蛍光体を飽和させない濃度のシリコンを含んでいることが好ましい。
That is, the present invention has the following general formula (I):
A 2 SiF 6 : Mn ... (I)
(A is one or more alkali metal elements containing at least potassium)
It is a method for producing a fluoride phosphor represented by
The first step of preparing an aqueous solution containing fluorine, alkali metal element A and manganese,
The second step of adding a reducing agent to the aqueous solution to reduce manganese,
Including a third step of dissolving solid silica in an aqueous solution,
The present invention relates to a method for producing a fluoride phosphor, in which a fluoride phosphor is precipitated in parallel with the progress of dissolution of solid silica in an aqueous solution.
The source of manganese used for preparing the aqueous solution in the first step preferably contains manganese having a valence of +5 or more, and potassium permanganate is particularly preferable as the source of manganese.
The reducing agent in the second step is preferably a hydrogen peroxide solution, and manganese in the aqueous solution after the second step is preferably reduced to +4 valence.
Further, it is preferable that the solvent of the aqueous solution is hydrofluoric acid.
Further, in the first step, it is preferable that the aqueous solution contains silicon having a concentration that does not saturate the fluoride phosphor.

本発明は、マンガンの供給源として、NaMnF又はKMnF等の不安定かつ特殊な環境管理を要するマンガン化合物を必要とせず、安定で商業的に入手可能な過マンガン酸カリウム等のマンガン化合物をそのまま使用することができる。また、水溶液中でマンガンを還元することにより、蛍光体中にマンガンを効率よく固溶することができる。このため、簡便でありながら、良好な発光特性を有するフッ化物蛍光体を安定して製造することができる。 The present invention does not require a manganese compound such as Na 2 MnF 6 or K 2 MnF 6 that requires unstable and special environmental management as a source of manganese, and is stable and commercially available potassium permanganate and the like. Manganese compound can be used as it is. Further, by reducing manganese in an aqueous solution, manganese can be efficiently dissolved in a phosphor. Therefore, it is possible to stably produce a fluoride phosphor having good light emitting characteristics while being simple.

実施例1で得たフッ化物蛍光体、比較例1で得たフッ化物蛍光体、KSiF結晶のX線回折パターンを示す図であり、図の縦軸はシグナルのカウント数である。Fluoride phosphor obtained in Example 1, the fluoride phosphor obtained in Comparative Example 1, a diagram showing the X-ray diffraction pattern of K 2 SiF 6 crystals, the vertical axis of the figure is the number of counts of the signal. 実施例1で得た蛍光体の励起・蛍光スペクトルを示す図である。It is a figure which shows the excitation / fluorescence spectrum of the phosphor obtained in Example 1. FIG.

本発明は、以下の一般式(I):
SiF:Mn・・・(I)
で表されるフッ化物蛍光体の製造方法に関し、
(1)フッ素、アルカリ金属元素A及びマンガンを含む水溶液を調製する第一の工程と、
(2)水溶液に還元剤を加えてマンガンを還元する第二の工程と、
(3)水溶液に固体状シリカを溶解する第三の工程とを含む。
一般式(I)中、アルカリ金属元素Aは少なくともカリウムを含み、より具体的には、カリウム単独、またはカリウムと、リチウム、ナトリウム、ルビジウム、セシウムのなかから選ばれる少なくとも1種以上のアルカリ金属元素との組み合わせである。化学的安定性の観点から、カリウムの含有割合は高い方が好ましく、最も好ましくはカリウム単独である。
Siはシリコンであり、Fはフッ素であり、Mnはマンガンである。
なお、一般式(I)の左側の「ASiF」は、本発明に係るフッ化物蛍光体の母結晶の組成を示し、右側の「:Mn」は、フッ化物蛍光体の発光中心となる付活元素がマンガンであることを示している。即ち、一般式(I)は、本発明に係るフッ化物蛍光体の母結晶の組成がASiFであること及び付活元素がマンガンであることを示すのみであり、フッ化物蛍光体の組成が均質であって、どの微少部分をとっても母結晶1単位に対してマンガンを一様に1個含むことを意味するものではない。なお、付活元素のマンガンは+4価のマンガンイオンであることが好ましい。
The present invention has the following general formula (I):
A 2 SiF 6 : Mn ... (I)
Regarding the method for producing a fluoride phosphor represented by
(1) The first step of preparing an aqueous solution containing fluorine, alkali metal element A and manganese, and
(2) The second step of adding a reducing agent to the aqueous solution to reduce manganese, and
(3) Includes a third step of dissolving solid silica in an aqueous solution.
In the general formula (I), the alkali metal element A contains at least potassium, and more specifically, at least one alkali metal element selected from potassium alone or potassium and lithium, sodium, rubidium, and cesium. It is a combination with. From the viewpoint of chemical stability, a high potassium content is preferable, and potassium alone is most preferable.
Si is silicon, F is fluorine, and Mn is manganese.
In addition, "A 2 SiF 6 " on the left side of the general formula (I) indicates the composition of the mother crystal of the fluoride phosphor according to the present invention, and ": Mn" on the right side is the emission center of the fluoride phosphor. It shows that the activating element is manganese. That is, the general formula (I) only indicates that the composition of the mother crystal of the fluoride phosphor according to the present invention is A 2 SiF 6 and that the activating element is manganese, and that of the fluoride phosphor. The composition is homogeneous, and it does not mean that any minute portion uniformly contains one manganese per unit of the mother crystal. The active element manganese is preferably +4 valent manganese ion.

