JP6811934B2 - Manufacturing method of three-dimensional model, three-dimensional modeling device - Google Patents

Manufacturing method of three-dimensional model, three-dimensional modeling device Download PDF

Info

Publication number
JP6811934B2
JP6811934B2 JP2016180616A JP2016180616A JP6811934B2 JP 6811934 B2 JP6811934 B2 JP 6811934B2 JP 2016180616 A JP2016180616 A JP 2016180616A JP 2016180616 A JP2016180616 A JP 2016180616A JP 6811934 B2 JP6811934 B2 JP 6811934B2
Authority
JP
Japan
Prior art keywords
dimensional modeling
dimensional
composition
resin
modeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016180616A
Other languages
Japanese (ja)
Other versions
JP2018043439A (en
Inventor
田中 千秋
千秋 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2016180616A priority Critical patent/JP6811934B2/en
Publication of JP2018043439A publication Critical patent/JP2018043439A/en
Application granted granted Critical
Publication of JP6811934B2 publication Critical patent/JP6811934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、立体造形物の製造方法、及び立体造形装置に関する。 The present invention relates to a method for manufacturing a three-dimensional model and a three-dimensional model device.

従来の立体造形物の製造方法としては、樹脂を加熱し溶融することで造形する方法が知られている。例えば特許文献1には、加熱シリンジ内で加熱融解された高分子材料を、気体加圧ディスペンサを用いてノズルから押し出し、前記ノズルの吐出位置若しくは造形ステージを三次元に可動制御することにより構造体を形成する方法が開示されている。
また立体造形方法として、光硬化性モノマーを反応させて造形する立体造形方法が知られている。例えば特許文献2には、特定の光硬化性樹脂組成物を使用し、既に形成されている光硬化層と同じ表面を構成している光未硬化の光硬化性樹脂組成物をその融解温度未満の温度として固化状態に保ちながら、該表面の上に、1層分の光硬化性樹脂組成物を施して制御下に光を照射して光硬化層を一体に積層形成する方法が開示されている。
特許文献3では、硬化性材料(モノマー)を使用した、材料複合化の方法が記載されている。
As a conventional method for manufacturing a three-dimensional model, a method of heating and melting a resin is known. For example, in Patent Document 1, a polymer material heated and melted in a heating syringe is extruded from a nozzle using a gas pressure dispenser, and the discharge position of the nozzle or the modeling stage is three-dimensionally movably controlled to control the structure. The method of forming is disclosed.
Further, as a three-dimensional modeling method, a three-dimensional modeling method in which a photocurable monomer is reacted to form a model is known. For example, in Patent Document 2, a specific photocurable resin composition is used, and the photocurable resin composition having the same surface as the already formed photocurable layer is lower than the melting temperature thereof. Disclosed is a method of applying a photocurable resin composition for one layer on the surface of the surface while maintaining the temperature of the above, and irradiating light under control to integrally laminate and form the photocurable layers. There is.
Patent Document 3 describes a method of material compositing using a curable material (monomer).

従来の樹脂を加熱し溶融することで造形する立体造形物の製造方法は、エネルギー消費量が大きく、高温であることから省エネルギー、安全性の面で問題があった。一方、光硬化性モノマーを反応させて造形する立体造形物の製造方法では、造形物に前記モノマーが残存し安全性や臭気の問題があり、物性面でも反応不良による不具合を起こし充分ではなかった。これらの課題をあわせて解決する立体造形物の製造方法はこれまでなかった。
本発明は、省エネルギー及び安全性の向上を図ることができる立体造形物の製造方法を提供することを目的とする。
The conventional method for manufacturing a three-dimensional model that is formed by heating and melting a resin has a problem in terms of energy saving and safety because it consumes a large amount of energy and has a high temperature. On the other hand, in the method for manufacturing a three-dimensional model formed by reacting a photocurable monomer, the monomer remains in the model and there are problems of safety and odor, and the physical properties are not sufficient due to poor reaction. .. Until now, there has been no method for manufacturing a three-dimensional model that solves these problems together.
An object of the present invention is to provide a method for manufacturing a three-dimensional model that can save energy and improve safety.

本発明によれば、下記の解決手段が提供される。
(1)常温常圧で気体であるハイドロフルオロオレフィン類の液化物を溶媒として樹脂組成物を溶解させた立体造形用組成物を造形ステージに付与して一層分の樹脂膜を成膜する工程と、
前記工程で形成された樹脂膜上に前記立体造形用組成物を付与して一層分の樹脂膜を成膜する工程と、
を複数回繰り返すことにより立体造形する立体造形物の製造方法。
According to the present invention, the following solutions are provided.
(1) A step of applying a three-dimensional modeling composition in which a resin composition is dissolved using a liquefaction of hydrofluoroolefins, which is a gas at normal temperature and pressure, to a modeling stage to form a resin film for one layer. ,
A step of applying the three-dimensional modeling composition on the resin film formed in the above step to form a resin film for one layer, and
A method of manufacturing a three-dimensional model that is three-dimensionally modeled by repeating the above steps multiple times.

本発明により、省エネルギーで安全性の高い立体造形物の製造方法が提供される。 INDUSTRIAL APPLICABILITY The present invention provides a method for producing an energy-saving and highly safe three-dimensional model.

実施例1で用いた立体造形装置の概略図である。It is the schematic of the three-dimensional modeling apparatus used in Example 1. 実施例3で用いた立体造形装置の概略図である。It is the schematic of the three-dimensional modeling apparatus used in Example 3. 実施例2で用いた立体造形装置の概略図である。It is the schematic of the three-dimensional modeling apparatus used in Example 2. 実施例4で用いた立体造形装置の概略図である。It is the schematic of the three-dimensional modeling apparatus used in Example 4.

以下、上記本発明(1)について詳しく説明するが、本発明(1)の実施の形態には、次の(2)〜(8)も含まれるので、これらについても併せて説明する。
(2)前記ハイドロフルオロオレフィン類が、オゾン層破壊係数1以下、地球温暖化係数6以下である化合物である前記(1)記載の立体造形物の製造方法。
(3)前記ハイドロフルオロオレフィン類が、トランス−1−クロロ−3,3,3−トリフルオロプロペンである前記(1)または(2)に記載の立体造形物の製造方法。
(4)前記樹脂組成物に含有される樹脂が、アクリル樹脂、もしくはポリ乳酸である前記(1)〜(3)のいずれか一項に記載の立体造形物の製造方法。
(5)前記樹脂組成物に含有される樹脂のガラス転移点または融点より低い温度で立体造形する前記(1)〜(4)のいずれか一項に記載の立体造形物の製造方法。
(6)前記立体造形用組成物として、樹脂組成物が異なる2種以上の立体造形用組成物を、立体造形装置における成膜手段に立体造形用組成物を供給する配管内で混合して立体造形する前記(1)〜(5)のいずれか一項に記載の立体造形物の製造方法。
(7)前記(1)〜(6)のいずれかに記載の立体造形物の製造方法を用いて立体造形物を作製する立体造形装置であって、常温常圧で気体であるハイドロフルオロオレフィン類の液化物を溶媒として樹脂組成物を溶解させた立体造形用組成物を収容するタンクと、造形ステージと、前記立体造形用組成物を前記造形ステージに付与する成膜手段とを有する立体造形装置。
(8)前記立体造形用組成物を収容するタンクを2つ以上有し、前記成膜手段に立体造形用組成物を供給する配管内に、各タンクに収容された立体造形用組成物を混合する混合手段を有する前記(7)に記載の立体造形装置。
Hereinafter, the present invention (1) will be described in detail, but since the embodiments of the present invention (1) also include the following (2) to (8), these will also be described.
(2) The method for producing a three-dimensional model according to (1) above, wherein the hydrofluoroolefins are compounds having an ozone depletion potential of 1 or less and a global warming potential of 6 or less.
(3) The method for producing a three-dimensional model according to (1) or (2) above, wherein the hydrofluoroolefins are trans-1-chloro-3,3,3-trifluoropropene.
(4) The method for producing a three-dimensional model according to any one of (1) to (3) above, wherein the resin contained in the resin composition is acrylic resin or polylactic acid.
(5) The method for producing a three-dimensional model according to any one of (1) to (4) above, wherein the resin contained in the resin composition is three-dimensionally modeled at a temperature lower than the glass transition point or the melting point.
(6) As the three-dimensional modeling composition, two or more types of three-dimensional modeling compositions having different resin compositions are mixed in a pipe that supplies the three-dimensional modeling composition to the film forming means in the three-dimensional modeling apparatus to form a three-dimensional object. The method for manufacturing a three-dimensional model according to any one of (1) to (5) above.
(7) Hydrofluoroolefins which are three-dimensional modeling apparatus for producing a three-dimensional model using the method for producing a three-dimensional model according to any one of (1) to (6) above, and which is a gas at normal temperature and pressure. A three-dimensional modeling apparatus having a tank for accommodating a three-dimensional modeling composition in which a resin composition is dissolved using the liquefied product of the above as a solvent, a modeling stage, and a film forming means for applying the three-dimensional modeling composition to the modeling stage. ..
(8) The three-dimensional modeling composition contained in each tank is mixed in a pipe having two or more tanks accommodating the three-dimensional modeling composition and supplying the three-dimensional modeling composition to the film forming means. The three-dimensional modeling apparatus according to (7) above, which has a mixing means for

本発明の立体造形物の製造方法は、樹脂組成物を、常温常圧で気体であるハイドロフルオロオレフィン類の液化物に溶解させた立体造形用組成物を用いて立体造形する。
本発明において、樹脂組成物を常温常圧で気体であるハイドロフルオロオレフィン類の液化物に溶解させるとは、樹脂組成物に含有される樹脂を前記液化物に溶解させることができればよく、樹脂組成物中には、前記液化物に溶解しない添加剤等が含まれていても良い。
In the method for producing a three-dimensional model of the present invention, a resin composition is three-dimensionally modeled using a composition for three-dimensional modeling in which a resin composition is dissolved in a liquefaction of hydrofluoroolefins which is a gas at normal temperature and pressure.
In the present invention, dissolving the resin composition in a liquefaction of hydrofluoroolefins which is a gas at normal temperature and pressure means that the resin contained in the resin composition can be dissolved in the liquefaction, and the resin composition The product may contain an additive or the like that does not dissolve in the liquid.