以下に、本発明に係るフッ化物蛍光体の製造方法の各工程について詳しく説明する。
<第一の工程>
第一の工程では、フッ素、アルカリ金属元素A、及びマンガンの供給源となる化合物を溶媒に溶解して水溶液を調製する。
Hereinafter, each step of the method for producing a fluoride phosphor according to the present invention will be described in detail.
<First step>
In the first step, a compound serving as a source of fluorine, alkali metal element A, and manganese is dissolved in a solvent to prepare an aqueous solution.

水溶液の溶媒としては、フッ化水素酸を用いることが好ましい。フッ化水素酸は溶媒であると同時にフッ素の供給源としても機能する。従って、溶媒としてフッ化水素酸を用いる場合には、フッ素源を別途溶解しなくてもよい。
フッ化水素酸を用いる場合には、フッ化水素酸が多くの化合物を溶解するため、これらを扱う器具や容器等は不純物の混入を避けるためにフッ素樹脂製であることが好ましい。
Hydrofluoric acid is preferably used as the solvent for the aqueous solution. Hydrofluoric acid functions as a solvent as well as a source of fluorine. Therefore, when hydrofluoric acid is used as the solvent, the fluorine source does not have to be dissolved separately.
When hydrofluoric acid is used, since hydrofluoric acid dissolves many compounds, it is preferable that the instruments and containers that handle them are made of fluororesin in order to avoid contamination with impurities.

アルカリ金属元素Aの供給源としては、上述した元素(カリウム、リチウム、ナトリウム、ルビジウム、セシウム)のフッ化物が好ましく、例えばフッ化水素カリウム(KHF)、フッ化カリウム(KF)などが挙げられる。フッ化物であれば、アルカリ金属元素A源であると同時に、フッ素源としても機能する。 As the source of the alkali metal element A, fluorides of the above-mentioned elements (potassium, lithium, sodium, rubidium, cesium) are preferable, and examples thereof include potassium hydrogen fluoride (KHF 2 ) and potassium fluoride (KF). .. If it is a fluoride, it functions as a source of alkali metal element A and at the same time as a source of fluorine.

また、水溶液にはASiF結晶が析出しない濃度範囲でシリコンを溶解してもよい。第一の工程で水溶液中にシリコンを溶解させておくことにより、第三の工程においてフッ化物蛍光体の析出をより速やかに開始することができる。
シリコンの供給源としては、シリコン単体またはシリコンを含む化合物であれば特に制限はなく、固体状であっても、水溶液に相溶する溶液状であってもよい。シリコン源となる好ましい化合物としては、二酸化ケイ素(SiO)、ケイフッ化水素(HSiF)、ケイフッ化カリウム(KSiF)が挙げられる。特にケイフッ化水素やケイフッ化カリウムは、シリコン源であると同時に、カリウムやフッ素の供給源としても機能するため好ましい。
Further, silicon may be dissolved in the aqueous solution within a concentration range in which A 2 SiF 6 crystals do not precipitate. By dissolving the silicon in the aqueous solution in the first step, the precipitation of the fluoride phosphor can be started more quickly in the third step.
The source of silicon is not particularly limited as long as it is a simple substance of silicon or a compound containing silicon, and may be in the form of a solid or in the form of a solution compatible with an aqueous solution. Preferred compounds that serve as a silicon source include silicon dioxide (SiO 2 ), hydrogen silicate (H 2 SiF 6 ), and potassium silicate (K 2 SiF 6 ). In particular, hydrogen silicate and potassium silicate are preferable because they function as a source of potassium and fluorine at the same time as a silicon source.

本発明では、第二の工程において、蛍光体を析出する直前に水溶液中のマンガンを還元する。このため、マンガンの供給源として、比較的固溶効率が悪いとされる+5価以上のマンガンを含むマンガン化合物を用いることができる。好ましいマンガンの供給源としては、過マンガン酸カリウム、過マンガン酸ナトリウム、マンガン酸カリウム、マンガン酸ナトリウム、亜マンガン酸カリウム、亜マンガン酸ナトリウムを挙げることができる。なかでも、過マンガン酸カリウムは、入手が容易であるうえに、水溶液や蛍光体に含まれる元素のみから構成されているため、フッ化物蛍光体への不純物混入を抑えることができ好ましい。
本発明は、+5価以上のマンガンを水溶液中で+4価に還元し、MnF 2−錯イオンの状態とすることで蛍光体中にマンガンを効率よく固溶させ、その結果、発光特性に優れた蛍光体を安定して得ることができると考えられる。
一方、+4価のマンガンを直接供給できるAMnFは湿度によって分解されやすいため、特殊な環境下で管理する必要があり、取り扱いが難しい。さらに、これらの化合物は一般に市販されていないため、蛍光体を製造する直前に別途合成する必要があり、蛍光体の製造工程を複雑化させてしまう。
また、酸性溶液中では低価数のマンガンの方が安定であるため、+2価もしくは+3価のマンガンを+4価に酸化することは困難である。
In the present invention, in the second step, manganese in the aqueous solution is reduced immediately before the phosphor is precipitated. Therefore, as a source of manganese, a manganese compound containing manganese having a +5 valence or more, which is said to have a relatively poor solid solution efficiency, can be used. Preferred sources of manganese include potassium permanganate, sodium permanganate, potassium manganate, sodium manganate, potassium manganate, and sodium manganate. Among them, potassium permanganate is preferable because it is easily available and is composed only of elements contained in an aqueous solution or a phosphor, so that impurities can be suppressed from being mixed into the fluoride phosphor.
The present invention is reduced to +4 valence +5 valence or manganese in an aqueous solution of manganese was efficiently dissolved in the phosphor by the state of MnF 6 2-complex ions, as a result, excellent emission characteristics It is considered that the fluorescent substance can be stably obtained.
On the other hand, A 2 MnF 6 which can directly supply +4 valent manganese is easily decomposed by humidity, so it is necessary to manage it in a special environment and it is difficult to handle. Further, since these compounds are not generally commercially available, they need to be synthesized separately immediately before the phosphor is produced, which complicates the process of producing the phosphor.
Further, since low-valent manganese is more stable in an acidic solution, it is difficult to oxidize +2-valent or +3-valent manganese to +4 valence.

水溶液は、溶媒中に各元素の供給源となる化合物を複数回に分けて、または連続的に添加して調製することができる。
水溶液中に含まれる上記各元素は、一般にイオン化していることが想定されるが、それぞれが必ずしもフリーなイオンである必要はなく、溶液状態であればそれらの存在形態に特に制約を設けるものではない。
The aqueous solution can be prepared by adding the compound that is the source of each element to the solvent in a plurality of times or continuously.
Each of the above elements contained in an aqueous solution is generally assumed to be ionized, but each of them does not necessarily have to be a free ion, and if it is in a solution state, there is no particular restriction on their existence form. Absent.

<第二の工程>
第二の工程では、第一の工程で調製した水溶液に還元剤を加えて水溶液中のマンガンを還元する。
本発明で使用される還元剤は、+5価以上のマンガンを+4価に還元できるものであれば特に制限はない。
一般的な還元剤としては、過酸化水素、二酸化イオウ、硫化水素、亜硫酸ナトリウム、シュウ酸などが知られているが、本発明では過酸化水素が特に好ましい。過酸化水素であれば、水溶液中に含まれる元素のみから構成されているためフッ化物蛍光体への不純物混入を抑えることができる。
本発明は、水溶液中でマンガンを+4価に還元し、結晶に固溶しやすいMnF 2−錯イオンを生成する。このため、マンガンの供給源として、蛍光体に固溶しにくく、十分な発光特性を得ることが難しい+7価のマンガンを含む過マンガン酸カリウム等を使用しても、発光特性に優れた蛍光体を得ることができる。また、+4価のマンガンを直接含むAMnFのような特定の化合物と比べて、過マンガン酸カリウム等は比較的安定で、入手も容易であるため、蛍光体をより簡便かつ安定して製造することができる。
<Second step>
In the second step, a reducing agent is added to the aqueous solution prepared in the first step to reduce manganese in the aqueous solution.
The reducing agent used in the present invention is not particularly limited as long as it can reduce manganese having a +5 valence or higher to a +4 valence.
Hydrogen peroxide, sulfur dioxide, hydrogen sulfide, sodium sulfite, oxalic acid and the like are known as general reducing agents, but hydrogen peroxide is particularly preferable in the present invention. Since hydrogen peroxide is composed of only the elements contained in the aqueous solution, it is possible to suppress the mixing of impurities into the fluoride phosphor.
The present invention reduces manganese to +4 valence in an aqueous solution to produce MnF 6 2- complex ions that are easily dissolved in crystals. Therefore, even if potassium permanganate containing +7 valent manganese or the like, which is difficult to dissolve in a phosphor and is difficult to obtain sufficient luminescence characteristics, is used as a source of manganese, the fluorescee has excellent luminescence characteristics. Can be obtained. Also, + tetravalent compared with certain compounds such as A 2 MnF 6 containing manganese directly, potassium permanganate or the like is relatively stable, because it is easily available, a phosphor more easily and stably Can be manufactured.

<第三の工程>
第三の工程では、水溶液に固体状シリカを溶解する。このとき、水溶液中における固体状シリカの溶解の進行と並行してフッ化物蛍光体が析出する。
<Third step>
In the third step, solid silica is dissolved in the aqueous solution. At this time, the fluoride phosphor is precipitated in parallel with the progress of dissolution of the solid silica in the aqueous solution.

本発明で用いられる固体状シリカは、結晶質、非晶質又はその混合物でも良い。固体状シリカの大きさや形状に制限はなく、球状、破砕片状、棒状、板状、多孔質状等であっても良い。
水溶液に固体状シリカを溶解する工程は、本発明の蛍光体を得る上で妨げにならない限り、その表記順序通りに、独立した操作を順に実施する必要はない。すなわち、各操作を複数回に分けても良いし、または連続的に実施しても良い。例えば、水溶液に固体状シリカを一度に投入してもよいし、複数回に分けて投入してもよい。また、固体状シリカ側に水溶液を注いでも良い。
さらに、固体状シリカを溶解した後に、カリウム、フッ素、溶媒等を水溶液に補充しても良い。
The solid silica used in the present invention may be crystalline, amorphous or a mixture thereof. The size and shape of the solid silica are not limited, and may be spherical, crushed, rod-shaped, plate-shaped, porous, or the like.
The step of dissolving solid silica in an aqueous solution does not need to carry out independent operations in order as long as it does not interfere with the acquisition of the phosphor of the present invention. That is, each operation may be divided into a plurality of times or may be performed continuously. For example, solid silica may be added to the aqueous solution at one time, or may be added in a plurality of times. Further, the aqueous solution may be poured on the solid silica side.
Further, after dissolving the solid silica, potassium, fluorine, a solvent and the like may be replenished in the aqueous solution.