樹脂を溶解させることができる常圧ガスを見いだした。従来の有機溶剤ではなく、常温常圧において気体であるハイドロフルオロオレフィン類の液化物に樹脂を溶解させるため、実質的に加熱や乾燥が不要となり、また、樹脂のガラス転移点や融点より低い温度で造形することができるため、熱分解等による樹脂の劣化を抑制することができる。
この結果、樹脂のガラス転移点または融点以下の温度での立体造形方法とその装置が提供される。
We have found a normal pressure gas that can dissolve the resin. Since the resin is dissolved in the liquefaction of hydrofluoroolefins, which is a gas at normal temperature and pressure instead of the conventional organic solvent, heating and drying are substantially unnecessary, and the temperature is lower than the glass transition point and melting point of the resin. Therefore, deterioration of the resin due to thermal decomposition or the like can be suppressed.
As a result, a three-dimensional modeling method and an apparatus thereof are provided at a temperature below the glass transition point or the melting point of the resin.

樹脂のガラス転移点、及び融点は、以下の方法により測定することができる。
<樹脂のガラス転移点、融点の測定>
JIS K 7121に基づき、DSCにて測定。
・装置:TAインスツルメンツ社製、Q2000
The glass transition point and melting point of the resin can be measured by the following methods.
<Measurement of resin glass transition point and melting point>
Measured by DSC based on JIS K 7121.
・ Equipment: Made by TA Instruments, Q2000

また、常温常圧において気体であるハイドロフルオロオレフィン類の液化物に溶解させた樹脂組成物が異なる2種以上の立体造形用組成物を装置内で配管混合して造形すれば、立体造形時の造形物の物性を変更することができる。これは樹脂を溶融した従来の立体造形法では実質的に困難であった。 Further, if two or more kinds of three-dimensional modeling compositions having different resin compositions dissolved in a liquefaction of hydrofluoroolefins which are gases at normal temperature and pressure are mixed in a pipe in the apparatus and formed, the three-dimensional modeling can be performed. The physical properties of the modeled object can be changed. This was practically difficult with the conventional three-dimensional modeling method in which the resin was melted.

(ハイドロフルオロオレフィン類)
本発明の常温常圧において気体であるハイドロフルオロオレフィン類(HFO類)としては、オゾン層破壊係数が1以下であり、地球温暖化係数が10以下のものが好ましく、さらに好ましくはオゾン層破壊係数が1以下、地球温暖化係数が6以下であるトランス−1−クロロ−3,3,3−トリフルオロプロペン(HFO−1233zd(E))(沸点18.4℃)や2,3,3,3‐テトラフルオロプロペン(HFO−1234yf)(沸点−30℃)、2,3,3−トリフルオロプロペン(HFO−1243yf)(沸点−29.4℃)、3,3,3−トリフルオロプロペン(HFO−1243zf)(沸点−18〜−16℃)、トランス−1,3,3,3−テトラフルオロプロペン(HFO−1234ze)(沸点−19℃)などが好ましい。これらの中でもトランス−1−クロロ−3,3,3−トリフルオロプロペン(HFO−1233zd(E))はオゾン層破壊係数がゼロ、地球温暖化係数が1であることからさらに好ましい。
(Hydrofluoroolefins)
The hydrofluoroolefins (HFOs) that are gases at normal temperature and pressure of the present invention preferably have an ozone layer destruction coefficient of 1 or less and a global warming potential of 10 or less, and more preferably an ozone layer destruction coefficient. Trans-1-chloro-3,3,3-trifluoropropene (HFO-1233zd (E)) (boiling point 18.4 ° C.) and 2,3,3, which have a global warming potential of 1 or less and a global warming potential of 6 or less. 3-Tetrafluoropropene (HFO-1234yf) (boiling point -30 ° C), 2,3,3-trifluoropropene (HFO-1243yf) (boiling point -29.4 ° C), 3,3,3-trifluoropropene (boiled temperature-29.4 ° C) HFO-1243zf) (boiling point -18 to -16 ° C.), trans-1,3,3,3-tetrafluoropropene (HFO-1234ze) (boiling point -19 ° C.) and the like are preferable. Among these, trans-1-chloro-3,3,3-trifluoropropene (HFO-1233zd (E)) is more preferable because it has an ozone depletion potential of zero and a global warming potential of 1.

前記ハイドロフルオロオレフィン類(HFO類)の液化物は樹脂組成物を溶解させることができることから、樹脂組成物に含有される樹脂のガラス転移点もしくは融点より低い温度で樹脂組成物を流動化させることができる。この流動化させた樹脂組成物を立体造形法に応用することで、実質的に加熱や乾燥が不要な立体造形方法が提供されることから、熱に弱い樹脂や熱劣化を抑制した立体造形物を提供することができる。
ハイドロフルオロオレフィン類に樹脂組成物を溶解させる方法としては、具体的には、まず、ハイドロフルオロオレフィン類を沸点以下に冷却し液化する。タンクに樹脂組成物を入れ、次に液化ハイドロオレフィンを入れ、冷却下攪拌して溶解させることができる。樹脂溶解後、バルブの付いた配管をつけて密閉して使用する。
Since the liquefied hydrofluoroolefins (HFOs) can dissolve the resin composition, the resin composition is fluidized at a temperature lower than the glass transition point or melting point of the resin contained in the resin composition. Can be done. By applying this fluidized resin composition to a three-dimensional modeling method, a three-dimensional modeling method that substantially does not require heating or drying is provided, so that a heat-sensitive resin or a three-dimensional model that suppresses thermal deterioration is provided. Can be provided.
Specifically, as a method for dissolving the resin composition in hydrofluoroolefins, first, the hydrofluoroolefins are cooled to a boiling point or lower and liquefied. The resin composition can be put in a tank, then the liquefied hydroolefin can be put in, and the mixture can be dissolved by stirring under cooling. After melting the resin, attach a pipe with a valve and seal it for use.

また、従来の立体造形物の製造方法では、ポリエステルやアクリル樹脂などの異種の樹脂ブレンドをオンデマンドで行うことができなかった。立体造形物の物性への要求が高まる中、材料ブレンドによって物性を変化させた立体造形物や機能を付与できる立体造形物の製造方法の提供が求められている。
本発明によると、ハイドロフルオロオレフィン類の液化物で流動化させた異種の樹脂を含有する2種以上の立体造形用組成物を立体造形装置における成膜手段に立体造形用組成物を供給する配管内で混合して造形すれば、立体造形物の物性を部分ごとに変更することができる。これは樹脂を用いた従来の立体造形法では実質的に困難であった。
この場合、前記2種以上の立体造形用組成物に含まれるハロゲン系ガスの液化物は、同じであることが好ましい。
また、前記混合は配管内で行うので、あえて積極的に加熱や冷却を行う必要はない。
Further, in the conventional method for manufacturing a three-dimensional model, it has not been possible to perform on-demand blending of different kinds of resins such as polyester and acrylic resin. As the demand for physical properties of three-dimensional shaped objects increases, it is required to provide three-dimensional shaped objects whose physical properties are changed by material blending and methods for producing three-dimensional shaped objects that can be given functions.
According to the present invention, a pipe for supplying two or more kinds of three-dimensional modeling compositions containing different kinds of resins fluidized with a liquefied hydrofluoroolefin to a film forming means in a three-dimensional modeling apparatus. By mixing and modeling inside, the physical properties of the three-dimensional model can be changed for each part. This was practically difficult with the conventional three-dimensional modeling method using resin.
In this case, it is preferable that the halogen-based gas liquefaction contained in the two or more kinds of three-dimensional modeling compositions is the same.
Further, since the mixing is performed in the pipe, it is not necessary to actively heat or cool the mixture.

(樹脂組成物)
本発明で用いられる樹脂組成物に含有される樹脂は熱可塑性樹脂が使用でき、具体的にはABS、ポリカーボネート、ポリスチレン、アクリル、アモルファスポリアミド、ポリエステル、およびそれらのブレンドからなる群から選択される。なかでもアクリルとポリエステルは、HFO類に良溶解することから好適である。ポリエステルとしては、ポリ乳酸が好ましい。
(Resin composition)
As the resin contained in the resin composition used in the present invention, a thermoplastic resin can be used, and specifically, it is selected from the group consisting of ABS, polycarbonate, polystyrene, acrylic, amorphous polyamide, polyester, and blends thereof. Of these, acrylic and polyester are suitable because they dissolve well in HFOs. As the polyester, polylactic acid is preferable.

樹脂組成物には、樹脂以外に必要に応じて添加剤を添加してもよい。添加剤の例としては、一般公知の界面活性剤、酸化防止剤、安定剤、紫外線吸収剤、顔料、着色剤、無機粒子、各種フィラー、離型剤、可塑剤、その他類似のものがあげられる。
立体造形用組成物における、樹脂組成物の割合は、極端に高濃度や低濃度でなければとくに規定はないが、一般的には樹脂成分が5〜80質量%であると扱いやすい。
In addition to the resin, additives may be added to the resin composition as needed. Examples of additives include commonly known surfactants, antioxidants, stabilizers, UV absorbers, pigments, colorants, inorganic particles, various fillers, mold release agents, plasticizers and the like. ..
The ratio of the resin composition in the three-dimensional modeling composition is not particularly specified unless it has an extremely high concentration or a low concentration, but it is generally easy to handle when the resin component is 5 to 80% by mass.

本発明の立体造形物の製造方法は、立体造形用組成物を造形ステージに付与して一層分の樹脂膜を成膜する工程と、前記工程で形成された樹脂膜上に前記立体造形用組成物を付与して一層分の樹脂膜を成膜する工程と、を複数回繰り返すことにより立体造形を行う。常温常圧で気体であるハイドロフルオロオレフィン類の液化物は、常温常圧では気体となるので、常温常圧で立体造形を行うと、実質的に加熱や乾燥が不要となる。
前記立体造形は、立体造形プログラムデータの入出力により行うことが好ましい。
The method for producing a three-dimensional model of the present invention includes a step of applying a three-dimensional modeling composition to a modeling stage to form a film for one layer of a resin film, and a step of forming the three-dimensional modeling composition on the resin film formed in the step. Three-dimensional modeling is performed by repeating the steps of applying an object and forming a resin film for one layer a plurality of times. A liquefaction of hydrofluoroolefins, which is a gas at normal temperature and pressure, becomes a gas at normal temperature and pressure. Therefore, when three-dimensional modeling is performed at normal temperature and pressure, heating and drying are substantially unnecessary.
The three-dimensional modeling is preferably performed by inputting / outputting three-dimensional modeling program data.