本発明のフッ化物蛍光体の製造方法では、フッ化物蛍光体のシリコン以外の構成元素を含む水溶液に固体状シリカを溶解することにより、固体状シリカの溶解と並行してフッ化物蛍光体が析出する。これは、シリコンの供給によって生成されるフッ化物蛍光体が水溶液中において飽和濃度以上に達するために起こる現象である。ただし、上述したように、フッ化物蛍光体が飽和に達しない濃度範囲であれば、第一の工程において水溶液中にシリコンが含まれていてもよい。 In the method for producing a fluoride phosphor of the present invention, the fluoride phosphor is precipitated in parallel with the dissolution of the solid silica by dissolving the solid silica in an aqueous solution containing a constituent element other than silicon of the fluoride phosphor. To do. This is a phenomenon that occurs because the fluoride phosphor produced by the supply of silicon reaches a saturation concentration or higher in an aqueous solution. However, as described above, silicon may be contained in the aqueous solution in the first step as long as the concentration range does not reach saturation of the fluoride phosphor.

本発明に係る化学組成を有するフッ化物蛍光体を効率よく得るためには、水溶液中に含まれるシリコン以外の構成元素は、固体状シリカに含まれるシリコンの化学量論量より多く、もしくは大過剰に含まれていることが好ましい。具体的には、溶解する固体状シリカが有するシリコン化学量論量の少なくとも等倍以上、好ましくは1.5倍以上、より好ましくは2倍以上である。 In order to efficiently obtain a fluoride phosphor having a chemical composition according to the present invention, the constituent elements other than silicon contained in the aqueous solution are larger or excessive in excess of the chemical amount of silicon contained in solid silica. It is preferable that it is contained in. Specifically, it is at least 1 times or more, preferably 1.5 times or more, and more preferably 2 times or more the silicon stoichiometric amount of the dissolved solid silica.

また本発明のフッ化物蛍光体の製造方法を実施する温度に関しては特に規定はないが、必要により冷却または加熱してもよい。特に、シリカは溶解する際に発熱するため、水溶液を冷却するのが好ましい場合がある。また実施する圧力についても特に限定はない。
さらに、本発明の製造方法で得られたフッ化物蛍光体は、不純物除去や粒度のばらつきを抑制するため、粉砕、洗浄、乾燥、分級の後処理を実施することができる。これら後処理の回数や、実施する順番にも特に制限はない。
The temperature at which the method for producing a fluoride phosphor of the present invention is carried out is not particularly specified, but may be cooled or heated as necessary. In particular, since silica generates heat when it dissolves, it may be preferable to cool the aqueous solution. There is no particular limitation on the pressure to be applied.
Further, the fluoride phosphor obtained by the production method of the present invention can be subjected to pulverization, washing, drying, and post-classification in order to remove impurities and suppress variations in particle size. There are no particular restrictions on the number of these post-treatments or the order in which they are performed.

以下、本発明の実施例と比較例を示し、本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention.

<実施例1>
始めに、常温下で、容量500mlのフッ素樹脂製ビーカーに濃度55質量%フッ化水素酸350mlを入れ、KHF粉末(和光純薬工業社製、特級試薬)46.18g及びKMnO4粉末0.88gを順次溶解させ、水溶液を調製した。この溶液に、過酸化水素水0.59gを滴下した。しばらく水溶液を撹拌し、水溶液の色が紫色から薄い茶色への変化を確認した。その後、この溶液にシリカ(デンカ株式会社製、FB−50R、非晶質、平均粒径55μm)12.00gを入れた。シリカの粉末を水溶液に添加すると溶解熱の発生により水溶液温度が上昇した。溶液温度はシリカを添加して約3分後に最高温度に到達し、その後はシリカの溶解が終了したために溶液温度は下降した。なお、シリカ粉末を添加すると直ぐに水溶液中で黄色粉末が生成し始めていることが目視で確認された。
シリカ粉末が完全に溶解した後、しばらく水溶液を撹拌し、黄色粉末の析出を完了させた後、水溶液を静置して固形分を沈殿させた。沈殿確認後、上澄み液を除去し、濃度20質量%のフッ化水素酸及びメタノールを用いて黄色粉末を洗浄し、さらにこれを濾過して固形部を分離回収し、更に乾燥処理により、残存メタノールを蒸発除去した。乾燥処理後、目開き75μmのナイロン製篩を用い、この篩を通過した黄色粉末だけを分級して回収し、最終的に31.84gの黄色粉末を得た。
<Example 1>
First, at room temperature, 350 ml of 55 mass% hydrofluoric acid having a concentration of 55 mass% was placed in a fluororesin beaker having a capacity of 500 ml, and 46.18 g of KHF 2 powder (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) and KMnO 4 powder 0. 88 g was sequentially dissolved to prepare an aqueous solution. 0.59 g of hydrogen peroxide solution was added dropwise to this solution. The aqueous solution was stirred for a while, and the color of the aqueous solution changed from purple to light brown. Then, 12.00 g of silica (manufactured by Denka Co., Ltd., FB-50R, amorphous, average particle size 55 μm) was added to this solution. When silica powder was added to the aqueous solution, the temperature of the aqueous solution increased due to the generation of heat of solution. The solution temperature reached the maximum temperature about 3 minutes after the addition of silica, and then the solution temperature decreased because the dissolution of silica was completed. It was visually confirmed that yellow powder began to be formed in the aqueous solution immediately after the addition of the silica powder.
After the silica powder was completely dissolved, the aqueous solution was stirred for a while to complete the precipitation of the yellow powder, and then the aqueous solution was allowed to stand to precipitate the solid content. After confirming the precipitation, the supernatant is removed, the yellow powder is washed with hydrofluoric acid and methanol having a concentration of 20% by mass, and the yellow powder is further filtered to separate and recover the solid portion, and the residual methanol is further dried. Was removed by evaporation. After the drying treatment, a nylon sieve having a mesh size of 75 μm was used, and only the yellow powder that had passed through the sieve was classified and recovered to finally obtain 31.84 g of yellow powder.