本発明の立体造形装置は、本発明の立体造形物の製造方法を用いて立体造形物を作製する立体造形装置であって、常温常圧で気体であるハイドロフルオロオレフィン類の液化物を溶媒として樹脂組成物を溶解させた立体造形用組成物を収容するタンクと、造形ステージと、前記立体造形用組成物を前記造形ステージに付与する成膜手段とを有する。
ハイドロフルオロオレフィン類の液化物で流動化させた異種の樹脂を含有する2種以上の立体造形用組成物を、立体造形装置における成膜手段に立体造形用組成物を供給する配管内で混合して造形する場合は、前記立体造形用組成物を収容するタンクを2つ以上有し、前記成膜手段に立体造形用組成物を供給する配管内に、各タンクに収容された立体造形用組成物を混合する混合手段を有することが好ましい。
The three-dimensional modeling apparatus of the present invention is a three-dimensional modeling apparatus for producing a three-dimensional model using the method for producing a three-dimensional object of the present invention, and uses a liquefied solution of hydrofluoroolefins which is a gas at normal temperature and pressure as a solvent. It has a tank for accommodating a three-dimensional modeling composition in which a resin composition is dissolved, a modeling stage, and a film forming means for applying the three-dimensional modeling composition to the modeling stage.
Two or more kinds of three-dimensional modeling compositions containing different kinds of resins fluidized with a liquefied hydrofluoroolefin are mixed in a pipe for supplying the three-dimensional modeling composition to the film forming means in the three-dimensional modeling apparatus. In the case of modeling, the composition for three-dimensional modeling is contained in each tank in a pipe that has two or more tanks for accommodating the composition for three-dimensional modeling and supplies the composition for three-dimensional modeling to the film forming means. It is preferable to have a mixing means for mixing the substances.

本発明の立体造形物の製造方法に用いられる立体造形装置の例を図1〜図4に示す。
図1の装置において、1Aは立体造形用組成物を収容する着脱式圧力タンク、2Aは立体造形用組成物、3Aはバルブ、4Aはポンプ、5は成膜手段であるノズル、6は造形ステージ、7は造形ブース、8は背圧弁、9は加圧配管を示す。
立体造形用組成物2Aは、樹脂組成物とハイドロフルオロオレフィン類の液化物を均一溶解させた立体造形用組成物であり、ポンプ4Aを稼働させ、着脱式圧力タンク1Aの立体造形用組成物2Aをノズル5へと送り出し、造形ステージ6上で立体造形を行う。造形ブースは、ハイドロフルオロオレフィンの沸点以上の温度とすることが望ましい。
着脱式圧力タンク1Aは、図3に示すように、サイフォン管11Aつきのものを用いても良い。
タンクは、常温常圧において気体であるハイドロフルオロオレフィン類の液化物に樹脂組成物を溶解させるので、非圧力タンクでも可能であるが、安全上圧力タンクが好ましい。
また、図2に示すように、着脱式圧力タンク1Aと、着脱式圧力タンク1Bを用いて、着脱式圧力タンクの立体造形用組成物2A、及び立体造形用組成物2Bを、配管内に設けた混合手段である混合器10を介して混合し、ノズル5へと送り出し、立体造形することもできる。
図4は、図2における着脱式圧力タンク1A及び着脱式圧力タンク1Bとして、サイフォン管11A、11Bつきのものを用いた例である。
Examples of a three-dimensional modeling apparatus used in the method for manufacturing a three-dimensional model of the present invention are shown in FIGS. 1 to 4.
In the apparatus of FIG. 1, 1A is a removable pressure tank for accommodating a three-dimensional modeling composition, 2A is a three-dimensional modeling composition, 3A is a valve, 4A is a pump, 5 is a nozzle which is a film forming means, and 6 is a modeling stage. , 7 is a modeling booth, 8 is a back pressure valve, and 9 is a pressure piping.
The three-dimensional modeling composition 2A is a three-dimensional modeling composition in which a resin composition and a liquefied hydrofluoroolefin are uniformly dissolved, and a pump 4A is operated to operate a removable pressure tank 1A for a three-dimensional modeling composition 2A. Is sent to the nozzle 5, and three-dimensional modeling is performed on the modeling stage 6. It is desirable that the temperature of the modeling booth is equal to or higher than the boiling point of the hydrofluoroolefin.
As the removable pressure tank 1A, as shown in FIG. 3, one with a siphon tube 11A may be used.
Since the resin composition is dissolved in the liquefaction of hydrofluoroolefins which is a gas at normal temperature and pressure, the tank can be a non-pressure tank, but a pressure tank is preferable for safety.
Further, as shown in FIG. 2, using the removable pressure tank 1A and the removable pressure tank 1B, the three-dimensional modeling composition 2A and the three-dimensional modeling composition 2B of the removable pressure tank are provided in the pipe. It is also possible to mix the mixture through the mixer 10 which is the mixing means and send it out to the nozzle 5 for three-dimensional modeling.
FIG. 4 shows an example in which the removable pressure tank 1A and the removable pressure tank 1B in FIG. 2 with siphon tubes 11A and 11B are used.

以下、実施例及び比較例を示して本発明を更に具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

実施例1
図1記載の着脱式圧力タンク1Aにポリメタクリル酸メチル(PMMA:融点160℃)30質量部と液化したHFO−1233zd(E)(セントラル硝子社製)70質量部を入れ、15℃で均一溶解させた後、バルブ3Aを取り付け密閉した。これを図1の装置にセットし、24℃の室温でポンプ4Aを稼働させ、着脱式圧力タンク1A内の立体造形用組成物2Aをノズル5へと送り出し、造形ステージ6上に付与して一層分の樹脂膜を成膜する工程と、前記工程で形成された樹脂膜上に前記立体造形用組成物2Aを付与して一層分の樹脂膜を成膜する工程と、を複数回繰り返すことにより立体造形を行った。このとき立体造形プログラムデータにもとづいた[立体造形物1]が得られることを確認した。
Example 1
30 parts by mass of polymethyl methacrylate (PMMA: melting point 160 ° C.) and 70 parts by mass of liquefied HFO-1233zd (E) (manufactured by Central Glass Co., Ltd.) were placed in the removable pressure tank 1A shown in FIG. 1, and uniformly dissolved at 15 ° C. After that, the valve 3A was attached and sealed. This is set in the apparatus shown in FIG. 1, the pump 4A is operated at a room temperature of 24 ° C., the three-dimensional modeling composition 2A in the removable pressure tank 1A is sent out to the nozzle 5, and is applied onto the modeling stage 6 to obtain a single layer. By repeating the step of forming the resin film for the portion and the step of applying the three-dimensional modeling composition 2A on the resin film formed in the step to form the resin film for one layer a plurality of times. Three-dimensional modeling was performed. At this time, it was confirmed that [3D model 1] can be obtained based on the 3D model program data.

実施例2
実施例1において、着脱式圧力タンクを図3に示すサイフォン管つきに変更する以外は実施例1と同様に操作して[立体造形物2]が得られることを確認した。
Example 2
In Example 1, it was confirmed that [three-dimensional model 2] could be obtained by operating in the same manner as in Example 1 except that the removable pressure tank was changed to the one with the siphon tube shown in FIG.

実施例3
図2記載の着脱式圧力タンク1Aにポリメタクリル酸メチル(PMMA:融点160℃)15質量部と液化したHFO−1233zd(E)(セントラル硝子社製)85質量部を入れ、15℃で溶解させた後、バルブ3Aを取り付け密閉した。同じく着脱式圧力タンク1Bにポリ乳酸(東洋紡社製BE410:ガラス転移温度45℃)15質量部と液化したHFO−1233zd(E)(セントラル硝子社製)85質量部を入れ、15℃で溶解させた後、バルブ3Bを取り付け密閉した。これらの着脱式圧力タンクを図2の装置にセットし、24℃の室温でポンプ4Aとポンプ4Bをそれぞれ稼働させ、着脱式圧力タンク1A内の立体造形用組成物2A、及び着脱式圧力タンク1B内の立体造形用組成物2Bを混合器10(ノリタケ製1/2分割混合型インラインミキサー)を介して混合し、ノズル5へと送り出し、造形ステージ6上に付与して一層分の樹脂膜を成膜する工程と、前記工程で形成された樹脂膜上に前記立体造形用組成物2A及び2Bの混合物を付与して一層分の樹脂膜を成膜する工程と、を複数回繰り返すことにより立体造形を行った。このとき立体造形プログラムデータにもとづいた[立体造形物3]が得られることを確認した。
Example 3
15 parts by mass of polymethyl methacrylate (PMMA: melting point 160 ° C.) and 85 parts by mass of liquefied HFO-1233zd (E) (manufactured by Central Glass Co., Ltd.) were placed in the removable pressure tank 1A shown in FIG. 2 and dissolved at 15 ° C. After that, the valve 3A was attached and sealed. Similarly, 15 parts by mass of polylactic acid (BE410 manufactured by Toyobo Co., Ltd .: glass transition temperature 45 ° C.) and 85 parts by mass of liquefied HFO-1233zd (E) (manufactured by Central Glass Co., Ltd.) were placed in the removable pressure tank 1B and dissolved at 15 ° C. After that, the valve 3B was attached and sealed. These removable pressure tanks are set in the device shown in FIG. 2, and the pump 4A and the pump 4B are operated at room temperature of 24 ° C., respectively, and the three-dimensional modeling composition 2A and the removable pressure tank 1B in the removable pressure tank 1A are operated. The three-dimensional modeling composition 2B inside is mixed via a mixer 10 (1/2 split mixed in-line mixer manufactured by Noritake), sent out to a nozzle 5, and applied onto a modeling stage 6 to form a layer of resin film. The step of forming a film and the step of applying a mixture of the three-dimensional modeling compositions 2A and 2B on the resin film formed in the above step to form a single layer of the resin film are repeated a plurality of times to form a three-dimensional film. I made a model. At this time, it was confirmed that [3D model 3] could be obtained based on the 3D model program data.