<結晶相測定による黄色粉末母結晶の組成確認>
実施例1で得た黄色粉末の結晶相を測定し、母結晶の組成を求めた。即ち、X線回折装置(リガク社製Ultima4、CuKα管球使用)を用いて、X線回折パターンを測定した。得られたX線回折パターンを図1に示す。このX線回折パターンはKSiF結晶と同一パターンであることから、実施例1で得られたサンプルがKSiF:Mnの単相であることが確認された。
<Confirmation of composition of yellow powder mother crystal by crystal phase measurement>
The crystal phase of the yellow powder obtained in Example 1 was measured to determine the composition of the mother crystal. That is, the X-ray diffraction pattern was measured using an X-ray diffractometer (Ultima4 manufactured by Rigaku Co., Ltd., using a CuKα tube). The obtained X-ray diffraction pattern is shown in FIG. Since this X-ray diffraction pattern is the same pattern as the K 2 SiF 6 crystal, it was confirmed that the sample obtained in Example 1 was a single phase of K 2 SiF 6 : Mn.

<実施例2>
原料の配合量を変更したこと以外は、実施例1と同様にフッ化物蛍光体を製造した。
即ち、常温下で、容量500mlのフッ素樹脂製ビーカーに濃度55質量%フッ化水素酸350mlを入れ、KHF粉末(和光純薬工業社製、特級試薬)46.18g及びKMnO4粉末1.76gを順次溶解させ、水溶液を調製した。この溶液に、過酸化水素水1.18gを滴下した。しばらく水溶液を撹拌し、水溶液の色が紫色から薄い茶色への変化を確認した。その後、この溶液に、シリカ(デンカ株式会社製、FB−50R、非晶質、平均粒径55μm)12.00gを入れた。シリカの粉末を水溶液に添加すると溶解熱の発生により水溶液温度が上昇した。溶液温度はシリカを添加して約3分後に最高温度に到達し、その後はシリカの溶解が終了したために溶液温度は下降した。なお、シリカ粉末を添加すると直ぐに水溶液中で黄色粉末が生成し始めていることが目視で確認された。
シリカ粉末が完全に溶解した後、しばらく水溶液を撹拌し、黄色粉末の析出を完了させた後、水溶液を静置して固形分を沈殿させた。沈殿確認後、上澄み液を除去し、濃度20質量%のフッ化水素酸及びメタノールを用いて黄色粉末を洗浄し、さらにこれを濾過して固形部を分離回収し、更に乾燥処理により残存メタノールを蒸発除去した。乾燥処理後、目開き75μmのナイロン製篩を用い、この篩を通過した黄色粉末だけを分級して回収し、最終的に32.43gの黄色粉末を得た。
<Example 2>
A fluoride phosphor was produced in the same manner as in Example 1 except that the blending amount of the raw material was changed.
That is, at room temperature, 350 ml of 55 mass% hydrofluoric acid having a concentration of 55 mass% was placed in a fluororesin beaker having a capacity of 500 ml, and 46.18 g of KHF 2 powder (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) and 1.76 g of KMnO 4 powder were added. Was sequentially dissolved to prepare an aqueous solution. 1.18 g of hydrogen peroxide solution was added dropwise to this solution. The aqueous solution was stirred for a while, and the color of the aqueous solution changed from purple to light brown. Then, 12.00 g of silica (manufactured by Denka Co., Ltd., FB-50R, amorphous, average particle size 55 μm) was added to this solution. When silica powder was added to the aqueous solution, the temperature of the aqueous solution increased due to the generation of heat of solution. The solution temperature reached the maximum temperature about 3 minutes after the addition of silica, and then the solution temperature decreased because the dissolution of silica was completed. It was visually confirmed that yellow powder began to be formed in the aqueous solution immediately after the addition of the silica powder.
After the silica powder was completely dissolved, the aqueous solution was stirred for a while to complete the precipitation of the yellow powder, and then the aqueous solution was allowed to stand to precipitate the solid content. After confirming the precipitation, the supernatant is removed, the yellow powder is washed with hydrofluoric acid and methanol having a concentration of 20% by mass, and the yellow powder is further filtered to separate and recover the solid part, and the residual methanol is further dried. Evaporated and removed. After the drying treatment, a nylon sieve having a mesh size of 75 μm was used, and only the yellow powder that had passed through the sieve was classified and recovered to finally obtain 32.43 g of yellow powder.