実施例4
実施例3において、着脱式圧力タンクを図4に示すサイフォン管つきに変更する以外は実施例3と同様に操作して[立体造形物4]が得られることを確認した。
Example 4
In Example 3, it was confirmed that [three-dimensional model 4] could be obtained by operating in the same manner as in Example 3 except that the removable pressure tank was changed to the one with the siphon tube shown in FIG.

評価
実施例1〜4では、非加熱で樹脂の立体造形物が作製できることを確認した。
実施例3〜4では、樹脂ブレンドされた立体造形物が得られることを確認した。
Evaluation In Examples 1 to 4, it was confirmed that a three-dimensional resin model could be produced without heating.
In Examples 3 to 4, it was confirmed that a resin-blended three-dimensional model could be obtained.

1A、1B 着脱式圧力タンク
2A、2B 立体造形用組成物
3A、3B バルブ
4A、4B ポンプ
5 ノズル
6 造形ステージ
7 造形ブース
8 背圧弁
9 加圧配管
10 混合器
11A、11B サイフォン管
1A, 1B Detachable pressure tank 2A, 2B Composition for three-dimensional modeling 3A, 3B Valve 4A, 4B Pump 5 Nozzle 6 Modeling stage 7 Modeling booth 8 Back pressure valve 9 Pressurized piping 10 Mixer 11A, 11B Siphon tube

特許第4972725号公報Japanese Patent No. 4972725 特開2000−309057号公報Japanese Unexamined Patent Publication No. 2000-309057 特開2015−136895号公報Japanese Unexamined Patent Publication No. 2015-136895

Claims (7)

トランス−1−クロロ−3,3,3−トリフルオロプロペン、2,3,3,3‐テトラフルオロプロペン、2,3,3−トリフルオロプロペン、3,3,3−トリフルオロプロペン、トランス−1,3,3,3−テトラフルオロプロペンのいずれかであるハイドロフルオロオレフィン類の液化物を溶媒として樹脂組成物を溶解させた立体造形用組成物を造形ステージに付与して一層分の樹脂膜を成膜する工程と、
前記工程で形成された樹脂膜上に前記立体造形用組成物を付与して一層分の樹脂膜を成膜する工程と、
を複数回繰り返すことにより立体造形する立体造形物の製造方法。
Trans-1-chloro-3,3,3-trifluoropropene, 2,3,3,3-tetrafluoropropene, 2,3,3-trifluoropropene, 3,3,3-trifluoropropene, trans- A three-dimensional modeling composition in which a resin composition is dissolved in a liquefied hydrofluoroolefin which is one of 1,3,3,3-tetrafluoropropene is applied to a modeling stage to provide a resin film for one layer. And the process of forming a film
A step of applying the three-dimensional modeling composition on the resin film formed in the above step to form a resin film for one layer, and
A method of manufacturing a three-dimensional model that is three-dimensionally modeled by repeating the above steps multiple times.
前記ハイドロフルオロオレフィン類が、トランス−1−クロロ−3,3,3−トリフルオロプロペンである請求項に記載の立体造形物の製造方法。 The method for producing a three-dimensional model according to claim 1 , wherein the hydrofluoroolefins are trans-1-chloro-3,3,3-trifluoropropene. 前記樹脂組成物に含有される樹脂が、アクリル樹脂、もしくはポリ乳酸である請求項1〜のいずれか一項に記載の立体造形物の製造方法。 The method for producing a three-dimensional model according to any one of claims 1 to 2 , wherein the resin contained in the resin composition is an acrylic resin or polylactic acid. 前記樹脂組成物に含有される樹脂のガラス転移点または融点より低い温度で立体造形する請求項1〜のいずれか一項に記載の立体造形物の製造方法。 The method for producing a three-dimensional model according to any one of claims 1 to 3 , wherein the three-dimensional model is formed at a temperature lower than the glass transition point or the melting point of the resin contained in the resin composition. 前記立体造形用組成物として、樹脂組成物が異なる2種以上の立体造形用組成物を、立体造形装置における成膜手段に立体造形用組成物を供給する配管内で混合して立体造形する請求項1〜のいずれか一項に記載の立体造形物の製造方法。 A claim for three-dimensional modeling by mixing two or more types of three-dimensional modeling compositions having different resin compositions as the three-dimensional modeling composition in a pipe that supplies the three-dimensional modeling composition to a film forming means in the three-dimensional modeling apparatus. Item 8. The method for manufacturing a three-dimensional model according to any one of Items 1 to 4 . 請求項1〜のいずれか一項に記載の立体造形物の製造方法を用いて立体造形物を作製する立体造形装置であって、トランス−1−クロロ−3,3,3−トリフルオロプロペン、2,3,3,3‐テトラフルオロプロペン、2,3,3−トリフルオロプロペン、3,3,3−トリフルオロプロペン、トランス−1,3,3,3−テトラフルオロプロペンのいずれかであるハイドロフルオロオレフィン類の液化物を溶媒として樹脂組成物を溶解させた立体造形用組成物を収容するタンクと、造形ステージと、前記立体造形用組成物を前記造形ステージに付与する成膜手段とを有する立体造形装置。 A three-dimensional modeling apparatus for producing a three-dimensional model using the method for producing a three-dimensional model according to any one of claims 1 to 5 , wherein the trans-1-chloro-3,3,3-trifluoropropene is used. , 2,3,3,3-tetrafluoropropene, 2,3,3-trifluoropropene, 3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene A tank for accommodating a three-dimensional modeling composition in which a resin composition is dissolved using a liquefied product of a certain hydrofluoroolefin as a solvent, a modeling stage, and a film forming means for applying the three-dimensional modeling composition to the modeling stage. Three-dimensional modeling device with. 前記立体造形用組成物を収容するタンクを2つ以上有し、前記成膜手段に立体造形用組成物を供給する配管内に、各タンクに収容された立体造形用組成物を混合する混合手段を有する請求項に記載の立体造形装置。 Mixing means for mixing the three-dimensional modeling composition contained in each tank in a pipe having two or more tanks for accommodating the three-dimensional modeling composition and supplying the three-dimensional modeling composition to the film forming means. The three-dimensional modeling apparatus according to claim 6 .
JP2016180616A 2016-09-15 2016-09-15 Manufacturing method of three-dimensional model, three-dimensional modeling device Active JP6811934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016180616A JP6811934B2 (en) 2016-09-15 2016-09-15 Manufacturing method of three-dimensional model, three-dimensional modeling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016180616A JP6811934B2 (en) 2016-09-15 2016-09-15 Manufacturing method of three-dimensional model, three-dimensional modeling device

Publications (2)

Publication Number Publication Date
JP2018043439A JP2018043439A (en) 2018-03-22
JP6811934B2 true JP6811934B2 (en) 2021-01-13

Family

ID=61694106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016180616A Active JP6811934B2 (en) 2016-09-15 2016-09-15 Manufacturing method of three-dimensional model, three-dimensional modeling device

Country Status (1)

Country Link
JP (1) JP6811934B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309057A (en) * 1999-04-27 2000-11-07 Teijin Seiki Co Ltd Method and device for photo fabrication
JP4042882B2 (en) * 1999-04-30 2008-02-06 信越ポリマー株式会社 Seamless belt
JP2005144870A (en) * 2003-11-14 2005-06-09 Noritake Co Ltd Method and apparatus for manufacturing three-dimensional molding
JP2009083326A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Manufacturing method of optical member and optical member formed by the same
JP5648345B2 (en) * 2009-07-16 2015-01-07 セントラル硝子株式会社 Solvent composition for silicone compounds
JP2011143615A (en) * 2010-01-14 2011-07-28 Asahi Kasei E-Materials Corp Method for manufacturing three-dimensional structure, and three-dimensional structure
JP6471482B2 (en) * 2014-12-04 2019-02-20 株式会社リコー Three-dimensional modeling curable liquid, three-dimensional modeling material set, and manufacturing method of three-dimensional model
JP2016132101A (en) * 2015-01-15 2016-07-25 セイコーエプソン株式会社 Method for producing three-dimensional molded object, apparatus for producing three-dimensional molded object, and three-dimensional molded object

Also Published As

Publication number Publication date
JP2018043439A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
EP2455432B1 (en) Solvent composition for silicone compound
Pojman Frontal polymerization
JP7252739B2 (en) Building materials and their application
EP1813630A3 (en) Encapsulated Michael addition catalyst
US20230095097A1 (en) Tough, high temperature polymers produced by stereolithography
Zhang et al. Direct writing of continuous carbon fibers/epoxy thermoset composites with high-strength and low energy-consumption
JP6755525B2 (en) UV curable paint coating method and UV curable film manufacturing method
Hu et al. Melting and non-isothermal crystallization behaviors of polypropylene and polypropylene/montmorillonite nanocomposites under pressurized carbon dioxide
CN109306069A (en) The processing aid used in the potential foaming agent manufacture extruded polystyrene foam body using low global warming
JP6811934B2 (en) Manufacturing method of three-dimensional model, three-dimensional modeling device
AR088658A1 (en) PROCESS TO PRODUCE 2,3,3,3-TETRAFLUOROPROPEN
Mahmood et al. Dimethyl ether’s plasticizing effect on carbon dioxide solubility in polystyrene
CA2867425A1 (en) Thermally expandable preparations
Armstrong et al. Unstructured Direct Ink Write 3D Printing of Functional Structures with Ambient Temperature Curing Dual‐Network Thermoset Ink
Choi et al. Weldable and Reprocessable Shape Memory Epoxy Vitrimer Enabled by Controlled Formulation for Extrusion‐Based 4D Printing Applications
JP2015532225A (en) Method for producing foam member and portable foam extruder
Wu et al. Interfacial Regulation for 3D Printing based on Slice‐Based Photopolymerization
Xu et al. Fundamental study of CBA-blown bubble growth and collapse under atmospheric pressure
JP2014133889A5 (en)
US20240093512A1 (en) Photo-curable insulation foam, dispenser for injection thereof, and methods of using same in the insulation
Kim et al. Advanced Additive Manufacturing of Structurally‐Colored Architectures
JP2014148585A5 (en)
Guo et al. The nonisothermal crystallization kinetics of surface fluorinated polypropylene/polypropylene blend
Robertson Rapid fabrication of polymers and composites via frontal polymerization
Postiglione Smart materials and additive manufacturing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201129

R151 Written notification of patent or utility model registration

Ref document number: 6811934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151