<比較例1>
特許文献1に開示されている方法に従ってフッ化物蛍光体を製造した。
即ち、常温下で、容量500mlのフッ素樹脂製ビーカーに濃度48質量%フッ化水素酸100mlを入れ、KMnO粉末(和光純薬工業社製、試薬1級)6.00g、HO100mlを混合し、溶液を調製した。この溶液に、超音波を付与しながら、先ずアセトン洗浄を10分間、続いてメタノール洗浄を10分間にわたって行う脱脂洗浄を実施し、その後、5%HF水溶液を使用して自然酸化膜を除去したn型Si単結晶基板0.38gを入れた。室温(25℃)の環境下で、2日間放置した。その後、上澄み液を除去した。浸漬していたn型Si単結晶基板上に黄色粉末が生成していることを確認した。Si基板上から生成した黄色粉末を目視で単離し、メタノールで洗浄し、濾過により固形部を分離回収し、更に乾燥処理により、残存メタノールを蒸発除去し、最終的に淡黄色粉末1.48gを得た。
<Comparative example 1>
A fluoride phosphor was produced according to the method disclosed in Patent Document 1.
That is, at room temperature, placed in concentration 48 wt% hydrofluoric acid 100ml fluororesin beaker of capacity 500 ml, KMnO 4 powder (Wako Pure Chemical Industries, Ltd., reagent first grade) 6.00 g, and H 2 O100ml mixed And the solution was prepared. The solution was subjected to degreasing washing in which acetone washing was first carried out for 10 minutes and then methanol washing was carried out for 10 minutes while applying ultrasonic waves, and then the natural oxide film was removed using a 5% HF aqueous solution. 0.38 g of a type Si single crystal substrate was added. It was left for 2 days in an environment of room temperature (25 ° C.). Then, the supernatant was removed. It was confirmed that yellow powder was formed on the immersed n-type Si single crystal substrate. The yellow powder generated from the Si substrate was visually isolated, washed with methanol, the solid part was separated and recovered by filtration, and the residual methanol was evaporated and removed by drying treatment, and finally 1.48 g of pale yellow powder was obtained. Obtained.

<比較例2>
特許文献2に開示されている方法に従ってフッ化物蛍光体を製造した。
この方法の原料として使用するKMnFは市販品の入手が困難であるため、非特許文献1に記載されている方法に準拠して準備した。具体的には、容量2000mlのフッ素樹脂製ビーカーに濃度40質量%フッ化水素酸800mlを入れ、フッ化水素カリウム粉末(和光純薬工業社製、特級試薬)260.00g及び過マンガン酸カリウム粉末(和光純薬工業社製、試薬1級)12.00gを溶解させた。このフッ化水素酸溶液をマグネティックスターラーで撹拌しながら、30%過酸化水素水(特級試薬)8mlを少しずつ滴下した。過酸化水素水の滴下量が一定量を超えると黄色粉末が析出し始め、反応液の色が紫色から変化し始めた。過酸化水素水を一定量滴下後、しばらく撹拌を続けた後、撹拌を止め、析出粉末を沈殿させた。沈殿後、上澄み液を除去し、メタノールを加え、撹拌し、静置し、上澄み液を除去し、更にメタノールを加えるという操作を、液が中性になるまで繰り返した。その後、濾過により析出粉末を回収し、更に乾燥を行ってメタノールを完全に蒸発除去し、KMnF粉末を19.00g得た。これらの操作は全て常温で行った。
次に、常温下で、容量500mlのフッ素樹脂製ビーカーに濃度48質量%フッ化水素酸140mlを入れ、シリカ粉末(高純度化学研究所製、純度99%)6.86g、KMnF1.70gを溶解させ、第1溶液を調製した。また、容量500mlのフッ素樹脂製ビーカーに濃度48質量%フッ化水素酸60mlを入れ、フッ化カリウム19.93gを溶解させ、第2溶液を調製した。これら溶液を混合して反応させた後に、静置して固形分を沈殿させた。沈殿確認後、上澄み液を除去し、20質量%のフッ化水素酸及びエタノールでの洗浄を行い、濾過により固形部を分離回収し、更に乾燥処理により残存エタノールを蒸発除去した。乾燥処理後、最終的に黄色粉末21.69gを得た。
<Comparative example 2>
A fluoride phosphor was produced according to the method disclosed in Patent Document 2.
Since it is difficult to obtain a commercially available product, K 2 MnF 6 used as a raw material for this method was prepared in accordance with the method described in Non-Patent Document 1. Specifically, 800 ml of 40 mass% hydrofluoric acid having a concentration of 40 mass% was placed in a fluororesin beaker having a capacity of 2000 ml, and 260.00 g of potassium bifluoride powder (manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent) and potassium permanganate powder were added. 12.00 g (manufactured by Wako Pure Chemical Industries, Ltd., reagent first grade) was dissolved. While stirring this hydrofluoric acid solution with a magnetic stirrer, 8 ml of 30% hydrogen peroxide solution (special grade reagent) was added dropwise little by little. When the amount of hydrogen peroxide solution dropped exceeded a certain amount, yellow powder began to precipitate, and the color of the reaction solution began to change from purple. After dropping a certain amount of hydrogen peroxide solution and continuing stirring for a while, the stirring was stopped and the precipitated powder was precipitated. After precipitation, the operation of removing the supernatant, adding methanol, stirring, allowing to stand, removing the supernatant, and further adding methanol was repeated until the solution became neutral. Thereafter, the precipitated powder was collected by filtration, methanol was completely removed by evaporation performed further dried to obtain 19.00g of K 2 MnF 6 powder. All of these operations were performed at room temperature.
Then, at room temperature, placed in concentration 48 wt% hydrofluoric acid 140ml fluororesin beaker of capacity 500 ml, silica powder (made by Kojundo Chemical Laboratory Co., Ltd., purity 99%) 6.86g, K 2 MnF 6 1 .70 g was dissolved to prepare a first solution. Further, 60 ml of hydrofluoric acid having a concentration of 48% by mass was placed in a fluororesin beaker having a capacity of 500 ml, and 19.93 g of potassium fluoride was dissolved to prepare a second solution. After mixing and reacting these solutions, they were allowed to stand to precipitate solids. After confirming the precipitation, the supernatant was removed, washed with 20% by mass of hydrofluoric acid and ethanol, the solid part was separated and recovered by filtration, and the residual ethanol was evaporated and removed by a drying treatment. After the drying treatment, 21.69 g of yellow powder was finally obtained.

<フッ化物蛍光体の発光特性評価>
実施例1、2、及び比較例1、2の製造方法により得られた各フッ化物蛍光体の発光特性を、以下の方法で吸収率、内部量子効率、外部量子効率を測定することにより評価した。即ち、積分球(φ60mm)の側面開口部(φ10mm)に反射率が99%の標準反射板(Labsphere社製、スペクトラロン)をセットした。この積分球に、発光光源(Xeランプ)から455nmの波長に分光した単色光を光ファイバーにより導入し、反射光のスペクトルを分光光度計(大塚電子社製、MCPD−7000)により測定した。その際、450〜465nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。次に、凹型のセルに表面が平滑になるように蛍光体を充填したものを積分球の開口部にセットし、波長455nmの単色光を照射し、励起の反射光及び蛍光のスペクトルを分光光度計により測定した。代表例として、実施例1のフッ化物蛍光体について得られた励起・蛍光スペクトルを図2に示す。
得られたスペクトルデータから励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出した。励起反射光フォトン数は、励起光フォトン数と同じ波長範囲で、蛍光フォトン数は、465〜800nmの範囲で算出した。得られた三種類のフォトン数から外部量子効率(=Qem/Qex×100)、吸収率(=(1−Qref/Qex)×100)、内部量子効率(=Qem/(Qex−Qref)×100)を求めた。
測定結果を表1にまとめて記す。
<Evaluation of luminescence characteristics of fluoride phosphor>
The emission characteristics of each fluoride phosphor obtained by the production methods of Examples 1 and 2 and Comparative Examples 1 and 2 were evaluated by measuring the absorption rate, the internal quantum efficiency, and the external quantum efficiency by the following methods. .. That is, a standard reflector (Spectralon manufactured by Labsphere) having a reflectance of 99% was set in the side opening (φ10 mm) of the integrating sphere (φ60 mm). Monochromatic light dispersed at a wavelength of 455 nm was introduced into the integrating sphere by an optical fiber, and the spectrum of the reflected light was measured by a spectrophotometer (MCPD-7000, manufactured by Otsuka Electronics Co., Ltd.). At that time, the number of excited photons (Qex) was calculated from the spectrum in the wavelength range of 450 to 465 nm. Next, a concave cell filled with a phosphor so as to have a smooth surface is set in the opening of the integrating sphere, monochromatic light having a wavelength of 455 nm is irradiated, and the spectrum of the reflected light of excitation and the fluorescence is spectrophotometer. Measured by meter. As a representative example, the excitation / fluorescence spectra obtained for the fluoride phosphor of Example 1 are shown in FIG.
From the obtained spectral data, the number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) were calculated. The number of excited reflected light photons was calculated in the same wavelength range as the number of excited light photons, and the number of fluorescent photons was calculated in the range of 465 to 800 nm. External quantum efficiency (= Qem / Qex × 100), absorption rate (= (1-Qref / Qex) × 100), internal quantum efficiency (= Qem / (Qex-Qref) × 100) from the obtained three types of photon numbers. ) Was asked.
The measurement results are summarized in Table 1.

表1に示されるように、+7価のマンガンイオンを供給するKMnOを使用した場合であっても、水溶液中のマンガンを還元した後にフッ化物蛍光体を析出させることにより(実施例1及び2)、マンガンを還元しなかった場合(比較例1)と比べて、格段に高い外部量子効率を示し、発光効率に優れたフッ化物蛍光体が得られた。
また、+4価のマンガンイオンを直接供給できるKMnFを使用した場合(比較例2)には、当該マンガン化合物の合成工程が増えることで製法が複雑になる上に、発光効率も十分ではなかった。
As shown in Table 1, even when KMnO 4 that supplies +7-valent manganese ions is used, by reducing manganese in the aqueous solution and then precipitating the fluoride phosphor (Examples 1 and 2). ), A fluoride phosphor having significantly higher external quantum efficiency and excellent light emission efficiency was obtained as compared with the case where manganese was not reduced (Comparative Example 1).
Further, when K 2 MnF 6 capable of directly supplying +4 valent manganese ions is used (Comparative Example 2), the production method becomes complicated due to the increase in the synthesis steps of the manganese compound, and the luminous efficiency is not sufficient. There wasn't.

Claims (6)

以下の一般式(I):
SiF:Mn・・・(I)
(Aは、少なくともカリウムを含む1種以上のアルカリ金属元素である)
で表されるフッ化物蛍光体の製造方法であって、
フッ素、アルカリ金属元素A及びマンガンを含む水溶液を調製する第一の工程と、
水溶液に還元剤を加えてマンガンを還元する第二の工程と、
水溶液に固体状シリカを溶解する第三の工程とを含み、
水溶液における固体状シリカの溶解の進行と並行してフッ化物蛍光体が析出し、
第一の工程において水溶液がフッ化物蛍光体を飽和させない濃度のシリコンを含む、
フッ化物蛍光体の製造方法。
The following general formula (I):
A 2 SiF 6 : Mn ... (I)
(A is one or more alkali metal elements containing at least potassium)
It is a method for producing a fluoride phosphor represented by
The first step of preparing an aqueous solution containing fluorine, alkali metal element A and manganese,
The second step of adding a reducing agent to the aqueous solution to reduce manganese,
Including a third step of dissolving solid silica in an aqueous solution,
Fluoride phosphors are precipitated in parallel with the progress of dissolution of solid silica in the aqueous solution .
In the first step, the aqueous solution contains silicon at a concentration that does not saturate the fluoride phosphor.
A method for producing a fluoride phosphor.
第一の工程における水溶液中のマンガンの供給源が+5価以上のマンガンを含む、請求項1記載のフッ化物蛍光体の製造方法。 The method for producing a fluoride phosphor according to claim 1, wherein the source of manganese in the aqueous solution in the first step contains manganese having a +5 valence or more. マンガンの供給源が過マンガン酸カリウムである、請求項2記載のフッ化物蛍光体の製造方法。 The method for producing a fluoride phosphor according to claim 2, wherein the source of manganese is potassium permanganate. 還元剤が過酸化水素水である、請求項1〜3のいずれか一項に記載のフッ化物蛍光体の製造方法。 The method for producing a fluoride phosphor according to any one of claims 1 to 3, wherein the reducing agent is hydrogen peroxide solution. 第二の工程後の水溶液中のマンガンが+4価のマンガンを含む、請求項1〜4のいずれか一項に記載のフッ化物蛍光体の製造方法。 The method for producing a fluoride phosphor according to any one of claims 1 to 4, wherein the manganese in the aqueous solution after the second step contains +4 valent manganese. 水溶液の溶媒がフッ化水素酸である、請求項1〜5のいずれか一項に記載のフッ化物蛍光体の製造方法。 The method for producing a fluoride phosphor according to any one of claims 1 to 5, wherein the solvent of the aqueous solution is hydrofluoric acid.
JP2016246124A 2016-12-20 2016-12-20 Method for producing fluoride phosphor Active JP6812231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016246124A JP6812231B2 (en) 2016-12-20 2016-12-20 Method for producing fluoride phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016246124A JP6812231B2 (en) 2016-12-20 2016-12-20 Method for producing fluoride phosphor

Publications (2)

Publication Number Publication Date
JP2018100332A JP2018100332A (en) 2018-06-28
JP6812231B2 true JP6812231B2 (en) 2021-01-13

Family

ID=62714132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016246124A Active JP6812231B2 (en) 2016-12-20 2016-12-20 Method for producing fluoride phosphor

Country Status (1)

Country Link
JP (1) JP6812231B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114096485A (en) * 2019-08-09 2022-02-25 电化株式会社 Potassium hexafluoromanganate, method for producing potassium hexafluoromanganate, and method for producing manganese-activated complex fluoride phosphor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029497A (en) * 2009-07-28 2011-02-10 Mitsubishi Chemicals Corp White light emitting device and illumination apparatus using the same
RU2613963C2 (en) * 2012-02-16 2017-03-22 Конинклейке Филипс Н.В. Red narrowband light emitting coated fluorosilicates for semiconductor light emitting devices
JP2014177511A (en) * 2013-03-13 2014-09-25 Toshiba Corp Fluophor, its manufacturing method, and light emitting device using the fluophor
JP6342146B2 (en) * 2013-12-09 2018-06-13 株式会社東芝 Phosphor, method for producing the same, and light emitting device using the phosphor
WO2015093430A1 (en) * 2013-12-17 2015-06-25 電気化学工業株式会社 Method for producing fluorescent substance
CN104789214A (en) * 2015-04-01 2015-07-22 苏州工业园区晶冠瓷材料科技有限公司 Preparation method for red fluorescent powder for LED

Also Published As

Publication number Publication date
JP2018100332A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP6867292B2 (en) Fluoride phosphor, light emitting device and method for producing fluoride phosphor
TWI758493B (en) Fluoride phosphor and light-emitting device using the same
JP6745787B2 (en) Method for manufacturing phosphor
TWI758494B (en) Fluoride phosphor and light-emitting device using the same
JP6359066B2 (en) Potassium fluoride manganate for manganese-activated bifluoride phosphor raw material and method for producing manganese-activated bifluoride phosphor using the same
JP6826445B2 (en) Potassium hexafluoride and manganese-activated compound fluoride phosphor using it
WO2017104406A1 (en) Fluorescent body, light emitting device, illuminating apparatus, and image displaying apparatus
JP2017078097A (en) Phosphor, light emitting device, illumination device and image display device
JP6812231B2 (en) Method for producing fluoride phosphor
JP2019044017A (en) Fluoride phosphors and light emitting devices
JP2018016716A (en) Method for producing fluoride fluorescent material
JP7242368B2 (en) Manufacturing method of fluoride phosphor
JP2019044018A (en) Fluoride phosphors and light emitting devices
JP6964524B2 (en) Fluoride phosphor and light emitting device using it
WO2021029289A1 (en) Potassium hexafluoromanganate, method for producing potassium hexafluoromanganate, and method for producing manganese-activated complex fluoride phosphor
WO2021029290A1 (en) Potassium hexafluoromanganate, and method for producing manganese-activated complex fluoride fluorescent body
JP2018009131A (en) Fluophor, light-emitting device, luminaire and image display device
CN107429159B (en) Phosphor, light-emitting device, and method for producing phosphor
JP2018012814A (en) Method for producing fluoride phosphor
JP2018012813A (en) Method for producing fluoride phosphor
WO2023176559A1 (en) Method for producing fluorescent composite fluoride
JP2019065147A (en) Phosphor, light-emitting device, illuminating device and image display device
JP2017137377A (en) Phosphor, light-emitting device, luminaire, and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201216

R150 Certificate of patent or registration of utility model

Ref document number: 6812231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250